Task Efficiency and Signaling in the Age of GenAl:
Effort Reallocation and Firm Value Effects

Shiwei Ye*
Job Market Paper

This Version: December 26, 2025
Link to the Latest Version

Abstract

I study how Generative Al (GenAl) reshapes effort allocation and firm value by
affecting both productivity and signaling. Using developer-level data from U.S.
public firms’ open-source projects, I construct a novel Al exposure measure and
exploit GitHub Copilot’s launch as a shock. I find that GenAl increases coding pro-
ductivity for senior developers while juniors create more valuable projects. This is
consistent with seniors capturing productivity gains while career-concerned juniors
shift toward creative work that better signals ability, as GenAl erodes coding’s
signaling value. Changes in signaling incentives are reflected in project selection,
programming language choices, and job moves across firms. Stock market reac-
tions to GitHub Copilot’s launch show that non-innovative firms with senior-heavy
teams, where signaling incentives align with productivity goals, benefit most. A
multitask signaling model rationalizes these patterns. These findings shed new
light on the dual role of GenAl as a productivity tool and a force reshaping labor
market signaling.

Keywords: Generative Al, Productivity, Innovation, Signaling, Firm value
JEL Classification: G10, J24, O33, 036

Acknowledgements: I am indebted to Thomas Lambert and Daniel Metzger for their mentorship
and generous support. I am also grateful for Ashwini Agrawal, Elliott Ash, Dion Bongaerts, Jean-
Edouard Colliard, Robin Déttling, Daniel Ferreira, Luca Henkel, Milena Nikolova, Mikael Paaso, and
participants at Corporate Finance Day, ERIM PhD seminar, European Conference on Corporate R&D
and Innovation, SGF Conference, and Zurich Workshop in Al+Economics for helpful comments. All
errors are my own. Part of this research was conducted during my visit to the London School of
Economics. I am grateful for their hospitality and the financial support from the Erasmus Trustfonds.

*Rotterdam School of Management, Erasmus University. Email: ye@rsm.nl.

https://www.dropbox.com/scl/fi/jdczeanly5o32dzet6txz/aivalue.pdf?rlkey=9mam4o0i8xyvllxqaiosah82x&dl=0
mailto:ye@rsm.nl

1 Introduction

Generative Al (GenAl) is reshaping work across all experience levels, but its distribu-
tional effects remain contested. Research documents substantial productivity gains for
junior employees (Brynjolfsson, Li and Raymond, 2023; Kogan, Papanikolaou, Schmidt
and Seegmiller, 2023; Noy and Zhang, 2023; Cui, Demirer, Jaffe, Musolff, Peng and
Salz, 2024; Hoffmann, Boysel, Nagle, Peng and Xu, 2024b). Yet by making it easier
for anyone to produce competent-looking work, GenAl also weakens employers’ ability
to assess genuine skill (Cowgill, Hernandez-Lagos and Wright, 2024; Colliard and Zhao,
2025; Cui, Dias and Ye, 2025; Wiles and Horton, 2025). Consequently, GenAl may
hurt the very workers it helps most. Hiring has shifted from early-career to more ex-
perienced candidates in Al-exposed occupations,! with industry reports citing employer
uncertainty about assessing ability without Al as one contributing factor.? This tension
between productivity gains and signaling applies to many knowledge work outputs that
juniors use to signal ability and work ethic, from valuation modeling in finance to pol-
ished writing and data analysis in academia. Yet how signal erosion affects worker effort
allocation and, in turn, firms’ returns to Al adoption, remains unclear.

I investigate how employees at different seniority levels allocate effort between Al-
assisted tasks and creative activities, and its implication for firm value. Because Al
provides less assistance for creative work, such tasks retain their signaling value. I use
open-source software (OSS) projects made available by U.S. public firms on GitHub, the
most popular open-source platform, as my empirical laboratory.

This empirical setting is relevant because GenAl pronouncedly affects software de-

! The declining trend is documented in administrative data (Brynjolfsson, Chandar and Chen, 2025;
Lichtinger and Hosseini Maasoum, 2025).

2 See HackerRank’s 2025 Developer Skills Report: https://www.hackerrank.com /reports/developer-
skills-report-2025. In practice, some firms have begun restricting applicants’ use of Al in interviews,
citing difficulty in assessing genuine ability. See https://www.businessinsider.com/amazon-stop-people-
using-ai-cheat-job-interviews-2025-2 for Amazon and https://fortune.com/2025/06/11/goldman-sachs-
students-ai-chatgpt-interviews-amazon-anthropic/ for Goldman Sachs.

https://www.hackerrank.com/reports/developer-skills-report-2025
https://www.businessinsider.com/amazon-stop-people-using-ai-cheat-job-interviews-2025-2
https://fortune.com/2025/06/11/goldman-sachs-students-ai-chatgpt-interviews-amazon-anthropic/

velopment, and signaling is an important driver for participating in open-source projects
(Lerner and Tirole, 2005a). OSS is particularly well suited for studying signaling because
contributions are visible to the entire labor market, not just within a single firm. How-
ever, this visibility also means that signaling-driven behavior may disproportionately
appear in OSS, while productivity gains remain in proprietary codebases. Furthermore,
OSS represents an economically important context for studying value creation, as it gen-
erates economic value for both firms that publish OSS projects and the broader society
through private value creation (Emery, Lim and Ye, 2024) and substantial externalities
(Hoffmann, Nagle and Zhou, 2024a).?

To investigate this question, I use a generalized difference-in-differences (DID) ap-
proach to study the causal effects of GenAl on coding and innovation outcomes of de-
velopers working for firms. I exploit the official launch of GitHub Copilot, a coding tool
powered by OpenAl’s large language models (LLMs) and widely adopted since then, on
June 21st, 2022.4

Because LLMs are trained on unequal quantities of code across programming lan-
guages, some languages (such as Python) benefit more from GenAl than others. I exploit
this variation to construct a novel developer-level measure of GenAl exposure based on
the programming languages developers use in their ez ante codebase portfolio. I vali-
date this measure in three ways. First, a higher Al usefulness score predicts a higher
comment-to-code ratio in scripts after GenAl’s introduction, consistent with developers
using comments as prompts for LLMs or better documentation practices induced by
GenAl. Second, languages with higher Al usefulness scores experience slower question

growth on Stack Overflow, consistent with GenAl reducing the need to post common

3 In practice, firms increasingly choose to make their innovation open source. As of 2022, 90% of Fortune
100 companies use GitHub. See https://octoverse.GitHub.com/2022/.

4 The tool is integrated seamlessly into development environments and assists developers by suggesting
code snippets in real time as they type code or natural language instructions. Since its introduction,
developers have quickly adopted the tool, with over one million paid subscribers in 2023 and one third
Fortune 500 adopters as of December 2022. See https://GitHub.com/features/copilot (September 2024).

https://octoverse.GitHub.com/2022/
https://GitHub.com/features/copilot

queries. Third, I show the AI usefulness score reflects how actively a language is dis-
cussed in connection with coding using GenAl on Reddit.

I then calculate Al exposure scores for each developer by taking the weighted average
of their language-level AI usefulness scores, and compare the top quartile of developers
(treatment group) with the bottom three quartiles (control group) before and after
GenAT’s introduction.

I find that GenAl improves productivity in Al-assisted tasks for senior developers
(those with above-median tenure on GitHub). Developers with high Al exposure are 1.16
percentage points more likely to contribute code to firm-owned projects each month.
Effects are driven by senior developers: the triple-difference estimate shows expected
coding events for Al-exposed seniors increase by about 9.2% more than for juniors. These
productivity gains cannot be purely explained by more working hours or lower quality
of outputs, as proxied by issues reported. Dynamic effects observed from event-study
analysis show that firms’ developers immediately react to the introduction of GenAl,
that the effects persist over time, with no evidence of pre-treatment trend differences.

Next, I turn to studying how GenAl affects innovation outcomes. While GenAl does
not affect the probability of creating new projects on average, it increases community
adoption and interest in new projects, as measured by GitHub forks (a citation-like mea-
sure) and stars (a bookmarking system that serves as a widely-used proxy for popularity
and quality) received by projects as of February 2024. However, the effect on private firm
value depends critically on team composition. Overall, projects from high-Al-exposure
teams experience negative stock market reactions at release, driven primarily by senior-
heavy teams. All-junior teams with high AI exposure see 14% higher project value,
while adding senior developers reduces this gain by approximately 12 percentage points
per senior added to a five-person team. Projects led by junior developers with high Al

exposure are significantly more novel than those led by seniors, as measured by both

LLM-based conceptual assessment and text-similarity-based distinctiveness from prior
work.

In contrast to many studies,” my findings suggest that less experienced developers
do not engage more in Al-assisted tasks, even though they stand to benefit the most
from GenAl. Instead, they generate higher-value innovation. One possible explanation
is that Al-generated code reduces the signaling value of coding activities, especially for
developers with shorter tenure.’

I develop a theoretical model adapting the frameworks of Holmstrom and Milgrom
(1991) and Holmstrém (1999) that shows two competing effects. While productivity
gains incentivize more coding, signal dilution due to Al-induced noise motivates future
employers to weight more on alternative signals and career-concerned developers to shift
to creativity tasks. These concerns are now widespread in practice. For example, on the
labor demand side, Amazon banned Al use in interviews, citing inability to accurately
assess candidates. On the labor supply side, Baird, Mar, Xu and Xu (2024) show that
existing developers of and developers newly hired by firms adopting GitHub Copilot
add more non-programming skills to their LinkedIn profiles. However, signaling effects
are less observable in lab settings, internal firm activities, or among top-ranked open-
7

source developers who typically have short tenure with homogeneous career concerns,

as studied in previous research on the productivity effect of GenAl.

5 Studies at the individual level consistently find that junior workers benefit more from GenAI than
senior workers. They include, but are not limited to, Brynjolfsson et al. (2023); Dell’Acqua, McFowland,
Mollick, Lifshitz-Assaf, Kellogg, Rajendran, Krayer, Candelon and Lakhani (2023); Noy and Zhang
(2023), and Hoffmann et al. (2024b).

6 As conceptualized in Colliard and Zhao (2025), for instance, Al can have a free-riding effect as the
probability of success increases even when the worker shirks. Using experiment with pitch writing tasks,
Cowgill et al. (2024) find that AI reduces evaluators’ ability to identify true expertise by about 4 to 9
percent.

" For example, Hoffmann et al. (2024b) focus on developers contributing to the most popular public
repositories for identification purposes. Tenure in their study has a sample mean of 706 days and a
maximum of 1,420 days. In comparison, the sample used in this paper has a mean tenure of 2,690 days
and a maximum of 5,274 days.

Consistent with the theoretical prediction, signaling incentives manifest in labor
market outcomes. Matching GitHub developers to LinkedIn employment records, I
find that junior developers with greater Al exposure are 1.44 percentage points more
likely to change employers per quarter. Among those switching firms, more innovative
juniors experience promotion while pure coders face demotion, consistent with signal
reweighting. Importantly, these effects appear only in external (across-firm) moves; there
is no effect on internal transitions. This distinction supports the signaling interpretation:
public signals inform prospective employers who lack direct observation, while current
employers already know their workers’ true ability. In contrast, senior developers show
no effects, consistent with established track records.

I show that the signaling channel also drives project selection and language choices.
Senior developers target popular team projects for visibility benefits, while junior devel-
opers seek peer monitoring over popularity by avoiding solo work amid Al-introduced
noise. Moreover, senior developers increase activities for both new and familiar lan-
guages, while juniors focus only on new ones. This is consistent with signaling value
being more equal where neither group has track records. Overall, the labor market and
behavioral evidence is difficult to reconcile with alternative mechanisms, including ex-
perience complementarity, task specialization, skill revaluation, and displacement; the
signaling mechanism best explains the full set of findings.

The effect of signaling incentives extends to firms, where the incentive alignment
between firms and their workforce composition plays a crucial role. Using stock mar-
ket data for IT firms with GitHub presence, I define innovative firms as those with
above-median R&D intensity. Non-innovative firms with a higher proportion of senior
developers, who rely less on signaling through alternative tasks, are more likely to ben-
efit from adopting GenAl tools to increase efficiency in Al-assisted tasks. To test this

prediction, I conduct an event study examining cumulative abnormal returns (CARs)

around the official launch of GitHub Copilot. I find that Al-exposed firms with aligned
incentives experience significantly higher CARs in the 10- to 30-day windows following
Copilot’s launch, with the effect concentrated among non-innovative firms. These results
suggest that investors perceive firms whose workforce composition aligns with signaling

incentives as better positioned to benefit from GenAl tools.

Literature. This study makes several contributions to the literature. First, this pa-
per adds to the growing body of research on the impact of artificial intelligence (Al),
and more recently, GenAl on labor market inequality. Early research on automation
and Al often focused on job displacement and wage polarization (Acemoglu and Autor,
2011). More recent studies highlight labor-augmenting capabilities of GenAl and sug-
gest it disproportionately benefits less-experienced or lower-skilled workers, potentially
reducing skill inequality (Brynjolfsson et al., 2023; Dell’Acqua et al., 2023; Kogan et al.,
2023; Noy and Zhang, 2023; Cui et al., 2024; Hoffmann et al., 2024b). Yet, large-scale
administrative data suggest that Al exposure is associated with higher unemployment
(Ozkan and Sullivan, 2025). In particular, since the adoption of GenAl, entry-level job
hiring has declined where Al tends to automate labor, while senior positions remain
unaffected (Brynjolfsson et al., 2025; Lichtinger and Hosseini Maasoum, 2025). This
paper contributes to the discussion by showing that in addition to automation, concerns
about adverse selection may also explain the seniority-biased labor effect of GenAl. As
GenAl brings information distortion to ability signals, junior workers who signal through
alternative tasks see better labor market outcomes. My findings therefore highlight that
signal dilution, not just augmentation or automation, shapes how different workers fare
as Al is introduced.

Second, this paper speaks to the literature on the role of Al in firm value and growth.
Several studies have examined how Al may affect firm value through labor productivity

(Eisfeldt, Schubert and Zhang, 2023; Kogan et al., 2023), labor composition (Babina,

Fedyk, He and Hodson, 2023; Berger, Cai, Qiu and Shen, 2024), product innovation
(Babina, Fedyk, He and Hodson, 2024), and entrepreneur decision making (Otis, Clarke,
Delecourt, Holtz and Koning, 2024). To my knowledge, this paper is among the first to
show that employer-employee alignment in signaling incentives shapes firms’ returns to
AT adoption.

Conceptually, this paper is related to the literature centering on signaling and career
concerns and how technology advancements reshape the dynamics. In the seminal career
concerns model of Holmstrom (1999), forward-looking employees balance current output
with actions that reveal their talent to improve future opportunities. OSS developers
contribute partly to signal their ability and advance their careers (Lerner and Tirole,
2005b; Gupta, Nishesh and Simintzi, 2024). However, GenAl makes it easier to produce
outputs that appear competent (Cowgill et al., 2024; Colliard and Zhao, 2025; Cui et
al., 2025), making Al-assisted signals less reliable. This paper is one of the first to
provide empirical evidence of the trade-off between productivity and signaling on the
labor supply side, showing that career-concerned workers may shift to producing signals
that are less affected even if GenAl increases productivity for Al-assisted tasks. Over
time, this could change career development trajectories, where human capital investment
may focus more on areas where human creativity and insight remain paramount.

Methodologically, this study also contributes to the literature that uses GenAl to
generate new data and construct measurements to overcome various data challenges
in academic research. For example, researchers have leveraged large language mod-
els (LLMs) to summarize or classify unstructured data (Cheng, Lee and Tambe, 2022;
Beckmann, Beckmeyer, Filippou, Menze and Zhou, 2024; Chen and Wang, 2024; Kim,
Muhn and Nikolaev, 2024) and construct measures for variables that require less sub-
jective evaluation, such as occupational Al exposure scores (Eisfeldt et al., 2023; Eloun-

dou, Manning, Mishkin and Rock, 2023; Kogan et al., 2023). This paper develops and

validates a novel LLM-based Al exposure score for programming languages, enabling
GenAl-related research on developer data at a more detailed level.

The remainder of the paper is organized as follows. Section 2 describes the in-
stitutional setting of open-source software development and GitHub Copilot. Section
3 develops a conceptual framework that formalizes the trade-off between productivity
gains and signal dilution. Section 4 presents the data, Al exposure measure, and iden-
tification strategy. Section 5 reports the empirical findings on productivity, innovation,

and signaling effects. Section 6 concludes.

2 Institutional Background

2.1 Open Source Software and Commercial Engagement

Systems granting excludability, such as patents, have been seen to be important to in-
centivize innovation (Arrow, 1962; Crouzet, Eberly, Eisfeldt and Papanikolaou, 2022).
Yet, there has been an increasing trend in open-source innovations, particularly in the
software industry. Based on the definition of the Open Source Initiative, “open source”
means not only access to the source code but also allowing free redistribution and mod-
ification under terms defined by open-source licenses. Therefore, when an innovation is
“open-sourced,” it is made publicly available to all parties at little or no cost. Because
of potential knowledge spillovers and the reduction of replacement costs for open-source
software (OSS) adopters, OSS can generate large externalities and facilitate innovation
in society as a whole (Fershtman and Gandal, 2011; Nagle, 2019; Hoffmann et al., 2024a;
Chen, Shi and Srinivasan, 2024). The recent debates over open-source large language
models further show the increasing importance and impact of open-source innovation.
While open-source innovations contribute to social welfare, they can also generate

private value for firms.® Indeed, many firms choose to make their innovation open source.

8 There is a broad literature studying the incentives for commercial firms to reveal their innovations
in an open-source way, see Allen (1983), Lerner and Tirole (2002), Harhoff, Henkel and von Hippel
(2003), Dahlander and Gann (2010), Henkel, Schober] and Alexy (2014), Parker, Van Alstyne and Jiang

A recent survey finds that 90% of Fortune 100 companies use GitHub, the largest plat-
form for developing open-source innovation.” Emery et al. (2024) document an increasing
trend of open-source activity by U.S. public firms, with these firms representing 68% of
the stock market by market capitalization by the end of 2023. We show open-source
innovation can generate private value for firms, and this value is a predictor of future

sales growth, profitability, employment growth, and patent innovation.

2.2 Software Development Activities on GitHub

GitHub operates on the Git system, which supports a distributed and collaborative
framework for software development. Although not all open-source projects are devel-
oped on GitHub, it remains the largest platform for such efforts and is closely associated
with the concept of open-source software. This section will outline key terms and activ-
ities related to software development on GitHub.

To share their innovations on GitHub, firms begin by setting up organization ac-
counts. Within these accounts, they can establish repositories (projects), with admin-
istrators determining whether these will be publicly accessible or restricted to selected
organization or project members with appropriate permissions. The creation and main-
tenance of public repositories incur minimal costs, whereas managing private repositories
may require GitHub Team or GitHub Enterprise subscriptions for additional support and
features. Importantly, despite previous charges for private repositories before GitHub’s
2015 shift from a repository-based to a user-based pricing model, public repository host-
ing has been free since GitHub’s launch.

The development process starts with developers making modifications to the code-

base, committing these changes locally with concise descriptions. These “commits” are

(2017), Alexy, West, Klapper and Reitzig (2018), Nagle (2018), Teece (2018) and Lin and Maruping
(2022). For reviews of the open-source literature, see von Hippel and von Krogh (2003), Goldfarb and
Tucker (2019), and Dahlander, Gann and Wallin (2021).

9 See https://octoverse.GitHub.com/2022/.

https://octoverse.GitHub.com/2022/

then “pushed” to remote branches, making the updates accessible to other contributors
and users.

Users who want to follow a repository’s progress can “star” a repository, essentially
bookmarking it for future reference. Those who have questions or suggestions can also
“open issues,” which are addressed by the development team and the broader community.

