Sequential Investment Under Uncertainty
Stein-Erik Fleten! and Carl J. Ullrich?f
December 26, 2025

Abstract

We investigate sequential investment in electric power generators in PJM. We
classify proposed generators into four stages, Planning, Construction, Indefi-
nitely Postponed, and Canceled. We find that duration in Planning, project
size, and capacity (RPM) prices have stable and meaningful effects on tran-
sitions: longer time in Planning reduces the probability of Construction and
increases the probability of Cancellation; larger projects move slowly; and
higher capacity prices shift probability mass from Planning to Construction
without increasing Cancellation. We contribute a novel method to quantify
resistance (Headwinds) and uncertainty ( Turbulence) in the planning pro-
cess. We show that an increase in uncertainty (Turbulence) is associated
with a lower probability that a proposed fossil fuel generator remains in Plan-
ning and a higher probability of entering Construction.
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1 Introduction

We study sequential investment in electric power generators in the PJM Interconnection
L.L.C. (PJM). Our primary data source is Energy Information Administration (EIA) form
860 which includes data for all electric power generators—existing, planned, and canceled—
in the U.S. Importantly for our study, generators that are planned then canceled remain
in the database.

Planning and constructing new electric power generators is a multistage, capital-intensive,
mostly irreversible process. Real options theory suggests that uncertainty can affect
investment timing at any stage of the process (Roberts and Weitzman, 1981). Decision
makers may wait for better information (for uncertainty resolution) before exercising the
option to proceed to the next stage of the process. Walls et al. (2007) point out that
generators are abandoned sequentially until only projects that will be completed remain.

The theory of irreversible investment (McDonald and Siegel, 1986; Dixit and Pindyck,
1994) predicts that uncertainty and discretion over investment timing lead to deferral
of investment compared to now-or-never alternatives. Empirical work tends to support
this theory (Quigg, 1993; Paddock et al., 1988; Bulan, 2005; Bulan et al., 2009; Moel
and Tufano, 2002; Fleten et al., 2016, 2017), although there is also evidence that when
government licenses to invest have been granted, the projects tend to go on to completion
(Somerville, 2001; Linnerud et al., 2014).

Also in theoretical work where investments occur in stages, increased uncertainty tends
to delay investment (Majd and Pindyck, 1987; Gollier et al., 2005; Siddiqui and Fleten,
2010; Chronopoulos et al., 2016), as more information can be gained by waiting. How-
ever, uncertainty can also accelerate staged or exploratory investment, as firms value
the information gained or the flexibility retained (Bar-Ilan and Strange, 1998; Huchzer-
meier and Loch, 2001; Chronopoulos et al., 2017). Empirical work finds both hastening
(Favero et al., 1994; Marmer and Slade, 2018) and delay (Moel and Tufano, 2002; Bulan
et al., 2009; Kellogg, 2014; Fleten et al., 2017). Our empirical setting, with multi-staged
electricity generation investment, allows us to test these predictions.

The electricity industry is characterized by long lead times, capital intensity and long
lifetimes of the assets, making the theory of irreversible investment especially relevant
(Fleten et al., 2007; Ishii and Yan, 2011; Walls et al., 2007; Fabrizio, 2013; Fleten et al.,
2024). In this industry, some assets (combustion turbines) have operational flexibility,
while others (solar and wind) are running more or less when possible. Nasiakkald and
Fleten (2005) show theoretically that increased volatility affects these two groups differ-
ently.

A related issue is how firms form expectations regarding future profitability and prof-
itability uncertainty (Fleten et al., 2017). Structural approaches seem useful for eliciting
such deep aspects of decision making (Cook and Lin Lawell, 2020; Elliott, 2022; Fleten
et al., 2020; Cam et al., 2022). The empirical fit of these models supports the idea that
electricity investors behave as if they anticipate future states rather than reacting only
to current profitability.

We use the EIA 860 variable STATUS to classify each proposed generator into a STAGE
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as in Table 1 below. We have 411 proposed generator groups! and 870 total generator
group-year observations in our 2008-2023 sample.

Because the EIA860 STATUS code definitions change in 2016 (see Table 1), we also
consider a subsample from 2016-2023. in the subsample we have 293 generator groups
and 562 generator group-year observations.

We introduce novel measures of resistance, Headwinds, and uncertainty, Turbulence,
in the planning environment. Headwinds is the technology-year average time delay which
projects experience in planned operational dates, while Turbulence is the standard devi-
ation of delays. We categorize generators into one of two technology types, either fossil
fuel or renewable. Fossil fuel includes generators which use coal, natural gas, and/or oil.
Renewable generators use sun, wind, and/or water. Intuitively, stronger Headwinds
indicate more impediments in the planning environment and can reflect factors such
as regulatory delays, changes in profitability reassessments, environmental compliance is-
sues, and technological risks. Unlike traditional uncertainty measures such as Baker et al.
(2016) and its variants, Turbulence captures uncertainty comprehensively, is specific to
the investments at hand, and is based upon revealed preferences.?

We recognize that endogeneity is a potential issue as the factors which cause a revision
in in-service dates might also affect the transition decision. We take steps to mitigate
these concerns and discuss the issue in detail below. Specifically, we calculate our new
indices using nationwide data, then recalculate the indices using only data not in our
study sample.? Still, we are careful to interpret our results as associational, not strictly
causal.

We employ a multinomial logit model for sequential investment decisions.* Our empirical
results reveal several robust patterns.

Duration, i.e., the length of time a generator has been in the PLG stage, is a strong
predictor of transitions. Projects that have been in the Planning (PLG) stage for only
a short period are likely to remain in PLG. After roughly three to four years, additional
time in PLG increases the probability of exiting planning. In the full sample this exit
occurs through the combined IDP/CNL category, while in the 2016-2023 subsample it
occurs primarily through cancellation (CNL).

Project scale matters. Larger projects (higher Nameplate capacity) and larger multi-unit
project groups (larger GroupSize) are consistently less likely to advance into construction,
reflecting greater irreversibility or complexity. Multi-unit groups are also substantially
less likely to be canceled in the subsample.

'We refer to sets of identical proposed generators as generator groups. Identical generators are located
at the same plant, have the same prime mover, the same capacity, the same primary and secondary fuels,
and the same sequence of progression through the STAGEs defined in Table 1. In the following we use the
term generator to refer to the entire group, unless otherwise stated. We create a new variable GroupSize
which is equal to the number of generators in a group. Singleton generators have GroupSize = 1.

2Both Headwinds and Turbulence carry unique information, but due to the sparseness of our data,
they have significant overlap. In the regression analysis we use a residualized version of Turbulence that
is orthogonal to Headwinds; see Section 2.3.5 for details.

