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What did becoming an inventor mean to you?

“Being recognized as an inventor validates one’s creativity, empowering one to do
more.”

— Sujesha S., became an inventor at age 38

“As an engineer you are usually stuck in an endless cycle of building the next billion-
dollar product and in the world of ever-evolving and ever-updating software, most of
our work is never permanent. But when you become an inventor and build something,
which no one ever thought of, you make a permanent mark of your existence in the
tech industry. I still remember how happy I was when I filed my first patent, which was
a moment of great joy and pride. And as time went by, I filed multiple patents and I
felt more confident and more accomplished.”

— Kshitij I., became an inventor at age 27

1 Introduction

Innovation is a cornerstone of economic growth, yet our understanding of the people who

generate new ideas remains surprisingly limited. Innovation policy is written largely around

firms, emerging technologies, and intellectual property (IP) rights, rather than workers. As

a result, we know little about how the institutions governing invention shape inventors’ ca-

reers and life trajectories.1 This omission matters because innovation is not only a process

of creative destruction but also a labor-market process. The incentives and constraints that

inventors face influence where they work, the risks they take, and whether they ultimately

found new firms that contribute to economic growth. Understanding how patent recogni-

tion may influence these choices is central to designing policies that foster shared economic

prosperity.

In this paper, we study how receiving a patent alters the life trajectories of first-time

patent applicants.2 A patent grant is a distinctive labor-market event. It confers legal sta-

1A large literature documents who becomes an inventor and the early-life determinants of inventive
activity, including family background, exposure, education, and geography (e.g., Bell et al. (2019); Akcigit
et al. (2017); Kahn and MacGarvie (2016); Toole et al. (2020); Chien and Grennan (2024). By contrast,
there is far less evidence on how institutions supporting invention, and patent grants in particular, shape
inventors’ subsequent career paths, entrepreneurial decisions, and long-run professional outcomes.

2We are careful to distinguish between being an innovator with an inventive idea and being a named
inventor, recognizing the “innovator-inventor” gap faced by historically underrepresented groups (URGs)
in achieving named inventor status on a patent grant (Chien, 2024; Chien and Ouellette, 2023; Chien and
Grennan, 2024).

1



tus on the person - they are now an “inventor”3 while also serving as a public and durable

signal of inventive ability. By certifying that an idea is novel and non-obvious, patent recog-

nition can bolster an inventor’s confidence and/or expand their opportunity set (Chien and

Grennan, 2025). The patent has the potential to raise visibility to employers, collabora-

tors, and investors, strengthen bargaining power within firms, and alter the feasibility of

entrepreneurial risk-taking. If other frictions and pre-existing constraints, such as potential

investor or employer behavioral biases, also influence the extent to which named inventors on

a patent grant can convert their newly acquired status into opportunities, the importance of

patents as a labor-market signal may be underappreciated. Therefore, we also carefully ex-

plore heterogeneity in how first-time inventors convert these expanded opportunities, based

on education, gender, ethnicity, and other predetermined constraints, such as prior networks

and prestige.

Despite the centrality of patents to innovation policy, empirical evidence on how patent

grants influence inventors’ life trajectories remains limited. Existing work emphasizes two

competing forces. On one hand, patenting may raise inventors’ earnings and career prospects,

with benefits concentrated among high-skilled and “star-inventor” workers (Toivanen and

Väänänen, 2012; Addario and Depalo, 2014; Kline et al., 2019; Aghion et al., 2019). On

the other hand, patents may restrict mobility by tying inventors to firm-owned IP, in effect

transforming the inventor’s ideas into a firm’s intangible asset, one that they have no rights

to practice outside of their employer,4 and functioning as an implicit mobility constraint

(Melero et al., 2020). While these studies provide important insights, they focus on narrower

labor-market margins, whereas we examine a broader range of outcomes. For example, we

test whether the same recognition shock can lead one inventor to entrepreneurship, another

to internal advancement, and a third to deeper specialization within a firm.

3In most cases, patent rights accrue to the organization of the inventor, rather than the inventor them-
selves, either by direct assignment or under the hired to invent doctrine. In Germany and Japan, inventors
also retain remuneration rights, but generally speaking, the extent to which the firm shares direct benefits
with the inventor is discretionary (Chien, 2022).

4Because the employer wholly retains the rights to the invention, making it technically illegal for the
inventor to practice without permission if they move to another employer.
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To provide detailed analyses of how patent recognition reshapes inventors’ life trajec-

tories, we draw upon a vast online bank of actual resumes from LinkedIn. We match re-

sume data to the universe of first-time patent applicants at the United States Patent and

Trademark Office (USPTO). In addition, we match resume position details to PitchBook

data on entrepreneurial firms, Glassdoor data on employees’ perceptions of firms, Revelio

wage estimates and rankings of firm, geographic, and educational prestige, and detailed

subsequent-invention and inventor-network data. Ultimately, our sample covers 1.5 million

first-time inventors over more than two decades. Our identification strategy leverages the

quasi-random assignment of applications to patent examiners within art units. These exam-

iners have differing historical grant rates or leniency rates (Lemley and Sampat, 2012; Righi

and Simcoe, 2019), which serve as a well-established source of plausibly exogenous variation

(Sampat and Williams, 2019; Farre-Mensa et al., 2020; Goldsmith-Pinkham et al., 2025).

Consistent with the perspective of patents being labor-market signals that reshape inven-

tors’ life trajectories, survey evidence from engineers drawn from a larger survey5 indicate

that becoming a named inventor is widely perceived as having a positive life impact (mean

of 1.23 on a scale of -2 [negative impact] to +2 [positive impact]). In this study, we also

summarize the hundreds of responses we received to the open-ended question asking the

engineers to describe the life impact of becoming a named inventor. The responses suggest

that patent recognition is perceived as a pivotal career milestone that brings notoriety both

within the firm and in the broader community, shaping confidence, professional identity, and

perceived access to collaborators and leadership opportunities. This qualitative evidence

supports our motivation to broadly explore how patents influence life meaning.

Our empirical analyses yield four main findings. First, patent recognition substantially

increases entry into high-growth entrepreneurship. Inventors who receive a patent grant are

about 1.0 percentage point (p.p.) more likely to found a VC-backed startup, relative to

5Chien and Grennan (2024) surveyed thousands of engineers about the invention process and how it is
influenced by firm policies, and analyses of the survey data show that it is reliable, internally consistent, and
externally valid.
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a baseline founding rate of 2.8 percent, implying a 36% increase. While baseline rates of

VC-backed entrepreneurship are low, the estimated gains to entry from patent recognition

are large. Patent grants also increase employment at VC-backed startups more broadly, with

a 4.7 p.p. increase relative to a baseline mean of 19.8 percent, a 24% increase. Over time,

estimates indicate that employees move to startups within the first three years after the

grant, whereas founding a high-growth venture takes closer to five years to materialize. The

entrepreneurial estimates are driven largely by White and Asian men, suggesting that early

recognition lowers barriers to external risk-taking for inventors already positioned to access

entrepreneurial networks and capital markets.

Importantly, heterogeneity in entrepreneurial entry reveals the role of credentialing and

access. Inventors with only bachelor’s degrees and those working in IT/software rather than

BioTech/pharma experience larger gains from patent receipt, consistent with patents serv-

ing as substitutes for other credentials such as advanced scientific degrees or research grants.

While women and underrepresented minorities (URMs)6 also benefit from patent recognition

and move to startups, they do not convert recognition into founding a firm. Mechanism tests

indicate that patent recognition translates into entrepreneurship primarily when inventors

have sufficient network depth and organizational scale to act on new opportunities. Found-

ing effects are strongest for team-based inventors and those at larger firms, highlighting that

patents operate as credentials most easily converted into entrepreneurship when inventors

have access to dense networks, complementary collaborators, and scalable organizational en-

vironments. These results are robust to alternative standard error constructions, alternative

IV estimators, richer sets of predetermined controls and fixed effects, and sample restrictions

by art unit size and data completeness.

Second, patent grants reshape careers within firms. Awardees are 3.7 p.p. more likely to

remain with their employer or a 21% increase, consistent with the creation of firm-specific hu-

man capital or implicit mobility constraints. When inventors do move, they are significantly

6We define URM as non-white and non-Asian.
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more likely to transition to higher-prestige firms, and they experience faster promotion and

increased leadership responsibilities. These internal career gains are accompanied by mea-

surable changes in social skills. Following patent receipt, inventors are significantly more

likely to report gains in leadership skills, hold concurrent roles such as board or advisory

positions, and expand their professional networks. These patterns suggest that patent recog-

nition enhances not only technical standing but also the social capital required to operate in

senior and coordinating roles within firms, providing a mechanism through which recognition

translates into internal advancement rather than external exit.

In contrast to findings that external opportunities accrue to white and Asian males, we

find that women and URM inventors are more likely to be promoted internally following

patent receipt. Geographic mobility also rises, but primarily through exits from innovation

hubs rather than entry, a pattern again driven disproportionately by URM inventors and

potentially consistent with a desire to return home. These findings suggest that patent

recognition improves opportunities within firms even when other frictions may constrain

external mobility.

Third, patent recognition alters the trajectory of subsequent innovation. Awardees are

more likely to file again and more likely to receive future grants, and their later patents

exhibit substantially higher quality, with elevated forward citations, higher valuations, and a

greater likelihood of being classified as breakthrough inventions. These gains are largest for

inventors with a bachelor’s degree or less, a group that faces tighter baseline constraints. At

the same time, inventors do not broaden their technological scope. Instead, they specialize,

deepening existing relationships and continuing to innovate within their initial domain. They

also do not appear to broaden their collaborator network more than their counterfactuals in

terms of number of co-inventors, but they are more likely to work with superstar inventors

(those in the top decile of patenting or citations for a technology).

Finally, we present suggestive evidence that internal advancement does not fully absorb

the gains from recognition. Using Glassdoor data, we find that inventors who remain at their
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firms report declining assessments of career advancement opportunities and overall rating,

with the strength of the relation growing over time. Wage growth is also lower among retained

inventors. While these measures can be criticized as noisier, the pattern is consistent with

positive lock-in, whereby patent recognition expands outside options, but organizational

constraints and the allocation of IP rights limit inventors’ ability to realize those options

internally, helping to explain why some ultimately seek opportunities elsewhere.

Looking across the various tests, we find evidence for a unified mechanism. Patent

grants act as a highly visible shock to inventors’ outside option value. For inventors with

access to dense networks and scalable organizational environments, this shock is converted

into entrepreneurship and external mobility. For others, it strengthens bargaining power

within firms, leading to promotion, leadership, and deeper specialization. Thus, patent

recognition does not generate a single career pathway. Rather, it widens the set of feasible

trajectories, with differences in networks, institutional context, and constraints determining

how recognition is ultimately translated into career outcomes. Importantly, for many first-

time inventors, these opportunities may not otherwise be available.

The remainder of the paper proceeds as follows. Section 2 reviews the related literature.

Section 3 describes the institutional setting and identification strategy. Section 4 presents

the data and outcome construction. Section 5 reports the main findings. Section 6 discusses

robustness and implications for access to innovation and entrepreneurship. Section 7 con-

cludes.

2 Related Literature

This paper builds on three strands of research: entrepreneurial finance, innovation eco-

nomics, and personnel and organizational economics. Across these literatures, prior work

has examined some aspects of how innovative activity shapes labor outcomes and inventive

productivity, but we are the first, to our knowledge, to focus on whether patent recognition is

connected to entrepreneurial opportunities and to accumulating the leadership and soft skills
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that complement technical expertise and have become increasingly valuable in team-based

and entrepreneurial settings Deming (2017). Related work shows that performance-based

credentials can convey economically meaningful information even outside traditional degree

programs, particularly in settings where ability and job readiness are otherwise difficult to

observe (Deming et al., 2016; Athey and Palikot, 2025). Our analysis extends this insight to

innovation-driven labor markets, where patent grants may serve as analogous performance-

based signals.

First, the literature in entrepreneurial finance examines who becomes an entrepreneur and

how external circumstances shape the supply of high-growth startups. Financial constraints

(Kerr and Nanda, 2009; Hall and Lerner, 2010; Ewens et al., 2018; Ewens and Farre-Mensa,

2020; Bernstein et al., 2022; Babina et al., 2023), government programs (Lerner, 2012; Chat-

terji et al., 2014; Howell, 2017; Azoulay et al., 2018; Denes et al., 2023), entrepreneurial and

VC ecosystems (Guzman and Stern, 2015, 2020; Eldar and Grennan, 2023; Chen and Ewens,

2025), incubators (Gonzalez-Uribe and Leatherbee, 2017; González-Uribe and Reyes, 2021),

and immigration policies (Glennon, 2024; Gupta, 2025; Gupta et al., 2025) all play a role.

Founders’ networks, prior experience, reputation, and optimism all matter when determin-

ing which startups receive venture funding and scale (Hochberg et al., 2007; Gompers et al.,

2010; Hochberg et al., 2010; Puri and Robinson, 2013; Bernstein et al., 2017; Howell and

Nanda, 2024). These papers examine external interventions or financing shocks. Instead, we

study an internal recognition event: the receipt of a patent grant, and we use it to show that

such recognition substantially increases the probability that an inventor forms a VC-backed

startup. Thus, our paper provides new evidence on how signals of inventive capability trans-

late into high-growth entrepreneurship.

A second literature examines unequal access to innovation careers, inventor mobility,

and the diffusion of knowledge. A large body of work shows that labor mobility is a central

channel through which ideas spread across firms and regions (Fallick et al., 2006; Singh

and Agrawal, 2011; Akcigit et al., 2017; Matray, 2021). At the same time, who becomes
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an inventor and who ultimately captures the returns to invention is highly unequal across

gender, race, and background (Bell et al., 2019; Toole et al., 2020; Pairolero et al., 2022;

Chien et al., 2025; Koffi and Marx, 2025), with important implications for the direction

and composition of technological change (Koning et al., 2020, 2021). Closely related work

by Melero et al. (2020) shows that patent grants reduce inventor mobility and interprets

this effect as an increase in firm-specific human capital. We corroborate this retention

component but extend the analysis along several new dimensions. In particular, we show

that patent recognition reshapes inventors’ broader opportunity sets, influencing entry into

entrepreneurship, geographic mobility, professional networks, and the nature of subsequent

inventive activity. Importantly, these responses are highly heterogeneous. Differences by

gender, race, education, and industry indicate that recognition alone is often insufficient to

overcome external constraints.

A third literature connects recognition, human capital, and career advancement within

firms. Research in personnel and organizational economics emphasizes how signals of ability,

network referrals, evaluation processes, and internal promotion systems shape incentives, re-

tention, and long-run career trajectories (Kahn and Lange, 2014; Burks et al., 2015; Hoffman

et al., 2017; Benson et al., 2019; Gallus and Heikensten, 2020). Recent work further em-

phasizes the growing importance of general-purpose and social skills—such as coordination,

judgment, and leadership—in team-based production and innovation-driven settings (Dem-

ing, 2017; Deming and Kahn, 2018). Our results contribute to this literature by showing that

patent grants operate as a salient recognition shock that accelerates promotions, expands

leadership roles, and alters retention decisions. Importantly, these gains are heterogeneous:

men are more likely to translate recognition into entrepreneurial entry, while women and un-

derrepresented inventors disproportionately convert recognition into internal advancement.