Additionally, users can contribute by “forking” the repository, creating a personal
copy to work on independently. If the changes made in the fork are considered beneficial
to the original project, users can submit “pull requests.” These pull requests are formal
proposals to merge their changes back into the original repository. These pull requests
are reviewed, and if accepted, the modifications are integrated into the main codebase,

further advancing the open-source project.

2.3 GitHub Copilot

GitHub Copilot is a cloud-based Al-powered code completion tool developed by GitHub
in collaboration with OpenAl. Specifically, it is built on OpenAl’s Codex model, a large
language model trained on vast datasets of public code repositories. The tool integrates
seamlessly into popular Integrated Development Environments (IDEs), and is designed
to assist developers by suggesting code snippets and entire functions in real-time as they
write code. Initially, it was launched in June 2021 in preview, available with a limited
number of spots. It has later become generally available to all developers since June 21st,
2022, approximately five months before the public release of ChatGPT. While GitHub
Copilot is freely available for verified students and maintainers of popular open-source
projects, for most individual developers it is priced at $10 per month. There is also
an Enterprise option for business. The tool is widely adopted since then. There are
over one million paid subscribers in 2023, and one third of Fortune 500 companies use

GitHub Copilot as of December 2022.1°

10°See https://GitHub.com/features/copilot (September 2024).

10

https://GitHub.com/features/copilot

Developers use GitHub Copilot by installing it as an extension in supported IDEs.
As they type, Copilot analyzes the code context and offers autocomplete suggestions. It
can also generate code based on natural language descriptions, allowing users to input
comments describing desired functions or algorithms, and Copilot will output the corre-
sponding code. Therefore, it significantly enhances developer productivity by reducing
the time spent on routine coding tasks, lowering the cognitive load, and minimizing
common errors. In addition, by offering creative coding solutions and suggesting best
practices, it enables developers to learn new coding techniques and languages. In March
2023, GitHub Copilot further offers GPT-4-powered chat feature, which allows develop-

ers to engage in a dialogue with the Al assistant to get feedback and suggestions.

3 Conceptual Framework

The desire for peer recognition and career advancement often motivates developers to
contribute to open-source projects (Lerner and Tirole, 2005a). As discussed in Section
2, GitHub serves as the largest platform for hosting open-source projects and is widely
recognized by developers and employers as a source of productivity signals, particularly
from firm-owned projects.!! For example, Gupta et al. (2024) show that high-skill de-
velopers from small firms who reveal their coding activities are more likely to be hired
by large firms and promoted to senior roles.

The introduction of GenAl coding tools such as GitHub Copilot can have two oppos-
ing effects on productivity signal generation. On one hand, GenAlI increases productivity
of Al-assisted tasks such as writing and reviewing code. On the other hand, GenAl can
dilute the signal from coding outputs. If the second effect dominates, junior developers
(whose talent is less known) might choose to spend the time saved on Al-assisted tasks

on areas less influenced by GenAl, such as initiating new projects that demonstrate

1 According to GitHub, most first-time internal and external contributors of open source projects
on GitHub chose bigger, company-run repositories. See https://octoverse.GitHub.com /2022 /state-of-
open-source.

11

https://octoverse.GitHub.com/2022/state-of-open-source

creativity and leadership.

Combining the multitask signaling framework in Holmstrom and Milgrom (1991) and
career concern dynamics in Holmstrom (1999), I develop a parsimonious framework to
conceptualize the trade-off between productivity gain and reduction in signal value of Al-
assisted tasks when GenAlI becomes available. I allow GenAl to both increase marginal
return to effort and dilute the information that hiring markets extract from Al-assisted
outputs. While the productivity channel always incentivizes effort reallocation to Al-
assisted tasks, the model predicts that the signaling channel will drive developers with
less established reputations to shift towards alternative tasks that the market weights
more. The following subsections present the core setup and key results; full derivations

and extensions are in Appendix A.

3.1 Model Setup

Consider a developer with unobservable talent # who allocates effort (e, es) between
two tasks. (0, ey, ey) are known to the developer and the current employer, but the labor
market is uninformed. Task 1 (e.g., coding) is assisted by GenAl, while task 2 (e.g.,
creativity) is not. The intensity of AT use in task 1, A € [0, 1], is exogenously given,
conditional on availability. The observable outputs from these tasks serve as public
signals of the developer’s performance:

y1=((1=Ner +0) + Abger +9) +e1=ANer +0+Ag+e1, by > 1,

J - -

Vv '
Human contribution GenAl contribution

Yo = €g + 0 + &.

Where A(M) := 1+ A(by — 1) > 1. Here, g,&1, ¢ are independent, zero-mean noise
terms. GenAl’s impact on task 1 is twofold. First, it increases the marginal production

of effort through the term A(X). This creates a productivity gain effect. Second, it

12

introduces Al-specific noise, \g, into the output. This makes it harder for the market
to discern the developer’s true talent 6 from y;, creating a signal-diluting effect. The
output of task 2 serves as a stable, human-centric signal.

The developer is career-concerned and maximizes a utility function that includes
short-term and long-term rewards, net of a convex effort cost, C(e1,e2) = 3(ef + €3 +
27ve1es). The tasks are assumed to be substitutes, so the coefficient on interaction term
v € (0,1).

In the current period, the developer’s risk-neutral employer in a competitive market
can perfectly observe talent 6 and effort (ey, es), leading to a compensation that equals
the expected contribution, B = A(\)e;+e5+26. In the future period, however, the wider
labor market must infer the developer’s talent solely from the public outputs (y1,ys).
This inference forms the developer’s reputation, defined as the market’s posterior belief
= E[6]y1, yo.

Aware of this future evaluation, the developer’s total utility is:

U=ANe1+es+20+ E[0]0,eq, e —C(ey, e).

~
Current Compensation Value of Future Reputation

Importantly, the intensity of reputational incentives is governed by the precision of the
market’s prior belief about talent, 7 = 1/07. This parameter captures what Holmstrom
(1999) terms “career concerns”: when the prior is noisy (low 7p), the market updates
heavily on observed signals, creating strong reputational stakes; when precise (high 75),
new signals barely move beliefs. Since track records accumulate over time, 75 maps to

career stage, with juniors facing strong career concerns and seniors facing weak ones.

3.2 Equilibrium Analysis

The equilibrium is found by solving for the developer’s optimal effort allocation, consid-

ering how the uninformed future market will interpret their output signals. I start with

13

the market inference process.

Market inference process. The uninformed market infers the developer’s talent by
observing the outputs (y1,v2). As described in Holmstrom (1999), in a rational expec-
tations equilibrium, the market anticipates the equilibrium efforts (e}, e5) and mentally
subtracts them from the outputs to isolate the signals concerning talent, which are
1 =0+ Ag+¢e, and x5 := 6 + &5.

The market then assesses the quality of these signals using their precision (the inverse
of the noise variance). The precision of the Al-assisted signal, 7(\) = 1/(\0 + 07),
is crucially decreasing in the intensity of Al use, A\. The precision of the human-centric
signal, 7, = 1/02, is constant. The precision of the prior belief is 7.

Under Bayesian updating with normal distributions, the market’s posterior belief
about talent, é, is a weighted average of the signals. The informational weights are
determined by each signal’s relative contribution to the total precision, T'(\) = 7 (\) +

79 + 79. The weights are thus given by:

T2

a;(N) = and ao(N\) = o)

The key finding is that as Al use intensifies, the Al-assisted signal becomes less infor-
mative, causing the market to reduce the weight it places on this signal (a4 () falls) and
increase the relative weight on the stable, human-centric signal (a2(A) rises). Crucially,
the magnitude of these weightsand thus the strength of incentivesdepends inversely on

Typ: juniors face high weights (strong incentives), while seniors face low weights.

Equilibrium effort allocation. Anticipating the market’s inference process, the de-
veloper chooses efforts (e;, e;) to maximize their total utility. The optimal effort levels

are derived from the first-order conditions as follows:

14

oU
B,
oU
B,

AA) + a1 (M) AN) = e1 + yea,

1+ as(A) = ex + yey.
Solving the system of linear equations yields the equilibrium effort levels (e7, €3):

ey = W{A(/\)[l +a1(A)] = v(1 + a2(N)) },
y = 71 o — o
&= _72){1 + az(A) = YAN)[1 + a1 (V)]},

Comparative statics. The central question of the model is the following: does the
availability of GenAl tools incentivize developers to work more on Al-assisted tasks, or
does it cause them to shift focus to purely human-centric tasks to better signal their
talent? To answer this, I differentiate the equilibrium efforts (e, e5) with respect to A
and look at how these derivatives depend on 7.

As shown in Appendix A, the model reveals a trade-off between a direct productivity
channel, which encourages effort in the Al-assisted task, and a signaling channel, which
creates reputational incentives that can shift effort away from it. As Al use (\) increases,
the Al-assisted output y; becomes a noisier signal of talent. In the next subsection, I

describe the main empirical predictions from the model.

3.3 Main Results

Proposition 1 (Effort in Al-Assisted Tasks). The effect of GenAl adoption (\) on
effort in the Al-assisted task (e}) is determined by the precision of the market’s belief
(19). There exists a unique threshold 7; > 0 such that:

e [or developers with noisy priors (e.g., juniors, 79 < 75), GenAl adoption decreases

effort in the assisted task (% <0).

15

e For developers with precise priors (e.g., seniors, 19 > 7,), GenAl adoption in-
creases effort in the assisted task (% >0).
This proposition highlights the core trade-off. The productivity gain from GenAl always
encourages more effort. However, this is countered by the reputational cost of signal
dilution. For juniors (low 7y) who face strong reputational incentives, the long-term
negative signaling effect outweighs the short-term productivity gain, leading them to
reduce effort in the task whose output has become a noisy measure of their talent. This
is consistent with the empirical findings in Section 5.2 that junior developers engage less
in coding than senior developers.
Proposition 2 (Effort Substitution). The effect of GenAl adoption (X\) on effort in
the non-assisted task (ek) is also determined by the precision of the market’s belief (1p).
There exists a unique threshold T5* > 0 such that:
e For developers with noisy priors (e.g., juniors, 19 < 7,), GenAlI adoption increases
des

effort in the non-assisted task (¢ >0).

e For developers with precise priors (e.g., seniors, o > 1,*), GenAl adoption reduces
effort in the non-assisted task (% <0).

This proposition predicts strategic effort substitution. As the Al-assisted task becomes
a less reliable signal of ability, juniors shift their focus to the human-centric task, which
now serves as a relatively clearer and more valuable signal. Instead, for seniors with low
signaling motives, the negative productivity spillover dominates, causing them to reduce
their creativity effort as Al makes coding more attractive. Thus, the model predicts
junior developers, after GenAl adoption, will increase their efforts in creativity tasks,
while the effort of senior developers becomes lower. The empirical findings in Section
5.3 are consistent with this prediction.

Proposition 3 (Signal Re-weighting Mechanism). An increase in GenAl use (\) lowers

the quality of the Al-assisted signal, causing the market to:

16

1. Decrease the informational weight on the Al-assisted signal (603)9) <0).

2. Increase the relative informational weight on the human-centric signal (%‘g—i’\) >0).
The behavioral responses in Propositions 1 and 2 are driven by a rational re-weighting of
signals by the uninformed market. This proposition formalizes the underlying mechanism
and predicts that the market will reward juniors who generate more signals from task
2. Hence, it means more-innovative junior developers, after GenAl adoption, may see

better labor market outcomes than their coder peers. I test these predictions empirically

in Section 5.

4 Data and Methodology

4.1 Data
4.1.1 GitHub Activity of U.S. Public Firms’ Developers

To test the predictions developed in Section 3, I construct a comprehensive dataset on
GitHub activity of developers working for U.S. public firms. I begin by linking GitHub
organization accounts with firms. Following the methodology of Conti, Peukert and
Roche (2021), I first collect websites of organization accounts via the GHTorrent project
and the GitHub API. I then match these domains with the web URLs of U.S. public

2 T then manually search for

firms and their subsidiaries from Compustat or Orbis.!
firms’ open-source organization accounts to complement the domain-based matching.!?
Following this, I compile a comprehensive list of public repositories owned by the identi-
fied organization accounts through the GHArchive database, which records and archives

timestamped public activity of GitHub repositories. In total, I match 1,281 firms with

3,314 organization accounts and 168,085 public repositories up to the year 2023.

12 Domains that are indicative of hosting or social media services, such as “GitHub.com” and “face-
book.com.”, are excluded.

13 Specifically, I query the firm names together with the term “open source” via Google to locate
official web pages that list their open source projects, and search the firm names on GitHub to identify
associated organization accounts.

17

Upon establishing a link between U.S. public firms and their respective GitHub
organization accounts and public repositories, I use the GHArchive database to gather
additional information on the public footprints of these repositories. Most importantly, I
define firms’ developers as internal contributors, i.e., individuals authorized to add code
directly to firm-owned repositories. Overall, my sample spans from January 1st, 2021 to

December 31st, 2023, 18 months before and after the introduction of GitHub Copilot.

4.1.2 Developer and Repository Characteristics

I use the GitHub API to collect static characteristics of developers as of March 2024.
In particular, I obtain the account create date and self-reported names. I use the user
account create date to calculate tenure and proxy for seniority. Figure 1 illustrates
the distribution of account create month in my data. For self-reported names, I use
OpenAl’s API to interact with the GPT-3.5 turbo model to exclude users with account
name containing “bot” or with “bot” account type identified to ensure bot accounts will
not contaminate my sample. This results in 26,026 GitHub individual accounts during
the sample period. I then match GitHub developers in my sample to their LinkedIn
profile from Revelio Labs using their names and employers. In total, 12,858 developers
are matched.

Similarly, I collect static characteristics of repositories extant as of February 2024
via GitHub API. This includes an array of attributes from descriptive repository meta-
data, such as programming languages and their corresponding byte sizes, to quantitative
measures of community engagement, including the number of stars, watchers, and forks.

To measure project novelty, I use two complementary approaches. First, I employ
an LLM-based measure that evaluates how novel or groundbreaking each repository is
compared to existing solutions, based on its description and topics. This measure cap-
tures conceptual novelty as perceived by a state-of-the-art language model; see Emery

et al. (2024) for methodology details. Second, as a robustness check, I construct a text-

18

similarity-based measure following Kelly, Papanikolaou, Seru and Taddy (2021). For
each repository, I compute TF-BIDF (term frequency—backward inverse document fre-
quency) vectors using only repositories created in the prior 12 months, then calculate
novelty as one minus the average cosine similarity to the ten most similar prior reposito-
ries in the same programming language. The two measures are positively correlated. See

Section Internet Appendix A.4 for implementation details of the text-similarity measure.

4.1.3 Repository Value and Firm Characteristics

I estimate the forward-looking value of repositories using a stock market-based approach.
Specifically, the value is calculated based on the stock market reaction within three days
after a project is made public. In Emery et al. (2024), we provide methodology details
and validation of the value measure. Stock return data comes from CRSP and other

firm financial characteristics are obtained from Compustat.

4.2 GenAl Exposure Measure

To compare users with relatively higher ex ante exposure to GenAl with users with lower
exposure, I leverage variation in the programming languages used by a user from June
2019 to June 2021, which ends right before the GitHub Copilot preview and one year
before the introduction of GitHub Copilot to ensure that the Al exposure score does not
reflect selection effects. The idea is that some languages (such as Python) benefit more
from GenAl than others (such as Stata) because there are more training data in certain
languages available for LLMs.' For each language, I assign an AT usefulness score (0-1)
based on ChatGPT’s assessment of how helpful GenAl coding tools are for that language.

Because ChatGPT is trained on similar public data as GitHub Copilot, its assessment

14 As GitHub officially stated, “the language support for GitHub Copilot varies depending on the volume
and diversity of training data for that language.” See https://docs.github.com/en/get-started /learning-
about-github/github-language-support#core-languages-supported-by-github-features (Last accessed:
December 2025).

19

https://docs.github.com/en/get-started/learning-about-github/github-language-support#core-languages-supported-by-github-features

plausibly reflects the underlying variation in training data availability across languages.
Section Internet Appendix A.3 provides prompt details. While this paper is among the
first to use ChatGPT to assign Al usefulness scores to programming languages, LLM-
based scores have been largely implemented for occupational Al exposure (Eisfeldt et
al., 2023; Eloundou et al., 2023; Kogan et al., 2023). Table 1 lists selected languages
and their AT usefulness scores, with Python ranked first with a score of 1 and Stata and
TeX ranked among the lowest with a score of 0.5. Other languages irrelevant for coding,
such as CSV, do not have an Al usefulness score. Section 5.1 presents a set of validation
tests of the AI usefulness score.

Because there is no directly available information on language usage over time at
user-level, I take two steps to approximately measure user-level Al exposure. First,
I calculate the total language byte size for each user (b!) based on user activities in
firm-owned repositories and the byte size of languages in each repository (b.) between
June 2019 and June 2021. For each repository, I calculate user’s fraction of contribution
of each language in terms of the user’s share of “PushEvent” and then sum it up to

user-language level. Specifically, I calculate:

bl ai,r

b Z 225 i

where bl is the byte size of language [contributed by user i, a;,. is the total number

bl

T

of PushEvent activity of user 4 in repository 7, and b. is byte size of language [used in
repository r.

Then for each user, I calculate the weighted Al exposure score, where the weight is
the byte size of a given language to the byte size of all code contribution by user ¢ among
the two-year period one year prior to the introduction of GitHub Copilot. Specifically, I
construct the user-level Al exposure score as follows (using language-level Al usefulness

scores):

20

oo
Sizzzlbf’

!
where s; is the weighted Al exposure score of user i, b is the byte size of language
| contributed by user i, and s’ is the AI usefulness score of language [provided by
ChatGPT. Lastly, I define users with s; in the 4th quartile as having high exposure to
GenAl.

Before proceeding, I address a concern about the weights in the exposure measure.
One could argue that developers with less experience in an Al-assisted language ben-
efit more, so weighting by usage share would understate their exposure. However, as
Acemoglu (2024) points out, code autocompletion tools perform subtasks, but complet-
ing the overall task requires handling complementary human subtasks. Two conditions
must hold for productivity gains: first, human coding costs must exceed Al costs for
substitution within subtasks; second, the developer must be sufficiently specialized to
complete the complementary subtasks. See Internet Appendix B for a formal model.

Table A3 provides supporting evidence at the developer-language level: a higher
usage share of Al-exposed language predicts greater coding activity, especially in non-
primary languages, where developers are less efficient (satisfying the first condition)
yet possess foundational skills (satisfying the second). Therefore, the assumption that
a higher usage share of Al-exposed language indicates greater Al exposure within a

developer is empirically supported.

4.3 Identification Strategy

[use a generalized difference-in-differences (DID) approach to study the reactions of
labor productivity and innovation outcomes of firms’ developers to the introduction
of GitHub Copilot, a code autocompletion and chat tool powered by OpenAl’s GPT

models. Using the shock of GitHub Copilot’s public release has several advantages. First,

21

GitHub Copilot is designed for coding tasks and is seamlessly integrated with major IDEs
(integrated development environments), making it particularly relevant and easy to use
for software developers. Second, the tool was officially launched for individual developers
on June 21st, 2022,' five months before the release of ChatGPT on November 30th,
2022. Therefore, any initial reaction observed is likely to be driven by GenAl powering
job-specific coding tasks of developers rather than changes in activities of other tasks
unobservable in the software development context. Third, while there was a period of
technical preview since June 29th, 2021,'° the preview was strictly limited to a small
number of spots, and the tool’s performance was relatively poor. The general availability
of the tool can therefore serve as an ideal shock for the main purpose of this paper.

For baseline regressions, I use the following specification:

Y, = Bi1Post, x Al Exposure; + pu; + 0y + €4, (1)

where Post; indicates periods after the introduction of GitHub Copilot. Specifically,
it equals one since July 2022 for monthly analysis or the third quarter of 2022 for
quarterly analysis. Al Exposure; equals one for the group with relatively high GenAl
exposure, i.e., the user’s ex ante Al exposure score is in the fourth quartile. In addition, I
include individual (y;) and time (6;) fixed effects to control for time-invariant individual
characteristics and common time trends. The outcomes of interest Y;;, are individual-
level outcomes, such as engagement in Al-assisted coding tasks or creativity tasks and
job changes.