3The sample used to create the indices and the sample used in the regressions are completely separate.

4The source code used in the analysis is written in STATA and Python, and is available from the
corresponding author.



Capacity prices (CapPmt) are important. Higher capacity prices robustly increase the
probability of moving out of Planning (PLG) and into Construction, while leaving Can-
cellation (CNL) probabilities unchanged—consistent with RPM providing an investment
incentive.

Uncertainty has asymmetric effects across technologies. In the full sample (2008-2023),
the effects of Headwinds and Turbulence are economically small. In the 2016-2023 sub-
sample sparse IDP/CNL transitions make them difficult to estimate precisely. Higher
Turbulence accelerates fossil transitions into Construction, whereas renewable responses
are weaker and often statistically insignificant. We hypothesize that this behavior reflects
the fact combustion turbines (the majority of our fossil fuel sample) are call options. Un-
certainty can therefore increase the generator’s value and can accelerate the sequential
investment process. Renewable projects, lacking similar operational flexibility, do not
exhibit such behavior.

The remainder of this paper is structured as follows. In Section 2 we detail the data.
Section 3 contains the regression results and a discussion thereof. Section 4 examines
marginal effects. Section 5 concludes.

2 Data

Primary data sources are EIA 860 for data on proposed generators and PJM for capacity
prices.

2.1 Generators and Status Changes

Each year firms in the United States must report on EIA 860 the status of proposed (and
existing) electric power generators. EIA 860 is the source of the data which makes the
analysis possible. Table 4 (in Appendix A) lists the variables of interest we take from
EIA 860. We undertook extensive data cleaning (see Appendix A) to ensure that we
could track generators consistently through time, consolidate generators appropriately,
and, correct mistakes in the recorded data. This reduces measurement error in our key
variables and assures that our results are not artifacts of data inconsistencies.

The EIA 860 variable STATUS is key, as it reveals investment decisions made each year.
We obtain from EIA 860 the yearly STATUS codes of proposed generators in the PJM
footprint. We use the STATUS code to define the STAGE as in Table 1.7

Prior to 2016, STATUS code CN (canceled, previously planned) did not exist. The 2015
EIA 860 documentation describes STATUS code IP as (Planned new generator canceled,
Indefinitely Postponed, or no longer in resource plan).

The 2016 EIA 860 documentation describes both STATUS code IP (Planned new In-
definitely Postponed, or no longer in resource plan) and STATUS code CN (canceled
previously reported as “planned”).

5We drop all regulated generators. Regulated generators almost never are canceled. We have a total
of 65 proposed generator group-year observations for regulated generators. (All of which are omitted
from the full and subsamples in the analysis below.) Of those, only one transitions to either IDP or
CNL.



We consider two sample periods. For the full sample analysis we recode STAGE CNL
(from the 2016-2023 data) to be STAGE IDP, thereby ensuring a consistency throughout
the sample.

In the 2016-2023 subsample (293 generator groups and 562 generator group-year obser-
vations) we consider STAGEs IDP and CNL separately.

Table 1: EIA 860 STATUS codes for proposed generators and the corresponding STAGEs.

STAGE EIA 860 STATUS | Description
PLG (Planning) P Planned, no regulatory approval
L Planned, regulatory approvals pending
T Planned, regulatory approvals received
CON (Construction) U Planned, under Construction, less than
50%
A% Planned, under Construction, more
than 50%
TS Planned, Construction complete but
not in operation
OPR (Operational) oP Existing, operating
IDP (Indefinitely Postponed) 1P Indefinitely postponed/canceled (2008-
2015)
IP Indefinitely postponed (2016-2023)
CNL (Canceled) CN Canceled (2016-2023)

Consider a generator in the Planning STAGE (PLG) in the current period ¢. In the next
period ¢ + 1, that generator can be in any of the STAGEs PLG, CON (Under Construc-
tion), IDP (Indefinitely Postponed), or CNL (Canceled, in the 2016-2023 subsample).®

Figure 1 presents the observations of transitions for the full sample (2008-2023). Figure
2 includes only the subsample (2016-2023).

PLG (523, 60.1%)

—

CON (238, 27.4%)

e

IDP/CNL (109, 12.5%)

PLG

Figure 1: Transitions from Stage PLG in period t to Stages PLG, CON, and IDP/CNL in
period t + 1. Numbers in parentheses show counts and percentages of total transitions over the
full sample period (2008-2023).

6Because the data are reported at the annual frequency, it can happen that a generator which is in
PLG in year ¢t moves all the way through CON within year ¢ and shows up in OPR in year t + 1. We
recode these observations to be in CON in year ¢ + 1.
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Figure 2: Transitions from Stage PLG in period t to Stages PLG, CON, IDP, and CNL in
period t + 1. Numbers in parentheses show counts and percentages of total transitions over the
subsample (2016-2023).

2.2 Capacity Prices

We take zonal capacity prices from the PJM RPM three-year ahead base-residual auction.

2.3 Headwinds and Turbulence

Beginning with raw data from EIA 860, we construct measures of resistance, which we
label Headwinds, and uncertainty, which we label Turbulence, in the planning process.
Headwinds quantifies how strongly the planning environment pushes projects backward
(delays) and Turbulence quantifies variability in those delays.

Specifically we calculate for each generator i in year ¢ the revision (DiffYear) in its
expected operational date.

i — 1 efmn, , — 1

where
o ¢fmn,;: Effective Month - original in-service month.
o cfyr;,: Effective Year - original in-service year.
e cumn,,: Current Month - most recently updated in-service month.
e cuyr;,: Current Year - most recently updated in-service year.

DiffYear equals the change in the expected in-service date, measured in decimal years.
A positive value indicates delay relative to the original plan, while a negative value
represents an acceleration.



2.3.1 Technology Groups

We classify each generator into one of two technology groups:

ke {1,2} (fossil fuel, renewable).

We define fossil fuel generators to be those generators which use coal, natural gas, or oil.
We define renewable generators to be those generators which use sun, wind, or water.
We calculate indices separately for each fossil fuel and renewable generators in each year
t.

2.3.2 Weighting at the Project Level

Each observation corresponds to a group of identical generators” and each group is
weighted by its aggregate nameplate capacity. We normalize Weights such that their
mean equals 1 within each technology—year cell.

Let w; denote the normalized weight for observation 1.

2.3.3 Headwinds: Mean Delay within a Technology Group

For each technology k and year t, we compute the weighted mean delay:

Zielk,t w; DiffYear, ,
?
Zielk,t Wy

where I}, is the set of all generator groups of technology k observed in year ¢.