The finding that organizational satisfaction declines following recognition points to a novel

mechanism through which patent protection may interact with internal labor-market fric-

tions and authority structures within firms (Lazear et al., 2015; Hoffman and Tadelis, 2021;
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Cullen and Perez-Truglia, 2023).

A fourth literature connects these strands by examining how firm-level shocks affect

labor-market outcomes both internally, through bargaining power and retention, and exter-

nally, through mobility and entrepreneurship (Babina, 2019; Berger et al., 2022; Babina and

Howell, 2024). A closely related work by Kline et al. (2019) studies patent allowances at the

firm level and shows that managers and shareholders capture most of the surplus generated

by valuable patents, with limited pass-through to individual inventors. Our findings extend

this rent-sharing perspective. Rather than focusing on wages or firm-level outcomes, we

show that patent recognition affects harder-to-measure traits that shape long-run careers,

including entrepreneurial entry, leadership roles, professional networks, and perceived oppor-

tunity. These margins have no analog in firm-level rent-sharing models and highlight new

channels through which patent recognition can reshape workers’ outside options and bar-

gaining positions even when firms retain formal control over the IP. Moreover, our evidence

of increased retention alongside declining organizational satisfaction suggests a novel inter-

action between patent recognition and implicit mobility constraints, echoing recent work on

non-compete enforcement and labor-market frictions (Starr et al., 2021; Jeffers, 2023). In

this sense, patent grants reshape workers’ bargaining power not primarily through wages,

but through changes in opportunity sets, identity, and career trajectories.

Across these literatures, our contribution is to provide the first comprehensive causal evi-

dence on how patent recognition restructures the long-run career and innovation life cycle of

inventors, linking entrepreneurial entry, mobility, internal advancement, network formation,

and subsequent invention within a unified framework.

3 Empirical Design

Identifying the effect of early patent grants on innovators’ career (and life) outcomes is chal-

lenging because inventor talent is likely to be correlated with both the likelihood of patent

approval and with innovator’s career outcomes, thus raising endogeneity concerns. For in-
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stance, a more talented innovator is both more likely to have her patent application approved

and to experience positive career outcomes, such as earning a promotion or founding a suc-

cessful startup.

To identify the effects of early patent grants on innovator’s careers, our identification

strategy builds upon Sampat andWilliams (2019) and Farre-Mensa et al. (2020) by exploiting

exogenous variation in patent examiners’ approval rates to instrument for the probability that

a patent application is approved. The validity of our IV rests on two institutional features

of the USPTO patent review process. First, throughout our period of analysis, the USPTO

assigned applications to examiners in each technology field (or “art unit”) randomly with

respect to the quality of the underlying application (Lemley and Sampat, 2012; Sampat and

Williams, 2019). Second, patent examiners vary in their propensity to approve applications.

Some are more lenient while others are stricter (Cockburn et al., 2003). Together, these

two features result in the quasi-random assignment of similar applications to examiners who

differ in their propensity to approve patents, creating exogenous variation in the likelihood

that applications of comparable quality are approved.

To illustrate, consider the outcome Y n, defined as an indicator equal to one if the innova-

tor founds a VC-funded startup within n years of the decision on her first patent application,

and zero otherwise. To identify the effect of patent approval on this outcome, we can esti-

mate the following equation:

Y n
iajt = βFirstApplicationApprovediajt + ϕXiajt + υat + ϵiajt (1)

where i indexes innovators, a indexes the art unit where the innovator’s first patent appli-

cation (p) is assigned, j indexes the patent examiner assigned to review application p, and t

is the year when patent application p is filed. FirstApplicationApprovediajt is an indicator

variable for whether the examiner’s final decision approves the application. As Aneja et al.

(2024) documents, most applications are rejected initially, but many more are approved
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thereafter. The vector Xiajt includes a variety of control variables (e.g., the innovator’s state

of residence, her highest academic degree, and an indicator for whether she graduated from

an Ivy Plus institution). We include art-unit-by-application-year fixed effects, υat. Exam-

iner assignment within art units is effectively random. Assuming this set changes slowly over

time, including art unit-by-year fixed effects is necessary to help us account for the fact that

the assignment of patent applications to examiners is only quasi-random within art units,

which, as explained above, is key to our identification strategy. Standard errors are clustered

at the art unit level.

As argued above, the variable FirstApplicationApprovedaijt is likely endogenous, because

it is likely to be correlated with the error term ϵiajt due to our inability to observe and include

in X all innovator characteristics that are likely to impact both Y and the likelihood of an

innovator’s first patent being approved. To address this endogeneity, we follow Farre-Mensa

et al. (2020), and we use examiner j’s past approval rate as an instrument for whether an

innovator’s first application is approved and estimate equation Equation 1 using two-stage

least squares (2SLS).

Specifically, we calculate the approval rate of examiner j belonging to art unit a assigned

to review innovator i’s first patent application submitted at time t as follows:

ExaminerApprovalRateiajt = ngrantedajt/nreviewedajt (2)

where nreviewedajt and ngrantedajt are the numbers of patents examiner j has reviewed and

granted, respectively, prior to date t. The first stage of our 2SLS model then consists of

regressing patent approval on the instrument by estimating the following linear probability

model:

FirstApplicationAppvoediajt = θExaminerApprovalRateiajt +Xiajt + uiajt (3)

Next, we discuss several implications and limitations of our empirical strategy.
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3.1 Discussion of Empirical Strategy

3.1.1 Focus on First Patent Application

Our empirical strategy focuses on identifying the effect of an inventor’s first patent applica-

tion approval on her subsequent professional and personal trajectory. This focus is motivated

by several practical, institutional, and econometric considerations:

First, we expect the outcome of an inventor’s first patent application to be especially

consequential for her career. It marks the initial formal recognition of inventive activity

and may shape future opportunities in a path-dependent way. As such, it is a natural focal

point for our study—though we remain cautious not to extrapolate our findings to later

applications.

Second, restricting attention to first applications allows us to define the sample as all

inventors who submit at least one patent application. Requiring multiple applications would

introduce additional selection bias, as it would condition on unobserved persistence or success

in the inventive process.

Third, our IV is particularly well-suited to identifying the causal effect of a single patent

application’s approval, regardless of whether it is an innovator’s first or tenth application.

If, instead, we aimed to instrument the outcome of multiple applications (e.g., the first ten),

we would need to average the leniency of the ten examiners assigned to those applications to

construct our instrument. However, by the law of large numbers, this average would exhibit

less cross-sectional variation than the leniency of any single examiner, thereby weakening the

instrument’s first-stage relationship and increasing the risk of a weak instrument problem.

3.1.2 LATE and External Validity

As with any instrument, our estimator identifies a local average treatment effect (LATE).

Specifically, the effect of an innovator having her first patent application approved on subse-

quent career outcomes for the subpopulation of compliers. Put another way, for innovators

whose first application outcome is influenced by the leniency of their assigned examiner.
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These are likely to be inventors whose first application is of moderate quality: Not so strong

that nearly any examiner would approve it (“always takers”), and not so weak that nearly

all would reject it (“never takers”).

We expect a substantial share of applications to fall into this intermediate quality range.

First, it is costly to apply for a parent, so “never takers” are likely not to engage in the process

in the first place. Indeed, historically, patent application approval rates have hovered near

70%. While “always takers” do not face cost constraints, focusing on first-time innovators

does imply they are more likely to be in the intermediary range. This occurs because there

is a hidden curriculum in the patenting process that makes becoming a named inventor

particularly challenging for those who have not previously done it. Either way, LATE is

ultimately an empirical question, which we can test using the methods discussed in (Angrist

and Pischke, 2009).

Should we expect the LATE estimated from our IV to generalize to always-takers or

never-takers? Likely not. The signaling value of having a first patent application approved

is probably highest for compliers. A top-tier innovator submitting an obviously strong appli-

cation may not need a patent to signal her quality credibly. Conversely, a very low-quality

innovator is unlikely to benefit much from approval, as the market may still infer her low qual-

ity even if her first application were approved. By contrast, the future careers of mid-quality

innovators (i.e., those whose first application outcomes are more likely to be influenced by

examiner leniency) may be most affected by whether their first application is approved.

3.1.3 Examiner specialization

Righi and Simcoe (2019) document evidence of examiner specialization within certain USPTO

art units, casting doubt on the notion that patent applications are quasi-randomly assigned to

examiners across all units. While we adopt the term “quasi-random matching” for brevity

and consistency with much of the prior literature, it is important to emphasize that our

instrumental variable does not rely on strict quasi-random assignment. Rather, the key re-
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quirement for our identification strategy is that the examiner leniency instrument satisfies

the exclusion restriction. Namely, it must affect the outcome variable Y in Eq. 1 only

through its effect on the likelihood that an inventor’s first patent application is approved.

In particular, this means that it must be uncorrelated with the error term ϵ.

Importantly, Righi and Simcoe (2019) find little evidence that certain examiners within

a given art unit are assigned to the applications with the largest families or broadest claims,

which are both common proxies for patent application importance and scope. This suggests

that examiner specialization is unlikely to involve selection on unobservable dimensions of

application quality, mitigating concerns about violations of the exclusion restriction. Be

that as it may, we will follow this approach to ensure that our findings are robust to (1)

including fine-grained technology fixed effects (e.g., subclass fixed effects), and (2) restricting

the sample to those art units where the assignment of patent applications to examiners is

most consistent with random assignment, as identified by Feng and Jaravel (2020).

3.1.4 Timing considerations

We measure career outcomes Y in Eq. 1 relative to the first-action decision date of an inven-

tor’s first patent application. This choice parallels Farre-Mensa et al. (2020), who measure

startup outcomes from the first-action decision on a startup’s first patent application, and

it is motivated by similar concerns. In particular, the timing of the final decision is largely

influenced by applicant behavior, such as delays in responding to examiner communications,

and is therefore potentially endogenous.

3.1.5 Leniency Designs

Leniency designs rest on the assumption that many cases are close calls, in which lenient

decision-makers approve, whereas stricter ones deny. For the IV regression to produce un-

biased estimates, the exclusion restriction must hold. In this case, it seems plausible that

the exclusion restriction is satisfied. For example, patent examiners are not permitted to
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consult with firms on how to obtain patent approval, and they are unlikely to interact with

applicants outside their decision-making capacity. The second required assumption is the

relevance condition. Here, one potential concern is the many weak-instrument biases arising

in 2SLS (Bound et al., 1995), which is explicitly highlighted in the recent econometric liter-

ature on leniency design Goldsmith-Pinkham et al. (2025).

The idea is that we do not know the true population-level leniency of the examiners;

instead, we have estimates of their leniency relative to others who could have received the

application. The 2SLS bias arises because one’s own treatment status affects others’ rela-

tive leniency. While we intentionally exclude innovator i’s application and any subsequent

applications to reduce this mechanical bias, it may nevertheless remain. Therefore, we fol-

low best practices recommended by Goldsmith-Pinkham et al. (2025) to recover a bias-free

alternative. Specifically, we avoid a mechanical correlation with ϵ by using the unbiased

jackknife instrumental variable estimator (UJIVE) proposed by Kolesár (2013). We also test

monotonicity to assess the plausibility of a LATE interpretation.

Finally, we verify the balance on other observables as a test of the as-good-as-random

assumption. Specifically, we examine whether predetermined characteristics are equal across

types of decision-makers, conditional on the necessary controls (i.e., art-unit-by-year fixed

effects). Appendix ?? presents balance tests. Each row reports a UJIVE coefficient from

regressing a predetermined covariate on patent approval, instrumenting with examiner indi-

cators, and controlling for art unit-by-year fixed effects. Consistent with the assumption of

quasi-randomness, the estimates show no meaningful difference across groups.

4 Data

Survey responses from inventors provide direct evidence that patent recognition is experi-

enced as a broad and consequential career shock rather than a narrow legal event. As shown

in Table 1, respondents consistently describe patent grants as conferring external validation

and industry-wide credibility, increasing confidence and innovative identity, and expand-
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ing visibility within firms and professional networks. These qualitative responses point to

multiple channels through which recognition may translate into observable economic out-

comes, including entrepreneurship, startup employment, internal promotion, leadership and

mentoring roles, geographic mobility, and subsequent innovation choices. Guided by these

qualitative insights, we design our empirical analysis to measure the career and innovation

margins most frequently cited by inventors as consequential responses to patent recognition.

To do so, we assemble a novel inventor-level dataset that links detailed patent records to com-

prehensive career histories, enabling us to trace how recognition translates into observable

changes in employment, entrepreneurship, leadership, mobility, and subsequent innovation.

Central to this empirical strategy is the integration of detailed USPTO patent records—drawing

on PatEx and PatentsView—with inventor-level data from Revelio Labs, a third-party plat-

form that aggregates employee information primarily from LinkedIn, as well as related pro-

fessional and job-posting sources. These data allow us to observe inventors’ educational

and career backgrounds prior to patenting and a rich set of post–first-application outcomes,

including employment mobility, promotions, wage changes, human capital investments, and

entry into entrepreneurship.

Matching patent applicants and inventors in the USPTO records to Revelio Labs individ-

ual profiles poses a formidable challenge. We implement a conservative, multi-stage matching

procedure that prioritizes precision over coverage, yielding a final analysis sample of 1,798,909

first-time applicants between 1976 and 2023, approximately 10 percent of all first-time ap-

plicants in the USPTO data. The matched sample reflects known coverage limitations of

online professional profiles and is tilted toward corporate inventors in technology-intensive

sectors. Within this sample, 76% of first applications are granted, closely mirroring USPTO

grant rates for comparable corporate applicants.

Appendix C provides a detailed description of the matching process, including the five-

stage linkage strategy, match-quality thresholds, validation exercises, and sample composi-

tion by match type, technology, entity, and filing cohort. It also documents how the final
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treatment and control groups are constructed and assesses balance and representativeness

across matching methods.

To measure entrepreneurial activity and participation in high-growth startups, we match

individual employment histories from Revelio Labs to firm-level data from PitchBook. This

linkage allows us to identify inventors who become founders or hold entrepreneurial roles

at venture-capital-backed startups, as well as those who transition to startup employment

more broadly. We distinguish between founding a VC-backed firm, working at a VC-backed

startup, and working at a startup regardless of financing status, using PitchBook’s venture

funding classifications, firm age, accelerator participation, and job-title information. These

measures capture entry into the segment of entrepreneurship most closely associated with

innovation-driven growth and form the paper’s primary external-career outcomes.

Beyond entrepreneurship, we construct a rich set of outcomes capturing inventors’ in-

ternal career progression, mobility, human capital development, and subsequent innovation.

