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1 Introduction

In this paper, I employ a network-based strategy to identify distinct communities of higher

education institutions that can facilitate investigation of heterogeneous treatment effects.

Relying on their self-reported peer institutions, I construct a novel network of private colleges

and universities and detect communities within it using an algorithm from the network

science literature. Communities differ substantially across observables and exhibit different

trends in key variables. These distinct trends can even complicate estimation of population-

level treatment effects if not accounted for.

I use several of these communities to investigate both the population-level and hetero-

geneous impacts of adopting a test-optional admission policy1 on institution-level outcomes.

Methodologically, I estimate dynamic, population-level treatment effects by regressing out-

comes on treatment leads and lags, as well as institution and community-time fixed effects2.

I estimate community-level treatment effects by regressing outcomes on a post-treatment

indicator interacted with dummy variables for community membership (plus the same set of

fixed effects). If a parallel counterfactual trends assumption holds conditional on commu-

nity membership, these regressions consistently estimate population and community average

treatment effects on the treated, respectively. For the population-level dynamic estimates, I

show how including community-time fixed effects drastically attenuates the pre-trends that

can arise when time fixed effects are estimated at the population level.

I document that at 66 private colleges and universities that adopted a test-optional policy

between 2006 and 2016, nearly 25 percent of students enrolled in test-optional cohorts did not

submit a test score. However, these effects differ substantially across communities; at treated

New England Liberal Arts Colleges, nearly one in three enrolled students did not submit

an SAT or ACT score. On the other hand, non-submitters make up just 7 and 11 percent,

respectively, of test-optional cohorts at Elite National Universities and Liberal Arts Colleges

1These policies give applicants the option not to submit a college entrance exam (SAT or ACT) score
when applying for admission. Evaluating institutions claim that the decision not to submit a test score is
not viewed negatively (Syverson et al. (2018)). For an excellent review of the origins and rise of test-optional
admission policies, see Furuta (2017).

2Because this setting features staggered treatment timing and effects may be heterogeneous and/or de-
layed, I estimate treatment effects with the two-stage difference-in-differences estimator of Gardner et al.
(2024).
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in the Midwest, and treated members of Less Selective National Universities seem to enroll

virtually no non-submitters. I find that test-optional policy adoption substantially increases

the 25th and 75th percentiles of the reported SAT score distribution. While dynamic effects

are modest at treatment onset, they increase thereafter, with the largest effects coming in

the third post-treatment period, where point estimates are 22 and 15 points, respectively,

and significant at the 1% level. Increases are most significant for the community of Liberal

Arts Colleges in New England and the community of Colleges and Universities on the East

Coast, who also enroll the largest share of non-submitting students. These results are con-

sistent with a censoring of the left tail of the reported score distribution. In an appendix,

I investigate outcomes related to student-body diversity. My results on population-level

effects largely agree with Bennett (2022) that test-optional policies increase racial and so-

cioeconomic diversity; however, community-level impacts are imprecisely measured, and I

cannot establish meaningful cross-community heterogeneity.

Motivated by the literature on ability sorting across majors, I create and investigate a

new outcome: the share of bachelor’s degree completions with a STEM major (overall and

by under-represented minority (URM) status), offering new evidence on how test-optional

policies shape academic choices and downstream outcomes. Across the full sample, policy

adoption causes statistically significant declines of around 5 percent in the overall share

of graduates with a STEM major, while effects on URM graduates are indistinguishable

from zero. I show in an appendix that when counterfactual trends are estimated at the

population-level, a negative pre-trend emerges, complicating causal inference; when I con-

struct an alternative grouping based on Carnegie Classifications, I find a null effect. Thus, my

network-based identification strategy leads to meaningfully different results than alternative

approaches.

I also find substantial cross-community heterogeneity in the impact of test-optional poli-

cies on STEM completions. The community of Colleges and Universities on the East Coast

and the community of Elite National Liberal Arts Colleges see the most precisely estimated

declines in both the overall and URM-only share of graduates majoring in a STEM field. In

those communities, adoption causes a 16 and 8 (26 and 23) percent decline, respectively, in

the share of all (URM) graduates majoring in a STEM field. All four estimates are statisti-
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cally significant, and three are significant at the 1% level. The other communities see null

effects; accordingly, I can also reject at the 1% level that effect sizes are the same across

communities.

The decline in STEM graduates at policy adopters could simply be driven by students

who did not submit a test score (non-submitters) preferring different majors; however, it is

also consistent with mismatch. Theory and evidence (see Dessein et al. (2025) and Kelly

(2022)) suggest that non-submitters are substantially less academically prepared than their

submitting peers, which may cause them to switch out of STEM majors at a higher rate or

not pursue them in the first place (despite wanting to). To the extent that this mismatch is

driving the estimated decline in STEM bachelor’s completions, test-optional policies may be

adversely affecting students who would have completed a STEM degree at an institution for

which they are better academically matched. However, determining the relative importance

of these two mechanisms would require micro-level data, and therefore is an avenue for future

research.