Headwindsy, s =

(2)

Headwinds summarizes the average delay faced by generators of technology k in year t.
Each block inherits its technology’s Headwinds value for its year. Headwinds captures the
net effect of the planning environment on a specific technology—including for example
regulatory delays, interconnection queues, changes in expected profitability, and any other
shock which affects the planning process.

2.3.4 Turbulence: Within-Group Dispersion of Delays

While Headwinds measures the length of delays, Turbulence measures the cross-sectional
variation in delays. For each technology k and year ¢, we compute the weighted standard
deviation of delay:

> ier,, Wi (DiffYear;, — Headwz'ndsk,t)Q
Zielk,t Wi .

Turbulencey s =

(3)

Turbulence captures the degree of heterogeneity in project-level revisions for that technology—
year. High values of Turbulence indicates variability across projects—some are moving
quickly® while others are significantly delayed, consistent with a more uncertain or un-
stable planning environment.

"The unit of economic decision making, as described above in FN 1.
8Tt can happen that the projected in-service date decreases, i.e., hastening commencement. In this
case Headwinds become Tailwinds.



Turbulence measures uncertainty directly from revealed project timelines. Unlike binary
policy dummies or qualitative narratives, Turbulence reflects firms’ actual revisions of
their own expectations.

2.3.5 Summary

In the two-technology framework, we compute both Headwinds and Turbulence separately
for each technology and each year, using weighted project-level data. This approach
preserves the full technological heterogeneity of the development process and provides
inputs that are directly aligned with the structure of the sequential investment regressions
that follow.

Residualization of Turbulence for Regression Analysis. Headwinds and Turbu-
lence are mechanically correlated: years with large average delays tend also to have large
cross-sectional dispersion of delays. To reduce this mechanical correlation and avoid
collinearity in the regressions, we orthogonalize Turbulence with respect to Headwinds
before constructing the regressors in Section 3. Specifically, at the technology—year level
we run a simple pooled regression of the form

Turbulencer; = o + 8 Headwindsy ¢ + €, (4)
and define
Turbulence ;" = ey (5)

The Turbulence regressors that enter Specification (4) (equation 10) are built from Turbulencef:i‘id

rather than the raw Turbulencey,. This ensures that, within each technology group, the
Turbulence terms capture variation in cross-sectional dispersion that is not already ex-
plained by the average delay level (Headwinds).

2.3.6 Endogeneity

Endogeneity is a potential concern for the generator-specific variable DiffYear and by
extension for Headwinds and Turbulence.

Endogeneity in this context could arise through three main channels: (i) measurement
endogeneity, if the in-service date is revised as a direct result of the transition decision;
(ii) simultaneity, if both the transition decision and the in-service date revision are
influenced by the same contemporaneous factors; and (iii) omitted variable bias, if
unobserved characteristics jointly affect both variables. We control for (i) and (ii).?

Measurement endogeneity can arise if the transition decision directly influences the up-
dated in-service date. We explicitly control for this direct mechanical connection by
calculating the Headwinds and Turbulence from those states which are not in our re-
gression sample.!’ That is, the sample used to calculate Headwinds and Turbulence is

9As of the time of this draft, we are working on efforts to mitigate (iii).
10The 14 states omitted from the calculations of Headwinds and Turbulence are DC, DE, IL, IN, KY,
MD, MI, NC, NJ, OH, PA, TN, VA, WV.



completely separate from the sample we use in the regressions below, in which Headwinds
and Turbulence are explanatory variables.

We mitigate the simultaneity issue by using lagged uncertainty measures. We use year t
values of Headwinds and Turbulence to explain transition decision made in year t + 1.

2.4 Bayesian Partial Pooling of Headwinds and Turbulence

The raw technology-level indices described above ( Headwinds and Turbulence) are weighted
means and weighted standard deviations of in-service date revisions ( Diff Year), computed
separately for each technology k and year t. Many technology—year cells contain rela-
tively few proposed projects, making the sample means and sample variances noisy. This
produces two empirical problems:

1. Instability: raw indices fluctuate sharply in years with few observations.!!

2. Mechanical correlation: years with large positive delay levels also tend to display
large cross-sectional dispersion, even when the true volatility is modest.

To address these issues, we replace raw sample statistics with estimates obtained from a
Bayesian hierarchical model fitted to standardized group-level data. We implement the
model in Stan and perform partial pooling across years within each technology, producing
stabilized estimates of both delay levels and delay dispersion while preserving genuine
time variation and technology heterogeneity. A description of the pooling process and a
visual comparison of raw versus pooled indices for each technology appears in Appendix B
(Figures 9 through 12).

Finally, we use the Pooled—PJM states omitted directly in the regressions below. All
PJM generators enter the regression but never enter the index construction; the indices
use only non-PJM data. Their smoothed structure produces economically interpretable
patterns that track well-documented events in electricity markets (e.g. the 2005-2009
coal cancellations, the wind and solar PTC cycles, the 2018 solar tariff, the 2020 COVID
disruptions, and the 2022 fuel-price shock). See Table 5. This link between block-level
revisions and macro-level policy and market events is precisely what motivates the index
construction and why these indices constitute a contribution of the paper.

3 Regression Results: Coefficient Estimates

In this section we employ multinomial logistic regressions to examine the drivers of se-
quential investment.

3.1 Model Specifications

The regression specification for the full sample follows.!2

HThis effect shows up clearly in the early years (2001-2005) for renewables, in Figures 11 and 12.
12The outcome variable STAGE; ;11 denotes the stage of generator i in year ¢+ 1. In the full sample
analysis, m € {PLG, CON, IDP/CNL}. In the 20162023 subsample, m € {PLG, CON, IDP, CNL}.



exp (’I‘I‘ansition2-7tﬂm>
Pr <STAGEM+1 = m| Transition,,t) - — (6)

Z exp (Transitioni,tﬁj)
=1

Specification 1:
Transition,; = §y + 1 Nameplate; + By Duration; ; + 33 CapPmt,,, , + B4 GroupSize,,

+ Bs Renewable; + [ ZonePlannedCapt’z (7)

Specification 2:
Transition;; = 8y + 1 Nameplate; + 32 Duration; s + B3 CapPmt, ., , + B4 GroupSize,
+ B5 Renewable; + Bs ZonePlannedCap, ,

+ B7 Headwindsy sy + Bs Headwinds, e, 1 (8)

Specification 3
Transition;; = 5y + 1 Nameplate, + B2 Duration;; + B3 CapPmt,, , . + B4 GroupSize, ,
+ B5 Renewable; + Bs ZonePlannedCap, ,