Using Revelio data, we observe retention, promotions within and across firms, transitions

to prestigious employers, and geographic mobility, including moves into and out of major

innovation hubs. We also measure leadership and external engagement through changes in

reported leadership skills, concurrent positions such as board or volunteer roles, and growth

in professional networks. Finally, we track subsequent patenting activity using USPTO data,

including measures of patent success and quality—such as grants, citations, scope, original-

ity, generality, and breakthrough status—to assess whether recognition leads inventors to

broaden their technological focus or deepen specialization within existing domains. Ap-

pendix A provides detailed definitions and construction procedures for all variables.

By examining a comprehensive set of outcomes, our study sheds light on how innovation

incentives shape inventors’ lives beyond the workplace, potentially generating spillover effects

that contribute to broader social welfare. For example, Bell et al. (2019) show that exposure

to innovation in childhood significantly increases the likelihood of becoming an inventor,

with large disparities by socioeconomic background. By analyzing how patent grants affect
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both economic security and social engagement, our study complements this work, exploring

whether recognition through the patent system creates feedback loops that either reinforce

or mitigate early-life disparities in access to innovation careers.

4.1 Summary Statistics

Table 2 reports demographic characteristics of our matched sample of first-time patent ap-

plicants. The sample is predominantly male (82.0 percent), with women comprising 15.5

percent of inventors. In terms of race and ethnicity, 62.2 percent of inventors are White

and 32.4 percent are Asian or Asian/Pacific Islander, consistent with the concentration of

patenting activity in technology-intensive fields. Educational attainment is high but incom-

pletely observed: among inventors with reported education, 16.5 percent hold a bachelor’s

degree, 16.0 percent a master’s degree, and 14.5 percent a PhD, though education is missing

for 46.9 percent of the sample. Inventors are affiliated with relatively prestigious institutions

on average, with a mean standardized prestige score of 0.353, and report an average of 249

LinkedIn connections.

Patent-level characteristics are summarized in Table 3. The sample is dominated by

utility patents (97.7 percent), with the remainder consisting primarily of design patents.

Most applications originate from large entities (76.2 percent), with smaller shares from small

(22.7 percent) and micro (1.2 percent) entities. Grant rates vary sharply by entity size: 80.2

percent for large entities, compared to 61.2 percent for small entities and 49.1 percent for

micro entities. Applications span a broad range of technological fields—the five most common

technology classes together account for only 15.0 percent of the sample—highlighting the

diversity of inventive activity represented in the data. The mean filing year is 2008, with

granted applications filed slightly earlier on average than rejected applications.

Appendix Table C.3 compares pre-patent characteristics across treatment and control

groups. Inventors whose first applications are granted differ systematically from those whose

applications are rejected on observable dimensions. The largest differences arise in educa-
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tional attainment and institutional prestige: the treatment group contains a higher share

of inventors with graduate degrees and higher average prestige scores. Treated inventors

also report more extensive professional networks prior to patenting. These patterns indi-

cate strong positive selection into patent grants, implying that simple comparisons between

granted and rejected applicants would conflate the effects of patent recognition with under-

lying differences in inventor quality, resources, and institutional support.

Gender and education patterns reinforce this concern. Women constitute a larger share of

rejected applications (17.6 percent) than granted applications (14.8 percent), a statistically

significant gap that mirrors prior evidence of differential attrition during patent examination

(Aneja et al., 2024). Similarly, inventors with advanced degrees are substantially more likely

to receive patent grants: 32.9 percent of granted applications come from inventors with

graduate degrees, compared to 24.4 percent among rejected applications. These differences

persist even after conditioning on observable credentials and institutional prestige, suggesting

that unobserved factors correlated with both patent approval and career outcomes remain

important.

In conclusion, the summary statistics indicate an imbalance between the treatment and

control groups with respect to key predetermined characteristics. These differences under-

score the need for an empirical strategy that isolates exogenous variation in patent grants.

Our empirical approach, which exploits quasi-random assignment of applications to exam-

iners with differing approval propensities, is designed to address these selection concerns.

Appendix Tables C.4 and C.5 provide additional balance tests, and Appendix C.6 explores

examiner traits. Finally, in Appendix Tables C.7 and C.10 we evaluate the strength of

the examiner leniency instrument, with first-stage F -statistics exceeding 8600 in our main

specification, well above conventional thresholds for a strong instrument. We provide visual

evidence that the monotonicity assumption holds in C.1.
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5 Results

5.1 External Recognition

We now turn to the results, focusing first on how patent recognition reshapes inventors’

external opportunity sets through entrepreneurship and startup employment.

5.1.1 Entrepreneurial Outcomes

Table 4 reports the results from our 2SLS regressions examining whether receiving a patent

grant influences innovators’ subsequent entrepreneurial activity and employment at star-

tups. We find that receiving a patent grant substantially increases the likelihood that an

inventor becomes an entrepreneur at a VC-backed startup. Column (1) shows that a patent

grant raises the probability of founding a VC-backed firm by approximately 1 percentage

point. Given that the low baseline probability of ever founding a VC-backed startup is

about 2.8 percent, this is an economically meaningful effect. Thus, this estimate implies an

increase of roughly 36 percent relative to the mean, underscoring the importance of patent

recognition for ultimately developing the confidence and connections to pursue high-growth

entrepreneurship.

Columns (2) and (3) broaden the scope to startup employment more generally. Patent

grants also increase the likelihood that inventors move to VC-backed and non-VC-backed

startups, indicating that the effects extend beyond founding to participation in startup

ecosystems more broadly. The magnitudes are comparable across VC-backed and non-VC-

backed firms, suggesting that patent recognition expands inventors’ access to entrepreneurial

environments rather than merely reallocating them across firm types. These results show

that formal recognition of inventive achievement does not simply enable firms and managers

to accrue rents but meaningfully reshapes inventors’ external opportunity sets, allowing them

to transition into entrepreneurial activity.

The LATE that we document for all inventors masks substantial heterogeneity in who

converts patent recognition into entrepreneurial activity. Table 5 explores this heterogeneity
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by estimating the relation between patent grant and entry into high-growth entrepreneurship

separately across gender, race, education, and technology sectors.

Two patterns stand out. First, the increase in entrepreneurial founding at VC-backed

startups is driven almost entirely by men. Panel A shows that receiving a patent grant

significantly increases the probability that male inventors found a VC-backed firm, while

the corresponding estimate for women is small and statistically indistinguishable from zero.

Similarly, when breaking down the increase in entrepreneurial founding at VC-backed star-

tups by ethnicity, we see is driven almost entirely by men.

Second, the entrepreneurship response varies systematically across other dimensions of

background and field. Founding one’s own firm is concentrated among inventors with a

bachelor’s degree or less and among those working in the software and IT sectors. Of course,

these are sectors where other forms of external recognition, such as being a doctor at a

prominent university, may be less common. In contrast, inventors in biotech and pharma-

ceuticals exhibit little response in founding.

Panel B shows a broader set of responses when considering moves to VC-backed startups,

regardless of founding status. Here, patent grants increase transitions to VC-backed firms

across nearly all demographic and educational groups, including women and URMs. While

the coefficient estimate for URMs is only significant at the 90th percentile, the economic

magnitude is meaningful. This pattern indicates that while patent recognition expands

access to entrepreneurial environments for a wide range of inventors, only a subset is able

to convert that access into firm creation. The contrast between founding and employment

responses foreshadows the mechanism analyses that follow, which examine how networks,

team structure, firm environment, and timing shape the translation of patent recognition

into entrepreneurial entry.
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5.1.2 Mechanism Tests for Entrepreneurial Outcomes

Table 6 examines the mechanisms underlying entrepreneurial entry by asking when patent

recognition translates into founding a VC-backed firm. Panel A focuses on network capacity

and organizational scale. The effects of patent grants on entrepreneurship are substantially

stronger when inventors operate in environments that provide sufficient team depth and

institutional resources. Founding responses are concentrated among inventors embedded

in team-based innovation rather than solo inventors, among those working in larger teams

rather than small ones, and among inventors originating from larger firms. These patterns

indicate that recognition alone is not sufficient to induce entrepreneurship; rather, patent

grants are most effective when inventors have access to a critical mass of collaborators and

complementary skills that can be mobilized to form a new venture.

Panel B examines credentialing more directly by comparing inventors working in technol-

ogy domains where external validation is particularly salient. Patent grants are statistically

significantly associated with VC-backed entrepreneurship among inventors in IT and soft-

ware, where patents plausibly serve as visible credentials in external capital markets, but

the point estimate is close to zero in biotech and pharmaceuticals, where alternative cre-

dentials—such as advanced degrees, institutional affiliations, and regulatory milestones—are

already well established. These findings reinforce the interpretation of patents as creden-

tialing devices that expand access to entrepreneurial opportunities by improving inventors’

visibility and credibility, but only when paired with sufficiently dense networks and scalable

organizational contexts. This mechanism helps reconcile why patent recognition leads imme-

diately to startup employment yet translates into firm creation only for a subset of inventors

positioned to leverage those opportunities.

Figure 1 illustrates a sharp distinction between access to entrepreneurial environments

and entry into entrepreneurship itself. Transitions into VC-backed startup employment

occur almost immediately following patent recognition, with effects concentrated in the first

three years after the patent decision. By contrast, entry into VC-backed entrepreneurship
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emerges later, peaking in the four-to-six-year window and remaining elevated thereafter. This

temporal pattern is inconsistent with a purely confidence- or liquidity-based explanation and

instead points to the gradual accumulation of complementary skills and resources.

Thus, we interpret patent grants as serving additional purposes beyond purely private or

public value in the traditional sense. Patents also act as a credentialing device that initially

expands inventors’ access to startup ecosystems, where they build professional networks,

leadership experience, and social capital. Only after acquiring these complementary capabil-

ities do a subset of inventors convert recognition into firm creation. The timing evidence thus

supports a mechanism in which patent recognition reshapes opportunity sets immediately,

while entrepreneurial founding reflects a slower process of capability formation.

5.2 Internal Recognition

We now turn to the results for how patent recognition reshapes inventors’ internal opportu-

nity sets through career advancement, skill development, and technological specialization.

5.2.1 Career Advancement

Next, we examine how patent grants reshape inventors’ careers inside the firm. While ear-

lier tables show that patent recognition expands inventors’ external options and increases

transitions into entrepreneurial environments, we want to understand whether patent grants

simultaneously generate substantial internal career advancement.

Table 7 examines how patent grants reshape inventors’ careers inside the firm. Panel A

shows that receiving a patent grant increases the probability that an inventor remains with

her current employer by 3.7 p.p., relative to a baseline retention rate of 17.7 percent. At the

same time, patent grants significantly increase promotion rates. The probability of being

promoted by the same firm rises by 4.2 p.p., and the probability of promotion by another

firm increases by 4.6 p.p., both economically large effects relative to baseline promotion

rates. In addition, patent recipients are 4.2 p.p. more likely to move to a more prestigious
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firm. These patterns suggest that recognition via patent grants helps inventors advance their

career trajectory. Current employers respond by retaining and promoting inventors, while

external firms compete for recognized talent.

Panel B reveals substantial heterogeneity in these internal responses. The coefficient

estimates on promotion are particularly pronounced for women and URM inventors. For

women, a patent grant increases the probability of promotion by the same firm by 5.4 p.p.,

compared with 3.8 p.p. for men. Given that women are less likely to get promoted, this is an

economically meaningful effect and an important catalyst for internal recognition. Similarly,

URM inventors also experience promotion gains (6.2 p.p. increase). These magnitudes imply

that patent recognition plays a disproportionately important role in advancing the careers

of groups that may face greater informational frictions or weaker bargaining positions in

internal labor markets.

The contrast between these internal career gains and the entrepreneurship results in

earlier tables is informative about mechanism. Patent grants expand the opportunity set

for all inventors, but the way those opportunities are realized differs across groups. For

women and URMs, recognition is more likely to be translated into internal advancement and

leadership, consistent with improved bargaining power within firms. For men, recognition

is more likely to be converted into external transitions and entrepreneurial entry. This

divergence suggests that patent grants do not merely reward inventive output; they interact

with pre-existing constraints and institutional environments to shape how inventors allocate

talent across internal advancement, external mobility, and entrepreneurship. While these

gains for women and URMs are promising, this could simultaneously create forces that limit

external mobility through firm-specific human capital lock-in.

Next, Table 8 examines how patent grants affect inventors’ geographic mobility and

their relationship to innovation hubs. Receiving a patent grant significantly increases the

likelihood that an inventor changes location, raising geographic mobility by 4.4 percentage

points relative to a baseline mobility rate of 19.6 percent. Thus, patent recognition expands
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inventors’ willingness or ability to relocate.

Strikingly, this increased mobility does not reflect greater entry into innovation hubs.

Column (2) shows no increase in moves to innovation hubs following a patent grant. Instead,

Column (3) shows that patent grants increase the probability that inventors leave innovation

hubs by 1.2 percentage points, relative to a baseline exit rate of 3.5 percent. This pattern

contrasts with standard narratives in which innovation success pulls talent toward major

clusters, and instead suggests that patent recognition may relax geographic constraints or

reduce the need to remain in dense innovation ecosystems.

Panel B reveals that this exit from innovation hubs is driven by specific groups. The

effect is concentrated among women and URM inventors and among those working in in-

formation technology and software. For these inventors, patent grants significantly increase

the probability of leaving an innovation hub, whereas effects are small for white and asian

inventors and statistically insignificant for men. Furthermore, for capital-intensive industries

that may only be in a limited number of cities like biotech and pharmaceutical sectors, we see

no movement. These patterns suggest that patent recognition may enable some inventors,

particularly those facing greater frictions or lower attachment to hubs, to relocate toward

alternative labor markets or communities once recognition secures their professional stand-

ing. That patent recognition appears to facilitate diaspora away from established hubs is an

interesting finding and an underexplored aspect of innovation policy.

5.2.2 Leadership and Soft Skills

Table 9 examines how patent grants affect inventors’ leadership skills, external engagement,

and professional networks—key mechanisms through which recognition may translate into

career advancement and entrepreneurship. Panel A shows that patent grants significantly

increase leadership capacity and external engagement. Receiving a patent grant raises mea-

sured leadership skills by 3.0 percentage points relative to a baseline of 32.7 percent, and

increases the likelihood that inventors hold concurrent positions—such as board seats or vol-
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unteer leadership roles—by 1.1 percentage points. These effects indicate that patent recogni-

tion elevates inventors into roles with greater responsibility, visibility, and influence beyond

their core technical positions. Patent grants also substantially expand professional networks.

Column (3) shows that patent recipients add approximately 15 additional LinkedIn connec-

tions, a nontrivial increase relative to a baseline of 276 connections. This network expansion

provides a plausible channel linking patent recognition to subsequent entrepreneurship and

external mobility.

Panel B highlights heterogeneity in network expansion. The increase in LinkedIn con-

nections is driven disproportionately by women and by inventors working in information

technology and software. Female inventors experience especially large network gains, con-

sistent with patent recognition alleviating informational or access frictions in professional

networks. By contrast, network expansion is more modest for men and statistically insignif-

icant for inventors in biotech and pharmaceutical sectors, where career progression may rely

more heavily on formal organizational pathways.