I further explore the heterogenous effects of GenAl on employees along the seniority

dimensions. To do this, I conduct a triple difference-in-differences (DDD) analysis using

15 For official announcement, see https://GitHub.blog/news-insights /product-news/GitHub-copilot-is-
generally-available-to-all-developers/

16 See https://GitHub.blog/news-insights/product-news/introducing-GitHub-copilot-ai-pair-

programmer)/.

22

https://GitHub.blog/news-insights/product-news/GitHub-copilot-is-generally-available-to-all-developers/
https://GitHub.blog/news-insights/product-news/introducing-GitHub-copilot-ai-pair-programmer/

the following specification:

Y+ =p1Posty x Al Exposure; + [Post, x Char;)
+ B3 Post, x Al Exposure; x Char; + p; + 0y + €; 4, 2
where C'har; is a dummy indicating the the characteristics of developer 7. For example,
the dummy for seniority equals one if the tenure of the developer on the GitHub platform,
approximated based on the account’s create date, is above median. The coefficient of
interest is therefore [(s.

Additionally, I conduct an event-study analysis for individual-level reactions to the
introduction of the GenAl. While the generalized DID approach gives an estimate of
the average impact over the time horizon after the Al shock, the event-study approach
allows for examining dynamic effects and checking whether the parallel trend assumption
is violated or not. The event-study specification is as follows:

-1

Yie= > Dl + D5, + Dl + pi + 0 + €y, (3)
I=I+1

where D, are leads and lags of treatment for short-run effects, and Dt (Dz) accounts for
periods before [(after [) periods relative to treatment for all longer-run effects. D! is
omitted for normalization, that is, one month before the introduction of GitHub Copilot
based on the panel frequency. For monthly analysis, I set [= —7 and [= 13.

Lastly, I conduct DID analysis in repeated cross-sections for project-level innovation

outcomes, measured by stock-market-based project value, adoption (forks), community

23

interest (stars), and novelty (LLM-rated). Specifically, I estimate the following:

Y, 1 =51 Al Exposure, + By Post, x Al Exposure, n
+ Controls, si—1 + of + Oropict + €r p 1t

where Y f; is the dependent variable for repository value, estimated through stock mar-
ket reaction, adoption (forks), community interest (stars), and an LLM-based novelty
score. I include team-level Al exposure (Al Exposure,) if one project initiator has high
Al exposure . I include lagged firm-year level controls, including the natural logarithms
of one plus cumulative number of firm-owned repository, market capitalization, number
of employees, and one plus value of patent portfolio. I also control for return on assets,
R&D expenditure as a share of assets, whether R&D expenditure is missing, and inno-
vator team size, and include firm and repository-topic-time fixed effects (6;opic).'” The
repository-topic-time fixed effects control for any topic-specific time-varying shocks, in-
cluding potential GenAl-induced hype around Al-related projects. Similar to developer-

level analysis described above, I exploit heterogeneity in team composition by seniority.

4.4 Summary Statistics

I provide an overview of monthly open-source activities of firm’s developers before the
introduction of GitHub Copilot in Table 2. First, Panel (a) shows that the average Al ex-
posure score in my sample is around 0.81, with little difference between junior and senior
developers. Coding activities account for the majority of activity records.'® Specifically,
69% developer-month has code contribution, and an average developer contributes code

around 33 times per month, showing that these developers are active contributors. De-

17 These controls have been shown to be significant determinants of repository value as documented in
Emery et al. (2024).

18 See Section Internet Appendix A.1 for activity classification.

24

velopers on average contribute code to 2.9 projects per month, although they show active
public footprint in 4.2 projects. Firms’ developers work mostly for firm-owned projects
(1.8 projects per month), but they are also active for individual projects (1.5 projects
per month) and projects owned by non-firm organizations (0.8 projects per month). Ex-
ploiting heterogeneity in developer’s characteristics, I show that before the introduction
of the GenAl coding tool, junior developers contribute less in terms of intensity and
frequency than senior developers across all types of activities, and they work on fewer
projects concurrently.

Panel (b) of Table 2 compares activities and characteristics between developers with
high and low exposure to GenAl. High-exposure developers contribute less code and
participate in fewer projects, yet they do not differ in gender or seniority. Given that
these developers are more likely to work for larger firms (see below) but display otherwise
similar individual attributes, the observed differences in GitHub activity likely reflect
variation in firm-level engagement on the platform rather than fundamental differences
across developers.'?

Table TA2 compares characteristics between firms with high and low exposure to
GenAl, based on the average Al exposure scores of their developers active on GitHub
prior to GitHub Copilot’s launch. These firms show similarity across many financial
dimensions, including revenue growth, profitability, foreign revenue share, leverage, in-
terest expense to total assets ratio, and R&D expenditure as a share of total assets.
High-exposure firms, however, have smaller market capitalization (significant at 10%
level). Despite having fewer active developers on GitHub, high-exposure firms maintain
nearly identical ratios of activities associated with senior developers (63% versus 61%).

Thus, the two groups appear broadly comparable in fundamentals.

19 In Emery et al. (2024), we show that large firms represent 89% of repositories in the sample.

25

5 Empirical Results

This section presents the main empirical findings. I begin by validating the AI expo-
sure measure. | then examine GenAlI’s heterogeneous effects on coding and innovation
activities across developer seniority levels. Finally, I test predictions from the signaling
framework and analyze how these micro-level changes translate into firm value through

employer-employee incentive alignment.

5.1 Validation of AI Usefulness Scores

The reliability of the AI usefulness score is essential for the empirical analysis in this
paper. Anecdotal evidence suggests the score reflects how well languages integrate with
GitHub Copilot, since those highlighted by GitHub, including Python, JavaScript, Type-
Script, Ruby, and Go, all show very high scores (>= 0.8). To formally test its validity, I
conduct three tests using GitHub code scripts, Stack Overflow data, and Reddit posts,
as described below.

GitHub Copilot is designed as a code autocompletion tool, where a developer prompts
LLMs with code context and instructions in comment lines. This design naturally leads
to more comment lines in a file. In addition, LLMs are known for generating well-
documented code. Thus, if a GenAl tool assists a language, the file will contain a higher
ratio of comment lines.

To test this prediction, I examine a subsample of code scripts committed to firm
repositories on GitHub. T obtain the data from the GitHub Repos dataset on BigQuery.
These files are under 1 MB on the HEAD branch and were updated between January
1, 2022 and November 26, 2022. To ensure sufficient coverage, I focus on widely used
languages that appear in Stack Overflows Developer Surveys. I then apply regular
expressions to match and count lines with comment signs in each file and exclude files

above the 95th percentile of the comment line ratio, as these typically represent license

26

headers, configuration templates, or documentation rather than functional code. This
results in more than 8 million files.

I report the results in Panel (a) of Table 3. Column (1) shows that files in lan-
guages with higher AI usefulness scores have a greater ratio of comment lines after the
introduction of GitHub Copilot. An increase of 0.1 in the AI usefulness score raises
the comment line ratio by 0.267 percentage point relative to the pre-treatment sample
average of 6.44% (a 4.14% increase). This evidence suggests developers comment more
to prompt the tool or use it to generate additional documentation. GenAl, however,
does not produce longer code scripts, as shown in Columns (2)-(3). The same file size
with more comment lines implies that code in Al-assisted languages has become more
concise, which may indicate improved quality. Aggregating the data at the language-day
level shows that more files and lines are coded in languages with higher AT usefulness
scores (Columns (4)-(6)). These results align with prior studies on GitHub Copilot that
document its productivity benefits.

I further validate the measure using Stack Overflow data, with results reported
in Panel (b) of Table 3. Stack Overflow, the largest question-and-answer platform, is
where programmers solve coding problems and learn from one another. I hypothesize
that languages strongly supported by GenAl would see slower question growth, since
many easy-to-medium problems can be handled by Al tools. This would leave harder,
niche, or novel questions, along with low-effort posts such as pasted Al-generated code
that draw little interest, leading to a higher share of unanswered questions.

As shown in Columns (1)-(3), languages with higher AI usefulness scores experience
slower growth in Stack Overflow questions after the launch of GitHub Copilot, especially
among widely used languages in Stack Overflow’s Developer Surveys. A 0.1 increase in
the AI usefulness score corresponds to a 2.49 percentage point drop in question growth

(Column (1)). The no-answer rate also rises by 0.54 percentage points for the same

27

increase in Al usefulness (Column (4)). This evidence suggests the AI usefulness score
effectively captures both the impact of Al assistance and its intensity of use for a given
language.

Lastly, I examine the correlation between the Al usefulness score and the number of
posts mentioning a programming language in the subreddit r/ChatGPTCoding.?** The
sample period spans from December 6, 2022, to December 31, 2023. 1 extract posts,
including both submissions and comments, that mention programming languages using
regular expressions, and count the number of posts for each language.?!

I report the results for Reddit posts in the Panels (c)-(d) of Table 3. As shown in
Panel (c), the AI usefulness score is strongly correlated with the total number of posts
mentioning each programming language, explaining more than 20% of the variation in
mentions. The popularity of a language may lead to more posts, especially for Python,
which is the primary language for Al development spurred by the recent Al hype. How-
ever, as shown in Columns (3)-(5), the correlation remains even after accounting for
language usage or excluding Python. Moreover, languages without an Al usefulness
score are rarely mentioned, averaging 2.19 mentions compared to 23.24 for those with
an Al usefulness score. Thus, the Al usefulness score appears to be a strong indicator
of a language’s relevance in discussions related to coding with GenAl.

Overall, the evidence from GitHub, Stack Overflow, and Reddit confirms the validity
of the Al usefulness score. On GitHub, languages with higher scores show a greater ratio
of comment lines after Copilot’s release, consistent with developers using comments
to prompt the tool or generate documentation, while code length remains unchanged

and more files created, suggesting improved conciseness and productivity. On Stack

20 The “ChatGPTCoding*“ subreddit is used because it is among the top 40,000 subreddits with bulk
data available from Watchfull (n.d.). While coding with ChatGPT is not identical to coding with
GitHub Copilot, both largely rely on the same large language models developed by OpenAl.

21 To ensure the regular expressions accurately capture programming languages, I exclude those con-
sisting of a single letter, such as R, and those with names used in everyday English. These include Text,
Less, Clean, Click, Cool, Just, DM, Reason, Self, Io, Processing, Max, and BASIC.

28

Overflow, these languages experience slower question growth and higher no-answer rates,
reflecting the shift of routine problems to Al tools. On Reddit, the AI usefulness score
closely aligns with the extent to which a language appears in conversations related to
coding with GenAl. Together, these results show that the AI usefulness score in this

paper captures the extent and impact of Al assistance across programming languages.

5.2 Al-Assisted Tasks

In this section, I examine the impact of GenAl on the productivity of Al-assisted tasks,
specifically coding, and explore how the effects vary among developers with different
tenure lengths. I start by investigating the extensive margin, i.e., whether develop-
ers have any open-source coding activity related to firm-owned projects within a given
month. Columns (1) and (2) of Table 4 presents results estimated from equations 1 and
2. The findings indicate that the GenAl-powered coding tool significantly increases the
likelihood of coding-related events. Developers with high Al exposure are 1.16 percent-
age points more likely to contribute code to firm-owned projects after the introduction
of GitHub Copilot.?? Moreover, this effect is driven by senior developers: the total effect
(main effect plus interaction) is 1.67 percentage points. For junior developers, the main
effect alone is 0.28 percentage points and statistically insignificant.

Next, I compare the quantity of coding activity between developers with high and
low Al exposure before and after the introduction of GenAl. Columns (3)-(6) of Table 4
report the results, confirming that GenAl similarly boosts coding activity within firm-
owned projects, with the effect again stronger among senior developers. Based on Poisson
estimates, GenAl increases expected coding events for Al-exposed seniors by about 9.2%
((e"® — 1)) relative to Al-exposed junior developers.

Figure 2 plots the event study results for coding activity engagement related to

22 These results also hold at the individual-language level, as reported in Table IA4.

29

firm-owned projects, with coefficients estimated using equation 3. The pre-launch coef-
ficients confirm that the parallel trend assumption is not violated. Moreover, following
GenAlT’s introduction, an immediate increase in coding activity occurs. Specifically, in
the short-term, developers with high exposure become 2-4 percentage points more likely
to contribute code to firm-owned projects immediately after the launch, and this elevated
activity persists for up to nine months (three quarters).

Beyond parallel trends, a concern is that developers more exposed to Al differ sys-
tematically from those less exposed. Several considerations address this. First, language
selection is largely exogenous, determined by job requirements, existing codebases, and
project needs rather than individual choice. Al exposure is also measured pre-treatment
(June 20192021), so selection cannot respond to Al availability. Second, balance checks
in Panel (b) of Table 2 show that high- and low-exposure developers do not differ
on observable characteristics, including gender and seniority. Third, results hold at
the developer-language level with individual-time fixed effects (Table 1A4), comparing
the same developer across languages with different Al usefulness scores. This within-
developer comparison rules out the concern that developers more exposed to Al differ

from those less exposed.

5.2.1 Ruling Out Alternative Interpretations

The observed increase in coding activity could reflect factors other than genuine pro-

ductivity gains. I consider two alternative explanations.

Output quality. If GenAl merely inflates output quantity at the expense of qual-
ity, the productivity interpretation would be misleading. This alternative predicts that
quality-adjusted output should not increase, or that quality metrics should decline. To
test this, I examine two proxies for quality: the number of stars and the number of

issues opened attributed to each developer. ”Starring” indicates direct community in-

30

terest, whereas users open issues to report bugs or provide suggestions. Since developers
naturally accumulate more stars with increased contributions, I also compute the cu-
mulative ratio of stars per code push. Additionally, I calculate the cumulative ratio of
issues opened per star, considering that popular projects typically foster more active
discussions.

Table 5 reports the regression results, while Figure IA1 visualizes the event study
estimates. The findings indicate that GenAl usage increases both the number of stars
and issues attributable to developers, and similarly, these effects are more pronounced
for senior developers. However, the stars-per-push ratio remains largely unchanged.
By contrast, the ratio of issues opened per star actually decreases. This suggests that
GenAl-driven productivity enhancements primarily target maintenance (fixing bugs)

rather than increasing product popularity.

Working hours. Alternatively, the increase in coding activity may reflect longer work-
ing hours rather than efficiency gains. This alternative predicts that developers should
work more outside common hours or on weekends. Since only the timestamp of event
completion is available, I examine three specific outcomes to assess changes in input and
the output-to-input ratio: work completed outside common hours, work completed on
weekends, and work completed per hour, where work is defined as coding activity associ-
ated with firm-owned projects.?> Common hours are determined as hours during which
a developer completes events that constitute more than 5% of all events on a given week-

day, based on activity records from 2020 of developers with at least 100 coding events.?!

23 Specifically, 1 look at the cumulative ratio of coding events occurring outside common hours
(Cumulative number of coding events outside common hours; ,

cumulative fotal mumber of coding events,), the cumulative ratio of coding events occurring

cumulative number of coding events on weekends; ,

on weekends (), and the cumulative number of coding events

cumulative total number of coding events, ,
cumulative total number of coding events; ,)

per hour (cumulative total number of hours; ¢

24 For example, if a developer completes 100 coding events on Mondays throughout 2020, with only 2
at 8 pm and 5 at 2 pm, then 2 pm on Monday qualifies as a common hour, whereas 8 pm on Monday

is considered outside common hours. Additionally, any hour on weekends is deemed outside common
hours.

31

Table 6 presents the results. It appears that GenAl only weakly increases seniors’ input,
as measured by overtime work (Columns (1)-(4)). Consistent with increased output and
unchanged input, developers complete more events per hour, as shown in Columns (5)-
(6). Similar to the output results above, the effects are stronger for senior developers.
The findings show that GenAl leads to efficiency gains by enabling developers to com-
plete more work within standard working hours without increasing overtime or weekend
work.

Overall, I find that after the introduction of GitHub Copilot, a coding tool powered
by GenAI models, developers with high Al exposure show higher productivity, an effect
not explained by more working hours or lower quality of outputs. This productivity
gain is in line with the idea that GeneAl tools like GitHub Copilot reduce the cost of
subtasks that complement those performed by humans (Acemoglu, 2024).

Yet, unlike many prior studies, where junior workers are more likely to adopt and
benefit more from using GitHub Copilot or other GenAl tools (Brynjolfsson et al., 2023;
Dell’Acqua et al., 2023; Kogan et al., 2023; Cui et al., 2024; Gambacorta, Qiu, Shan
and Rees, 2024; Hoffmann et al., 2024b), this paper finds stronger effects on Al-assisted
tasks among senior developers. As outlined in Section 3, this result may reflect the
declining signaling value of coding for junior workers, a key reason why they contribute
to open-source projects on GitHub. If so, they may shift to other signals less influenced
by GenAl, such as activities related to creativity and leadership. In the next section, I
examine whether GenAl exposure leads to more product innovation, particularly among

junior developers.

5.3 Innovation Tasks

Improving labor productivity in Al-assisted tasks captures only part of GenAI’s economic
value. Beyond these direct productivity gains, GenAl may contribute to firm value and

growth through two innovation channels. First, Al tools can directly assist ideation,

32

stimulating new ideas and products (Babina et al., 2024). Second, Al-augmented hu-
mans, freed from routine work, can redirect their time and cognitive capacity toward
creative activities that were previously constrained.

I study the impact of GenAl on firms’ open-source innovation, focusing on the like-
lihood of developers becoming innovators, the community’s interest in the innovation,
and the value of the innovation. I define innovators as those who initiate new projects
owned by the firm. Specifically, I identify innovators who publicly contribute code to
newly created projects in the same month of projects’ first publicly visible dates.

My analysis starts with the likelihood of producing innovation and the number of new
projects initiated each quarter. Table 7 reports the results. Overall, introducing GenAl
does not affect either the probability of innovation or the number of new projects. The
effects also do not differ between senior and junior developers. These results suggest that
the GenAl tool in this study has a limited role in generating new ideas. Additionally,
more innovative developers equipped with GenAl may move to other firms and leave the
sample, as discussed below in Section 5.4.

Next, I turn to project-level outcomes, starting with the private value each repos-
itory generates for its firm, estimated from stock market reactions to public releases.
Repository-topic-time fixed effects are included to control for any topic-specific time-
varying shocks, including potential GenAl-induced hype around Al-related projects. I
then explore channels behind the value changes, including adoption (number of forks re-
ceived as of February 2024), community interest (number of stars received as of February
2024), and LLM-based and text-similarity-based novelty.?

Table 8 reports the results. Columns (1)-(2) show how GenAl affects the firm’s
private value from open-source projects. After GitHub Copilot’s launch, projects created

by high-Al-exposure teams declined 20.3% in value (exp(-0.2262)-1). Examining team

25 See Emery et al. (2024) for methodology details for value estimation, repository topic classification,
and LLM-based novelty evaluation.

33

seniority reveals that senior developers drive this negative effect. By contrast, projects by
all-junior teams with high Al exposure show 14% higher value. However, increasing the
senior developer share by 0.2 (e.g., replacing one junior with one senior in a five-person
team) reduces this positive effect by 12% (exp(-0.6414/5)-1).

Columns (3)-(6) of Table 8 provide evidence on whether improved project quality ex-
plains the value effects. After GitHub Copilot’s launch, projects from high-Al-exposure
teams show higher adoption rates, as measured by forks. Columns (4) shows that all-
junior teams drive this effect, while increasing the senior share leads to less forking.
Community interest, as proxied by stars, shows similar patterns, though coefficients re-
main insignificant. These results parallel the value findings, as junior teams with high
Al exposure generate both higher value and higher adoption, while seniors reduce both
effects. This suggests that improved project quality helps explain the value patterns
observed across different team compositions.