+ B7 Turbulencey sy + s Turbulenceren 9)

Specification 4
Transition;; = (3 + (1 Nameplate; + 3> Duration;; + B3 CapPmt,, , + B4 GroupSize;
+ Bs Renewable; + B ZonePlannedCap, ,

+ B7r Headwindsy s, + Bs Headwinds,ep 4

+ By Turbulence[;s + Bio Turbulence! ;" (10)

e Nameplate;: Nameplate capacity of generator i. (MW)

e Duration;: Duration generator i has been in the Planning stage by year ¢. (years)
e CapPmt,, .: Capacity (RPM) price in year ¢ + 1 and zone 2. (§/kW-yr)

o GroupSize;,: Year t total number of generators in group i.

e Renewable;: Indicator variable, equals 1 if generator 7 is a renewable resource.

e ZonePlannedCap,,, ,: Planned year t capacity in zone 2.

o Headwindsss,: Year t value of Headwinds for fossil fuel generators, set to zero
otherwise.

o Headwinds,e,: Year t value of Headwinds for renewable generators, set to zero
otherwise.
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o Turbulencessy: Year t value of Turbulence for fossil fuel generators, set to zero
otherwise.

o Turbulenceye,,: Year t value of Turbulence for renewable generators, set to zero
otherwise.

° Turbulence;?iid): Residualized year t value of Turbulence for fossil fuel generators,

set to zero otherwise.

. Turbulence,(;ﬁd): Residualized year t value of Turbulence for renewable generators,

set to zero otherwise.

The model clusters standard errors at the state level and sets the base outcome for the
multinomial logistic regression as remaining in PLG.

3.2 Full Sample 2008-2023

In the full sample, the variable Transition,;;;; can take only three values.

e Transition,,: Categorical variable indicating the transition of generator ¢ from
the Planning (PLG) stage in year ¢ to year t + 1. It takes the value of {1, 2,
3} if generator ¢ is in the Planning (PLG), Construction (CON), or Indefinitely
Postponed/Canceled (IDP) stage in year ¢ + 1, respectively.

Table 2 presents the full sample coefficients as odds ratios.

3.2.1 Interpretation of Full Sample Results: Table 2

The full-sample odds ratios in Table 2 indicate several consistent patterns across Spec-
ifications (1)—(4). Nameplate capacity has a statistically significant but economically
modest effect. Larger generators are less likely to transition from PLG to either CON or
IDP/CNL, with odds ratios between 0.985-0.989 for CON (all but one p < 0.05), and
0.978—0.982 for IDP/CNL (all p < 0.05). This suggests that larger units face greater
downside risk or higher irreversibility costs, and therefore proceed more cautiously.

Duration is strongly significant in all specifications. A longer time spent in PLG sharply
reduces the probability of entering CON (odds 0.62, p < 0.001) and raises the probability
of IDP/CNL (odds 1.31, p < 0.01) . Duration therefore acts as a potent negative signal
in the development pipeline.

Capacity payments (CapPmt) increase the likelihood of moving from PLG to CON (odds
1.017, p = 0.002) but have no meaningful effect on IDP/CNL transitions (odds 1.006, p
> 0.2).

Similar to Nameplate, GroupSize reduces the probability of transitioning into CON (odds
0.66-0.69, p < 0.01) but has no statistically significant effect on IDP/CNL transitions
(odds 0.90-0.94, p > 0.30). This indicates that multi-unit proposals tend to move forward
more slowly, but once in planning, they are not disproportionately likely to be abandoned.

Renewable projects are significantly less likely than fossil projects to proceed to CON
(odds 0.34-0.59, p < 0.05).

Table 2 shows that Headwinds and Turbulence have limited statistical power in the full
sample. Headwinds for fossil generators have imprecise coefficients (odds 0.69-0.74, p

11



Table 2: Multinomial Logit Regression (2008-2023 Full Sample, Unregulated Only). Odds ratios
with p-values in parentheses. Base outcome = PLG.

CON IDP/CNL
Variable (1) (2) 3) (4) (1) 2) (3) (4)
Nameplate 0.985 0.988 0.989 0.988 0.982 0.978 0.978 0.978
(0.003)  (0.023)  (0.056)  (0.024)  (0.001)  (0.000)  (0.000)  (0.000)
Duration 0.618 0.621 0.622 0.616 1.304 1.309 1.309 1.308
(0.000)  (0.000)  (0.000)  (0.000)  (0.001)  (0.001)  (0.001)  (0.001)
CapPmt 1.017 1.017 1.017 1.018 1.007 1.006 1.007 1.006
(0.003)  (0.002)  (0.002)  (0.002) (0.228)  (0.384)  (0.253)  (0.368)
GroupSize 0.664 0.683 0.689 0.680 0.937 0.898 0.913 0.899
(0.000)  (0.002)  (0.002)  (0.002) (0.542)  (0.326)  (0.404)  (0.329)
Renewable 0.586 0.365 0.360 0.341 0.222 0.913 0.919 0.907

(0.037)  (0.027)  (0.042)  (0.022)  (0.000)  (0.884)  (0.902)  (0.880)
ZonePlannedCap  0.988 0.987 0.987 0.987 1.001 1.003 1.003 1.003
(0.030)  (0.024)  (0.023)  (0.027) (0.822)  (0.687)  (0.648)  (0.679)

Headwinds (FF) — 0.737 — 0.694 — 2.023 — 1.995
(0.404) (0.339) (0.056) (0.078)

Headwinds (Ren) — 1.438 — 1.339 — 0.380 — 0.349
(0.383) (0.503) (0.057) (0.036)

Turbulence (FF) — — 0.693 0.471 — — 1.511 0.897
(0.155)  (0.437) (0.160)  (0.864)

Turbulence (Ren) — — 1.067 0.577 — — 0.534 0.574
(0.816)  (0.567) (0.036)  (0.726)

Constant 2.137 2.397 2.969 2.553 0.271 0.163 0.154 0.164
(0.120)  (0.072)  (0.032)  (0.057)  (0.035)  (0.008)  (0.012)  (0.009)

Observations 870 870

Pseudo R? 0.1034 0.1104 0.1095 0.1113 0.1034 0.1104 0.1095 0.1113
Log Likelihood -718.24  -712.60 -713.34 -711.94 -718.24 -712.60 -713.34 -711.94
AIC 1464.47 1461.19 1462.68 1467.89  1464.47 1461.19 1462.68 1467.89

Notes: Models (1)—(4) add Headwinds and Turbulence terms in stages, with (4) including
both. RRR = exp(

beta); p-values in parentheses. FF = Fossil Fuel, Ren = Renewable. Sample includes unregu-
lated generators only.
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= 0.34-0.40 for CON; odds 2.02, p = 0.056 for IDP/CNL) while renewable Headwinds
exhibit moderate effects (for IDP/CNL, odds 0.35, p < 0.04). Turbulence coefficients are
similarly small and uncertain. The full-sample results therefore suggest that the base-
line drivers of transitions are project characteristics (Duration, Nameplate, GroupSize,
Renewable) and RPM incentives.