In addition, Table 9 provides direct evidence that patent recognition operates through a

networking and credentialing channel. Beyond increases in self-reported leadership skills and

concurrent positions, we find that patent grants significantly expand inventors’ professional

networks and, importantly, their access to elite collaborators. Column (4) of Panel A shows

that receiving a patent increases the likelihood of collaborating with “superstar” inventors,

who we define as being in the top decile of lifetime patent counts or forward citations,

suggesting that recognition alters how inventors are perceived and with whom they are able

to work. Panels C further reinforce this mechanism: elite collaborations are present across

groups. Taken together, these results indicate that patents function as widely recognized

credentials that unlock higher-quality professional relationships. This expansion of social

capital and exposure to elite collaborators provides a natural bridge with the entrepreneurial

timing results (see Figure 1) and serves as a mechanism that explains both internal and

external patterns, as working with more experienced and visible innovators facilitates the
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accumulation of leadership, coordination, and market-facing skills necessary for founding a

firm.

In untabulated results, we also examine heterogeneity in leadership gains. In contrast

to network connections, leadership gains are broadly shared across gender, indicating that

patent recognition raises leadership roles for both men and women. However, leadership

effects by ethnicity are concentrated among White and Asian inventors, suggesting hetero-

geneity in how recognition translates into formal leadership opportunities across groups.

These results confirm that patent recognition increases leadership responsibilities and ex-

ternal engagement while expanding professional networks, with strong network effects for

women. These patterns help explain how patent grants generate downstream effects on

entrepreneurship and career mobility, while also revealing group-specific pathways through

which recognition is converted into opportunity.

5.2.3 Technological Specialization

Table 10 examines how patent grants affect inventors’ subsequent inventive activity and

whether recognition induces broader exploration or deeper specialization. The evidence

points decisively toward specialization. The results show a clear shift toward specialization.

Panel A shows that receiving a patent grant increases the likelihood that an inventor files

again and that subsequent applications are granted. Patent recipients are 1.8 p.p. more likely

to have a subsequent patent application approved. Relative to a baseline probability of 47

percent, this indicates a meaningful economic magnitude. By contrast, the total number

of subsequent patent applications does not increase, and the point estimate is statistically

indistinguishable from 0. Thus, patent recognition appears to raise patent approval rates

conditional on patenting, rather than increase the volume of inventive effort. Intuitively, this

makes sense as the quasi-random patent grant does not convey knowledge about the patent

process, nor does it alter a person’s creative capacity or inventive efficiency.

Panel B provides direct evidence on the structure of inventive activity. Patent grants
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reduce inventor network expansion: recipients experience a decline in overall network growth

and a substantial reduction in the share of new co-inventors. At the same time, inventors

do not expand into new USPTO technology classes. These patterns indicate that patent

recognition does not encourage inventors to broaden their collaborative or technological

scope. Instead, inventors appear to deepen existing relationships and remain within familiar

technological domains.

Panel C shows that this specialization is associated with higher-quality innovation. Sub-

sequent patents filed by grant recipients receive significantly more forward citations, exhibit

higher estimated patent value, and are more likely to qualify as breakthrough patents. For

example, forward citations increase by approximately five citations relative to a baseline of

7.8, and the probability of producing a breakthrough patent rises by 1.4 percentage points,

nearly a 40 percent increase relative to the mean. These gains indicate that specialization

following recognition is productive, because inventors are building on prior knowledge to

generate more impactful innovations.

This suggests that patent recognition induces inventors to further leverage their com-

parative advantage. Rather than expanding into new technologies or forming new teams,

inventors consolidate their existing networks and domains, producing fewer but more suc-

cessful and higher-quality innovations. This pattern complements earlier findings on career

advancement and entrepreneurship, highlighting specialization as a central channel through

which patent grants shape long-run inventive outcomes.

5.2.4 Workplace perceptions

Table 11 presents complementary evidence on workplace perceptions and compensation fol-

lowing patent recognition. Using data from crowd-sourced employee reviews on Glassdoor,

a career intelligence website that attempts to provide transparency about jobs, salaries, and

companies, we examine the relation between the mentorship program and employees’ per-
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ceptions of their workplace environment.7 It is worth noting that these outcomes are based

on self-disclosed Glassdoor reviews and resume-based wage measures estimated by Revelio,

so they are noisier than our main career and mobility measures and should be interpreted

cautiously. With that caveat, the results point to a consistent pattern. After receiving a

patent grant, engineers at the applicant’s current firm report lower assessments of the firm

along several dimensions, including overall ratings, culture, career advancement, and the

strength of cultural norms surrounding innovation.

These declines persist even as the same inventors experience higher probabilities of reten-

tion and promotion, suggesting that internal advancement does not necessarily translate into

sustained positive perceptions of their employer, growth opportunities, or career advance-

ment. In addition, we observe modestly lower subsequent wage growth, consistent with the

view that firms capture much of the surplus from patented innovations (Kline et al., 2019).

Taken together, these patterns provide suggestive evidence of a divergence in career paths.

While patent recognition initially facilitates technical specialization and advancement within

firms, it may also contribute to perceived career ceilings and organizational frictions, helping

to explain why some inventors ultimately seek opportunities outside the firm despite early

success.

5.3 A Unified Mechanism: Patent Recognition and Outside Options

The results across Sections 5.1 and 5.2 can be understood through a common mechanism.

Namely, patent recognition operates as a highly visible shock to an inventor’s outside op-

tions. A granted patent publicly certifies inventive ability, raises visibility, and improves

perceived credibility with employers, collaborators, and investors. This expansion of outside

options reshapes inventors’ opportunity sets, but the manner in which those opportunities

are realized varies systematically with constraints, networks, and organizational context.

7Previous studies have used the Glassdoor database to evaluate non-pecuniary benefits and in the process
have shown that the crowd-sourced data is reliable and consistent with internal firm surveys (Tambe et al.,
2020; Graham et al., 2022; Grennan, 2023; Liu et al., 2023; Martellini et al., 2024; Gornall et al., 2025).
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Inventors with access to dense professional networks and scalable organizational environ-

ments, particularly men in software and IT, are more likely to leverage these outside options

to move externally. In particular, we find that these inventors move quickly into startup

employment and, with time, convert accumulated networks and leadership experience into

firm creation. By contrast, inventors facing greater external frictions/bias or higher fixed

costs of entrepreneurship (e.g., women and URMs) are more likely to translate the same

recognition shock into internal advancement. For these inventors, patent grants increase

retention, promotions, leadership roles, and access to elite collaborators, consistent with im-

proved bargaining power within firms.

This framework also reconciles seemingly divergent findings. Increased retention and spe-

cialization reflect the strengthening of firm-specific human capital following recognition, even

as external opportunities expand. Declining workplace satisfaction among retained inventors

is consistent with “positive lock-in,” in which outside options rise faster than internal organi-

zational capacity to accommodate advancement. Similarly, our timing evidence, which shows

immediate transitions into startup employment but delayed entry into entrepreneurship, re-

flects the gradual accumulation of complementary skills required to exercise high-fixed-cost

outside options.

This nuance highlights an important but largely overlooked role of the patent system.

Patents are typically viewed as instruments that allocate private value to firms and generate

public value through knowledge spillovers. Our results show that they also play a central

role in shaping the life trajectories of inventors themselves. Patent recognition does not

generate a single career pathway. Instead, it widens the set of feasible trajectories by ex-

panding outside options, with differences in networks, institutional context, and constraints

determining whether recognition is converted into entrepreneurship, internal leadership, ge-

ographic mobility, or deeper inventive specialization. This perspective reframes patents as

labor-market institutions as much as legal ones. Recognizing the human consequences of

patent grants has important implications for innovation policy, suggesting that decisions
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made at the patent office influence not only which ideas are commercialized, but also who

becomes an entrepreneur, who advances within organizations, and how innovative talent is

allocated across firms, regions, and careers.

6 Robustness

First, Appendix Table D.1 compare our entrepreneurship heterogeneity results under two

standard error specifications: (1) the main specification with standard errors clustered at

the art unit level, and (2) heteroskedasticity-robust standard errors following the recommen-

dations in Goldsmith-Pinkham et al. (2025).

Second, Appendix Table D.2 presents UJIVE estimates of the effect of patent application

approval on entrepreneurship. Rather than using the 2SLS estimation procedure, we estimate

our coefficients with UJIVE by instrumenting with examiner indicators.

Third, Appendix Table D.3 presents alternative 2SLS estimates of the effect of patent

grant on entrepreneurship. Specifically, we restrict to inventors with complete demographic

data to include a richer set of predetermined controls. Second, we limit to large art units.

Third, we replace the art unit times year fixed effects with finer USPC subclass × year fixed

effects.

Fourth, we could not present all the heterogeneity results in the main body. Appendix

Tables D.4, D.5, provide additional heterogeneity checks, highlighting how the opportunities

enabled by patent recognition differ by gender, ethnicity, education, and job seniority.

7 Conclusion

This paper studies how formal recognition through the patent system shapes the life trajec-

tories of inventors. Using quasi-random variation in patent grant decisions, we show that

receiving a first patent has large and persistent effects on careers. Patent recognition expands

inventors’ opportunity sets, increasing entry into high-growth entrepreneurship and startup

employment, accelerating internal career advancement, fostering leadership and network for-
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mation, and raising the quality of subsequent innovation. At the same time, these effects

are heterogeneous. Some inventors convert recognition into external opportunities such as

entrepreneurship and mobility across firms and regions, while others translate recognition

into retention, promotion, and leadership within organizations.

A central insight of our findings is that patent recognition operates less as a narrow le-

gal event and more as a broad social and economic signal. Recognition affects confidence,

visibility, and credibility, shaping how inventors are perceived by firms, investors, peers, and

themselves. These mechanisms help explain why recognition leads to deeper specialization

and higher-impact innovation rather than broader experimentation, and why increased ge-

ographic mobility manifests as exits from innovation hubs rather than increased entry into

them.

The heterogeneity we document highlights important distributional considerations. Women

and URM inventors are more likely to translate recognition into internal advancement and

leadership, whereas white and Asian men are more likely to pursue entrepreneurial pathways.

These patterns suggest that the same recognition shock can generate different economic out-

comes depending on prior constraints, access to networks, and institutional context. As a

result, policies that expand access to inventorship and recognition may affect not only aggre-

gate innovation, but also who benefits from innovation and how innovative talent is allocated

across firms, careers, and places. These changes in opportunity have important implications

for shared prosperity.

More broadly, our results show that innovation policy shapes economic growth not only

through the ideas it protects, but through the people it recognizes. Patent grants influence

who becomes an entrepreneur, who advances within firms, where inventors choose to live

and work, and how inventive effort evolves over the life cycle. Rather than generating a

single pathway, patent recognition expands the set of feasible career trajectories, with differ-

ences in networks, organizational context, and constraints determining whether recognition

is converted into entrepreneurship, internal leadership, geographic mobility, or deeper tech-
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nological specialization. In this sense, patents operate as labor-market institutions as much

as legal ones, reallocating innovative talent across careers, organizations, and places.

For policymakers, this perspective has direct implications. Patent examination decisions

and institutional practices affect not only patent quality, but also the careers and opportu-

nities of inventors themselves. Transparency, consistency, and training in the examination

process, therefore, matter not only for allocative efficiency in IP, but for who gains access to

entrepreneurship, leadership, and high-impact innovation.

Looking ahead, these findings open new directions for research at the intersection of ed-

ucation, organizational economics, and innovation. Future work could examine how early

recognition shapes skill accumulation and authority over the life cycle, how organizational

responses to recognition influence the emergence of entrepreneurial talent, and whether com-

plementary institutions can broaden access to the networks and support needed to translate

inventive achievement into widely shared economic opportunity.
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Figure 1: Timing of Patent Grant Effects on VC-Backed Startup Employment
and Entrepreneurship

Notes. This figure plots 2SLS estimates of the effect of receiving a first patent grant on subsequent transitions into VC-backed
startup employment (Panel A) and VC-backed entrepreneurship (Panel B) over mutually exclusive post-decision windows. Bars
show point estimates; vertical lines denote 95 percent confidence intervals. Estimates are obtained using examiner leniency as
an instrument for patent grant status and include art-unit-by-application-year fixed effects and baseline controls. Outcomes
indicate the first transition occurring within each window. Standard errors are clustered at the art-unit level.
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Table 1: Survey Evidence on Perceived Effects of Patent Recognition

Panel A: External Recognition

Theme Representative responses Pct.

Esteem of one’s peers “It becomes a badge or credential that is respected industry-
wide. It also has been a component of discussions around pro-
motions.”

38%

“A patent is like a college degree. It is universally recognized,
and something that never goes away or gets stale. It brings
credibility to oneself.”

“Helped create industry visibility and build reputation capi-
tal.”

“The recognition of being awarded a patent has provided ex-
ternal validation that the ideas I have are innovative, conse-
quential, and valuable.”

Notoriety within the
firm

“Inventing helped me collaborate with other domain influ-
encers on the projects. . . the team is always stronger than the
individual.”

33%

“My innovator journey has connected me with a wide network
of like-minded individuals.”

“Doors were opened, and I worked with engineers I never would
have met otherwise. It helped me to expand my professional
circle.”

Esteem of friends and
family

“I was able to show my family a glimpse of my work and
achievements.”

7%

“While I don’t mention it to friends outside of work, they some-
how find out and bring it up in conversation. It makes me feel
good.”

Community impact “This helped me put down more permanent roots in my com-
munity. . . I have applied my engineering mind to help solve
problems in my condo community and church, and have seen
some benefit there.”

5%

Panel B: Behavioral Traits

Increased confidence
and self-esteem

“I started trusting myself that I can solve problems and think
of solutions that others may not have thought of.”

68%

“The impact of becoming an inventor is it fills one with confi-
dence on one’s own innovative and creative thinking ability.”

“It helped me gain confidence in sharing my thoughts in huge
forums.”

Innovator mindset and
creative identity

“For me, it helped greatly learn to elevate my thought process
beyond implementation limitations and also keep me engaged
in the technology area I like.”

47%

“It is always good to stretch one’s abilities to be at the forefront
of new ideas.”

“This improved my problem-solving skills, and I started ap-
preciating all the ideas.”