Project quality may improve through novelty or maintenance commitment. Columns
(7)-(10) of Table 8 investigate whether GenAl-equipped teams create more novel projects
using two complementary measures. The LLM-based measure (Columns (7)-(8)) shows
that all-junior teams with high AI exposure produce higher novelty scores, though the
effect is not statistically significant. The text-similarity-based measure following Kelly et
al. (2021) (Columns (9)-(10)) confirms this pattern: while the main effect is insignificant,
senior developers significantly reduce novelty. Combined with earlier findings that senior
developers with high Al exposure engage more in coding activities that imply better
maintenance, these results suggest that the quality improvements in projects created by
GenAl-exposed junior teams more likely reflect conceptual innovation than maintenance
commitment.

In summary, GenAl does not increase the rate of new project initiation. However,

it improves the quality of projects created by juniors. All-junior teams with high Al

34

exposure create higher firm value, attract more community adoption, and produce more
novel innovations as measured by both LLM-based and text-similarity-based approaches.
Senior developers, while benefiting more from GenAl in routine productivity tasks, re-
duce these innovation gains. The conceptual framework in Section 3 reconciles these

results through the lens of signaling incentives.

5.4 The Effects of GenAl on Signaling

As outlined in Section 3, the signaling channel may explain why junior developers engage
less in coding activities, despite they might benefit more from the GenAl coding tool.
However, the predictions may not be realistic if the productivity channel dominates while
the signaling channel barely matters. In this section, I first examine whether signaling
predictions translate into labor market outcomes. I then provide supporting evidence
from developer behavior in project selection and programming language choice. After
considering alternative mechanisms that could explain the observed patterns, I discuss

implications for firm value creation.

5.4.1 Labor Market Evidence for the Signaling Channel

As predicted by the theoretical framework, the market will put more weight on signals
from tasks less affected by GenAl and shift away from signals diluted by GenAl. To
test this prediction, I compare developers’ job mobility and promotions before and after
the official launch of GitHub Copilot. Empirically, I match GitHub developers to their
LinkedIn profiles from Revelio Labs using their names and employers. In total, 12,858
developers are matched. Table A6 presents summary statistics on job changes among
firm developers with matched GitHub profiles at the developer-year-quarter level from
January 2021 to December 2023.

As shown in Panel (a), the average probability of a job move is 7% per quarter,

with 3% occurring within the same firm and 4% across firms. The probability of an

35

across-firm promotion is 3%, suggesting most developers move across firms for better
opportunities rather than layoffs. Developers with longer GitHub tenure make up 65% of
the sample, indicating they are more likely to create LinkedIn accounts earlier. Average
job seniority is 3.21 on a 1-7 scale, and total yearly compensation averages $192,110.

Panel (b) compares developers based on their tenure and whether they are classified
as innovators (i.e., those who initiated at least one GitHub project owned by their
employers before the introduction of GitHub Copilot). On average, junior developers
are 1.5 percentage points more likely to change job positions and 0.6 percentage points
more likely to move to other firms. They also hold less senior positions with lower
compensation. The differences in job mobility between innovators and non-innovators
are less pronounced, though innovators tend to hold more senior positions and receive
higher total compensation.

I first present evidence on the impact of GenAl on employee mobility, controlling for
previous job’s characteristics, individual fixed effects, firm-time fixed effects, and origin-
destination-time fixed effects to control for time-varying shocks within country pairs.
Panel (a) of Table 9 provides the estimates. As shown in Column (2), junior developers
active on GitHub with greater Al exposure are 1.52 percentage points more likely to
change jobs per quarter. However, GenAl has little impact on internal job changes, as
shown in Columns (3) and (4). Instead, the effects are driven by across-firm job moves.
Specifically, junior developers with greater Al exposure are 1.44 percentage points more
likely to change employers per quarter (Column (6)). In contrast, senior developers show
no significant effect, consistent with them having fewer career concerns.

I now compare promotion and demotion probabilities across firms for junior devel-
opers between innovators and non-innovators. The results are presented in Panel (b)
of Table 9. Consistent with the signal-reweighting mechanism, junior innovators with

greater Al exposure are 1.00 percentage points more likely to be promoted across firms

36

(Column (1)), while their non-innovative peers are 0.59 percentage points more likely
to be demoted when moving across firms (Column (4)). Moreover, these effects differ
by destination firm type. Junior innovators with greater Al exposure are promoted pri-
marily by moving to private firms (Column (3)) but not to public firms (Column (2)),
while non-innovative junior developers with greater Al exposure move to other public
firms and get demoted (Column (5)).

Overall, the results suggest that firms value innovation signals from Al-affected de-
velopers, particularly those with less established records. This signal reweighting drives
labor market segmentation: innovators sort to private firms with career advancement,
while non-innovators concentrate in public firms with deteriorating positions. Conse-
quently, signal reweighting may risk deepening inequality, as GenAlI’s benefits accrue

primarily to developers capable of generating observable innovation signals.

5.4.2 Behavioral Evidence for the Signaling Channel

The labor market patterns documented above should be underpinned by changes in de-
veloper behavior. Signaling incentives predict that developers exposed to GenAl will
increase contributions to more popular projects because the visibility and reputational
payoff from working on well-known repositories is greater. However, junior developers
facing higher Al-introduced noise may prioritize working with larger teams where peer
monitoring moderates the distortion, making project popularity secondary. Linking to
the conceptual framework (Section 3), peer monitoring (like code review) corresponds to
03 J, reducing information distortion by verifying Al-generated code quality. Table IA5
confirms these predictions. All developers work more on team projects relative to solo
projects after GenAl introduction, but the underlying mechanisms differ by seniority.
Senior developers drive this increase partly through preference for more popular projects
(Columns (4) and (8)), which also tend to be managed by larger teams. In contrast, ju-

nior developers show no responsiveness to popularity and actually decrease contributions

37

to solo projects, where noise reduction through peer monitoring is absent.?

Developer-language level analysis provides complementary evidence for the signaling
channel. Table TA4 shows that senior developers increase coding activities for both fa-
miliar and new languages with high Al exposure after GenAl introduction. Junior devel-
opers, however, only increase coding activities for new languages with high Al exposure.
The differences between effects on senior and junior developers substantially narrow for
new languages. This can be explained by the similar signaling value that new languages
offer across seniority levels, as neither group has established track records. Overall, these
divergent responses across project types and programming languages provide evidence

that signaling motives drive developer behavior in my sample.

5.4.3 Alternative Mechanisms

The patterns documented above, seniors increasing coding while juniors shift toward

innovation, could reflect mechanisms other than signaling. I consider four alternatives.

Experience complementarity. If GenAl complements developer experience, seniors
should benefit most from Al in their areas of expertise. The evidence suggests the oppo-
site. First, within-developer gains concentrate in secondary languages, where developers
have less language-specific experience (Table IA3). Second, juniors expand into new lan-
guages at rates comparable to seniors, indicating that general programming experience
does not drive differential benefits. Third, this hypothesis cannot explain why juniors
reduce solo project contributions, as they could simply revert to manual workflows if Al

were unhelpful. These patterns suggest substitution within Al-assisted subtasks rather

26 One might wonder why, for junior developers with high AI exposure, contributions to solo projects
decrease and contributions to team projects remain unchanged, yet total contributions across all projects
are also unchanged (Table 4). This occurs because the sample includes only projects that existed before
GenAl introduction, since team size classifications require pre-treatment activity data. Contributions
to newly created projects are therefore excluded from these measures. This pattern further implies that
junior developers reallocate effort toward new projects launched after GenAI’s introduction, consistent
with their increased investment in innovative activities.

38

than experience complementarity.

Task specialization. Perhaps juniors are naturally better at innovation, and firms
optimally assign them to creative tasks after GenAl arrives. If so, internal employers
should also respond to these productivity differences. Instead, effects appear only in
external moves, consistent with public signals informing prospective rather than current
employers. Moreover, rational firms would not assign high-quality juniors to visible
innovation work that facilitates their departure to competitors, yet the promotion effects
concentrate in across-firm moves. Similar patterns appear in non-firm-owned projects,

where firm assignment plays no role.

Skill revaluation. GenAl may have revalued pre-existing skills rather than induc-
ing effort reallocation, with juniors already better at innovation simply becoming more
valuable. This alternative predicts patterns that contradict the data. First, the junior-
senior gap in innovation should exist before Copilot, yet seniors actively initiated projects
pre-GenAl. Second, juniors should shift to innovation in familiar languages where they
have demonstrated skills, yet the senior-junior coding gap narrows specifically in new

languages where neither group has track records.

Displacement. GenAl might displace junior developers rather than induce strategic
reallocation. Several patterns point to reallocation. First, there is no internal demotion,
as current employers do not view these workers as less valuable. Second, juniors code at
similar rates to seniors in new languages, suggesting they are not pushed out of coding
entirely. That said, the juniors in my sample are mid-level developers with several years
of experience, so these findings may not generalize to truly entry-level workers.

Having established evidence for signaling-driven behavior and ruled out alternative

mechanisms, [now examine implications for firm value.

39

5.4.4 Employer-Employee Alignment and Firm Value

If the signaling channel is important, the impact of GenAl on firm value will depend
on employer-employee alignment around signaling incentives. Senior developers readily
exploit GenAl’s efficiency gains. Instead, junior developers need to establish credibil-
ity in their career profiles and might prioritize tasks where human contributions stand
out. As a result, a firm focusing on Al-assisted coding benefit more if its workforce is
primarily composed of senior developers than a junior-heavy firm. In contrast, innova-
tive firms with more junior developers benefit from the aligned incentives, since junior
developers can pursue innovation tasks that match both their signaling needs and the
firm’s objectives. However, this alignment matters less overall because innovative firms’
core business models are less affected by GenAl.

To test this hypothesis, I use an event study approach, examining cumulative ab-
normal returns following the official launch of GitHub Copilot. To ensure a relevant and
meaningful sample, I include only firms in the information technology industry (SIC
code 737) and those with more than 100 code push events up to the event date. I cal-
culate a firm’s Al exposure score based on the language composition of its repositories
and classify a firm as Al-exposed if its score falls in the fourth quartile. I assess firm-
developer compatibility by considering a firm’s innovativeness and workforce tenure.
Specifically, incentives are aligned if an innovative firm (with R&D expenditure as a
share of assets above the median) has an average developer tenure in the first quartile
or if a non-innovative firm has an average tenure in the fourth quartile. Thus, if the hy-
pothesis holds, incentive-aligned firms should experience higher abnormal returns after
the introduction of the GenAl coding tool.

Table 10 report the event study results. Panel (a) examines all active GitHub firms
in the information technology industry. On the day of Copilot’s launch, there is little

market reaction, suggesting that the market took time to process information about

40

disruptive technologies like GenAl. In the event windows from 10 days to 30 days, con-
sistent with the hypothesis, Al-affected firms with aligned incentives experience higher
cumulative abnormal returns. Panel (b) further divides the sample into innovative and
non-innovative firms. The positive effect of incentive alignment is concentrated in non-
innovative firms. Consistent with previous prediction, these results suggest that investors
perceive firms compatible with employees’ signaling incentives benefit more from GenAl

tools, particularly those whose businesses are more exposed to GenAl.

Summary. The findings suggest that the signaling channel may help explain the sur-
prisingly small change in coding activity among junior developers, who are supposed
to benefit more from GenAl tools. Instead, junior developers who are able to generate
observable innovation signals see better labor market outcomes. However, the observed
labor market segmentation because of the GenAl-induced signal-reweighting mechanism
suggests risks of deepening inequality. At the firm level, GenAl’s impact on firm value is
not driven solely by technological advancement but also by how well a firm aligns with

signaling incentives of its employees.

6 Conclusion

This paper examines how GenAl reshapes effort allocation between Al-assisted tasks and
creative work, with effects that differ by employee tenure. Using a developer-level mea-
sure of Al exposure and the launch of GitHub Copilot, I find that GenAl boosts coding
productivity but primarily for senior developers. Junior developers, despite potentially
benefiting more from Al augmentation, do not increase their coding activity.

One potential source where the asymmetry arises from is signaling. Al-generated
code weakens the signal value of routine tasks, particularly for less experienced workers
who rely on open-source contributions to demonstrate ability. In response, juniors shift
toward activities less influenced by GenAl. Projects initiated by junior-heavy teams with

high AT exposure generate significantly higher community adoption and private value and

41

are measurably more novel. This suggests juniors improve innovation quality through
conceptual creativity rather than implementation. Supporting the signaling mechanism,
I show that senior developers increase contributions to high-visibility projects, while
juniors prioritize peer-monitored settings. The tenure gap in coding activity also narrows
for new programming languages where neither group has established reputations.

Labor market response is consistent with signal reweighting. Junior developers with
greater Al exposure are more likely to change employers, and career outcomes diverge
by innovation signals: more innovative juniors are more likely to be promoted when
switching firms, while non-innovative juniors face higher demotion rates. Firms’ returns
to Al adoption seem to depend on workforce composition. Less-innovative firms with
senior-heavy workforces experience positive abnormal returns following GitHub Copilot’s
introduction, as established reputations reduce signaling frictions and allow full capture
of Al productivity gains on routine tasks.

While this study focuses on software developers, the underlying mechanisms likely
extend to other knowledge work contexts where early-career workers rely on productive
outputs to signal ability to employers. Consider junior analysts in finance building
valuation models, graduate students producing polished academic writing, or associates
drafting legal documents. In each case, GenAl can both boost output quantity and erode
the signal value of that output by making it easier for anyone to produce competent-
looking work. The tension between productivity gains and signaling dilution, and the
resulting incentive to shift toward tasks where human judgment remains essential, are
not unique to software development but rather a general feature to knowledge work in
the age of GenAl.

The study has implications for firms and policymakers. For firms, this implies they
may not fully capture Al’s productivity gains on routine tasks. When Al dilutes the

signaling value of routine work, junior employees, who stand to benefit most from aug-

42

mentation, shift effort toward human-centric activities such as innovation. Yet firms
may still benefit from greater output in these activities. In the setting of this paper,
which firms gain depends on strategic alignment: innovation-focused firms can lever-
age junior reallocation toward creative work, while efficiency-focused firms benefit most
with senior-heavy workforces whose established reputations reduce signaling pressures,
allowing them to fully capture Al-assisted productivity gains.

For policymakers, the signaling perspective suggests that policies preserving the
value of human work deserve consideration. Transparency requirements around Al us-
age, or certification that verifies human input for high-stake decisions, could help labor
markets maintain the ability to screen talent. When employers can identify genuine
human contributions, fair compensation and accurate talent detection become easier.
However, such policies involve a trade-off: mandates that slow Al adoption may dampen
productivity gains. The optimal balance depends on the relative importance of screening

versus efficiency in each domain.

43

References
Acemoglu, Daron, “The Simple Macroeconomics of Al,” May 2024.

_ and David Autor, “Skills, Tasks and Technologies: Implications for Employment
and Earnings™,” in David Card and Orley Ashenfelter, eds., Handbook of Labor Eco-
nomaics, Vol. 4, Elsevier, January 2011, pp. 1043—-1171.

Alexy, Oliver, Joel West, Helge Klapper, and Markus Reitzig, “Surrendering
control to gain advantage: Reconciling openness and the resource-based view of the
firm,” Strategic Management Journal, 2018, 39 (6), 1704—-1727.

Allen, Robert C., “Collective invention,” Journal of Economic Behavior & Organiza-
tion, 1983, 4 (1), 1-24.

Arrow, Kenneth, “Economic Welfare and the Allocation of Resources for Invention,”
in “The Rate and Direction of Inventive Activity: Economic and Social Factors,”
Princeton University Press, 1962, pp. 609-626.

Babina, Tania, Anastassia Fedyk, Alex He, and James Hodson, “Artificial
intelligence, firm growth, and product innovation,” Journal of Financial Economics,
January 2024, 151, 103745.

, ,Alex X. He, and James Hodson, “Firm Investments in Artificial Intelligence
Technologies and Changes in Workforce Composition,” June 2023.

Baird, Matthew, Carpanelli Mar, Brian Xu, and Kevin Xu, “Early Evidence on
the Impact of GitHub Copilot on Labor Market Outcomes for Software Engineers,”
2024.

Beckmann, Lars, Heiner Beckmeyer, Ilias Filippou, Stefan Menze, and Guofu
Zhou, “Unusual Financial Communication: ChatGPT, Earnings Calls, and Financial
Markets,” January 2024.

Berger, Philip G., Wei Cai, Lin Qiu, and Cindy Xinyi Shen, “Employer and
Employee Responses to Generative Al: Early Evidence,” February 2024.

Brynjolfsson, Erik, Bharat Chandar, and Ruyu Chen, “Canaries in the Coal
Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence,”
2025. Working paper.

_ , Danielle Li, and Lindsey R. Raymond, “Generative Al at Work,” April 2023.

Chen, Mark A. and Joanna (Xiaoyu) Wang, “Displacement or Augmentation?
The Effects of AI on Workforce Dynamics and Firm Value,” April 2024.

Chen, Wilbur, Terrence Tianshuo Shi, and Suraj Srinivasan, “The Value of Al
Innovations,” May 2024.

44

Cheng, Zhaoqi, Dokyun Lee, and Prasanna Tambe, “InnoVAE: Generative Al
for Mapping Patents and Firm Innovation,” March 2022.

Colliard, Jean-Edouard and Junli Zhao, “Artificial Intelligence and the Rents of
Finance Workers,” June 2025.

Conti, Annamaria, Christian Peukert, and Maria Roche, “Beefing IT up for
your Investor? Open Sourcing and Startup Funding: Evidence from GitHub,” 2021.
Working paper, IE Business School, Harvard University, University of Lausanne.

Cowgill, Bo, Pablo Hernandez-Lagos, and Nataliya Langburd Wright, “Does
AT Cheapen Talk? Theory and Evidence From Global Entrepreneurship and Hiring,”
July 2024.

Crouzet, Nicolas, Janice C. Eberly, Andrea L. Eisfeldt, and Dimitris Pa-
panikolaou, “The Economics of Intangible Capital,” Journal of Economic Perspec-
tives, August 2022, 36 (3), 29-52.

Cui, Jingyi, Gabriel Dias, and Justin Ye, “Signaling in the Age of Al: Evidence
from Cover Letters,” September 2025. arXiv:2509.25054 [econ].

Cui, Zheyuan (Kevin), Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng,
and Tobias Salz, “The Effects of Generative Al on High Skilled Work: Evidence
from Three Field Experiments with Software Developers,” September 2024.

Dahlander, Linus and David M. Gann, “How open is innovation?,” Research Policy,
2010, 39 (6), 699-709.

_, — ,and Martin W. Wallin, “How open is innovation? A retrospective and ideas
forward,” Research Policy, 2021, 50 (4), 104218.

Dell’Acqua, Fabrizio, Edward McFowland, Ethan R. Mollick, Hila Lifshitz-
Assaf, Katherine Kellogg, Saran Rajendran, Lisa Krayer, Franois Cande-
lon, and Karim R. Lakhani, “Navigating the Jagged Technological Frontier: Field
Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and
Quality,” September 2023.

Eisfeldt, Andrea L., Gregor Schubert, and Miao Ben Zhang, “Generative Al
and Firm Values,” May 2023.

Eloundou, Tyna, Sam Manning, Pamela Mishkin, and Daniel Rock, “GPTs
are GPTs: An Early Look at the Labor Market Impact Potential of Large Language
Models,” August 2023. arXiv:2303.10130 [cs, econ, g-fin].

Emery, Logan P., Chan Lim, and Shiwei Ye, “The Private Value of Open-Source
Innovation,” 2024.

45

Fershtman, Chaim and Neil Gandal, “Direct and indirect knowledge spillovers: the

social network of open-source projects,” The RAND Journal of Economics, March
2011, 42 (1), 70-91.

Gambacorta, Leonardo, Han Qiu, Shuo Shan, and Daniel Rees, “Generative
AT and labour productivity: a field experiment on coding,” September 2024.