3.3 Subsample 2016-2023
In the subsample, the variable Transition;, ; can take four values.

e Transition;,,: Categorical variable indicating the transition of generator ¢ from
the Planning (PLG) stage in year t to year ¢t + 1. It takes the value of {1, 2, 3,
4} if generator i is in the Planning (PLG), Construction (CON), or Indefinitely
Postponed (IDP), or Canceled (CNL) stage in year ¢ + 1, respectively.

Table 3 presents the subsample coefficients as odds ratios.

3.3.1 Interpretation of subsample Results: Table 3

With IDP and CNL separated, several effects become sharper. Nameplate remains nega-
tively associated with transitions into any non-PLG stage, especially cancellations (CNL
odds 0.95, p < 0.001) . Larger units are thus more likely to linger in PLG.

Duration continues to reduce movement into CON (odds = 0.51, p < 0.001) and sub-
stantially increases the likelihood of cancellation (CNL odds 1.56-1.65, p = 0.001) but
remains insignificant for IDP (odds 1.07, p > 0.45) . This confirms that prolonged plan-
ning converts primarily into cancellations rather than indefinite postponements once CNL
exists as a separate status.

CapPmt again raises the probability of entering CON (odds 1.031, p < 0.001) and also
slightly raises the probability of IDP (odds 1.035, p = 0.02-0.03) while not affecting
cancellations (p > 0.7).

GroupSize strongly suppresses transitions into CON (odds 0.38-0.42, p < 0.005) and
strongly suppresses cancellations (odds 0.40-0.50, p < 0.001), but has no effect on IDP
(p > 0.5).

Across Specifications (1)—(4) in Table 3, the coefficients on Duration, CapPmt, Name-
plate, and GroupSize are remarkably stable. Adding Headwinds, Turbulence, or both
barely changes either the magnitudes or the signs of these estimates. This robustness
strengthens the interpretation that these variables capture fundamental features of the
sequential investment process—time in queue, project scale, and capacity-market incen-
tives—rather than artifacts of any particular uncertainty specification.

In specification 4 the coefficients Renewables—for CON, IDP, and CNL-are statistically
insignificant.

In contrast with the full sample, Headwinds and Turbulence have stronger effects in the
subsample. They are also very hard to estimate. Because the indices are aggregated
across fuels and there are only 23 IDP and 39 CNL transitions, the raw odds ratios in
Table 3 (often in the tens or hundreds) should not be taken literally. We therefore focus
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Table 3: Multinomial Logit Regression (2016-2023 Subsample, Unregulated Only). Odds ratios with p-values in parentheses. Base outcome =
PLG.

CON IDP CNL
Variable (1) 2) (3) (4) (1) (2) 3) (4) (1) (2) 3) (4)
Nameplate 0.986 0985 0982 0985  0.991 0.984 0987 098 0961  0.953  0.947  0.947
(0.050)  (0.059) (0.027) (0.087) (0.352)  (0.128)  (0.202)  (0.144)  (0.000)  (0.000)  (0.000)  (0.000)
Duration 0.505 0510 0502 0511  1.103 1.087 1.096  1.068  1.565 1646  1.617  1.612
(0.000)  (0.000)  (0.000)  (0.000) (0.460)  (0.596)  (0.499)  (0.680)  (0.001)  (0.001)  (0.001)  (0.002)
CapPmt 1.025  1.025  1.024  1.031 1.030 1.018 1.028  1.035  1.004 0998  1.006  1.003
(0.000)  (0.000)  (0.000)  (0.000) (0.016)  (0.218)  (0.030) (0.006)  (0.725) (0.877) (0.671)  (0.826)
GroupSize 0.405  0.397 0375 0418  1.114  0.976 1.047 1036 0492 0414 0415  0.399
(0.002)  (0.002) (0.002) (0.004) (0.563)  (0.910)  (0.820) (0.863)  (0.000)  (0.000)  (0.000)  (0.000)
Renewable 0.275 0299  0.881 0482 0225 5478  1.509  14.637  0.065  9.121  30.286  27.335

(0.026)  (0.178)  (0.878)  (0.402) (0.013)  (0.346)  (0.792)  (0.425)  (0.000) (0.236)  (0.144)  (0.257)
ZonePlannedCap ~ 0.989  0.989 0989  0.988  1.005 1.004 1.005  1.006  0.998  0.998  0.999  0.999
(0.099)  (0.089) (0.095) (0.074) (0.713)  (0.767)  (0.742)  (0.652) (0.877) (0.885)  (0.935)  (0.940)

Headwinds (FF) 1.672 2.713 532.354 98.607 17.127 49.523
(0.444) (0.167) (0.006) (0.007) (0.046) (0.095)
Headwinds (Ren) — 1.906 — 1.295 — 66.973 — 10.241 — 0.226 — 0.202
(0.245) (0.662) (0.092) (0.375) (0.034) (0.033)
Turbulence (FF) — — 2.414 18.151 — — 4.298 0.647 — — 13.893 12.667
(0.066)  (0.037) (0.020)  (0.892) (0.043)  (0.187)
Turbulence (Ren) — — 1.205 0.109 — — 1.663 0.002 — — 0.352 0.333
(0.597)  (0.119) (0.471)  (0.056) (0.012)  (0.715)
Constant 7.715 4.189 2.159 2.109 0.033 0.000 0.003 0.000 0.896 0.032 0.009 0.010
(0.033)  (0.143) (0.383)  (0.453)  (0.003) (0.001)  (0.000)  (0.000) (0.929) (0.072) (0.025) (0.082)

Observations 562 562 562
Pseudo R? 0.1767 0.1998 0.1918 0.2109 0.1767 0.1998 0.1918 0.2109 0.1767 0.1998 0.1918 0.2109
Log Likelihood -452.98  -440.25 -444.66 -434.15 -452.98 -440.25 -444.66  -434.15 -452.98  -440.25 -444.66 -434.15
AIC 947.96 934.51 943.33 934.29 947.96 934.51 943.33 934.29 947.96 934.51 943.33 934.29

Notes: Headwinds and Turbulence split by FF = Fossil Fuel and Ren = Renewable. Sample includes only unregulated generators in the 2016-2023
subsample.
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on the signs and on the marginal effects in Section 4 rather than on the magnitudes of
the coefficients.