Notes: This table reports qualitative responses from an open-ended question on a survey of inventors
about the perceived life impact after becoming a named inventor on a patent. Percentages indicate the
share of respondents mentioning each theme. Responses are lightly edited for clarity. This question
was included in a broader survey of engineers on the innovation process (Chien and Grennan, 2024).
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Table 2: Innovator Summary Statistics

Obs. Pct.
Panel A. Gender (1) (2)
Female 279,518 15.54
Male 1,475,286 82.01
Missing 44,105 2.45

Panel B. Gender Race/Ethnicity
White 1,118,824 62.20
Asian/API 583,051 32.41
Black 44,991 2.50
Hispanic 47,547 2.64
Multiple 3,493 0.19
Native American 730 0.04

Panel C. Education
High School 10,765 0.60
Associate 19,947 1.11
Bachelor’s 296,816 16.50
Master’s 287,696 15.99
PhD/Doctorate 260,766 14.50
MBA 85,038 4.73
Missing 843,504 46.88

Panel D. Professional Characteristics Mean Median
Prestige score 0.353 NA
(range: -0.855 to 2.343, higher = more prestigious)

LinkedIn connections 249 191
Job tenure NA NA
Positions held NA NA
Total Observations 1,798,909

Notes: This table presents demographic and professional characteristics for the sample of first-time
patent applicants matched to resume data. Gender and ethnicity are predicted algorithmically using
names and other profile information. Education is the highest degree listed on LinkedIn profiles. Prestige
score is based on undergraduate institution attended. LinkedIn connections are as reported on user
profiles at the time of data collection (June 2024). Job tenure and positions held are based on LinkedIn
profiles. For additional sample construction and variable details, see Appendix A.
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Table 3: Patent Application Characteristics

Full Sample By Outcome

Obs. Pct. Granted Rejected
Panel A. Application Type (1) (2) (3) (4)
Utility 1,752,359 97.72 97.00% 99.94%
Design 39,561 2.21 2.91% 0.04%
Plant 898 0.05 0.06% 0.02%
Re-Issue 449 0.03 0.03% 0.01%

Panel B. Entity Status
Micro 21,161 1.18% 0.77% 2.46%
Small 406,277 22.66% 18.36% 35.91%
Large (undiscounted) 1,365,846 76.16% 80.87% 61.63%

Panel C. Top 5 Technology Classes (USPC)
705 (Data processing) 62,941 3.51%
424 (Drug/bio-affecting) 54,481 3.04%
514 (Drug/bio-affecting) 53,821 3.00%
435 (Chemistry) 52,311 2.92%
709 (Electrical computers) 45,010 2.51%

Panel D. Filing Characteristics
Filing year (mean) 2008 2008 2009
AIA filing 503,395 28.07%

Notes: This table presents patent application characteristics. Panel A shows application types. Panel
B shows entity status (micro/small entities receive fee discounts). Panel C shows the top 5 technology
classes by USPC classification. Panel D shows filing characteristics. For additional sample construction
and variable details, see Appendix A.
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Table 4: Effect of Patent Grant on Entrepreneurship and Startup Employment

Dep. Var. =
Entrepreneur Moved to Moved to
at VC-backed at VC-backed non-VC

startup startup startup
Pane A: Overall movement (1) (2) (3)
Patent Grant 0.010*** 0.047*** 0.016***

(0.002) (0.006) (0.004)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.028 0.198 0.066
Observations 1,566,604 1,363,394 1,363,394
First-stage F -stat 7,701 6,655 6,655

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Standard

errors clustered by art unit in parentheses. Statistical significance of 10%, 5%, and 1% is denoted by *, **,

and ***, respectively.
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Table 5: Who Moves to Entrepreneurial Firms?

White+ Adv. Bach. IT/ Biotech/
Panel A: Entrepreneur Female Male Asian URM Deg. or Less Software Pharma
at VC-backed startup (1) (2) (3) (4) (5) (6) (7) (8)
Patent Grant 0.006 0.010*** 0.009*** 0.013 0.009** 0.018*** 0.028*** −0.000

(0.004) (0.002) (0.002) (0.010) (0.004) (0.005) (0.005) (0.003)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.020 0.029 0.027 0.035 0.042 0.037 0.044 0.018
Observations 239,853 1,287,808 1,480,469 83,433 577,279 292,249 416,286 381,119
First-stage F -stat 3,972 7,221 7,730 1,367 4,798 3,273 2,075 3,223

White+ Adv. Bach. IT/ Biotech/
Panel B: Moves to Female Male Asian URM Deg. or Less Software Pharma
VC-backed startup (1) (2) (3) (4) (5) (6) (7) (8)
Patent Grant 0.058*** 0.045*** 0.048*** 0.045* 0.059*** 0.052*** 0.094*** 0.027***

(0.011) (0.007) (0.006) (0.023) (0.010) (0.012) (0.012) (0.009)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.183 0.202 0.195 0.221 0.252 0.157 0.303 0.156
Observations 208,366 1,125,273 1,286,189 74,402 571,213 288,213 378,624 318,663
First-stage F -stat 3,683 6,158 6,768 1,164 4,747 3,151 1,732 3,003

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Gender and

race/ethnicity are predicted using Revelio Labs’ proprietary algorithm, which is based on LinkedIn profile

information. Education is determined from credentials listed in the inventor’s LinkedIn profile; advanced

degree includes master’s, PhD, MBA, or professional degrees. URM = Black, Hispanic, Native American,

or Multiple races. VC-backed status uses universe classification from PitchBook. Software/IT patents are

defined as USPC classes 700–726; Biotech/Pharma patents are defined as USPC classes 424, 435, 514, 530,

and 800. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table 6: Mechanism Underlying Move to Entrepreneurial Firms

Dep var. = Entrepreneur at VC-backed startup
Network Density Team size Initial firm size
Solo Team Small Large Small Large

Panel A: Enhanced opportunities (1) (2) (3) (4) (5) (6)
Patent Grant 0.017*** 0.011*** 0.011*** 0.013** 0.008** 0.010***

(0.003) (0.002) (0.003) (0.004) (0.003) (0.003)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.028 0.027 0.025 0.030 0.194 0.012
Observations 590,030 1,022,172 727,376 294,238 130,233 1,480,930
First-stage F -stat 3,177 7,915 7,245 2,948 1,531 7,970

Dep var. = Entrepreneur at VC-backed startup
IT / Software BioTech / Pharma

Adv. No.Adv. Adv. No.Adv.
Panel B: Credentialing (1) (2) (3) (4)
Patent Grant 0.023** 0.043*** 0.016 0.001

(0.009) (0.006) (0.013) (0.004)
Art-unit-by-time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Dep. Var. Mean 0.039 0.035 0.033 0.009
Observations 125,687 196,021 74,283 86,292
First-stage F -stat 1,028 1,524 567 789

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Gender and

race/ethnicity are predicted using Revelio Labs’ proprietary algorithm, which is based on LinkedIn profile

information. Education is determined from credentials listed in the inventor’s LinkedIn profile; advanced

degree includes master’s, PhD, MBA, or professional degrees. URM = Black, Hispanic, Native American,

or Multiple races. VC-backed status uses universe classification from PitchBook. Software/IT patents are

defined as USPC classes 700–726; Biotech/Pharma patents are defined as USPC classes 424, 435, 514, 530,

and 800. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table 7: Career Advancement

Dep. Var. =
Stayed with Promoted Promoted Moved to
the same by the same by another a more

firm firm firm prestigious firm
Pane A: Overall (1) (2) (3) (4)
Patent Grant 0.037*** 0.042*** 0.046*** 0.040***

(0.005) (0.006) (0.006) (0.006)
Art-unit-by-time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Dep. Var. Mean 0.177 0.496 0.618 0.283
Observations 1,361,695 1,361,695 1,361,695 1,361,695
First-stage F -stat 6,577 6,577 6,577 6,577

Dep. Var. = Promoted by the same firm
By gender By ethnicity

Female Male White + Asian URM
Panel B: Heterogeneity (1) (2) (3) (4)
Patent Grant 0.054*** 0.038*** 0.042*** 0.062***

(0.014) (0.006) (0.006) (0.028)
Art-unit-by-time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Dep. Var. Mean 0.490 0.496 0.491 0.519
Observations 208,169 1,123,813 1,284,591 74,302
First-stage F -stat 3,495 6,132 6,653 1,094

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Gender and

race/ethnicity are predicted using Revelio Labs’ proprietary algorithm, which is based on LinkedIn profile

information. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table 8: Geographic Mobility and Innovation Hubs

Dep. Var. =
Changed Moved to Left
location innov. hub innov. hub

Panel A: Overall movement (1) (2) (3)
Patent Grant 0.044*** 0.004 0.012***

(0.005) (0.003) (0.002)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.196 0.075 0.035
Observations 1,361,695 1,361,695 1,361,695
First-stage F -stat 6,577 6,577 6,577

Dep. Var. = Left innovation hub
By ethnicity By industry

By gender White+ IT/ Biotech/
Female Male Asian URM Software Pharma

Panel B: Heterogeneity (1) (2) (3) (4) (5) (6)
Patent Grant 0.044*** 0.004 0.011*** 0.029*** 0.023*** 0.011

(0.005) (0.003) (0.002) (0.013) (0.005) (0.008)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.034 0.035 0.033 0.048 0.045 0.039
Observations 208,169 1,123,813 1,284,591 74,302 289,701 131,067
First-stage F -stat 3,495 6,132 6,653 1,094 1,418 738

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Gender and

race/ethnicity are predicted using Revelio Labs’ proprietary algorithm based on LinkedIn profile information.

URM = Black, Hispanic, Native American, or Multiple races. Software/IT patents are defined as USPC

classes 700–726; Biotech/Pharma patents are defined as USPC classes 424, 435, 514, 530, and 800. Statistical

significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table 9: Leadership and Networking

Dep. Var. =
Leadership Concurrent LinkedIn Superstar

skills positions connections collaboration
Panel A: Overall (1) (2) (3) (4)
Patent Grant 0.030*** 0.011*** 15.315*** 0.110***

(0.006) (0.006) (9.116) (0.008)
Art-unit-by-time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Dep. Var. Mean 0.327 0.326 275.670 0.266
Observations 1,361,195 1,361,195 1,361,195 771,133
First-stage F -stat 6,577 6,577 6,577 6,717

Dep. Var. = LinkedIn Connections
By ethnicity By industry

By gender White+ IT/ Biotech/
Female Male Asian URM Software Pharma

Panel B: Heterogeneity (1) (2) (3) (4) (5) (6)
Patent Grant 63.6*** 2.6 15.8* 41.4 58.9*** 2.7

(22.2) (10.7) (9.4) (31.2) (16.9) (25.1)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 276.2 277.7 274.0 303.8 327.3 274.1
Observations 208,169 1,123,813 1,284,591 74,302 289,701 131,067
First-stage F -stat 3,495 6,132 6,653 1,094 1,418 738

Dep. Var. = Superstar collaboration
By ethnicity By industry

By gender White+ IT/ Biotech/
Female Male Asian URM Software Pharma

Panel C: Heterogeneity (1) (2) (3) (4) (5) (6)
Patent Grant 0.115*** 0.109*** 0.108*** 0.080** 0.118*** 0.130**

(0.016) (0.009) (0.009) (0.035) (0.018) (0.023)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.260 0.270 0.264 0.282 0.266 0.263
Observations 113,586 635,751 702,744 37,719 143,897 80,209
First-stage F -stat 2,442 6,212 6,150 627 1,175 660

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Superstar

collaboration is defined as working with an inventor ranked in the top decile for either granted patents or

forward citations within a particular USPC. Gender and race/ethnicity are predicted using Revelio Labs’

proprietary algorithm based on LinkedIn profile information. URM = Black, Hispanic, Native American,

or Multiple races. Software/IT patents are defined as USPC classes 700–726; Biotech/Pharma patents are

defined as USPC classes 424, 435, 514, 530, and 800. Statistical significance of 10%, 5%, and 1% is denoted

by *, **, and ***, respectively.
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Table 10: Patenting and Subsequent Specialization

Dep. Var. =
Has Total Patent

subsequent subsequent Number
patent app. patent app. approved

Panel A: Subsequent patenting (1) (2) (3)
Patent Grant 0.018*** 0.023 0.172***

(0.007) (0.025) (0.020)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.473 1.325 0.916
Observations 1,644,539 1,644,539 1,644,539
First-stage F -stat 6,836 6,836 6,836

Network Pct. new USPC
growth co-inventors expansion

Panel B: Inventor network growth (1) (2) (3)
Patent Grant -0.023*** -4.539*** -0.050***

(0.008) (0.793) (0.010)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.412 71.321 0.597
Observations 780,687 646,363 780,687
First-stage F -stat 6,836 6,836 6,836

Forward Patent Breakthrough
citations value patent

Panel C: Patent quality (1) (2) (3)
Patent Grant 3.948*** 0.041* 0.014***

(0.640) (0.022) (0.002)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 7.848 0.603 0.037
Observations 1,644,539 163,339 1,644,539
First-stage F -stat 6,836 1,958 6,836

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Statistical

significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table 11: Patenting and Workplace Satisfaction and Wages

Dep. Var. =
Overall Culture Career Innov. Wage
rating rating rating culture growth

Panel A: Workplace Glassdoor perceptions (1) (2) (3) (4) (5)
Patent Grant -0.031*** -0.044*** -0.049*** -0.009*** -0.30**

(0.009) (0.011) (0.010) (0.001) (0.130)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓
Sample restrictions ✓ ✓ ✓ ✓
Dep. Var. Mean 1.079 1.064 1.075 1.046 1.384
Observations 106,925 88,881 106,932 107,027 752,909
First-stage F -stat 967 797 965 968 6,717

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All regressions

include art-unit-by-year fixed effects and controls for gender, ethnicity, education, and connections. For the

Glassdoor regressions in Columns (1) through (4), the sample is restricted to firms with more than 10 reviews

in a year by current employees with a job title associated with being an engineer or scientist. Statistical

significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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A Variable Definitions

A.1 Variable Definitions

Entrepreneurship outcomes: By matching Revelio employment histories to PitchBook
company data, we obtain detailed measures of startup and venture-backed employment:

• Entrepreneur at VC-Backed: Indicator equal to one if the inventor holds an en-
trepreneurial title at a VC-backed company, capturing founders of venture-funded star-
tups specifically. Keywords for entrepreneurial title include “founder,” “co-founder,”
“entrepreneur,” “founding team,” “founding member,” “founding engineer,” “owner,”
and “co-owner.” Executive titles (CEO, CTO, President) are included only when the
position is at a verified startup firm.

• Moved to Startup: Indicator equal to one if the inventor works at a startup firm,
identified through: (1) keyword matching in PitchBook company descriptions (“startup,”
“stealth,” “pre-launch,” “spinout,” “spinoff”); (2) participation in major accelerator
programs (Y Combinator, Techstars, 500 Startups, MassChallenge, Sequoia Arc, Plug
and Play, among others); or (3) company age of five years or less at the time of the
position.

• Moved to VC-Backed Startup: Indicator equal to one if the inventor holds any
position at a venture capital-backed company. VC-backed status is identified from
PitchBook’s “universe” classification, which directly flags companies that have received
venture capital financing.

Enhanced opportunities: One mechanism we examine is whether patent recognition
expands entrepreneurial opportunities by increasing inventors’ access to sufficiently large
and dense professional networks. If entrepreneurial ideas, cofounders, and early employees
are drawn from existing social and professional connections, then the ability to found a firm
may depend not only on individual skill or recognition, but also on whether an inventor
is embedded in a network with enough collaborators to mobilize a venture. We proxy for
this channel using characteristics of the inventor’s initial collaborative and organizational
environment, capturing variation in the scale of potential connections available to leverage
following patent recognition.