Goldfarb, Avi and Catherine Tucker, “Digital Economics,” Journal of Economic
Literature, 2019, 57 (1), 3-43.

Gupta, Abhinav, Naman Nishesh, and Elena Simintzi, “Big Data and Bigger
Firms: A Labor Market Channel,” October 2024.

Harhoff, Dietmar, Joachim Henkel, and Eric von Hippel, “Profiting from volun-

tary information spillovers: how users benefit by freely revealing their innovations,”
Research Policy, 2003, 32 (10), 1753-1769.

Henkel, Joachim, Simone Schoberl, and Oliver Alexy, “The emergence of open-

ness: How and why firms adopt selective revealing in open innovation,” Research
Policy, 2014, 43 (5), 879-890.

Hoffmann, Manuel, Frank Nagle, and Yanuo Zhou, “The Value of Open Source
Software,” January 2024.

_ , Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu, “Generative Al and
Distributed Work: Evidence from Open Source Software,” 2024.

Holmstrom, Bengt, “Managerial Incentive Problems: A Dynamic Perspective,” The
Review of Economic Studies, January 1999, 66 (1), 169-182.

_ and Paul Milgrom, “Multitask Principal-Agent Analyses: Incentive Contracts,
Asset Ownership, and Job Design,” Journal of Law, Economics, & Organization,
1991, 7, 24-52. Publisher: Oxford University Press.

Kelly, Bryan, Dimitris Papanikolaou, Amit Seru, and Matt Taddy, “Measuring
Technological Innovation over the Long Run,” American Economic Review: Insights,
2021, 3 (3), 303-320.

Kim, Alex, Maximilian Muhn, and Valeri V. Nikolaev, “From Transcripts to
Insights: Uncovering Corporate Risks Using Generative Al,” July 2024.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman,
“Technological Innovation, Resource Allocation, and Growth™,” The Quarterly Jour-
nal of Economics, May 2017, 132 (2), 665-712.

_, _ , Lawrence D.W. Schmidt, and Bryan Seegmiller, “Technology and Labor
Displacement: Evidence from Linking Patents with Worker-Level Data,” November
2023.

46

Lerner, Josh and Jean Tirole, “Some Simple Economics of Open Source,” Journal
of Industrial Economics, 2002, 50 (2), 197-234.

_ and _ , “The Economics of Technology Sharing: Open Source and Beyond,” Journal
of Economic Perspectives, 2005, 19 (2), 99-120.

_ and _ , “The Economics of Technology Sharing: Open Source and Beyond,” Journal
of Economic Perspectives, June 2005, 19 (2), 99-120.

Lichtinger, Guy and Seyed Mahdi Hosseini Maasoum, “Generative Al as
Seniority-Biased Technological Change: Evidence from U.S. Rsum and Job Posting
Data,” August 2025.

Lin, Yu-Kai and Likoebe M. Maruping, “Open Source Collaboration in Digital
Entrepreneurship,” Organization Science, 2022, 33 (1), 212-230.

Nagle, Frank, “Learning by Contributing: Gaining Competitive Advantage Through
Contribution to Crowdsourced Public Goods,” Organization Science, 2018, 29 (4),
569-587.

_, “Open Source Software and Firm Productivity,” Management Science, March 2019,
65 (3), 1191-1215.

Noy, Shakked and Whitney Zhang, “Experimental evidence on the productivity
effects of generative artificial intelligence,” Science, July 2023, 381 (6654), 187—-192.
Publisher: American Association for the Advancement of Science.

Otis, Nicholas, Rowan Clarke, Solne Delecourt, David Holtz, and Rembrand
Koning, “The Uneven Impact of Generative Al on Entrepreneurial Performance,”
February 2024.

Ozkan, Serdar and Nicholas Sullivan, “Is Al Contributing to Rising Unemploy-
ment? Evidence from Occupational Variation,” On the Economy, August 2025. Num-
ber: 101478 Publisher: Federal Reserve Bank of St. Louis.

Parker, Geoffrey, Marshall Van Alstyne, and Xiaoyue Jiang, “Platform Ecosys-
tems: How Developers Invert the Firm,” MIS Quarterly, 2017, 41 (1), 255-266.

Teece, David J., “Profiting from innovation in the digital economy: Enabling technolo-
gies, standards, and licensing models in the wireless world,” Research Policy, 2018, 47
(8), 1367-1387.

von Hippel, Eric and Georg von Krogh, “Open Source Software and the “Private-
Collective”’ Innovation Model: Issues for Organization Science,” Organization Sci-
ence, 2003, 14 (2), 107-225.

Watchfull, “Subreddit comments/submissions 2005-06 to 2024-12.”

Wiles, Emma and John J. Horton, “Generative AI and Labor Market Matching
Efficiency,” 2025. Available at SSRN.

47

.015

.01+

Density

.005

0 -
T T T T T T T T
2008m1 2010m1 2012m1 2014m1 2016m1 2018m1 2020m1 2022m1
First account created month - GHAPI

Figure 1. Density of Account Created Month

This figure plots the density of account create months of firms’s developers, which is obtained via
GitHub API.

48

Has Coding Activity (Dummy) Coding Events (Ln(1+Xx))
.08

.06+

7+ 6 5 -4 3 2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13+ 7+ 6 5 4 3 2 41 0 1 2 3 4 5 6 7 8 9 10 11 12 13+
Months from Copilot launch Months from Copilot launch

Figure 2. Firm-Related GitHub Coding Activity After Copilot Launch

This figure plots event study coefficients comparing developers with high versus low Al exposure
around the GitHub Copilot launch (June 2022), with 95% confidence intervals. The specification
includes individual and time fixed effects, with the month before launch as the reference period. The
outcome variables are a dummy variable that equals one if a developer has any public activity in
firm-owned repositories in a given month (left) and the log(1 + x) transformation of the number of
coding activities in firm-owned repositories in a given month (right). Standard errors are clustered at
developer level.

49

Table 1. LLM-Based Al Usefulness Score of Selected Languages

This table lists the LLM-based AI usefulness scores of selected languages, which is later used to
calculate developer-level Al exposure. The score ranges from 0 to 1. See Section Internet Appendix
A.3 for the prompt used to obtain AI usefulness scores for programming languages.

High AI Exposure Languages

Low AI Exposure Languages

Random without AI Exposure

language score language score language
Python 1.0 BASIC 0.4 BrighterScript
C# 0.9 LiveScript 0.4 CSV

Java 0.9 Visual Basic 6.0 0.4 Cadence
JavaScript 0.9 ASP 0.5 DTrace
Jupyter Notebook 0.9 Cython 0.5 Futhark
TypeScript 0.9 Markdown 0.5 Inno Setup
CSS 0.8 SAS 0.5 Lex

Go 0.8 Stata 0.5 Oxygene
HTML 0.8 TeX 0.5 Self

PHP 0.8 VBA 0.5 TOML

20

Table 2. Summary Statistics of User-Month GitHub Activity (January 2021-June 2022)

This table presents summary statistics of user-month GitHub activity before the official launch of
GitHub Copilot, i.e., from January 2021 to June 2022. Panel (a) summarizes main outcome variables
used in the regression analysis by seniority. Panel (b) summarizes main outcome variables and
developer characteristics by Al-exposure level. A developer is considered as senior if the tenure of the
developer on the GitHub platform, approximated based on the account’s create date, is above median.
High AI Exposure is a dummy that equals one if the developer’s Al exposure score is in the fourth
quartile. Gender is inferred based on developer name and LLM-based gender likelihood score. A
developer is considered to be male/female when the likelihood score is above 0.5. See Internet
Appendix A.2 for the methodology. Activities are grouped based on their related skill requirements.
See Section Internet Appendix A.1 for classification details. Repository ownership can be firm or
non-firm. The latter includes repositories owned by organization accounts (org) or individuals (ind).
Count variables are winsorized at 99% level by month.

(a) By Seniority

All Senior Junior
Mean Median SD Mean Median SD Mean Median SD
Coding events 30.10 5.00 58.13 33.12 6.00 61.77 25.24 4.00 51.33
General skill events 9.30 1.00 22.88 11.19 1.00 25.46 6.26 0.00 17.53
Mixed events 5.84 0.00 1491 6.43 0.00 15.73 4.90 0.00 13.44
Has coding 0.69 1.00 046 0.71 1.00 0.45 0.66 1.00 0.47
Has general 0.50 1.00 0.50 0.55 1.00 0.50 0.43 0.00 0.50
Has mixed 0.35 0.00 048 0.38 0.00 048 0.31 0.00 0.46
AT exposure from push events 0.81 0.84 0.13 0.82 0.84 0.13 0.81 0.84 0.14
Active repositories (total) 3.90 2.00 5.55 4.53 2.00 6.10 2.88 1.00 4.32

Active repositories
Active repositories
Active repositories

coding events) 2.64 1.00 3.76 297 2.00 4.06 211 1.00 3.14
general events) 1.26 1.00 2.05 1.50 1.00 228 0.88 0.00 1.54
mixed events) 0.61 0.00 1.06 0.68 0.00 1.13 0.50 0.00 0.92

Py

Active repositories (total) (firm) 1.62 1.00 216 1.70 1.00 225 148 1.00 2.00
Active repositories (total) (org) 0.74 0.00 1.88 0.95 0.00 215 0.38 0.00 1.25
Active repositories (total) (ind) 1.40 0.00 252 1.70 1.00 279 091 0.00 1.92

(b) By GenAI Exposure

High AI Exposure Low Al Exposure
Mean Median SD Mean Median SD
Female (inferred) 0.13 0.00 0.34 0.13 0.00 0.34
Senior developers (GHAPI) 0.60 1.00 0.49 0.62 1.00 0.48
Coding events 22.63 3.00 50.19 32.34 6.00 60.13
General skill events 6.24 0.00 17.83 10.22 1.00 24.12
Mixed events 4.38 0.00 13.00 6.28 0.00 15.42
Has coding 0.64 1.00 0.48 0.71 1.00 0.45
Has general 0.44 0.00 0.50 0.52 1.00 0.50
Has mixed 0.28 0.00 0.45 0.37 0.00 0.48

Active repositories (total) (firm) 1.30 1.00 1.81 1.71 1.00 2.24
Active repositories (total) (org) 0.59 0.00 1.63 0.78 0.00 1.94
Active repositories (total) (ind) 1.19 0.00 229 147 0.00 2.59

o1

Table 3. Validation of AI Usefulness Scores for Programming Languages

This table presents the results of the validation tests on language-level Al usefulness scores using a
subsample of GitHub code scripts (Panel (a)), Stack Overflow data (Panel (b)), and posts from the
subreddit r/ChatGPTCoding (Panel (c)-(d)). Panel (a) uses non-binary files committed to firm
repositories under 1 MB on the HEAD branch. The sample covers January 1, 2022 to November 26,
2022. Only languages appearing in Stack Overflow surveys are included. The file comment line ratio is
trimmed at the 95% level. Columns (1)-(3) are at the file level, while Columns (4)-(6) aggregates data
to the language-day level. Comment Ratio is the ratio of lines with comment signs of a language.
Total Lines is the natural logarithm of code lines. Flile Size is the natural logarithm of the file byte
size. For Panel (b), the Stack Overflow data is aggregated into two periods for each language: January
1, 2021 to June 21, 2022 as the pre-treatment period, and June 22, 2022 to December 2023 as the
post-treatment period. The outcome variables in Columns (1)-(3) are growth rate of Stack Overflow
questions of a given language. The outcome variables in Columns (4)-(6) are the share of questions
created in each period but do not receive any answer as of September 2025. Columns (1) and (4) use
all languages with data available. Other Columns use languages that appear in Stack Overflow’s
Developer Survey from 2020 to 2023. Growth variables are winsorized at 95% level. For Panel (c)-(d),
posts mentioning programming languages from the subreddit r/ChatGPTCoding up to December 31,
2023, are identified using regular expressions. Languages with names commonly used in everyday
English are excluded. Panel (c) examines the natural logarithmic transformation of total posts
mentioning each programming language, while Panel (d) compares the summary statistics of total
mentions for languages with and without an AI usefulness score. Post is a dummy that equals one if
the time period is after June 22, 2022. AI Score is the raw LLM-based AI usefulness score of a
language. Language Usage Share is the lagged share of developers indicating they use the given
language extensively in Stack Overflow Developer Surveys. Standard errors are clustered at language
level except for Panel (c¢) which uses robust standard errors. Significance: *, p < 0.1; **, p < 0.05;
Rk p < 0.01.

(a) GitHub Code Scripts

File Level Day-Level Aggregate
Comment Ratio Total Lines File Size File Count Total Lines File Size
(1) (2) (3) (4) (5) (6)
Postx Al Score 0.0267** 0.3562 0.2774 0.4507** 0.6352* 0.6737*
(2.20) (1.25) (1.26) (2.05) (1.83) (1.68)
N 8,466,108 8,911,683 8,911,683 21,450 21,450 21,450
Adj. R2 0.3104 0.1819 0.2116 0.8596 0.8132 0.7889
Language FE Y Y Y Y Y Y
Date FE Y Y Y Y Y Y

52

(b) New Questions on Stack Overflow

Questions Growth Share of No-Answers (%)

(1) (2) (3) (4) (5) (6)
Post 0.0051 0.1163 0.1120 -0.9268 -1.3975 -1.3465
(0.06) (1.16) (1.12) (-0.56) (-0.58) (-0.56)
Postx AT Score -0.2492* -0.3926™ -0.3732** 5.4205** 5.6389 5.4044
(-1.71) (-2.44) (-2.33) (2.09) (1.65) (1.58)
Language Usage Share -2.8788** 34.8038
(-2.05) (1.19)

N 242 124 124 242 124 124
Adj. R2 0.4074 0.6359 0.6408 0.8215 0.8907 0.8902

Language FE Y Y Y Y Y Y

Sample All SO Survey SO Survey All SO Survey SO Survey

(c) Posts From the Subreddit R/ChatGPTCoding

Dep. Var. Ln (1+Mentions) Ln(Total Mentions)
Language Excluded Ex. Python
(1) (2) (3) (4) ()
AT Score 6.7237 5.8442% 5.0322* 5.2298"** 4.6553"*
(6.60) (4.84) (2.54) (4.37) (2.32)
Language Usage Share 0.0461** 0.0416**
(2.55) (2.21)
N 143 79 45 78 44
Adj. R2 0.3199 0.2571 0.4364 0.2066 0.3546

(d) Summary Statistics of Total Mentions From the Subreddit R/ChatGPTCoding

Mean Median SD Min Max N
Has AI Score 23.24 1.00 99.44 0 831 143
Missing Al Score 2.19 0.00 8.70 0 85 266
Total 9.55 0.00 59.93 0 831 409

33

Table 4. Firm-Related GitHub Coding Activities After Copilot Launch

This table reports regression results of equation 1 and equation 2. In Columns (1)-(2), the outcome
variables are dummy variables that equal one if a developer has any public coding activity in
firm-owned repositories in a given month. In Columns (3)-(4), the outcome variables are logarithm
transformations of one plus the number of coding activities in firm-owned repositories in a given
month. In Columns (5)-(6), the outcome variables are the number of coding activities in firm-owned
repositories in a given month. Columns (1)-(4) present OLS estimates while Columns (5)-(6) use
Poisson regressions. Post is a dummy that equals one if the time period is after July 2022 (or the
third quarter of 2022). AI Exposure or AI are dummy variables that equal one if the developer’s Al
exposure score is in the fourth quartile. Senior is a dummy that equals one if the developer’s tenure is
above median. Standard errors are clustered at developer level. Significance: * p < 0.1; ** p < 0.05;
ik p < 0.01.

Has Coding Events Ln(1+Coding Events) Coding Events
(1) () (3) (4) () (6)
Postx Al Exposure 0.0116** 0.0028 0.0479*** -0.0025 0.0310 -0.0266
(2.39) (0.35) (2.82) (-0.09) (1.40) (-0.71)
Post x Senior -0.0157*** -0.0693*** -0.0719***
(-3.37) (-4.04) (-3.76)
Post x AIx Senior 0.0139 0.0797** 0.0880*
(1.39) (2.25) (1.90)
Total Effect (Senior) 0.0167*** 0.0772***
(2.71) (3.63)
N 563,656 563,582 563,656 563,582 563,656 563,582
Adj. R2 0.4040 0.4040 0.6433 0.6434
Pseudo R2 0.6844 0.6844
Individual FE Y Y Y Y Y Y
Year-Month FE Y Y Y Y Y Y
Regression OLS OLS OLS OLS Poisson Poisson

o4

Table 5. Quality Change After Copilot Launch

This table reports regression results of equation 1 and equation 2. In Panel (a), the outcome variables
are the In(1 + x) transformations of the number of stars and issues opened that are associated with
developers’ work each month. In Panel (b), the outcome variables are the cumulative number of stars,
scaled by the number of pushes, and the cumulative number of issues opened, scaled by the number of
stars. Post is a dummy that equals one if the time period is after July 2022. AI Exposure or Al are
dummy variables that equal one if the developer’s Al exposure score is in the fourth quartile. Senior
is a dummy that equals one if the developer’s tenure is above median. The total effects for senior
developers (sum of the coeffcients of the post treatment indicator and the interaction term) are
reported underneath. Standard errors are clustered at developer level. Significance: *, p < 0.1; ** p
< 0.05; ¥*** p < 0.01.

(a) Log Number of Stars and Issues Opened

Ln(1+Stars) Ln(1+Issues Opened)
(1) (2) 3) (4)
Post x AT Exposure 0.0473*** 0.0164 0.0211*** -0.0080
(4.91) (1.14) (2.89) (-0.70)
Post x Senior -0.04777** -0.0351***
(-5.24) (-4.59)
Post x AIxSenior 0.0488** 0.0461***
(2.54) (3.11)
Total Effect (Senior) 0.0652*** 0.0381***
(5.08) (4.02)
N 563,877 563,803 563,877 563,803
Adj. R2 0.5883 0.5885 0.6215 0.6216
Individual FE Y Y Y Y
Year-Month FE Y Y Y Y

(b) Scaled Number of Stars and Issues Opened

Stars Per Push Issues Opened Per Star
(1) (2) (3) (4)
Post x AT Exposure 0.0141 0.0001 -0.0287*** -0.0112
(1.46) (0.00) (-2.81) (-0.65)
Post x Senior -0.0167* 0.0244**
(-1.74) (2.43)
Post x AIx Senior 0.0222 -0.0268
(1.07) (-1.26)
Total Effect (Senior) 0.0222* -0.0381***
(1.92) (-2.98)
N 452,142 452,075 404,663 404,630
Adj. R2 0.9736 0.9736 0.9599 0.9599
Individual FE Y Y Y Y
Year-Month FE Y Y Y Y

95

Table 6. Hours Spent on Coding Activity of Firm-Owned Projects After Copilot Launch

This table reports regression results of equation 1 and equation 2. The outcome variables include the
cumulative ratio of core events occurring outside common hours, the cumulative ratio of core events
occurring on weekends, and the cumulative number of core events per hour. Core coding events are
defined in Section Internet Appendix A.1. Common hours are defined as hours during which a
developer completes events that constitute more than 5% of all events on a given weekday, based on
2020 activity records (with at least 100 events). Only activities related to firm-owned repositories are
considered. Post is a dummy that equals one if the time period is after July 2022. Al Exposure or
Al are dummy variables that equal one if the developer’s Al exposure score is in the fourth quartile.
Senior is a dummy that equals one if the developer’s tenure is above median. The total effects for
senior developers (sum of the coeffcients of the post treatment indicator and the interaction term) are
reported underneath. Standard errors are clustered at developer level. Significance: *, p < 0.1; ** p
< 0.05; *** p < 0.01.