We next turn to the marginal effects, which visualize these relationships and reveal non-
linearities that the odds ratios alone cannot show.

4 Marginal Effects of Duration, Capacity Prices, Group
Size, and Uncertainty

All marginal effects are based upon Specification 4 in equation (10). We focus on the
subsample (2016-2023) for clarity.

4.1 Marginal Effects of Duration

Figure 3 show that the marginal effects of Duration change sign depending on how long
the generator has been in the Planning (PLG) stage. For generators that have recently
entered PLG, a small increase in Duration increases the probability of remaining in PLG
and decreases the probability of moving to Construction (CON).

After roughly 3-4 years in PLG, an additional year of Duration makes it less likely for
the generator to remain in PLG and more likely to exit planning (PLG) via cancellation
(CNL).

4.2 Marginal Effects of Capacity (RPM) Prices

Figure 4 shows the marginal effects of capacity prices on transitions in the 2016-2023 sub-
sample. Higher capacity prices reduce the probability of remaining in PLG and increase
the probability of entering CON across the full range of observed prices, with essentially
no effect on cancellations (CNL). This result supports the interpretation that RPM capac-
ity payments provide a forward-looking investment incentive rather than simply flushing
projects out of the queue.

4.3 Marginal Effects of Group Size

Figure 5 displays the marginal effects of GroupSize. Larger groups are less likely to
transition to CON and less likely to be canceled, with little change in IDP.

Figure 6 displays the marginal effects of Nameplate capacity.

4.4 Marginal Effects of Uncertainty

Figures 7 and 8 display the marginal effects of Turbulence. For fossil generators, higher
Turbulence reduces the probability of remaining in PLG and raises the probability of
moving to CON. Renewable generators’ response to higher Turbulence show the opposite—
increased values of Turbulence are associated with remaining higher probabilities of re-
maining in PLG and lower probabilities moving to CON. However, the renewable marginal
effects are small in magnitude and the confidence bands are wide, so we interpret these
patterns as suggestive rather than definitive.
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Marginal Effect of Duration (2016-2023)

0.2

Marginal effect (dy/dx)

Duration (years in stage)

Figure 3: The plot shows the marginal effect of an increase in Duration. Subsample (2016-2023). PLG = Planning; CON = Construction; IDP
= Indefinitely Postponed; CNL = Canceled.
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Marginal Effect of Group Size (2016-2023)
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Figure 5: The plot shows the marginal effect of an increase in GroupSize. Subsample (2016-2023). PLG = Planning; CON = Construction; IDP

= Indefinitely Postponed; CNL = Canceled.

18



"PajPIUD) = TN, ‘pauodisoq fipppurfopur = J(J 1oy
-OnAsuU0) = N ‘buwunig = D74 (§60¢-9103) 2]dwnsqng “figrondvo agpjdawnp ur 9sva4our up fo 109ffa purbipwi 2y) smoys 10]d 2y, 19 24nb1.]

(MIW) A31oeded ajejdswep

009 00§ 0]0) 7 00€ 00¢ 00T 0
- G/L00°0—
- 0500°0—
---‘ Dw..
¥ L gz0070- €
& @ >
B oty A 2
promsemfoc e @i e e e e e e e e e = e =2 =) 900070 Wc::
® a
= ' —0— o
i :
—0— G200°0 Mf.
x
- m .
IND @ 0S00°0
ddl =%
NOJ - G200°0
91d —@—

(€202-910¢) Aydede) ajejdaweN j0 339447 |eulbiey

19



Marginal Effects of Turbulence — Fossil Fuel (2016-2023)

1.0 - —e— PLG
CON
—- IDP
-4 CNL
0.5 A

Marginal effect (dy/dx)

|HO .

0 1 2 3 4
Turbulence (years)

Figure 7: The plot shows the marginal effect of an increase in Turbulence for fossil fuel generators. The sample period is 2016-2023. PLG =
Planning; CON = Construction; IDP = Indefinitely Postponed; CNL = Canceled.
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5 Conclusion

We study sequential investment in proposed electric power generators in PJM and docu-
ment how projects move from Planning into Construction, indefinite postponement, and
cancellation. Duration in the Planning stage, project scale, and capacity prices emerge
as stable, economically meaningful drivers of these transitions. Projects that linger in
Planning become increasingly likely to cancel; larger and multi-unit projects move more
slowly and are harder to abandon; and higher RPM capacity prices consistently shift
generators from Planning into Construction, without increasing Cancellations.

Our Headwinds and Turbulence indices, derived from project-level revisions in expected
in-service dates and constructed from non-PJM data via Bayesian partial pooling, provide
technology-specific measures of drag and uncertainty in the planning environment. Al-
though their coefficients are large and imprecise in the 2016-2023 subsample, the marginal
effects suggest that higher Turbulence pushes fossil-fuel projects out of Planning and into
Construction, while renewable responses are muted and tilt toward remaining in Plan-
ning. Taken together, these patterns show that simple statements such as “uncertainty
delays investment” are incomplete for modern electricity markets.

An avenue for further research would be to extend the study by expanding the sample to
be nationwide. We are actively working on this extension. For now, we caution that our
results are specific to PJM and may not generalize to other regions.
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A Data Cleaning Process

In this appendix, we describe the key steps undertaken to clean the dataset used in our
analysis of sequential investment in electric power generators. These steps were necessary
to address inconsistencies and ensure the quality of the data for regression analysis.

The raw data come directly from EIA form 860. We retain the variables in Table 4 from

EIA 860. The variables in bold are relevant for the cleaning process.

Table 4: EIA Form 860 Variables and Their Definitions

Variable Definition

year EIA 860 reporting year

pcode Plant Code (unique identifier for the plant)

gcode Generator Code (unique, within each pcode, identifier for the
generator)

iso Independent System Operator region

regst Regulatory Status (regulated /unregulated)

state State abbreviation where the plant is located

Zip Five digit ZIP code of the plant

pm Prime Mover code (see Table ?7?)

STATUS Status of the generator

nplate Nameplate capacity of the generator (MW)

efmn Effective Month: Original projected in-service month

efyr Effective Year: Original projected in-service year

cumn Current Month: Most recent projected in-service month

cuyr Current Year: Most recent projected in-service year

nrgl Primary energy source (fuel) code

nrg2 Secondary energy source (fuel) code

We address several data issues, detailed below, before conducting the analysis.