• Network density: Solo is an individual who applied for a patent as a solo inventor
(either as an individual inventor or through her employer), and team is the individuals
who first applied for a patent in teams.

• Team size: A small team size is two inventors, a large team size is three or more
inventors.

• Initial firm size: We define firm size based on the number of employees rather than
total assets, as we want to understand the potential for social connections. Less than
1000 employees is small. More than 1000 is large.
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Career advancement and mobility outcomes: These are Revelio-specific measures,
including geographic location.

• Stayed with the same firm: Indicator equal to one if the inventor remains with the
same firm following the patent decision, capturing internal retention effects.

• Promoted by the same firm: Indicator equal to one if the inventor’s recorded job
rank or seniority level increases relative to their position at the time of patent filing.

• Promoted by another firm: This variable serves as the inclusive measure of upward
career mobility. It is a broad indicator capturing promotion by another firm through
any channel, including:

– Rank or seniority upgrade,

– Wage growth exceeding 10% relative to prior position,

– Title-based upgrade (e.g., “Engineer” → “Senior Engineer”),

• Moved to prestigious firm: Indicator equal to one if the inventor transitions to an
employer ranked in the top decile of Revelio’s firm prestige index.

• Changed location: Indicator for geographic mobility, equal to one if the inventor’s
subsequent position is located in a different city or region.

• Moved to Innovation Hub: Indicator equal to one if the inventor’s new employer is
headquartered in a major innovation region (e.g., Bay Area, Boston, Seattle, Austin).

• Moved from Innovation Hub: Indicator equal to one if the inventor leaves an
innovation region for employment elsewhere.

Human capital development outcomes: These are based on LinkedIn skills sections as
well as details filled in on the ”About Me,” or ”Job Description” sections.

• Gained leadership skills: Indicator equal to one if new leadership-related keywords
(e.g., “management,” “strategy,” “team leadership”) appear in the inventor’s LinkedIn
skill set after the patent decision.

• Concurrent positions: Indicator equal to one if the inventor holds overlapping em-
ployment spells during the same period, suggesting secondary work as a board member
or consulting activity.

• Networking: Continuous measure of professional network size from LinkedIn, log-
transformed to reduce skewness.

• Superstar collaborator: We define superstar inventors based on their cumulative
track record within each technology class and year (USPC). Specifically, for each UPSC
class × year cell, we calculate each inventor’s cumulative patent count and cumulative
forward citations as of the prior year. An inventor is classified as a superstar if the
rank is in the top decile (p90) in either category. For robustness, we also examine
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the top quartile (p75) and the counts of superstar inventors with whom they worked.
This within-field, time-varying definition ensures that superstars are identified relative
to their peers in the same technology domain and at the same point in time. This
analysis is limited to inventors who filed at least one subsequent patent after their first
application, thereby restricting the sample to 771,133 inventors (approximately half of
the full sample).

Patenting and technological specialization outcomes:

• Claims: The count of the number of dependent and independent claims. The data
source is Patent Views.

• Scope: Kuhn and Thompson (2019) provide evidence consistent with the number of
words in the first claim serving as a good proxy for patent scope (i.e., the extent of the
legal coverage that a patent provides). Broad patents typically offer more protection
against infringers than a narrow patent, because they can be more difficult to design
around. Thus, a patent’s scope can be measured by counting the number of words in
its first claim, with more words corresponding to less scope.

• Forward citations: Citations made to U.S. granted patents by U.S. patents over the
lifetime of the patent.

• Originality: is a summary statistic on the backward citations of patents, capturing
their dispersion across different technology classes. We measure the originality of
patent i using the distribution of technology classes of the cited prior art on which the
patent builds. Let sij denote the share of backward citations made by patent i that
reference prior patents in technology class j, where

∑
j sij = 1. Our originality index

is defined as
Originalityi = 1−

∑
j

s2ij,

so that patents whose prior art draws heavily from a narrow set of classes have low
originality, while those that combine knowledge from many distinct classes have high
originality.

• Generality: is a summary statistic on the forward citations of patents, capturing their
dispersion across different technology classes. For each focal patent i, we measure the
generality of its impact across technology fields at the USPC subcategory level using
the distribution of technology classes of its citing patents. Let sij denote the share
of forward citations to patent i that come from citing patents in technology class j,
where

∑
j sij = 1. Our generality index is defined as

Generalityi = 1−
∑
j

s2ij,

so that patents whose follow-on citations are concentrated in a narrow set of classes
have low generality, while those whose follow-on citations are spread across many
classes have high generality.
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• Radical patent: Following Kerr (2010), we define a radical patent as being in the
95th percentile or higher for lifetime forward citations in a given application year and
USPC category.

• Breakthrough patent: Kelly et al. (2021) analyze the text of patents and define
breakthrough patents as those in the 90th percentile or above of the unconditional
distribution of the ratio of 10-year forward textual similarity to 5-year backward
textual similarity. This ratio captures textual dissimilarity with the existing patent
stock at the time it was filed. Specifically, we use their variable with the pneumonic
break p90 rrfsim05.

• Patent value: This is the nominal patent value measure described in Kogan et al.
(2017) that is available for public firms. We use the real version (pneumonic xi real.
We note that restricting the sample to first-time applicants with subsequent patents
granted while at public firms reduces the combined control and treatment group to
163,339 observations (approximately 10% of the sample). Data source: https://

github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-

Data

Workplace perception outcomes:

• Star ratings: Glassdoor provides 1-5 star ratings for overall satisfaction, culture, and
career opportunities. We standardize these variables for comparison.

• Innovative culture: Glassdoor also provides open-ended text boxes where employ-
ees can write the pros, cons, and advice to management about the firm. We use a
BERT-based algorithm at the sentence level to predict whether a sentence demon-
strates cultural norms consistent with valuing innovation (+1), the opposite of valuing
innovation (-1), or neutrality (i.e., no mention). We then aggregate to the review level
and then again to the firm-year level. For additional details, please see Appendix B.

• Wage growth: Continuous measure of the percent change in wage between consecutive
positions, winsorized at the 1st and 99th percentiles ot limit the effect of outliers.

Treat, instrument, and control variables: These are the main variables used throughout
the analyses.

• Treatment = Patent granted: Binary indicator equal to one if the inventor’s first
patent application was approved by the USPTO. Serves as the endogenous treatment
variable in all IV regressions.

• Instrument = Examiner leniency: Continuous instrument equal to the examiner’s
historical grant rate prior to the focal inventor’s first application, computed within the
same art unit. Provides exogenous variation in the likelihood of receiving a patent.

• Gender: Indicator equal to one if the inventor is identified as female, inferred from
first-name–gender probabilities.
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• Ethnicity: Mutually exclusive indicators for Asian, Black, Hispanic, Native American,
and Multiple-race categories, derived from name-based and geographic inference.

• Education: Indicators for highest completed degree—High School, Bachelor’s, Mas-
ter’s, MBA, PhD—based on education records from professional profiles.

• Prestige score: Continuous measure of institutional prestige, based on the ranking
of the inventor’s undergraduate or most recent institution, standardized to mean zero
and unit variance.

B Culture Variable Construction

This appendix provides definitions of cultural values and norms and discusses the procedure

for generating the text-based measures of corporate culture. The seven cultural values rep-

resent the principal components of culture derived by O’Reilly et al. (1991), and they are

supplemented to include community-oriented, which was added to reflect changes in cultural

values in the last thirty years. The seven cultural values are adaptability, collaboration,

community-oriented, customer-oriented, detail-oriented, integrity, and results-oriented. The

same cultural values used in Graham et al. (2022) were benchmarked to executives’ descrip-

tions of their culture and website-based values. The terms pillars and cultural values are

used interchangeably. Each cultural value or pillar has norms or sub-pillars described below.

These norms are elements of the culture that are subcomponents of the main cultural values.

Note this is a shortened word list meant to help familiarize the reader. Our approach did

not use a word list or dictionary-based method. Instead, we used a Bidirectional Encoder

Representations from Transformers (BERT)-based model.

The dataset consists of Glassdoor reviews for a given organization. The reviews have been

parsed into multiple, non-overlapping sentences. Each sentence is associated with one of the

four open text areas where they could have been entered. The four open text areas include

title, pros, cons, and advice. We use a semi-supervised machine learning (ML) approach,

which means for a subsample of the sentences, they have been annotated by three reviewers

with their actual cultural values and norms. Specifically, each sentence in this training data

is annotated for three classes +1, 0, and -1, for 7 different pillars and 34 different sub-pillars.

Glassdoor review sentences tend to be highly imbalanced, with most of the data belonging

to the 0 class and more data belonging to the +1 class than to the -1 class. Therefore, we

artificially increased the number of samples in the minority classes through oversampling

to balance the dataset. The value for each pillar is directly related to the subpillars, as

such we only run our classifier models on the subpillars and aggregate to the pillar level

using the predicted subpillars. The model used for sentence classification is a hierarchical

BERT-based model that includes sentence type information with oversampling and a trained

separate multiclassifier (-1, 0, +1) for each subpillar. A weighted cross-entropy loss function
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was applied, further addressing class imbalance by giving higher weights to minority classes.

We experimented with other variations, and selected the model that performed the best

across the 34 subpillars. Our experiments with sentence type showed that incorporating

this information improved the model performance. We also experimented with different

transformer-based language models, including RoBERTa and Sentence Transformers, which

are optimized for generating sentence embeddings. The other transformer models did not

yield meaningful performance improvements in precision, recall, or F-1 scores, so we stuck

with the BERT model. Finally, we also considered a k-shot classifier based on exemplary

sentences and two-stage predictions where presence (+1/-1) vs. absence (0) and positive (+1)

vs. negative (-1) sentiment were classified. While an individual subpillar may outperform

using these alternatives, we found that the average F-1 score across all 34 subpillars was

better with the multiclassifier model.

To aggregate from the predicted subpillars to the pillars, we sum the total predicted scores

across all subpillars. We then aggregate the sentence-level scores to review-level scores by

weighting sentences according to their word count. This makes the implicit assumption that

more detailed explanations are more valuable. For our analysis, we focus on adaptability as

it contains the subpillar of innovation. Below we describe the adaptability subpillar. Then,

we show the matching process and the resulting sample restrictions.

Cultural Value 1 (i.e., Pillar 1) Adaptability

• Subpillar 1 Adaptability

– Words: adaptable, turnaround, change, dynamic, upcoming, flexible, spin-off

– Phrases: changing environment, constantly trying to improve, weathered down-

turn, plan for shifting, willing to change, constant evaluation of advancement,

follow latest trends

• Subpillar 2 Fast Moving

– Words: fast, rapid, quick, new

– Phrases: fast-paced, constantly changing, always something new, growth mindset

• Subpillar 3 Takes initiative

– Words: initiative, entrepreneurial, proactive, independent, self-motivated, self-

starter,
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– Phrases: new projects, forward-thinking, seizes opportunities, takes the lead,

makes hard decisions, takes charge, takes a stance, drives action, goes the ex-

tra mile

• Subpillar 4 Autonomy vs. Bureaucracy

– Words: autonomy, independence, empowerment, access

– Phrases: individual contributions, no micromanagement, opportunity to con-

tribute, value ideas, removing bureaucracies, ability to interact with leaders,

• Subpillar 5 Innovative

– Words: technology, innovative, inventive, creative

– Phrases: new solutions, technology leader, deep technology, exposed to lots of

technology
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Table B.1: Sample Construction and Glassdoor Coverage

Glassdoor Samples

All Employees Current engineers & scientists

Panel A: Data Linking (1) (2)

Starting: First-time patent applicants 1,458,214 1,458,214

With examiner data 1,391,366 1,391,366

Panel B: Glassdoor Coverage

Person-year observations (2008–2024) 24,289,865 24,289,865

Unique users w/ Glassdoor data 231,181 195,971

Coverage rate (16.6%) (14.1%)

Panel C: Analysis Samples

Unrestricted (with outcome t=1) 188,786 157,422

Main: Reviews ≥ 10 162,905 107,879

Robustness: Reviews ≥ 25 145,260 81,180

Notes. This table describes the construction of the Glassdoor-linked samples used to analyze workplace

perceptions following patent recognition. Panel A reports the number of first-time patent applicants that

can be linked to examiner assignment data. Panel B documents Glassdoor coverage over 2008–2024, defined

as the presence of at least one employee review at the inventor’s employing firm in a given year. Panel C

reports the final analysis samples used in the main and robustness specifications, imposing minimum review-

count thresholds to ensure reliable firm–year measures. Workplace perception measures are constructed using

both star ratings and BERT-based text embeddings applied to Glassdoor reviews. The sample of engineers

and scientists is based on self-reported job titles. Current removes former employees’ reviews.
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C Sample Construction and First-stage Results

C.1 Matching Process

This appendix describes the construction of our final analysis sample of 1,798,909 first-time

patent applicants, detailing the multi-stage matching process used to link USPTO patent

application data to Revelio Labs employment profiles.

We began with 17,932,860 first-time patent applicants in the USPTO database spanning

1976-2023. Through a multi-stage matching process, we successfully linked 1,798,909 in-

ventors (10.0% match rate) to Revelio Labs career data. Our 10% match rate reflects four

factors:

(1) LinkedIn coverage limitations: LinkedIn was founded in 2003, meaning pre-

2000 cohorts are systematically under-represented;

(2) Demographic selection: patent inventors with LinkedIn profiles are dispropor-

tionately corporate employees in technology sectors rather than independent inventors

or non-technology fields;

(3) Data quality requirements: we require sufficient information (name, location,

employer, temporal alignment) for confident matching; and

(4) Conservative matching thresholds: we prioritize match precision over coverage

to minimize false positives (80% company similarity, Levenshtein distance ≤2).

Our matching process leveraged five complementary strategies to maximize coverage while

maintaining quality, which include:

(1) Stage 1 (Exact Matching): matched 285,444 inventors (15.9% of final sample)

on standardized first name, last name, company (patent assignee to employer), location

(state-level), and application number.

(2) Stage 2 (Fuzzy Matching): matched 7,681 inventors (0.4%) by relaxing name

requirements to allow Levenshtein distance ≤2 for first names while requiring exact

last names and token-based company similarity (≥80% overlap).

(3) Stage 3 (PatentsView-Assisted): matched 733,969 inventors (40.8%) by lever-

aging PatentsView’s disambiguation algorithm, which links inventors across patents

using name, location, employer, and co-inventor networks.

(4) Stage 4 (User-Level Fuzzy): matched 84,401 inventors (4.7%) in edge cases,

including name changes, company acquisitions, and multiple LinkedIn profiles, with

manual validation of a 500-case subsample.
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(5) Stage 5 (Direct Revelio): incorporated 687,414 inventors (38.2%) through Rev-

elio Labs’ proprietary linkages between patent records and LinkedIn profiles.

Table C.1 explains in detail how we go from 17.9 million observations to 1.80 million

matched innovators. Our main analysis focuses on first applications only to examine the

impact of initial patent success on career trajectories. The final analysis sample contains

1,798,909 first-time applicants, with 1,359,316 in the treatment group (first application

granted) and 439,593 in the control group (first application rejected). The control group’s

smaller size reflects the USPTO’s high overall grant rate (approximately 76% in our matched

sample, slightly higher than the aggregate USPTO rate of 70%, reflecting selection toward

higher-quality corporate applicants who maintain LinkedIn profiles).