Outside Common Hours Weekends Events Per Hour

(1) (2) (3) (4) (5) (6)

Postx AT Exposure 0.0041 0.0003 0.0012 -0.0006 0.0109** -0.0015
(1.58) (0.08) (1.06) (-0.36) (2.02) (-0.17)
Post x Senior 0.0002 0.0001 -0.0307***
(0.11) (0.07) (-5.54)
Post x AIx Senior 0.0059 0.0031 0.0190*
(1.12) (1.30) (1.70)
Total Effect (Senior) 0.0062* 0.0024 0.0176**
(1.91) (1.57) (2.55)
N 165,364 165,344 509,468 509,401 509,468 509,401
Adj. R2 0.8946 0.8946 0.8067 0.8067 0.9101 0.9101
Individual FE Y Y Y Y Y Y
Year-Month FE Y Y Y Y Y Y

96

Table 7. Firm-Owned Open-Source Innovation Activity After Copilot Launch

This table reports regression results of equation 1 and equation 2. In Columns (1)-(2), the outcome
variables are a dummy that equals one if a developer initiated at least one new firm-owned repository
(project) in a given quarter. In Column (3)-(4), the outcome variables are number of newly initiated
projects of a developer in a given quarter. Post is a dummy that equals one if the time period is after
the third quarter of 2022. AI Exposure or Al are dummy variables that equal one if the developer’s
AT exposure score is in the fourth quartile. Senior is a dummy that equals one if the developer’s
tenure is above median. The total effects for senior developers (sum of the coeffcients of the post
treatment indicator and the interaction term) are reported underneath. Standard errors are clustered
at developer level. Significance: *, p < 0.1; **, p < 0.05; *** p < 0.01.

Initiated Project # of Initiated Project
(1) (2) (3) (4)
Post x AT Exposure -0.0015 -0.0069 -0.0012 -0.0306
(-0.47) (-1.36) (-0.06) (-0.68)
Post xSenior -0.0033 -0.0151
(-1.13) (-0.63)
Post x AIxSenior 0.0088 0.0475
(1.36) (0.95)
Total Effect (Senior) 0.0018 0.0170
(0.45) (1.11)
N 191,182 191,157 191,182 191,157
Adj. R2 0.1682 0.1683 0.4300 0.4300
Individual FE Y Y Y Y
Firm-Year-Quarter FE Y Y Y Y

o7

Table 8. Value of Firm’s Open-Source Innovation After Copilot Launch

This table reports regression results of equation 4. In Columns (1)-(2), the outcome variables are the
natural logarithm of repository (project) value estimated based on stock-market reaction within three
days of the project’s public release. In Columns (3)-(4), the outcome variables are the natural
logarithm of one plus the number of forks received as of February 2024. In Columns (5)-(6), the
outcome variables are the natural logarithm of one plus the number of stars received as of February
2024. In Columns (7)-(8), the outcome variables are an LLM-based novelty measure. In Columns
(9)-(10), the outcome variables are a text-similarity-based novelty measure following Kelly et al.
(2021). See Emery et al. (2024) for methodology details for value estimation, repository topic
classification, and LLM-based novelty evaluation. Post is a dummy that equals one if the time period
is after July 2022. AI Exposure or Al are dummy variables that equals one if the AI exposure score of
at least one member of the developer team is in the fourth quartile. Senior is the share of developers
with tenure above median. Control variables include the natural logarithms of one plus cumulative
number of firm-owned repository, market capitalization, number of employees, and one plus value of
patent portfolio. I also control for return on assets, R&D expenditure as a share of assets, whether
R&D expenditure is missing, and project team size. All firm-year control variables are one-year lagged
and winsorized at 1% and 99% levels. See Table IA1 for variable descriptions and sources. Standard
errors are clustered at firm level. Significance: *, p < 0.1; ** p < 0.05; *** p < 0.01.

Ln(Repo Value) Ln(1+4Forks) Ln(1+Stars) Novelty (LLM) Novelty (Kelly)
(1) (2) (3) (4) (5) (6) (7) (8)) (10)
AT Exposure 0.0404*** 0.0263 -0.0377 -0.1709 -0.0071 -0.1451 -0.0143 -0.0208 -0.0553 -0.0812
(2.70) (0.67) (-045) (-1.46) (-0.05) (-0.81) (-0.82) (-0.84) (-1.62) (-1.45)
Postx Al Exposure -0.2262** 0.1310** 0.2108** 0.3071** 0.0616 0.1965 0.0197 0.0265* 0.0126 0.0717*
(241) (214) (259) (231) (0.39) (1.21) (1.18) (1.84) (0.35) (1.86)
Senior -0.0333 0.1657** 0.3640*** 0.0240*** 0.0263***
(-1.21) (2.09) (3.94) (3.43) (5.07)
Post x Senior 0.0535 -0.0457 -0.1750** -0.0104 -0.0046
(0.93) (-0.74) (-2.39) (-1.60) (-0.99)
AI Exposure x Senior 0.0302 0.2108** 0.2061 0.0082 0.0474
(0.52) (2.07) (1.33) (0.47) (1.15)
Post x AIx Senior -0.6414** -0.2346* -0.2958 -0.0107 -0.1044***
(-2.59) (-1.73) (-1.52) (-:0.62) (-2.64)
N 11,955 10,123 11,955 10,123 11,955 10,123 11,951 10,119 11,706 9,955
Adj. R2 0.8824 0.8847 0.2987 0.3078 0.3819 0.4012 0.3547 0.3550 0.2333 0.2535
Firm FE Y Y Y Y Y Y Y Y Y Y
Topic-Year-Month FE Y Y Y Y Y Y Y Y Y Y

o8

Table 9. Job Changes of Firm Developers on GitHub After Copilot Launch

This table reports regression results of equation 1 and 2 at the individual-year-quarter level. Panel (a)
examines the impact of GenAl on developers’ job changes. In Columns (1)-(2), the outcome variable
equals one if a developer starts a new job in a given quarter. In Columns (3)-(4), the outcome variable
is limited to internal job changes within the same firm. In Columns (5)-(6), the outcome variable is
limited to job changes outside the previous employers. Panel (b) explores heterogeneous effects on
promotion and demotion among junior innovators (i.e., GitHub project initiators) and junior
non-innovators. This panel focuses on junior developers with below-median tenure on GitHub.
Columns (2)-(3) and (5)-(6) divide the junior subsample into those moving to public and private
firms. The outcome variables are either Promotion, which equals one if the new job position offers
higher total compensation or higher seniority, or Demotion if the new job position has lower total
compensation and a lower seniority rank. Post is a dummy that equals one if the time period is after
2022Q3. Al Exposure is a dummy variable that equals one if the language’s Al exposure score is in
the fourth quartile. Senior is a dummy that equals one if the developer’s tenure is above median.
Innovator is a dummy that equals one if the developer has initiated at least one project prior to
2022Q3. Control variables include seniority and the natural log of total compensation of the
developer’s previous position. Origin-Destination-Time fixed effects control for time-varying shocks
within origin-destination country pairs. Standard errors are clustered at the developer level.
Significance: *, p < 0.1; ** p < 0.05; *** p < 0.01.

(a) Job Change After Copilot Launch

Job Change Internal Job Change Across-Firm Job Change
(1) (2) (3) (4) (5) (6)
Post x AT Exposure 0.0045 0.0152*** -0.0027 0.0008 0.0071*** 0.0144***
(1.29) (2.61) (-1.14) (0.19) (2.71) (3.28)
Post x Senior 0.0029 -0.0007 0.0036
(0.77) (-0.29) (1.27)
Post x Al x Senior -0.0170** -0.0055 -0.0115**
(-2.41) (-1.14) (-2.14)
Total Effect (Senior) -0.0019 -0.0047 0.0029
(-0.44) (-1.64) (0.90)
N 113,501 113,501 113,501 113,501 113,501 113,501
Adj. R2 0.1382 0.1382 0.0447 0.0447 0.1871 0.1871
Individual FE Y Y Y Y Y Y
Firm-Time FE Y Y Y Y Y Y
Origin-Destination-Time FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y

99

(b) Across-Firm Promotion and Demotion of Junior Developers

Promotion Demotion

To Firms All Public Private All Public Private
(1) (2) (3) (4) (5) (6)

Post x AT Exposure 0.0038 0.0034 0.0005 0.0059** 0.0054** 0.0005

(0.68) (0.81) (0.12) (2.14) (2.37) (0.31)

Post xInnovator -0.0045 -0.0033 -0.0012 -0.0006 0.0007 -0.0013

(-1.28) (-1.26) (-0.48) (-0.30) (0.51) (-0.86)

Post x Al xInnovator 0.0062 -0.0003 0.0065 -0.0041 -0.0060** 0.0019

(0.86) (-0.06) (1.27) (-1.05) (-2.16) (0.71)

Total Effect (Innovator) 0.0100** 0.0031 0.0069** 0.0018 -0.0006 0.0024

(2.12) (0.92) (2.04) (0.63) (-0.38) (1.07)

N 38,534 38,534 38,534 38,534 38,534 38,534

Adj. R2 0.2150 0.1970 0.2112 0.1339 0.0801 0.1657
Individual FE Y Y Y Y Y Y
Firm-Time FE Y Y Y Y Y Y
Origin-Destination-Time FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y

60

Table 10. Cumulative Abnormal Returns After Copilot Launch

This table reports event study results after Copilot launch. Panel (a) uses the sample of firms in the
information technology industry (with 3-digit SIC code as 737) that are active on the GitHub
platform before the event day (with cumulative number of pushes higher than 100). Panel (b) splits
the sample based on firms’ innovativeness. Specifically, firms with R&D expenditure as a share of
total assets higher than the median are classified as innovative firms. AI Exposure is calculated based
on languages used in firm-owned projects. Aligned is a dummy that equals to one if an innovative
firm has an average employees’ tenure in the first quartile or or if a non-innovative firm has an average
employees’ tenure in the fourth quartile. Control variables include the natural logarithms of market
capitalization and cumulative number of pushes, revenue growth, profitability, R&D expenditure as a
share of assets, and whether R&D expenditure is missing. All firm-year control variables are one-year
lagged and winsorized at 1% and 99% levels. See Table IA1 for variable descriptions and sources.
Robust standard errors are used. Significance: *, p < 0.1; ** p < 0.05; *** p < 0.01.

(a) Information Technology Firms Active on GitHub

Day 0 AR 10-Day CAR 20-Day CAR 30-Day CAR
(1) (2) (3) (4)
AT Exposure 0.0064 -4.9531* -8.9922%*** -8.5442*
(0.01) (-1.94) (-2.98) (-1.94)
Aligned 1.2194 -7.2286** -9.0036** -8.7373*
(1.38) (-2.53) (-2.28) (-1.82)
AT Exposurex Aligned -2.6533* 11.3800** 16.3546** 16.2955**
(-1.67) (2.27) (2.50) (1.97)
N 191 191 191 191
Adj. R2 0.0540 0.0646 0.1655 0.1522

(b) Non-Innovative vs. Innovative Tech Firms

Non-Innovative Firms Innovative Firms

10-Day CAR 20-Day CAR 30-Day CAR 10-Day CAR 20-Day CAR 30-Day CAR
(1) (2) (3) (4) (5) (6)

AT Exposure -5.8487 -9.4358"* -8.2365 -4.3185 -8.4402 -8.1433
(-1.58) (-2.62) (-1.24) (-1.10) (-1.64) (-1.30)
Aligned -10.1184* -13.3066"* -11.4851 -3.5804 -2.5088 -4.5615
(-2.09) (-2.22) (-1.64) (-1.03) (-0.47) (-0.58)
AI Exposurex Aligned 16.6087** 21.9545"* 19.9154 5.3011 7.8709 9.9377
(2.06) (2.17) (1.58) (0.87) (0.94) (0.80)
N 96 96 96 95 95 95
Adj. R2 0.0869 0.1948 0.1596 0.0288 0.0613 0.0463

61

Appendix A Theoretical Appendix

Combining the multitask signaling framework in Holmstrém and Milgrom (1991) and
career concern dynamics in Holmstrom (1999), I develop a multitask signaling model to
conceptualize how GenAl affects a developer’s incentives to engage in different tasks.
The model features a career-concerned developer who allocates effort between two tasks:
an Al-assisted task (e.g., coding) and a non-assisted human-centric one (e.g., creativity).
While GenAl improves the developer’s immediate productivity, it also adds noise to the
signal of the developer’s underlying talent sent to the labor market. The developer,
mindful of their long-term reputation, needs to balance the productivity gains from

using GenAl against the potential dilution of their reputational capital.

Appendix A.1 Setup

The developer, tasks, and effort. Consider a developer endowed with a persistent
but unobservable talent #, which is drawn from a normal distribution with a mean of
zero and variance o3, i.e., § ~ N(0,03). The precision of this prior belief is denoted by
79 = 1/03. This precision captures career concerns as in Holmstrom (1999): when the
prior is noisy (low 7y), the market updates heavily on observed signals, creating strong
reputational incentives for junior developers; when the prior is precise (high 75), new
signals barely move beliefs, so seniors face weak reputational incentives.

The developer chooses an effort vector (e, es) € R? to allocate between two produc-
tive tasks. Task 1 represents an Al-assisted activity like coding, while task 2 represents
a purely human-driven activity like creative problem-solving or innovation. Exerting

effort is costly, described by the convex cost function:

1
C(ey,ep) = 5(6% + €2 + 2veres).

I take the parameter v € (0,1) which implies efforts in the two tasks are substitutes.

Output signals. The two tasks yield distinct, observable outputs, (y1,¥2), which serve
as public signals of the developer’s performance. The output from the Al-assisted task,
Y1, is a composite of the developer’s contribution and GenAI’s input. I model this as
a combination governed by an exogenous parameter A € [0, 1], which represents the

intensity of GenAl exposure:

62

yi=((L=XNer+6)+ Abger +9g) +e1, by > 1.

N J/ NS o

' Vv
Human contribution = GenAl contribution

Here, b, > 1 represents the productivity multiplier from GenAl (1 — \) is the share
of pure human effort in the final output. The AI’s contribution increases the marginal
return to effort but also introduces Al-specific noise, g.

The output from the second task, y,, depends solely on the developer’s effort and

talent:

Yo = €g + 0 + &o.

I assume g, €1, and 5 are drawn independently from normal distributions with zero
means and respective variances 03, o2, and o2. Furthermore, I assume 6, g,¢;, and &,

are mutually independent.

Information structure and compensation. The model features two periods, rep-
resenting the short-term compensation and long-term labor market outcomes. In the
current period, the developer works for an employer who has full information, observ-
ing the developer’s talent 6 and effort choices (e1,e3). The labor market is competi-

tive, so the current wage, B, is equal to the developer’s expected total outputs. Let
AN =14+ Ab, —1) > 1:

B(ey,e2;0) = Elyr1 + 120, e1, 2] = A(N)er + e + 26.

In the future period, however, the wider market cannot observe 6 or (eq, e5). Future
employers must form beliefs about the developer’s talent based only on the observable
output signals (y1,12). Let 8 = E[fyy, y2] denote the posterior belief about the devel-
oper’s talent held by future employers. The developer’s future compensation will be

based on this market perception of their talent W (6) = 0.

Developer’s objective. The developer is risk-neutral and career-concerned. They
choose their effort levels (e, e;) to maximize their total expected utility, which is the
sum of their current wage and the value of their future reputation, net of effort costs.

The developer’s optimization problem is:

max E[U(e1, e2)|0] = Bley, es;0) + E[A]0, €1, €3] — C(e1, €2).

€1,€2

63

Here, the developer places equal weight on current and future income. The intensity
of career concerns is determined endogenously by the precision of the prior 7y, which

dictates how responsive the market’s expectation 6 is to performance.

Appendix A.2 Analysis

Market’s inference process. To solve the developer’s problem, I start with the
market’s inference process. The market observes outputs (yi,%2) but not talent 6 or
efforts (e1,e2). In a rational expectations equilibrium, the market correctly anticipates
the developer’s equilibrium effort choices, denoted (e}, e}). Hence, observing outputs is

equivalent to observing purged signals as following:
xy =y — AN)e] =0+ A\g + 1,
To =Yg — €5 =0 + 9.

The informational content of the signals about € is captured by the precision (inverse
variance) of their noise components. Let 7y be the precision of the prior belief about

talent, and let the signal precisions be:

1
)\ = —

1
7'2 —= —O_g

Where 67 := Var(Ag + £1) = N0 + of.
The market’s posterior belief 6 is a linear combination of the prior and the signals
for Bayes-updating process with normal random variables. Let a;(\) and ay(A) be the

information weights the market places on each signal for inferring talent:

_ m1(A)
061()\) - To + ’7'1()\) + T2
as()\) = Lk

To + 11(A) + 7

The posterior mean is therefore § = a;(A\)z; 4+ az(\)zs. Because the prior expectation
of 0 is zero, it does not appear in the posterior mean. The magnitude of these weights
depends critically on 74: for juniors (low 74), the weights oy, ay are large; for seniors

(high 74), the weights approach zero.

64

Equilibrium effort allocation. The developer anticipates this updating rule. Their

expected future reputation, conditional on their talent and effort choices, is:

E[0]6, €1, e5] = E [an (M) (1 — A(N)e) + aa(N)(y2 — €5)|6, ex, €]
=a1(A)(AN)er +0 — A(N)el) + aa(N) (e + 0 — €3)
=a1(N)AN)(eg —e]) + as(N)(e2 — €5) + (a1 (M) + az(N))6.

The developer’s objective function can now be written as:

max Uley,ea) = A(N)er + ea + 260 + [ag (M) A(N)(e1 — e]) + aa(N) (e — €3)]

€1,€2

F (@0 + a(N)6] — 5(6 + &+ 2eres). (1)

The first-order conditions (FOCs), setting e; = e} in equilibrium, form a system of two

linear equations:

oUu
—: AN+ a1 (AN)AN) —eg —vea =0,
861

2)
oU (
8—62: 1+ as(A) — ey —ve; = 0.

Solving the system of linear equations (2) yields the unique equilibrium effort levels
(€1, €3).

i = T (AN +)] = (1 + aa(W)}
6 = g {1+ s(3) — YA+ en (V)]
(1—=72)
The adoption of GenAl, parameterized by A, influences effort allocation through two
primary channels:

1. Productivity gain: An increase in A raises the marginal return to effort in task 1,
A(X) =1+ A(by — 1), since b, > 1. This effect, ceteris paribus, incentivizes the
developer to exert more effort in the Al-assisted task.

2. Signal dilution: An increase in A introduces more Al-specific noise (A*c;) into the
output y;. This reduces the precision of the signal from task 1, 74(\), which in
turn lowers the informational weight «4(\) the market places on that signal. The
market attributes a smaller portion of y; to the developer’s talent. This lowers the
marginal reputational incentive, a;(\), to exert effort in task 1.

The net effect of GenAl on effort in task 1 (e]) is therefore ambiguous. The pro-

65

ductivity effect encourages more e, while the signal-diluting effect discourages it. The
developer faces a trade-off between boosting current output and maintaining the clarity
of their talent signal for future career prospects.

For task 2, an increase in A makes it a relatively more attractive signaling instrument.
As aq () falls, the relative information weight of the signal from task 2 (as())) increases.
This can lead the developer to shift effort away from the Al-assisted task and towards the
non-assisted task. However, the total effect also depends on the multitasking spillover

between the two tasks. I derive the comparative statics in more detail in the next section.

Appendix A.3 Comparative Statics

[now analyze how the developer’s equilibrium effort allocation changes with the intensity
of GenAl adoption, A, and how it depends on the developer’s career stage (prior precision
7p). This is the central question of the model: does the availability of GenAl tools
incentivize developers to work more on Al-assisted tasks, or does it cause them to shift
focus to purely human-centric tasks to better signal their talent? To answer this, I

differentiate the equilibrium efforts (e7, e3) with respect to .