A.1 Status Code List
Below is a complete list of STATUS codes in ETA860.
e P (Proposed)
e L (Permitted)
e T (Construction)
o U (

Under Construction)
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V (Verification)
TS (Testing)
IP (In Progress)
0T (Other)
OP (Operational)
BU (Backup)

e SB (Standby)
0A (Out of Action)
0S (Out of Service)
RE (Retired)
ZZ (Scrapped)
CN (Canceled)

A.2 Prime Mover (PM) Cleaning

Prime mover codes, which represent the technology used by the generator, required careful
handling due to missing or inconsistent entries. We apply the procedure for all generators
in the database, even if they were already existing (and therefore not in the Planning or
Construction stages) at any point in the sample.

e We implemented a function that checks for missing PM values and fills them if
non-missing PMs are consistent across time for a given generator. After applying
this cleaning procedure, 1,948 generators had missing PMs that were successfully
filled with consistent values.

e We logged and reviewed each case where a PM was changed to ensure that the
process was applied correctly. We reviewed all such cases to make the determination
whether the PM change was legitimate or not. In the following we provide some
common examples.

— In the EIA 860, GT is used for simple cycle combustion turbines andx CT is
used for combustion turbines which are a part for a Combined Cycle. It is com-
mon in the industry to use these acronyms interchangeably. Not surprisingly,
these two PM codes get mixed up often in the data.

— Sometimes an existing simple cycle combustion turbine (GT) is converted to
combined cycle operation (converted to a CT) with the addition of a steam
turbine!s.

A.3 Gcode Changes

We also identified and corrected potential changes in generator codes (gcodes) over time.
Using a tolerance threshold, we flagged gcodes with similar capacity (nplate) and con-

I3A heat recovery steam generator.
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sistent status code sequences as candidates for consolidation. A total of 194 potential
gcode changes were identified and reviewed, with the feedback process allowing us to
apply these changes as appropriate.

A.4 Combining Combined Cycle (CC) Components

For generators utilizing combined cycle technology, it was necessary to combine parts
of the cycle (e.g., gas turbines (CT), steam turbines (CA), and combined cycle compo-
nents (CS)) into a single entry. We used status code sequences and capacity data to
identify similar sequences and consolidated them into a single generator entry. This step
was crucial for ensuring that combined cycle generators were treated consistently in the
analysis.

A.5 Proposed Generators Filtering

We filtered the dataset to retain only generators that were proposed at some point in
time. We defined a generator as "proposed” if any of its status codes fell within a specific
range (e.g., P, L, T, U, V, etc.).

A.6 Iterative Process

The data cleaning process was designed to be iterative. For example, changes in Prime
Mover (PM) values could influence gcode changes and the combining of Combined Cycle
components. Each step in the process was carefully logged and reviewed before moving
to the next, ensuring that feedback from one step could be incorporated into earlier steps
as needed.

This cleaning process is ongoing, and future refinements will likely be made as the analysis
progresses.

B Bayesian Partial Pooling

Standardization, Trimming, and Weighting

Before fitting the Bayesian hierarchical model, we standardize the project-level delays
within each technology group. For each technology k, we compute the raw mean my; and
standard deviation s, of DiffYear, and transform the observations

DiffYear;; — my

Yikt =
Sk

This ensures that groups with different units (e.g., wind vs. coal) enter the model on a
comparable scale. We then trim the standardized observations as |y; k.| < Zmax, removing
extreme outliers or data errors. The choice of z,., is configurable and set to 3 for the
indices used in this paper.
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Hierarchical Model for Technology—Year Means
For each technology k € {1,...,2} and year t € {1,...,T} the model posits a latent

mean /i, and standard deviation oy, for the standardized delays:

Yikt ™~ N(Mk,tv Uz,t)'

The means are decomposed into a global intercept, a technology effect, a common year
effect, and a technology—year deviation:

Pkt = Q+ Uy + Gut + Vpkts (11)

where
e « is a global intercept for the standardized delays;
® v, is a technology-specific random effect;
® g, is a year effect common to all technologies; and
® v, is a technology—year deviation.

The random effects are given Normal priors with unknown scales
g ~ N(0,02 ), Gt ~ N (0,07 ), Ve ~ N (0,07 ). (12)

To improve sampling, the Stan implementation uses a non—centered parameterization,
writing each effect as a standard Normal draw multiplied by its scale (e.g. wur = Oupu Uy
with @, ~ N(0,1)). The year effects g, are centered across years in the transformed-
parameters block so that a represents the overall mean level of the standardized delays
across all technologies and years.

Hierarchical Model for Technology—Year Volatility

The dispersion of delays within each technology—year cell is modeled through a log—
standard deviation equation. Let

Uiy =log oy

We specify
Uiy = Bo + Uok + Got + Vot (13)
with
e [y a global intercept for log—volatility;
® U, a technology—specific random effect;
® g,+ a year effect common to all technologies; and
® U, a technology—year deviation.

The corresponding priors mirror those for the mean equation:

Ug | ™~ N<O7 0370)7 9ot ™~ N(Oa 0370)7 Vo kit ™ N<07 Uczf,k) : (14)
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Again we use a non-centered parameterization in Stan (e.g. Uy = Oy Uy With Uy ~
N(0,1)), and the year effects g,; are centered across t so that [y corresponds to the
overall average log—volatility.

The group-, year-, and cell-level scales are modeled on the log scale. Writing
Oup =€xXP(Tuy),  Ouo =€xXpP(Tus), g = exXp(Ty ),

Og0 = €xXpP(Ty0), Ouk =xXP(Tur); 0ok = exXP(Tor),

we place weakly informative Normal priors

Tuis Tusors Tgys Tgo ~ N(10g 0.10, 0.25%), (15)
Tuger Toge ~ N(log 0.10, 0.25%) independently for each k. (16)

Because y; 1.+ has been standardized within each technology, the intercepts are given tight
priors,

a ~ N(0,0.20%), By ~ N(0,0.20%).

Weighted Likelihood

Each observation is given weight w; in the likelihood, so that the log posterior kernel
includes the term

log L = Zwi log ¢(yz’,k,t§ Hoke,ts Uk,t)7

where ¢(+; 4, 0) denotes the Normal density. The weights w; match those used in the
construction of the raw indices (e.g. equal weights across blocks or weights proportional
to block nameplate capacity).

Recovery of Pooled Headwinds and Turbulence

After fitting the model, we recover posterior means of i, and ¢ ; (or of oy, and transform
back to the original units of DiffYear using the same group-specific standardization
constants my, and s; that were used to create the standardized observations:

Headwz’ndsgffled = Mg + Sk - Pt (17)
Turbulence}z?ﬂed = Sy - exp(lr.t). (18)

Advantages of the Hierarchical Approach

The Bayesian partial pooling approach provides several benefits relative to raw sample
statistics:

1. Stabilization in thin cells. Year—technology cells with few or single observations
borrow strength from richer years, avoiding extreme values.