Table C.2 shows sample composition by patent characteristics. The control group is

smaller (24.4% of sample) due to the USPTO’s high overall grant rate (∼76% in our matched

sample, slightly higher than the aggregate USPTO rate of 70%, reflecting selection toward

higher-quality corporate applicants). Treatment rates vary substantially by entity type and

filing decade.

Table C.3 shows the final sample by matching method. The distribution is fairly consis-

tent across treatment and control groups. Direct Revelio matches have a modestly higher

treatment rate (76.6%) compared to other match types (74.9-75.0%), likely because Revelio’s

proprietary matching emphasizes corporate employees at large firms with higher grant rates.

C.2 Balance Tests

Table C.4 compares treatment and control groups on pre-patent characteristics. As expected

in an observational study, the groups differ significantly on most observable dimensions. The

most striking imbalances occur in education: the treatment group has 3.60 percentage points

more PhD holders (normalized difference = 0.105) and 4.90 percentage points more Master’s

degree holders (normalized difference = 0.137). The treatment group also has higher prestige

scores (0.368 vs. 0.306, normalized difference = 0.134) and more LinkedIn connections (259

vs. 219, normalized difference = 0.037). These substantial differences demonstrate that

simply comparing granted vs. rejected inventors would conflate the effect of patent approval

with underlying differences in inventor quality—and likely on unobservables such as talent,

persistence, and institutional support. Our instrumental variable strategy addresses this

selection problem by exploiting quasi-random variation in examiner leniency.

When we weight by application year × technology class (Table C.5), balance improves

substantially for key professional characteristics. Prestige scores become nearly identical

(0.333 vs. 0.331, normalized difference = 0.005), and LinkedIn connections show minimal

difference (228 vs. 213, normalized difference = 0.019). However, gender and ethnicity
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imbalances increase under this weighting, suggesting these characteristics vary systematically

across technology fields and time periods in ways that correlate with approval rates. While

weighting helps with professional characteristics, it cannot fully address selection, motivating

our instrumental variable approach.

These imbalances do not invalidate our identification strategy, provided that: (1) exam-

iner assignment is quasi-random within art units and filing years, and (2) examiner leniency

affects career outcomes only through its effect on patent grants (the exclusion restriction).

Next, we address these identification assumptions with first-stage diagnostics showing that

examiner leniency is uncorrelated with inventor characteristics conditional on art unit ×
year fixed effects.

C.3 Examiner Characteristics and First Stage Analysis

This appendix presents descriptive statistics on patent examiners and documents the strength

of our instrumental variable. Following Sampat and Williams (2019) and Farre-Mensa

et al. (2020), we exploit quasi-random variation in examiner leniency—defined as an exam-

iner’s historical approval rate—to instrument for whether an inventor’s patent application is

granted.

Table C.6 presents descriptive statistics on the patent examiners in our sample. We ob-

serve 15,288 unique examiners across 1,029 art units (technology classification groups). Ex-

aminer leniency—measured as each examiner’s approval rate on all applications examined

prior to the current application—exhibits substantial variation, with a mean of 0.71-0.73

and standard deviation of 0.19-0.22. The 10th percentile examiner approves 41-44% of ap-

plications, while the 90th percentile examiner approves 92-99%, demonstrating considerable

heterogeneity in examiner stringency. Examiner experience also varies substantially: in our

first-applications sample, examiners have reviewed a median of 90 prior applications (mean:

132), while in the full staggered sample, the median examiner has 486 prior applications

(mean: 654), ranging from zero (the examiner’s first case) to over 1,300-6,800 applications.

Table C.7 presents our first-stage results, demonstrating that examiner leniency is a

strong predictor of whether a patent application is granted. We estimate five specifica-

tions with progressively stricter controls, culminating in our main specification (Column 5)

which includes art unit × year fixed effects and inventor demographic controls. Across all

specifications, examiner leniency is a highly significant predictor of patent grants, with F-

statistics far exceeding the conventional threshold of 10 for a strong instrument. In our main

specification for first applications (Column 5, Panel A), a one-standard-deviation increase

in examiner leniency (0.222) increases the probability of patent grant by 11.9 percentage

points, with an F-statistic of 8,618. The staggered design using all applications (Panel B)

61



yields even stronger first-stage relationships, with F-statistics exceeding 290,000, reflecting

both the larger sample size and the inclusion of repeat applicants. The first-stage relation-

ship remains strong across specifications with varying levels of fixed effects—moving from

no fixed effects to art unit fixed effects slightly attenuates the coefficient (as expected when

controlling for systematic differences in approval rates across technology fields), and adding

year fixed effects and inventor controls further attenuates the coefficient modestly, but the

instrument remains highly significant throughout.

Table C.8 examines whether the first stage varies across inventor characteristics. We find

that examiner leniency predicts patent grants strongly for all subgroups, though with some

heterogeneity in magnitude. The first stage is strong for both female (F = 4,157) and male

inventors (F = 8,290), though the coefficient is slightly larger for female inventors (0.579 vs.

0.532), suggesting examiner leniency affects approval rates similarly across genders and val-

idating the use of our IV approach for analyzing gender disparities in career outcomes. PhD

holders exhibit a somewhat smaller first-stage coefficient (0.494) than non-PhD inventors

(0.549), though both F-statistics remain well above conventional thresholds, likely reflect-

ing that PhD holders file higher-quality applications on average. Nevertheless, the strong

F-statistic (2,660) indicates examiner assignment generates substantial variation in approval

even among highly educated inventors. The coefficient is similar across first (0.707) and later

applications (0.775), suggesting examiner leniency operates similarly throughout inventors’

careers and validating our staggered design as a robustness check.

A unique advantage of our staggered design is the ability to estimate the first stage using

within-inventor variation. Table C.9 presents results adding inventor fixed effects, which

identify the effect of examiner leniency solely from variation across multiple applications filed

by the same inventor. The first stage remains exceptionally strong even when restricting to

within-inventor variation (F = 298,007), with a coefficient (0.808) nearly identical to the main

specification (0.762). This demonstrates that the same inventor, filing multiple applications

over time, experiences quasi-random variation in approval rates depending on which examiner

reviews each application. The high R-squared (0.412) reflects that inventor fixed effects

absorb substantial variation in approval propensity, yet examiner leniency remains highly

predictive even after controlling for all time-invariant inventor characteristics.

For our IV strategy to identify causal effects, examiner leniency must satisfy the exclusion

restriction: it must affect inventor career outcomes only through its effect on patent grants.

A key implication is that conditional on art unit × year fixed effects, examiner leniency

should not predict inventor characteristics, as examiner assignment is quasi-random within

these groups.

Table C.10 tests this by regressing inventor characteristics on examiner leniency, control-
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ling for art unit × year fixed effects. We find that several characteristics—education, pres-

tige, and LinkedIn connections—are statistically significantly related to examiner leniency,

suggesting potential violations of strict random assignment. However, the magnitudes are

economically small: a one-standard-deviation increase in examiner leniency (0.222) predicts

only a 2.1 percentage point increase in PhD share and a 2.9 percentage point increase in

prestige score. These correlations likely reflect mild deviations from pure random assign-

ment—for instance, if supervisors assign certain types of applications to more experienced

examiners, and those applications happen to come from more credentialed inventors. Im-

portantly, our IV estimator remains consistent even with imperfect randomization, provided

examiner leniency is uncorrelated with unobserved determinants of career outcomes condi-

tional on observables and fixed effects (Angrist and Pischke, 2009). The small magnitudes

in Table C.10 suggest that any residual sorting on observables is modest, and we control for

these characteristics in our main IV specifications.

In summary, our first-stage analysis demonstrates that examiner leniency is an exception-

ally strong instrument for patent grants, with F -statistics ranging from 8,618 (first applica-

tions) to 298,000 (staggered design). The first stage is robust to stringent controls, including

art unit × year fixed effects and inventor characteristics, and remains strong across all inven-

tor subgroups and application sequences. Within-inventor estimates confirm that the same

inventor experiences quasi-random variation in approval depending on examiner assignment,

validating our identification strategy. While we detect statistically significant (but econom-

ically small) correlations between examiner leniency and inventor characteristics, these do

not invalidate our IV approach provided we control for observables, which we do throughout

our main analysis.
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Table C.1: Sample Construction: From USPTO Applicants to Final Analysis Sample

Obs. Pct. Notes
Starting Universe (1) (2) (3)
USPTO first-time applicants 17,932,860 100.0% All first-time applicants, 1976-2023

Match to Revelio Process
Exact matches 285,444 1.6% Name, company, location, app number
Fuzzy matches 7,681 0.04% Relaxed name/company matching
PatentsView-assisted 733,969 4.1% Leveraging PatentsView disambiguation
User-level fuzzy 84,401 0.5% Edge cases
Direct Revelio linkages 687,414 3.8% Revelio’s proprietary matches

Successfully matched to Revelio 1,798,909 10.0% Sum of all matching methods

For Matched Inventors: All Applications
All applications 9,038,379 50.4% Matched Inventors and all possible applications
First applications 1,869,531 10.4%
Subsequent applications 7,168,848 40.0%

Restrict to First Applications Only
First applications (matched sample) 1,869,531 10.4%
Drop: Still Pending/Other 70,622 0.4%

Final Analysis Sample 1,798,909 10.0%
Treatment (granted) 1,359,316 7.6% First application was granted
Control (rejected) 439,593 2.5% First application was rejected

N otes: This table documents the complete sample construction process. All percentages are calculated
relative to the starting universe of 17.9M first-time USPTO applicants. We successfully match 1.80M
inventors (10.0%) to Revelio Labs using five complementary methods. The 90% unmatched primarily
reflects LinkedIn coverage limitations—particularly for pre-2003 cohorts, independent inventors, and
non-technology sectors. For the 1.80M matched inventors, we observe all their patent applications
over time (9.04M total, or 5.0 applications per inventor on average), but our main analysis focuses
on first applications only (1.80M) to examine the impact of initial patent success. Match types are
assigned hierarchically (exact takes precedence over fuzzy, etc.). The 70,622 observations dropped
reflect pending applications and matching errors discovered during data validation.
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Table C.2: First Application Sample Composition by Patent Characteristics

Total Treatment Control % Treatment
Overall (1) (2) (3) (4)
Total Sample 1,798,909 1,359,316 439,593 75.6%

By Entity Type
Large Entity 1,370,564 1,098,881 271,683 80.2%
Small Entity 407,153 249,050 158,103 61.2%
Micro Entity 21,190 11,383 9,807 53.7%

By Filing Decade
1970s 2,486 2,478 8 99.7%
1980s 38,603 36,420 2,183 94.3%
1990s 146,424 142,575 3,849 97.4%
2000s 765,137 510,067 255,070 66.7%
2010s 773,842 606,453 167,389 78.4%
2020s 72,316 61,272 11,044 84.7%

By Application Type
Utility 1,757,950 1,319,084 438,866 75.0%
Design 39,594 39,434 160 99.6%
Other 1,365 798 567 58.5%

N otes: Sample composition by key patent characteristics. Treatment rates are substantially higher
for design patents (99.6%), large entities (80.2%), and pre-2000 cohorts (94-100%). The 2000s decline
to 66.7% likely reflects increased examination stringency following the 2007 USPTO quality initia-
tives and the 2011 America Invents Act. The 2010s-2020s rebound (78-85%) may reflect both relaxed
standards and selection—inventors with LinkedIn profiles (our sample) may file higher-quality appli-
cations than the broader population.
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Table C.3: Distribution of Final Sample by Matching Method

Control Treatment Total % Treatment
Match Type (1) (2) (3) (4)
Exact 71,611 (16.3%) 213,833 (15.7%) 285,444 74.9%
Fuzzy 1,925 (0.4%) 5,756 (0.4%) 7,681 74.9%
Fuzzy-PatentsView 183,992 (41.9%) 549,977 (40.5%) 733,969 74.9%
Fuzzy-User-Level 21,100 (4.8%) 63,301 (4.7%) 84,401 75.0%
Direct Revelio 160,965 (36.6%) 526,449 (38.7%) 687,414 76.6%

Total 439,593 1,359,316 1,798,909 75.6%

N otes: Column percentages in parentheses indicate share of each match type within treatment and
control groups. Each inventor is assigned to exactly one match type based on a hierarchical rule: exact
matches take precedence, followed by fuzzy, PatentsView-assisted, user-level fuzzy, and finally direct
Revelio matches. Direct Revelio matches represent inventors linked through Revelio’s proprietary
systems. Treatment rates are remarkably consistent across match types (74.9-76.6%), suggesting
match quality does not substantially affect treatment assignment.
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Table C.4: Covariate Balance: Treatment vs Control (Unweighted)

Variable Treatment Control Difference P-value Norm. Diff

Gender
Female 0.1485 0.1715 −0.0230 0.000*** −0.076
Male 0.8294 0.7912 0.0382 0.000*** 0.098

Ethnicity
White 0.6216 0.6216 0.0000 0.000*** −0.007
Asian/API 0.3244 0.3182 0.0062 0.000*** 0.013
Black 0.0250 0.0250 0.0000 0.000*** −0.006
Hispanic 0.0264 0.0264 0.0000 0.000*** −0.014
Multiple 0.0020 0.0017 0.0003 0.000*** 0.006
Native American 0.0004 0.0004 0.0000 0.096 0.003

Education
High School 0.0060 0.0060 0.0000 0.005*** −0.005
Associate 0.0114 0.0105 0.0009 0.000*** 0.008
Bachelor’s 0.1736 0.1465 0.0271 0.000*** 0.074
Master’s 0.1752 0.1262 0.0490 0.000*** 0.137
PhD/Doctor 0.1541 0.1182 0.0360 0.000*** 0.105
MBA 0.0508 0.0385 0.0122 0.000*** 0.059

Professional Characteristics
Prestige 0.368 0.306 0.062 0.000*** 0.134
LinkedIn connections 258.6 218.9 39.6 0.000*** 0.037
Filing year 2008.3 2008.7 −0.4 0.000*** −0.050

N otes: *** p<0.01, ** p<0.05, * p<0.10. Treatment group: N=1,359,316. Control group: N=439,593.
P-values from two-sample t-tests with equal variances. Normalized difference = (Treatment mean −
Control mean) / Pooled standard deviation. Values above 0.1 in absolute value indicate meaningful
imbalance. The substantial imbalances (particularly for Master’s: 0.137, Prestige: 0.134, PhD: 0.105)
motivate our instrumental variable approach using examiner leniency.
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Table C.5: Covariate Balance: Treatment vs Control (Weighted by App Year × Tech Class)

Treatment Control Difference P-value Norm. Diff
Panel A. Gender (1) (2) (3) (4) (5)
Female 0.121 0.195 −0.074 0.000*** −0.162
Male 0.865 0.793 0.072 0.000*** 0.192