Appendix A.3.1 The Impact of GenAlI Adoption on Effort Allocation

Effect on signal precision and posterior weights. One of the mechanisms through
which \ affects effort is by blurring the informational content of the developer’s output.
An increase in Al adoption A introduces additional Al-specific noise,)\203, into the
coding output y;. This directly reduces the precision of the signal from task 1, 71 (A):

or

a—; = —2\a%(r(N)? < 0.
This change in precision, in turn, affects the market’s posterior weights. Let the total
precision T'(A) := 71(A\) + 72 + 7y, which also decreases with A (as 7"(\) = 7{())). The

derivatives of the weights are:

0 /7 nT —nT (T —-71) 7(m2+T)
vy 9 (MY_ T _ T _ T
aj(A) = B\ (T) T2 T2 T2 < 0,
0 [Ty T’ ToT|
/ — — — = —_—_—— - 1
) =51 (2) =T = -2 >0

The intuition is simple. As GenAl makes the coding signal noisier, the market rationally

reduces the weight it places on this signal for inferring talent («/j(A) < 0) and increases

66

the relative weight on the stable creativity signal (a(A) > 0).

The effect on coding effort (ej). With these intermediate results, I differentiate

the equilibrium coding effort e] with respect to \:

O\ >

i ﬁ{ B=Di+a(] + AW a5\
(i) Direct Productivity Effect (i) Direct Signaling Effect (iii) Multitasking Spillover
(+)) ()ify>0

The first-order differentiation suggests three distinct channels through which GenAl
influences incentives.

1. Direct productivity effect: Since the Al tool is beneficial (b, > 1), an increase in A
directly raises the marginal product of coding effort, as A’(\) = b, — 1 > 0. This
provides a direct, positive incentive to increase ey, an effect that is amplified by
the existing career-concern motive (1 + a;(A)).

2. Direct signaling effect: As A increases, the coding output y; becomes a noisier signal
of the developer’s talent. The market responds by placing less informational weight
on it when forming beliefs about ability (a}(A) < 0). This lowers the marginal
reputational return to coding effort, discouraging investment in e;.

3. Multitasking spillover: As the market relies more heavily on the creativity signal
Y2 (ah(X) > 0), the marginal reputational incentive to perform task 2 increases.
Since the efforts in these two tasks are substitutes (7 > 0), the increased incentive
for task 2 makes task 1 relatively more costly from an opportunity cost perspective,
thereby reducing effort e;. This spillover effect is negative.

The overall effect of GenAl adoption on coding effort is ambiguous. The productivity
effect encourages more ey, while the signal-diluting effect discourages it. The developer
faces a trade-off between boosting current output and maintaining the clarity of their
talent signal for future career prospects. The positive productivity effect is more likely
to dominate when the productivity gain from Al (b, —1) is large or when career concerns
are weak (high 7p). On the other hand, the negative signaling and spillover effects are
more likely to dominate when career concerns are strong (low 7y), when the coding
signal’s precision degrades quickly with GenAl use (i.e., |a}())] is large), and when the

tasks are strong substitutes (7 is large).

The effect on creativity effort (). I now turn to the non-assisted creativity task,

*

e5. Differentiating its equilibrium level with respect to A mirrors the analysis for ej,

67

resulting in a combination of a direct re-weighting effect and two spillover effects from

the coding task:

% =7 _172{ w :’y(bg — 11[1 + ozl(A)l \—fyA(f\,)o/l()\)J
(i) Signal Re-weighting (i) Productivity Spillover (iii) Signaling Spillover
(+) (-)ify>0 (+)ify>0
These three effects are as follows:

1. Signal re-weighting: As Al makes the coding signal y; noisier, the market rationally
increases the weight on the creativity signal ys to infer ability (a4(A) > 0). This
directly strengthens the marginal reputational return to creativity effort, providing
a direct, positive incentive to increase es.

2. Productivity spillover: The increased productivity of coding effort due to Al af-
fects the decision for e, through the structure of the cost function. As efforts are
substitutes (7 > 0), the stronger incentive to perform task 1 (because of its higher
marginal product) raises the opportunity cost of performing task 2, thus pulling
effort away from it. This effect is negative.

3. Signaling spillover: The dilution of the signaling value of e; also creates a spillover
through the cost function structure. The reduced reputational incentive for task 1
(driven by o) < 0) makes task 2 a relatively more attractive channel for signaling
talent. With substituting efforts (7 > 0), this incentivizes a reallocation of effort
from task 1 to task 2, creating a positive effect on ej.

The net effect on creativity effort e; is generally ambiguous, but the analysis points
towards a strategic reallocation of effort. It is likely that developers with strong signaling
motives will increase their effort in the non-assisted creative task. This effort substitution

represents a strategic shift towards tasks which remain clear and valuable signals.

Appendix A.3.2 The Role of Career Stage (Prior Precision)

The comparative statics in the previous section show that the developer’s response to
increased GenAl adoption is ambiguous. In this section, I show that the precision of the

prior belief about talent, 7y, is a key factor that resolves this ambiguity. By analyzing

*

how the sensitivity of effort to A (i.e., aai)f) changes with 7y, one can identify thresholds

that determine the direction of the developer’s effort reallocation.

68

Impact on coding effort (e}). To analyze the net effect on the Al-assisted task, I
et

5y as a function of 7p:

first express the derivative

de; 1 / /
A 1-2 ((bg — 1) + [(by — D (A) + ANy (A) — 'yaQ()\)]>,

The constant term, (b, — 1), is always positive, representing the direct productivity gain.
The term in the brackets captures all reputational incentives, which depend on 7. Its
sign can be assumed to be negative when the signal dilution effect is strong, as the
negative direct signaling effect and multitasking spillover are typically stronger than the
reputational component of the productivity effect.

Crucially, the magnitude of this reputational term is strictly decreasing in 7y. As the
prior becomes more precise (higher 74), the market places less weight on current signals
(o = 0 and o/ — 0), causing the reputational motives to vanish.

While the exact threshold 7; is defined by a non-linear condition (since 7y appears in
the denominator of the updating weights), the existence and uniqueness of this threshold
are guaranteed by the monotonicity of the reputational incentives. By the Intermediate
Value Theorem, there exists a unique level of seniority 7, such that for any 75 > 75
(seniors), the productivity gain dominates (% > 0), and for any 7y < 7; (juniors), the

signal dilution effect dominates (% < 0).

Impact on creativity effort (e). A similar analysis applies to the creativity effort.

The derivative is:

des 1
oX 1 —~2

<—’Y(bg — 1) + [a5(A) = 7(bg — Dar(A) — VA(A)O/l(A)])

Here, the constant term is negative, indicating that the productivity spillover pulls effort
away from the creative task. The reputational term in the brackets, however, is generally
positive. It is driven by the signal re-weighting effect and the positive signaling spillover,
which together tend to outweigh the negative component from the productivity spillover.

Since the positive reputational incentives vanish as 7y — oo, the derivative is a
strictly decreasing function of 7. This implies a unique threshold 7,* exists. When the
prior precision is high (7y > 7;*), the negative productivity spillover dominates, causing
developers to reduce their creativity effort (% < 0). However, when the prior precision
is low (19 < 75%), the signaling effects dominate. Developers strategically increase their

effort in the creative task (% > 0), as it remains a clear signal of their talent.

69

In summary, the precision of the prior is the critical factor governing the developer’s
strategy. GenAl induces a polarization in behavior based on career stage: seniors adopt
it to boost output, while juniors shy away from it (or shift focus to human-centric tasks)

to preserve their reputation.

70

Internet Appendix A
Internet Appendix A.1 Skill-Based GitHub Activity Classification

Internet Appendix A.1.1 Prompt Used With GPT-4 Model in April 2024

Suppose you are a programmer who is active on GitHub platform. Define what may be
job-specific core skills and what may be transferable general skills.

For the following GitHub events, classify them into three categories: job-specific core
skills, transferable general skills, mixture of core and general skills, and others. Each
event should be uniquely assigned to only one category that is the most relevant.

List of GitHub events: CommitCommentEvent, CreateEvent, DeleteEvent, ForkEvent,
GollumEvent, IssueCommentEvent, IssuesEvent, MemberEvent, PublicEvent, PullRe-
questEvent, PullRequestReviewEvent, PullRequestReviewCommentEvent, PullRequestRe-
viewThreadEvent, PushEvent, ReleaseEvent, SponsorshipEvent, WatchEvent

Internet Appendix A.1.2 Classification Details

Job-specific core skills

e PushEvent: Relates to pushing code to a repository, a basic GitHub operation.

e PullRequestEvent: Central to managing code contributions and integrations.

e PullRequestReviewEvent: Linked to the code review process within pull requests.

General skills

o [ssueCommentEvent: Involves communication and discussion over issues.

e [ssuesEvent: Engages problem-solving, managing bug reports, and feature requests

Mixture of core and general skills

e CommitCommentEvent: Tied to code reviews, requiring technical insights as well
as communication skills.

e PullRequestReviewCommentEvent: Specific to commenting on code reviews in
pull requests, requiring technical understanding and collaborative feedback.

e PullRequestReviewThreadEvent: Involves discussions around specific parts of a
pull request, blending code-specific knowledge with teamwork and communication.

Nonskill related

e ForkEvent: Represents a user’s engagement with and branching off from an existing
repository to potentially contribute or alter separately.

e GollumEvent: Pertains to the management of Wiki pages on a GitHub repository.

e SponsorshipEvent: Linked to the GitHub Sponsors program, reflecting community

support and funding mechanisms.

e WatchEvent: Involves starring a repository, indicating interest or following up-
dates, more about user engagement than a direct skill.
Others
There are other related events I define as core/general in a broader sense. But they
are not used in the analysis.
e Broader core activities
— CreateEvent: Involves creating branches or tags, fundamental to version con-
trol.
— DeleteEvent: Involves deleting branches or tags, another version control as-
pect.
— ReleaseEvent: Pertains to the release of new software versions, important in
software lifecycle management.
e Broader general activities
— PublicEvent: While more of an administrative function, it also involves decision-
making and policy setting regarding project visibility. (Initiate project)
— MemberEvent: Related to teamwork and the management of repository col-

laborators.

Internet Appendix A.2 Name-Based Gender Inference

Internet Appendix A.2.1 Parameters for GPT Model Interaction via Ope-
nAl’s API

e model: gpt-3.5-turbo

e temperature:

e system text: Process a list of names, extracting identifiable components and
infer demographic information. Return the findings in JSON format with fields
for original str, first_name, last_-name, company, type (with an inf type among
“user”, “organization” and “bot”, and score), gender (with an inf gender either
"female” or "male”, and score), race (with an inf_race and score), ethnicity (with
an inf_ethnicity and score), and country_of origin (with an inf origin and score).
Put 'NA’ for string subfields with no findings, and 0 for scores with no findings.
Scores are for the confidence level of the inference and range from 0 to 1 rounded
to two decimals. Score closer to 1 means the inference is certain while score closer
to 0 means the inference is uncertain. The output is with 'results’ as the key.

e user_text: ['namel’, 'name2’, 'name3’,...|

Internet Appendix A.2.2 Example: Name-Based Inference Response

The JSON response example for a person named Bob Chen is:

{

"results”: |

{

“original_str”: "Bob Chen”,
"first_name”: "Bob”,
"last _name”: ”Chen” ,

"company”: "NA” |

"type”: {
"inf_type”: "user”,
"score”: 0.95

}7

7gender”: {
"inf_gender”: "male”,

"score”: 0.85

}s

"race”: {
“inf_race”: 7 Asian”
"score”: 0.80

}s

Zethnicity”: {
“inf_ethnicity”: "NA”,

"score”: 0

}7

"country_of_origin”: {
“inf_origin”: " United States”,
"score”: 0.75

Internet Appendix A.3 Prompt for Language AI Usefulness Score With
GPT-4 in April 2024

For the following programming languages, assign a score between 0 and 1 for its exposure
to LLMs such as GitHub Copilot. Exposure is defined as to what extent are the GenAl
tools helpful for programmers using these languages to complete their daily tasks. If it
is not a programming language, return 'NA’ for the score. Return your result in JSON
format (language:score).

Language list: [languagel’, 'language2’; ..]

Internet Appendix A.4 Text-Similarity-Based Novelty Measure

This section describes the implementation of the text-similarity-based novelty measure
following Kelly et al. (2021). The measure quantifies how distinct a repository’s textual

representation is from prior repositories.

Internet Appendix A.4.1 Text Preprocessing

For each repository, I construct a textual representation by combining three sources:
(1) README file content, (2) repository description, and (3) topic tags. README
content is collected via the GitHub API and BigQuery public dataset. The combined
text undergoes the following preprocessing:

e Remove markdown formatting, HTML tags, code blocks, and URLs

e Tokenize using NLTK’s word tokenizer

e Convert to lowercase and remove English stopwords

e Build vocabulary from terms appearing in at least 5 documents

The final corpus contains 133,347 repositories with 49,338 unique vocabulary terms.

The mean token count per repository is 187 (median: 91).

Internet Appendix A.4.2 TF-BIDF Computation

Following Kelly et al. (2021), I compute term frequency—backward inverse document
frequency (TF-BIDF) vectors. For a document d created at time ¢, the weight for term
w is:

TF-BIDF,, 4 = TF,, 4 x BIDF,,;

where TF,, 4 is the normalized term frequency (count of w in d divided by document

length) and the backward IDF is:

N,
BIDF,,, = log (ﬁ)
w,t

Here, N, is the total number of documents created before period ¢, and DF,,; is the
number of prior documents containing term w. The backward specification ensures that
IDF weights are computed using only information available at the time of repository

creation.

Internet Appendix A.4.3 Novelty Score Calculation

For each repository, I compute backward similarity as the average cosine similarity to

the ten most similar prior repositories:

Backward Similarity,; = % Z cos(vg, vj)
j€Top-10

where v, is the TF-BIDF vector for the target repository and v; are vectors for prior
repositories. The comparison pool consists of repositories created in the prior 12 months
with the same primary programming language. When fewer than 10 same-language
prior repositories exist, I fall back to comparing against all prior repositories regardless
of language. This language-based comparison parallels Kelly et al.’s within-technology-
class approach for patents.

The novelty score is defined as:

Novelty, = 1 — Backward Similarity,

Higher values indicate greater textual distinctiveness from prior work.

Internet Appendix A.4.4 Discussion on Methodology Choices

Several design choices adapt the Kelly et al. (2021)’s framework from patents to open-
source repositories:

Top-10 aggregation versus all prior documents. Kelly et al. (2021) compute backward
similarity as the mean cosine similarity to all prior patents within the same technology
class. For GitHub repositories, most prior projects are entirely unrelated. They address
different domains, use cases, and technical problems, resulting in near-zero similarity.
Computing the mean across all priors yields novelty scores clustered near one with

minimal variation. Restricting to the ten most similar prior repositories focuses on the

relevant comparison set and produces a more discriminating measure (standard deviation
of 0.19 versus 0.01 when using all priors).

12-month backward window. Kelly et al. (2021) employ various backward windows
depending on the analysis horizon. I use 12 months to reflect the faster pace of software
development relative to patenting, where the relevant “prior art” consists of recent rather
than historical projects.

Same-language comparison pool. Comparing repositories within the same primary
programming language parallels Kelly et al. (2021)’s within-technology-class approach
for patents. Programming languages define distinct technical ecosystems with different
conventions, libraries, and typical project structures. Cross-language comparisons would
conflate genuine novelty with differences in language-specific boilerplate (e.g., Python
versus Java package structures).

Text sources. README files, repository descriptions, and topic tags serve as the
natural analog to patent abstracts and claims. These fields describe what the project
does and its intended purpose, capturing the conceptual content relevant for novelty

assessment.

Internet Appendix A.4.5 Summary Statistics

The resulting novelty measure has mean 0.76 and standard deviation 0.19. Approxi-
mately 85% of repositories are compared against same-language prior work, with the
remaining 15% using the all-language fallback (primarily repositories in rare program-
ming languages).

The correlation between this text-similarity measure and the LLM-based originality
score is p = 0.23 (p < 0.0001), indicating that the two measures capture related but dis-
tinct aspects of novelty: the text-similarity approach emphasizes lexical distinctiveness
of repository descriptions, while the LLM-based measure captures conceptual originality

as assessed by a language model.

Log (1+number of stars) Log (1+number of issues opened)

15 | .06 |
I |
R | J 04 |
I |
05 :{} }}}{{}}}l 02 :]r Ll
0(:4194) —{—%%%—{—F— %—L ——————————— 0(2717) ‘}\ %‘}%‘f‘ ‘}‘}— TATCTT1OT
I |
7+6-5-4-3-2-101 23 456 7 8 910111213+ 7+6-5-4-3-2-10123 456 7 8 9 10111213+
Months from Copilot launch Months from Copilot launch
Log (cumulative number of stars per push) Log (cumulative number of issues opened per star)

o E 0(-.91: —H-ii_i_i SRS S EE S M.
oot HHEL T

-.02
0 -1

—T T T T T T T T T T T T T T
123456 7 8 910111213+ -7+-6 -5 -4 -3 -2 - 10123456 7 8 9 10111213+
Months from Copilot launch Months from Copilot launch

Figure TA1. Quality Change After Copilot Launch

This figure plots coefficients of the event study specification described in equation 3 with 95%
confidence intervals. The outcome variables are: the In(1 + x) transformations of the number of stars
and issues opened that are associated with developers’ work each month; the cumulative number of
stars, scaled by the number of pushes, and the cumulative number of issues opened, scaled by the
number of stars. Standard errors are clustered at developer level.