2. Technology-specific flexibility. The hierarchical model allows both fossil fuel and
renewables to have its own time-series pattern with its own pooling scale, avoiding
both over-pooling and under-pooling.
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Posterior means, posterior standard deviations, and (if desired) credible intervals are
available for each technology—year cell, although the main regressions use posterior means
as point estimates.

The practical effect of these advantages can be seen in the raw vs. pooled plots below,
where the hierarchical model substantially reduces noise while preserving technology-
specific trends.

For transparency and reproducibility, the replication files include both raw (unpooled)
and pooled versions of Headwinds and Turbulence. The regression specifications below
use the pooled versions.

Raw vs. Pooled Indices and LOO-State Cross-Fit Validation

To illustrate the effect of the Bayesian pooling procedure, Appendix C reports both
the raw indices and the pooled indices for each technology group k € {1,2}. For each
technology we report four series:

1. Raw—nationwide: the unpooled sample mean and sample standard deviation of
DiffYear using all 51 (including DC) states;

2. Raw—PJM states omitted: the same raw indices recomputed after omitting the
14 states which make up the regression sample below.

3. Pooled—mationwide: the Bayesian pooled indices using all states in the hierarchi-
cal model; and

4. Pooled—PJM states omitted: the pooled indices obtained from the cross-fitted
Stan model that excludes the regression states.

These figures make two properties of our approach transparent. First, the raw indices
(Raw-nationwide) can be noisy, especially in early years for technologies with few ob-
servations (i.e, renewable). The pooled series (Pooled—nationwide) smooth these irregu-
larities while preserving genuine temporal structure. Second, the LOO cross-fit curves
(Raw-PJM states omitted and Pooled-PJM states omitted) provide an external valida-
tion of the indices. The hierarchical structure is not overfitting to the regression states.
Figures 9 through 12 plot the indices.

Interpreting the Raw and Pooled Index Plots. This appendix provides a visual
comparison of the raw indices and the Bayesian partially pooled indices. For each group
we show four series—Raw-nationwide, Raw—PJM states omitted, Pooled—nationwide,
and Pooled-PJM states omitted—following the definitions in Section 2.4. In all the
plots, nationwide refers to all 51 states (including DC) and PJM states omitted refers to
the indices calculated from the 37 states not in our regression samples.

Event Alignment Figures 9 through 12 show that the Headwinds and Turbulence
indices capture the broad timing of several major policy and market shocks listed in
Table 5, though not every event generates a sharp spike.

For fossil fuels, Headwinds rise steadily from 2001 and reach their maximum in 2005, a
period that coincides with the onset of widespread coal project cancellations and growing
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climate and regulatory pressure. Fossil Headwinds then remain elevated through the
mid-2000s and only gradually decline after 2010.

For fossil Turbulence, the index climbs from the early 2000s into a prolonged plateau
between roughly 2004 and 2011, encompassing the 2008-2009 financial crisis, the RGGI
launch, and the implementation of CSAPR/MATS. Rather than isolated spikes at each
event year, the fossil Turbulence series reflects a sustained period of high cross-sectional
dispersion in project delays during this era, followed by a second, smaller bump around
2020 that lines up with the COVID-19 disruptions. The 2022 fuel-price shock occurs
against this already elevated post-COVID backdrop.

On the renewable side, Turbulence is relatively moderate in the early 2000s and then
shows a clear local surge around the 2012 wind PTC lapse. Turbulence peaks again in
20172018, coinciding with the Section 201 solar trade case and subsequent solar tariffs,
before easing somewhat thereafter. These two episodes line up well with the policy-driven
boom-bust cycles for wind and utility-scale solar. By contrast, the 2020 COVID shock
and the 2022 fuel-price and policy changes do not produce sharp spikes in the aggregated
renewable Turbulence index; they occur during a period of already elevated but relatively
stable uncertainty:.

Overall, the indices do not imply a one-to-one mapping from each event in Table 5
to a distinct peak, but they do capture the main episodes when planning delays and
uncertainty were unusually high.
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Table 5: FEvents annotated in Headwinds and Turbulence plots.

These events are major policy and market shocks that are likely to influence

planning delays and uncertainty; some correspond to visible changes in the indices in Figures 9 through 12, while others occur during broader
periods of elevated or declining Headwinds and Turbulence.

Year Event Description

2005 Coal cancellations Beginning of widespread coal cancellations driven by environmental regulation, grassroots opposition, and deteriorating
project economics.

2007 Mass v. EPA Supreme Court ruling establishing EPA authority to regulate greenhouse gases under the Clean Air Act.

2008 Financial crisis Global recession and credit shock, sharply reducing electricity demand and delaying capital-intensive infrastructure.

2009 RGGI launch Regional Greenhouse Gas Initiative takes effect, establishing a carbon price in the Northeast.

2011 CSAPR/MATS EPA finalizes two major pollution rules: Cross-State Air Pollution Rule and Mercury and Air Toxics Standards.

2012 Wind PTC lapse Expiration of wind production tax credit; causes major pipeline contraction and investment pause.

2013 Wind PTC restored Reinstatement of the PTC via fiscal cliff bill; activity resumes but with uncertainty.

2014-2015  Clean Power Plan and PJM reforms  Announcement of CPP targets + PJM’s stricter capacity accreditation rules following the polar vortex.

2016 PTC phaseout begins Legislative deal begins gradual phase-down of wind credits, providing long-term investment certainty.

2017 Solar tariff probe Section 201 trade complaint triggers procurement delays and risk repricing for solar developers.

2018 Solar tariffs imposed President Trump imposes 30% import tariffs on solar panels under Section 201.

2020 COVID-19 pandemic Global shutdowns disrupt supply chains, permitting, and construction across all fuel types.

2022 Russia—Ukraine crisis International gas supply shock triggers extreme price volatility; alters fuel risk calculus.

2022.5 Inflation Reduction Act Historic climate bill delivers 10-year tax credit certainty; reshapes expectations for renewable buildout.

2021-2022 PJM queue freeze PJM halts interconnection intake due to study backlog; delays hundreds of GW.

2023 PJM reforms restart Queue restarts under new cluster-based process, but backlog remains substantial.
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Turbulence Index: Fossil Fuel
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Figure 10: The plot shows Turbulence for fossil fuels (coal, natural gas, and oil).
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Turbulence Index: Renewables
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Figure 12: The plot shows Turbulence for renewable fuels (sun, wind, and water).
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