Panel B. Ethnicity
White 0.736 0.652 0.084 0.000*** 0.183
Asian/API 0.188 0.287 −0.098 0.000*** −0.212
Black 0.049 0.040 0.009 0.380 0.042
Hispanic 0.025 0.029 −0.004 0.264 −0.024

Panel C. Education
High School 0.008 0.006 0.001 0.342 0.015
Associate 0.019 0.013 0.006 0.044** 0.048
Bachelor’s 0.200 0.164 0.036 0.011** 0.093
Master’s 0.141 0.122 0.019 0.116 0.056
PhD/Doctor 0.168 0.154 0.015 0.362 0.041
MBA 0.054 0.033 0.021 0.000*** 0.101

Panel D. Professional Characteristics
Prestige 0.333 0.331 0.002 0.917 0.005
LinkedIn connections 228.0 212.7 15.3 0.096* 0.019
Filing year 1993.9 2010.1 −16.2 0.000*** −0.622

N otes: *** p<0.01, ** p<0.05, * p<0.10. Standard errors clustered at art unit level. Weighting by
application year × technology class (first digit of USPC) cells accounts for the fact that patent char-
acteristics vary substantially across fields and time. Most covariates show improved balance compared
to unweighted comparison, with key professional characteristics (prestige, connections) now balanced.
The large filing year imbalance reflects that the weighting adjusts for systematic differences in approval
rates over time.
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Table C.6: Examiner Characteristics

First Apps Only All Apps (Staggered)
Panel A. Sample composition (1) (2)
Total observations 1,758,769 8,489,918
Unique examiners 15,288 15,288
Unique inventors 1,772,602 1,798,038
Unique art units 989 1,029
Applications per inventor (median) 1.0 15.0

Panel B. Examiner Leniency (Approval Rate)
Mean 0.731 0.710
Standard deviation 0.222 0.190
10th percentile 0.409 0.439
25th percentile 0.600 0.599
Median 0.783 0.750
75th percentile 0.915 0.855
90th percentile 0.987 0.917
Range [0.000, 1.000] [0.000, 1.000]

Panel C. Examiner Experience (Prior Applications)
Mean 132 654
25th percentile 38 209
Median 90 486
75th percentile 179 907
Range [0, 1,386] [0, 6,831]

N otes: This table presents characteristics of USPTO patent examiners in our sample. “First Apps
Only” restricts to inventors’ first patent applications (N=1.76M). “All Apps (Staggered)” includes
all applications by matched inventors (N=8.49M). Examiner leniency is measured as the examiner’s
approval rate on all applications examined prior to the current application. Examiner experience is
the number of applications the examiner has reviewed before the current application. Art units are
USPTO technology classification groups to which examiners are assigned.
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Table C.7: First Stage: Examiner Leniency Predicts Patent Grant

Dep. var. = Patent Grant
Panel A. First Applications Only (1) (2) (3) (4) (5)

Examiner leniency 0.693*** 0.673*** 0.684*** 0.533*** 0.536***
(0.007) (0.007) (0.007) (0.006) (0.006)

F-statistic 10,349 9,527 10,098 8,541 8,618
R-squared 0.088 0.093 0.151 0.179 0.178

Panel B. All Applications Staggered)

Examiner leniency 0.843*** 0.769*** 0.791*** 0.789*** 0.762***
(0.001) (0.001) (0.000) (0.000) (0.001)

F-statistic 364,962 327,560 — — 290,992
R-squared 0.125 0.131 0.194 0.195 0.211

Art unit FE ✓ ✓ ✓
Year FE ✓ ✓
Inventor controls ✓ ✓
Art unit×year FE ✓

N otes: This table presents first-stage regressions of patent grant indicator on examiner leniency. Panel
A restricts to first applications only; Panel B includes all applications (staggered design). Examiner
leniency is the examiner’s approval rate on all applications examined prior to the current application.
Inventor controls include gender, race/ethnicity, education, prestige score, and LinkedIn connections.
Standard errors clustered at art unit level (Panel A) or inventor level (Panel B) in parentheses. All
F-statistics far exceed the threshold of 10 for a strong instrument. ***p<0.01.
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Table C.8: First Stage Heterogeneity by Inventor Characteristics

Dep. Var. = Patent Grant
First Apps Only All Apps (Staggered)

Coefficient F-statistic Coefficient F-statistic
Panel A. By Gender (1) (2) (3) (4)
Female inventors 0.579*** 4,157 — —

(0.009)
Male inventors 0.532*** 8,290 — —

(0.006)

Panel B. By Education
No PhD 0.549*** 8,466 — —

(0.006)
PhD holders 0.494*** 2,660 — —

(0.010)

Panel C. By Application Sequence
First application 0.707*** 11,259 0.707*** 11,259

(0.007) (0.007)
2nd-5th applications — — 0.775*** 234,336

(0.002)
All applications — — 0.764*** 302,594

(0.001)

N otes: This table presents first-stage regressions by inventor subgroups. All specifications include
art unit×year fixed effects. Standard errors clustered at art unit level (first apps) or inventor level
(staggered). All F-statistics exceed 10, indicating strong instruments across all subgroups. ***p<0.01.
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Table C.9: First Stage with Inventor Fixed Effects (Within-Inventor Variation)

Dep. Var. = Patent Grant
Art Unit×Year FE + Inventor FE
[Between Variation] [Within Variation]

(1) (2)
Examiner leniency 0.762*** 0.808***

(0.001) (0.001)

F -statistic 290,992 298,007
R-squared 0.211 0.412
Observations 8,489,918 8,489,788

N otes: This table examines the first stage using within-inventor variation in the staggered design.
Column 1 repeats the main specification from Appendix Table C.7. Column 2 adds inventor fixed
effects, identifying solely from variation in examiner leniency across multiple applications by the
same inventor. The strong first stage persists, demonstrating that examiner assignment continues to
generate quasi-random variation in approval even for repeat applicants. Standard errors clustered at
the inventor level. ***p<0.01.
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Table C.10: Exclusion Restriction Test: Examiner Leniency vs. Inventor Characteristics

Dep. var. = Inventor characteristic
Panel A. Demographics (1)

Female −0.015***
(0.003)

White 0.014***
(0.004)

Asian/API −0.012***
(0.004)

Black −0.001
(0.001)

Hispanic −0.002**
(0.001)

Panel B. Education

Bachelor’s degree 0.006***
(0.002)

Master’s degree 0.016***
(0.002)

PhD 0.021***
(0.003)

MBA 0.006***
(0.001)

Panel C. Professional Characteristics

Prestige score 0.029***
(0.003)

LinkedIn connections 10.5
(8.3)

N otes: This table tests whether examiner leniency predicts inventor characteristics conditional on art
unit×year fixed effects. Each row is a separate regression of the inventor characteristic on examiner
leniency with art unit×year FE. Standard errors clustered at art unit level in parentheses. All coeffi-
cients are economically small: a one-standard-deviation increase in examiner leniency (0.222) predicts
changes of less than 0.05 SD in most characteristics. ***p<0.01, **p<0.05, *p<0.10.

73



Figure C.1: Monotonicity Checks

Notes. This figure shows the distributions of treated and control outcomes for the number of subsequent
patent applications. The outcomes for treated and control compliers are estimated separately with UJIVE
Kolesár (2013). Vertical bars indicate 95% confidence intervals that are robust to heteroskedasticity and
treatment effect heterogeneity.
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Table C.11: Covariate Balance Test

Coefficient Std. Error p-value
Panel A: Demographics (1) (2) (3)
Female −0.014*** (0.002) 0.000
Asian −0.005** (0.002) 0.041
Black −0.001 (0.001) 0.183
Hispanic −0.001 (0.001) 0.274

Panel B: Education
Bachelor’s 0.005** (0.002) 0.019
Master’s 0.013*** (0.002) 0.000
PhD 0.019*** (0.002) 0.000
MBA 0.005*** (0.001) 0.000

Panel C: Professional Characteristics
Prestige 0.024*** (0.002) 0.000
Num. Connections 12.309 (7.698) 0.110

Art-unit-by-time FE ✓

Notes. This table reports balance tests following Goldsmith-Pinkham et al. (2025). Each row presents the

coefficient from a regression of the covariate on examiner leniency, controlling for art-unit-by-year fixed effects

with heteroskedasticity-robust standard errors. While some covariates show statistically significant correla-

tions with examiner leniency, the magnitudes are economically small. For example, a one-standard-deviation

increase in examiner leniency is associated with only a 1.4 percentage point decrease in the probability of

being female and a 1.9 percentage point increase in the probability of having a PhD. These small imbalances

are typical in large samples and do not substantively threaten identification. Statistical significance of 10%,

5%, and 1% is denoted by *, **, and ***, respectively.
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D Robustness and Heterogeneity Tests

Table D.1: Robustness: Standard Errors

Dep. Var. =
Entrepreneur at VC-backed startup

Cluster by art unit Robust Cluster by examiner
Pane A: Overall movement (1) (2) (3)
Patent Grant 0.010*** 0.010*** 0.011***

(0.002) (0.001) (0.003)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.028 0.028 0.028
Observations 1,566,604 1,566,604 1,566,604
First-stage F -stat 7,701 7,701 7,701

Notes. This table presents robustness checks of our main entrepreneurship findings using alternative standard

errors. Column (1) reports our main specification with robust standard errors clustered at the art unit level.

Column (2) reports the heteroskedasticity-robust standard errors following recommendations in Goldsmith-

Pinkham et al. (2025). Column (3) reports with robust standard errors clustered at the examiner level. All

regressions include art-unit-by-year fixed effects and controls for gender, ethnicity, education, prestige, and

connections. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table D.2: Robustness: Unbiased Jack-knife Instrumental Variable Estimator (UJIVE)

Dep. Var. =
Entrepreneur at VC-backed startup
2SLS UJIVE OLS

Pane A: Overall movement (1) (2) (3)
Patent Grant 0.010*** 0.008*** 0.015***

(0.002) (0.002) (0.003)
Art-unit-by-time FE ✓ ✓ ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.028 0.028 0.028
Observations 1,566,604 1,566,604 1,566,604
First-stage F -stat 7,701 NA NA

Notes. This table presents robustness checks of our main entrepreneurship findings using alternative standard

errors. Column (1) reports our main 2SLS specification with examiner leniency as an instrument for patent

grant. Column (2) reports the UJIVE estimate Goldsmith-Pinkham et al. (2025). Column (3) reports

the OLS estimate. All regressions include art-unit-by-year fixed effects and controls for gender, ethnicity,

education, prestige, and connections. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and

***, respectively.
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Table D.3: Robustness: Alternative Specifications

Dep. Var. =
Entrepreneur at VC-backed startup
Complete Large USPC

demographics art units Fixed effects
(1) (2) (3)

Patent Grant 0.010*** 0.010*** -0.006**
(0.002) (0.002) (0.003)

Observations 1,566,612 1,553,577 1,317,966
Art-unit-by-time FE ✓ ✓
USPC-by-time FE ✓
Controls ✓ ✓ ✓
Dep. Var. Mean 0.028 0.027 0.027
First-stage F -stat 7,698 7,754 6,034

Notes. This table presents alternative specifications of our main entrepreneurship findings. Column (1)

restricts the sample to innovators with complete demographic data to include a richer set of predetermined

controls. Column (2) restricts to large art units. Column (3) replaces the art unit × year fixed effects with

finer USPC subclass × year fixed effects. Controls for gender, ethnicity, education, prestige, and connections

are included in all specifications. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***,

respectively.
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Table D.4: Career Advancement: Additional Heterogeneity

Dep. Var. = Stayed with the same firm
By gender By ethnicity By rank

Female Male White + Asian URM High rank Low rank
Panel A: Heterogeneity (1) (2) (3) (4) (5) (6)
Patent Grant 0.038*** 0.038*** 0.038*** 0.029 0.037*** 0.027***

(0.010) (0.005) (0.005) (0.021) (0.008) (0.009)
Art-unit-by-time FE ✓ ✓ ✓ ✓✓ ✓
Controls ✓ ✓ ✓ ✓✓ ✓
Dep. Var. Mean 0.184 0.177 0.176 0.181 0.215 0.235
Observations 208,169 1,123,813 1,284,591 74,302 506,352 560,015

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. Low rank refers to

inventors in junior positions at the time of patent application, whereas high rank refers to senior positions.

All regressions include art-unit-by-year fixed effects and controls for gender, ethnicity, education, prestige,

and connections. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table D.5: Geographic Mobility: Additional Robustness

Dep. Var. = Changed location
By gender By ethnicity By rank

Female Male White + Asian URM High rank Low rank
Panel A: Heterogeneity (1) (2) (3) (4) (5) (6)
Patent Grant 0.047*** 0.042*** 0.043*** 0.070*** 0.042*** 0.027***

(0.011) (0.006) (0.005) (0.022) (0.005) (0.008)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.185 0.197 0.193 0.215 0.241 0.257
Observations 208,169 1,123,813 1,284,591 74,302 506,352 560,015

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. Low rank refers to

inventors in junior positions at the time of patent application, whereas high rank refers to senior positions.

All regressions include art-unit-by-year fixed effects and controls for gender, ethnicity, education, prestige,

and connections. Statistical significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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Table D.6: Patenting and Subsequent Specialization: Heterogeneity

Dep. Var. =
Has subsequent Total subsequent Patent number
patent app. patent app. approved

Female Male Female Male Female Male
Panel A: Subsequent patenting (1) (2) (3) (4) (5) (6)
Patent Grant 0.026* 0.013* 0.064 0.006 0.133*** 0.111***

(0.014) (0.008) (0.047) (0.027) (0.015) (0.007)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.458 0.476 1.209 1.347 0.639 0.682
Observations 253,931 1,349,387 253,931 1,349,387 115,439 643,879

Network growth Pct. new co-inventors USPC expansion
Female Male Female Male Female Male

Panel B: Inventor network growth (1) (2) (3) (4) (5) (6)
Patent Grant 0.011 -0.025*** -6.835*** -4.249*** -0.083*** -0.045***

(0.089) (0.046) (1.640) (0.894) (0.021) (0.010)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 0.408 0.403 64.427 72.559 0.536 0.606
Observations 253,931 1,349,387 253,931 1,349,387 115,439 643,879

Forward citations Patent value Breakthrough patent
Female Male Female Male Female Male

Panel C: Patent quality (1) (2) (3) (4) (5) (6)
Patent Grant 3.907*** 3.985*** 0.040*** 0.030*** 0.016*** 0.013***

(1.003) (0.738) (0.004) (0.003) (0.007) (0.004)
Art-unit-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓
Dep. Var. Mean 4.979 8.512 0.076 0.104 0.027 0.040
Observations 253,931 1,349,387 253,931 1,349,387 253,931 1,349,387

Notes. This table presents 2SLS estimates using examiner leniency as an instrument for the first patent

grant. Robust standard errors clustered at the art unit level are reported in parentheses. All specifications

include art unit × year fixed effects and control for demographics, education, and network size. Statistical

significance of 10%, 5%, and 1% is denoted by *, **, and ***, respectively.
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