Table IA1. Variable Definitions

Variable Description Source

10/20/30-day Cu- Cumulative abnormal return over 10/20/30 days CRSP

mulative Abnormal

Return

AT Exposure Dummy that equals one if the AI exposure score of the GPT-4 and au-
developer (0-1) is in the fourth quartile thor’s calculation

AT Exposure Score The Al exposure score of a programming language GPT-4

Abnormal Return The difference between the actual return and the expected CRSP
return, as estimated by the Fama-French 3-factor model
using the Nasdaq 100 index for market return

Across-Firm Demo- Dummy that equals one if a developer is demoted, either Revelio

tion by compensation or by seniority, across firms in a given
quarter

Across-Firm Job Dummy that equals one if a developer changes jobs across Revelio

Change firms in a given quarter

Across-Firm Pro- Dummy that equals one if a developer is promoted, either Revelio

motion by compensation or by seniority, across firms in a given
quarter

Aligned Dummy that equals to one if an innovative rm has an Compustat
average employees’ tenure in the rst quartile or or if a
non-innovative rm has an average employees’ tenure in the
fourth quartile

Core Event Number of core-skill related events in a given month/quar- GHArchive
ter

Cumulative Nrepo ~ Cumulative number of repositories released by a firm prior GHArchive
to month t

Employees Number of employees in the firm Compustat

Firm AI Exposure = Dummy that equals one if the Al exposure score of the firm GPT-4 and au-
is in the fourth quartile thor’s calculation

Foreign Revenue Share of revenue from foreign operations Compustat

Share

Forks Number of forks of a repository as of February 2024 GitHub API

General Event Number of general-skill related events in a given mon- GHArchive
th/quarter

Has Core Event Dummy that equals one if a developer has at least one core- GHArchive
skill related event in a given month

Has General Event Dummy that equals one if a developer has at least one GHArchive
general-skill related event in a given month

Has Mixed Event Dummy that equals one if a developer has at least one GHArchive
mixed-skill related event in a given month

Initiated Project Indicator if a developer is among the innovator team of a GHArchive
new project in a given quarter

Initiator N Number of developers in the innovator team of a new GHArchive
project

Innovative Firm Dummy that equals one if the firm’s R&D expenditure as Compustat
a share of total assets is higher than the median

Innovator Dummy that equals one if the developer has initiated at GHArchive

least one project prior to 2022Q3

Continued

Variable

Description

Source

Innovator AI Expo-
sure

Interest Expense /
Total Assets
Internal
Change
Issues Opened

Job

Issues Opened Per
Star

Job Change
Language Share

Leverage
Main Language

Market Capitaliza-
tion

Mixed Event

Novelty (LLM)

Novelty (Kelly)

Number of Cumula-
tive Pushes

Number of Initiated
Projects

Patent Portfolio
Value

Post

Profitability

R&D Expenditure
as a Share of Assets
R&D Missing

Dummy that equals to one if the AI exposure score of at
least one member of the innovator team is in the fourth
quartile

Interest expense divided by total assets

Dummy that equals one if a developer changes jobs within
the same firm in a given quarter

Number of issues opened that are associated with a devel-
oper’s work in a given month

Cumulative number of issues opened divided by the cumu-
lative number of stars received

Dummy that equals one if a developer changes jobs in a
given quarter

The share of a given programming language used by a de-
veloper before July 2022

Total debt divided by total assets

The main programming language used by a develope before
July 2022

Share price times the number of shares outstanding

Number of mixed-skill related events in a given mon-
th/quarter

An LLM-based novelty score of the repository between 0
and 1 inferred from repository information. The score mea-
sures how novel or groundbreaking a repository is compared
to existing solutions, focusing on whether it introduces new
ideas, techniques, or approaches

A text-similarity-based novelty score following Kelly et al.
(2021). Computed as one minus the average cosine similar-
ity of a repository’s TF-BIDF vector to the ten most similar
repositories created in the prior 12 months within the same
programming language. Higher values indicate more novel
repositories

Cumulative number of pushes by a firm before July 2022

Number of projects initiated by a developer in a given quar-
ter

The total estimated economic value of the patents owned
by the firm using stock market returns around the patent
grant date

Dummy that equals one if the time period is or after July
2022 or the third quarter of 2022

Pre-tax income divided by total assets

R&D expenses divided by lagged total assets

Dummy that equals one if R&D expense is missing

GPT-4 and au-
thor’s calculation

Compustat
Revelio
GHArchive
GHArchive
Revelio
GHArchive,
GitHub API
Compustat
GHArchive,
GitHub API
CRSP
GHArchive

GPT-40

GitHub API, Big-
Query

GHArchive
GHArchive

Kogan et al. (2017)

Compustat
Compustat

Compustat

Continued

Variable Description Source
Repo Value The estimated private value of the repository in 2023 USD Author’s calcu-
estimated by using stock market returns around the release lation based on
date of the repository Emery et al. (2024)
Repos With Core Number of repositories with core-skill related events in a GHArchive
Event given month
Repos With Gen- Number of repositories with general-skill related events in GHArchive
eral Event a given month
Repos With Mixed Number of repositories with mixed-skill related events in a GHArchive
Event given month
Return on Assets Net income divided by lagged total assets Compustat
Revenue Growth The growth rate of revenue Compustat
Senior Dummy that equals one if the developer’s tenure is in the GitHub API
fourth quartile
Seniority Seniority rank of the job position assigned by Revelio (1-7) Revelio
Stars Number of stars received by a repository as of February GitHub API
2024
Stars Per Push Cumulative number of stars received by a repository di- GHArchive
vided by the cumulative number of pushes
Total Compensa- Total yearly compensation in USD of a job position pre- Revelio
tion dicted by Revelio
Work Completed Cumulative ratio of core events occurring during weekends GHArchive
Duting Weekends (et unber f e sents duns eckencs,
Work Completed Cumulative ratio of core events occurring outside common GHArchive
Outside Common hours (cumulative numb'er of core events outside commun hoursi.t)
cumulative total number of core events; ¢
Hours
Work Completed Cumulative number of core events per hour GHArchive
Per Hour (cumulative total number of core events; ¢)

cumulative total number of hours; ;

10

Table IA2. Summary Statistics of GitHub Firms by GenAlI Exposure (Jan2021-Jun2022)

This table reports summary statistics of GitHub firms’ characteristics before GitHub Copilot’s official
launch, from January 2021 to June 2022. The analysis includes only firms with more than 10
developer-months during this period. High AI Exposure is a dummy variable that equals one if the
average Al exposure score of developers affiliated with a given firm falls in the fourth quartile. A
developer has high AT exposure if their Al exposure score ranks in the fourth quartile among all
developers. Senior developers are individuals whose GitHub platform tenure is above the median. See
Table IA1 for variable descriptions.

High AI Exposure Low AI Exposure

Mean Median SD N Mean Median SD N
Number of developer-months 100.58 36.00 209.96 168 691.60 79.00 3,771.73 504
AT exposure score 0.91 0.90 0.04 168 0.77 0.80 0.09 504
Developer with high AT exposure 0.62 0.66 0.36 168 0.14 0.07 0.18 504
Senior developer 0.63 0.70 0.36 168 0.61 0.65 0.30 504
Market capitalization 24985.43 5137.73 57,771.04 136 61955.95 6559.70 222426.87 393
Percentage revenue growth 19.86 16.86 20.27 137 18.58 17.87 21.05 410
Profitability -2.42 0.91 18.44 144 -2.22 1.17 23.24 434
Foreign revenue share 0.41 0.37 0.32 124 0.45 0.43 0.31 379
Leverage 0.25 0.21 0.21 144 0.26 0.23 0.22 432
Interest expense / total assets 0.01 0.01 0.01 138 0.01 0.01 0.01 419
R&D / total assets 0.06 0.04 0.08 147 0.07 0.06 0.09 442

11

Table IA3. Coding Activity And Pre-Treatment Language Share Exposure

This table reports regression results of equation 2 at the individual-language level. The outcome
variable is the In(1 + z) transformations of the number of pushes that are associated with developers
work in a given language each month. Columns (1) and (3) represent results for the main language a
developer uses, while columns (2) and (4) include all other languages a developer uses prior to GenAl.
Post is a dummy that equals one if the time period is after July 2022. Al Exposure is a dummy
variable that equals one if the language’s Al exposure score is in the fourth quartile. AI Score is the
raw Al exposure score of a language. Share is the pre-treatment share of a language used within a
developer. Main effects and other cross-interactions are included. Standard errors are clustered at
developer level. Significance: *, p < 0.1; ** p < 0.05; *** p < 0.01.

)

Main Language Other Languages Main Language Other Languages
(1) (2) (3) (4)

Post x AT Exposure 0.0203 0.0072**
(0.42) (2.01)
Postx ATl ExposurexShare 0.0147 0.1959***
(0.21) (3.08)
Post x AT Score -0.0362 0.0361***
(-0.20) (4.83)
Post x AT ScorexShare 0.0603 0.4602***
(0.25) (3.30)
N 517,480 3,881,057 517,480 3,881,057
Adj. R2 0.5410 0.3517 0.5410 0.3523
Language FE Y Y Y Y
Individual-Year-Month FE N Y N Y
Individual FE Y N Y N
Year-Month FE Y N Y N

12

Table TA4. Coding Activity After Copilot Launch at the Individual-Language Level

This table reports regression results of equation 1 and equation 2 at the individual-language level. In
Columns (1)-(4), the outcome variable is a dummy that equals one if a developer contributes code in a
given language in a given quarter. In Columns (5)-(8), the outcome variable is the In(1 + x)
transformations of the number of coding events that are associated with developers’ work in a given
language each quarter. Columns (3) and (7) restrict the sample to languages a developer worked with
prior to GenAl introduction, while Columns (4) and (8) include only languages new to the developer.
For computational efficiency, the analysis is conducted at the quarterly frequency and includes only
languages with over 10,000 coding events across the sample period. These 42 languages represent
98.8% of total coding activities. Post is a dummy that equals one if the time period is after July 2022.
AT Score is the raw Al exposure score of a language. Standard errors are clustered at the developer
level. Significance: *, p < 0.1; ** p < 0.05; *** p < 0.01.

Has Coding Events Ln(1 + Coding Events)
Language Type All All Familiar New All All Familiar New
(1) (2) (3) (4) (5) (6) (7) (8)
Post x AT Score 0.0555*** 0.0462*** 0.0030 0.0510*** 0.0439*** 0.0374*** -0.0272** 0.0318***
(25.29) (13.52) (0.44) (28.58) (22.15) (11.93) (-2.38) (24.50)
Post x ATx Senior 0.0158*** 0.0284*** 0.0050** 0.0113*** 0.0233 0.0019
(3.55) (3.19) (2.07) (2.79) (1.64) (1.12)
N 9,745,218 9,731,274 1,560,209 8,154,030 9,745,218 9,731,274 1,560,209 8,154,030
Adj. R2 0.2793 0.2793 0.6303 0.1431 0.1199 0.1199 0.2924 0.0428
Language FE Y Y Y Y Y Y Y Y
Individual-Year-Quarter FE Y Y Y Y Y Y Y Y

13

Table TA5. Coding Activity by Pre-Treatment Project Team Size and Popularity

This table reports regression results of equation equation 2. Outcome variables in Columns (1)-(4) are
monthly indicators for any public coding activity in firm-owned repositories by project type. Columns
(5)-(8) use the log of one plus monthly coding activities by project type. T'eam projects have on
average at least two contributors monthly from January 2021 to June 2022; Solo projects average
fewer. High Popularity projects have cumulative stars above the 90th percentile during January 2021
to June 2022. Post is a dummy that equals one if the time period is after July 2022 (or the third
quarter of 2022). AI Exposure or AI are dummy variables that equal one if the developer’s Al
exposure score is in the fourth quartile. Senior is a dummy that equals one if the developer’s tenure is
above median. The total effects for senior developers (sum of the coefficients of the post treatment
indicator and the interaction term) are reported underneath. Standard errors are clustered at
developer level. Significance: *, p < 0.1; ** p < 0.05; *** p < 0.01.

Has Coding Events Ln(1+Coding Events)
Project Type Team Size Popularity Team Size Popularity
Solo Team Low High Solo Team Low High

(1) (2) (3) (4) () (6) (7) (8)

PostxAl Exposure -0.0096 -0.0067 0.0044 -0.0064 -0.0325** -0.0124 -0.0080 -0.0089
(-1.47) (-0.91) (0.57) (-0.91) (-2.13) (-047) (-0.35) (-0.36)

Post x Senior S0.0167* -0.0138"* -0.0081* -0.0173*** -0.0359"* -0.0577*** -0.0372*** -0.0572"*
(-420) (-3.15) (-1.73) (-4.10) (-3.84) (-351) (-278) (-3.74)

Post x AIx Senior 0.0043 0.0157* 0.0021 0.0205** 0.0262 0.0596* 0.0320 0.0761**
(0.52) (L71) (0.21) (2.27) (1.37) (1.82) (1.14) (2.46)

Total Effect (Senior) -0.0053 0.0090 0.0065 0.0141** -0.0063 0.0472"* 0.0240 0.0672***
(-1.04) (1.62) (1.12) (2.50) (-0.55) (2.44) (1.48) (3.55)

N 563,582 563,582 563,582 563,582 563,582 563,582 563,582 563,582
Adj. R2 0.3714 0.6025 0.4454 0.6097 0.4690 0.7280 0.5749 0.7381
Individual FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y Y Y

14

Table TA6. Summary Statistics of Job Changes of Firm Developers on GitHub

This table presents summary statistics on employee mobility at the individual-year-quarter level from
January 2021 to December 2023. Panel (a) summarizes job changes and position characteristics of
firms’ developers active on GitHub. Panel (b) compares developers based on whether their tenure is
above or below the median and whether they initiated a GitHub project owned by their employers
before the official launch of GitHub Copilot. Promotion is a binary variable equal to one if the new
job position offers higher compensation or a higher seniority rank.

(a) Full Sample at the Individual-Quarter Level

Mean SD Min P25 Median P75 Max Obs
Job Change 0.069 0.254 0.000 0.000 0.000 0.000 1.000 151,568
Across-Firm Job Change 0.043 0.204 0.000 0.000 0.000 0.000 1.000 151,568
Across-Firm Promotion 0.028 0.165 0.000 0.000 0.000 0.000 1.000 151,568
Across-Firm Demotion 0.008 0.090 0.000 0.000 0.000 0.000 1.000 151,568
Senior GitHub Developer 0.646 0.478 0.000 0.000 1.000 1.000 1.000 151,568
GitHub Project Initiator 0.554 0.497 0.000 0.000 1.000 1.000 1.000 151,568
Job Position Seniority 3.207 1.358 1.000 2.000 3.000 4.000 7.000 151,568

Total Compensation USD (000) 192.113 136.958 2.927 108.685 173.676 245.186 3,317.018 151,565

(b) By Developer Characteristics

Senior Developer Project Initiator
Yes No Yes No
Mean SD Mean SD Mean SD Mean SD
Job Change 0.064 0.245 0.079 0.270 0.067 0.250 0.072 0.259
Across-Firm Job Change 0.041 0.199 0.047 0.212 0.042 0.201 0.045 0.207
Across-Firm Promotion 0.026 0.160 0.031 0.173 0.027 0.162 0.029 0.169
Across-Firm Demotion 0.008 0.091 0.008 0.088 0.008 0.091 0.008 0.088
Job Position Seniority 3.287 1.382 3.060 1.300 3.336 1.402 3.047 1.283

Total Compensation USD (000) 204.795 147.548 168.970 111.489 198.119 148.059 184.650 121.349

15

Internet Appendix B Economic Model on Programming Lan-
guage Specialization And Productivity

Gain from AI Exposure
This appendix section provides a simple economic model that explains the intuition be-
hind the Al exposure aggregation methodology at the developer level, where a developer
specialized in an Al-exposed language before the introduction of GitHub Copilot has
a higher level of Al exposure than a developer who only occasionally work with the

language.

Internet Appendix B.1 The Pre-Al Environment

Utility and constraints. Consider a single programmer who allocates a budget,
w > 0, across coding activities in two distinct programming languages. Let [denote
the activity in a focal language and [y be the activity in a second language. The pro-

grammer’s preferences are represented by a Cobb-Douglas utility function:
Uo(l,1o) = 11", (1)

where p € (0,1) is the parameter determining the expenditure share allocated to the
focal language. The unit costs for human-written code are ¢, > 1 for language [and
co > 0 for language l5. The programmer’s allocation problem is constrained by the
budget:

cnl + eoly < w. (2)

Initial coding quantities. Maximizing utility (1) subject to the budget constraint
(2) yields the standard Marshallian demands:

1 —
LA B Gl DL} (3)

Ch, C2

From these initial quantities, define the pre-Al quantity share of the focal language, s°,

as a measure of its initial prominence:

[1—pep\ !
NI, (T C2> “

16

This share, s° € (0,1), will be a key state variable determining the effectiveness of Al

adoption.

Internet Appendix B.2 The Introduction of Generative Al

I now introduce a generative Al tool (e.g., GitHub Copilot) that changes the production

of code in the focal language .

Production of effective code. After the Al introduction, services in language [
become a composite good, L, produced by combining two inputs: human-written code,
[, > 0, and Al-assisted code, [4; > 0. I model the aggregation of these inputs using a
Constant Elasticity of Substitution (CES) production function:

o—1

o—1

L= (aar()l +an(s")7) (5)

where o > 0 (0 # 1) is the elasticity of substitution between human and Al inputs. The
terms a47(s°) and a,(s°) are technology weights that depend on the language’s pre-Al

share, s°.

Adoption complementarity. A core feature of this model is to set the AI’s effec-
tiveness as endogenous to the prior revealed workflow intensity of the developer in the
language. Formally, I assume the Al technology weight is an increasing function of the
pre-Al share, d/y;(s°) > 0. This assumption captures the intuition that a higher initial
activity share (s°) implies greater developer specialization and a more established coding
context, both of which allow for a more efficient and synergistic use of the Al assistant.

I further impose a normalization on the weights:
aar(s®) +ap(s®) =1 for all s € (0,1). (6)

This ensures that the model focuses on changes on relative effectiveness rather than

arbitrary scale effects.

Post-Al optimization. The programmer’s preferences across the composite good L

and the other language [, remain Cobb-Douglas:

U(L,l,) = L°ly". (7)

17

The unit price of Al assistance is normalized to one (c4; = 1), while the prices for
human-written code, ¢, and the other language, co, remain the same. The new budget
constraint is:

lA[+ Chlh + CQZQ S w. (8)

Internet Appendix B.3 Analysis

To quantify the impact of the Al tool, I first derive the effective price of the composite
good L and then define the resulting productivity gain.

Effective price index. The minimal cost to produce one unit of the composite good
L is given by its dual price index, P,. Solving the cost-minimization problem for the

aggregator in (5) yields:
_1
Pr(s% cn) = (aar(s”) + (1 — aar(s”))ey7) 77, (9)
Py, represents the post-Al effective price of coding in language [.

Productivity gain. Define the productivity gain, G(s°), as the ratio of the new equi-
librium quantity of effective language services, L*, to the pre-Al quantity, [°. Given the
Cobb-Douglas structure, the total expenditure on the focal language remains constant
at pw. Therefore, the change in output is driven entirely by the change in the effective
price:

* pw 0 p’lU
==Y ana =22 1
Pp(s% cp) o Ch (10)

The productivity gain is thus the inverse ratio of the effective prices:
G ="=—"77— (11)

Substituting the expression for the price index (9) gives the final measure:

1

G(s%) = cp (aar(s®) + (1 —aar(s”)e %) 7. (12)

This expression captures how the productivity gain from Al depends on the language’s

initial share s°, the cost of human-written code ¢, and the elasticity of substitution o.

18

Internet Appendix B.4 Results

The key question for this model is whether the productivity benefits of Al favor a
language a developer is specialized in or a language a developer is less familiar with.
To investigate this, I analyze how the productivity gain, G(s°), changes with the initial
activity share, s°. The main finding is that the sign of this relationship is always positive
unless human cost is close to the cost of AI (¢, — 1).

Proposition 1. The productivity gain G(s°) is increasing in the initial specialization
s% if and only if human-written code is more expensive than Al-assisted code (c;, > 1).

Formally, for any elasticity of substitution o > 0:

- (13)

(dG) > 0, ifCh>1,
:O, ifchzl.

Proof. 1 first derive the derivative of G(s°) for the general CES case (o # 1) and then
confirm the result for the Cobb-Douglas limit (o — 1).

Case 1: General CES (0 # 1). Recall that the productivity gain is G(s°) =
cnB(s%)71/(179) where the base term is B(s°) = aar(s®) + (1 — aar(s°))e, ™. The
derivative of the base term with respect to s° is:

75 = Tu(s”) = ()67 = dlu (") (1 - 67). (14)

Use the chain rule to differentiate G(s°):

G _ ¢ - <_ 1)B(SO)—ﬁ—l 4B

ds® 1—0

—__a B(s%) 1= cay (") (1= ¢7%). (15)

1—0

Since ¢, > 0, B(s") is a positive base raised to a power, and the adoption complemen-
tarity assumption states a’y;(s%) > 0, the sign of the derivative is determined entirely by

the product of two terms:

dG 1

. o . l1—0o
&gn(@) = &gn(—E) -sign(1—¢; 7). (16)

If 1 —0 >0 (ie, 0 < 1), the first term is negative, and the second term is positive if

cn < 1 and negative if ¢, > 1. If 1 —0 < 0 (i.e., o > 1), the first term is positive, and the

19

second term is positive if ¢, > 1 and negative if ¢, < 1. In both instances, the product

is positive if and only if ¢, > 1.

Case 2: Cobb-Douglas limit (¢ — 1). In the limiting case where the production

aAT

aggregator is Cobb-Douglas, the productivity gain is G(s°) = ¢}) Tts derivative is:

dG anr(s
dsd et aly (s0) Iy, (17)
which is always nonnegative under the assumption ¢, > 1, confirming the result. O

The intuition is as follows. The primary source of productivity gain in this model is
the opportunity to substitute away from an expensive input (human labor, ¢;) toward a
cheap one (Al assistance, c4; = 1). The core assumption of adoption complementarity
(a’4;(s°) > 0) means that developers who are already specialized in a language are more
effective at using the Al tool and thus better at making this substitution than other
languages they use.

However, if human labor is almost as cheap as Al (¢, — 1), the economic incentive
is to use humans, not the Al substitute. Thus, even if the adoption complementarity is

very high, the benefit from substituting away is limited.

20