To my knowledge, this is the first paper that uses network data and community de-

tection in a policy evaluation setting; however, this approach has applicability beyond the

higher education context. It would be particularly relevant in settings where access to high-

dimensional covariates is limited – precluding the use of other matching techniques – but

units can be linked in a network structure. These include development contexts with social

network information, as well as settings with private firms; in the latter, connections between

firms could be determined by worker flows.

This paper contributes to the growing literature investigating the effects of test-optional

admission policies with institution-level data3. Early studies focused on selective liberal arts

colleges only (Belasco et al. (2015); Rosinger and Ford (2019)), finding little effect on racial

or socioeconomic diversity, but positive effects on reported SAT scores. Using two-way fixed

effects to estimate treatment effects, Saboe and Terrizzi (2019) focus on a broader set of

adopting institutions; they similarly find no effect on student-body diversity, but in contrast

find imprecisely estimated declines in reported SAT scores. However, the control institutions

3Several studies investigate test-optional policies with admissions data (see Robinson and Monks (2005),
Conlin et al. (2013), Conlin and Dickert-Conlin (2017), Kelly (2022), McManus et al. (2023), and Sirolly
et al. (2024).

3



considered differed substantially from the treated institutions, making it unlikely that the

parallel counterfactual trends condition was satisfied.

Like Saboe and Terrizzi (2019), Bennett (2022) and Bevers and Mulholland (2022) con-

sider a broad set of adopters, but consider a more representative set of control institutions;

Bennett (2022) finds that test-optional policies lead to a 10 to 12 percent increase in under-

represented minority enrollment, a 6 to 8 percent increase in female enrollment, and a 3 to

4 percent increase in Pell grant recipient enrollment. Bevers and Mulholland (2022) report

higher average debt burdens among graduates; however, neither re-investigates the impact

on reported SAT scores. While my study is similar to both, I make a novel methodologi-

cal contribution by using peer networks and community detection to identify control units

and examine cross-community treatment effect heterogeneity, and a novel substantive con-

tribution by investigating the effect of test-optional policies on STEM major completions.

Bennett (2022) compares effects for liberal arts colleges and larger universities, as well as

more and less selective institutions; however, the community-level analysis I conduct is much

more granular. I also revisit the effect of test-optional policies on reported SAT scores.

The test-optional literature is related to a broader literature examining the relationship

between barriers to college entrance exam taking and access to higher education. Studies

have investigated state-mandated college entrance exam taking policies (see Klasik (2013),

Hurwitz et al. (2015), Goodman (2016), and Hyman (2017)), finding positive effects on 4-

year college enrollment rates, with increases especially concentrated among students who

would not otherwise have taken a college entrance exam. Financial barriers may also be

important; Hurwitz et al. (2017) find that increasing the number of free score sends available

to applicants has a positive impact on college attendance and completion. Goodman et al.

(2020) find that as-if random SAT retakes increase scores, leading to higher 4-year college

enrollment rates, particularly among under-represented students. These studies suggest

that reducing barriers to taking and reporting college entrance exams can improve access to

higher education; test-optional policies, in contrast, seek to improve access by eliminating

the requirement altogether, which may lead to adverse outcomes such as mismatch.
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2 Empirical Motivation

To many, the decision to adopt such a policy is puzzling: how could a college benefit from

allowing applicants to withhold information? A simple explanation is that colleges’ objective

functions contain inputs other than their students’ academic preparedness. They likely care

about the non-academic composition of their student bodies, aiming to enroll legacy students,

under-represented minorities, and recruited athletes, among other groups. They also want

to appear selective by reporting high test scores, which can lead to a higher ranking and

its associated benefits4. Under a test-required policy, these inputs may be in conflict. For

instance, admitting a legacy student with a low SAT score decreases both the academic

preparedness of the student body and the college’s perceived selectivity.

By contrast, a test-optional policy may allow a college to achieve its compositional goals

while simultaneously appearing more selective, since colleges are only required to report the

scores of submitting enrollees and low-scoring applicants may be induced to withhold their

scores. However, this is not without sacrifice: while low-scoring applicants who would have

been accepted under either regime now choose to withhold their scores, new applicants with

very low test scores but competitive non-test observables are incentivized to apply. Unable

to distinguish the two, colleges may end up enrolling applicants with very low test scores

and high non-test observables at the expense of applicants with intermediate values of both

who would have been admitted under a test-required policy.5 This results in a separation

of admitted applicants along the test score dimension; while the college appears outwardly

more selective, the average admitted student has a lower test score than before. Kelly (2022)

finds suggestive evidence of this: at one selective test-optional college, the average admitted

non-submitter had an SAT score at the 67th percentile, compared to the 90th percentile for

the average admitted submitter. A college may find this outcome favorable if their objective

function places sufficient weight on their perceived selectivity and the composition of their

student-body.

4Reported SAT/ACT scores are an explicit input in the widely consulted US News & World Report
college ranking. Luca and Smith (2013) show that an as-if random one spot increase in this ranking increases
application volume by 1 percent. Highly ranked institutions may also find it easier to solicit donations.

5Dessein et al. (2025) develop a formal model of test-optional admissions with similar underpinnings that
generates the same theoretical prediction.
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This predicted replacement of intermediate scorers with low scorers, combined with the

literature on ability sorting across majors, motivates investigating whether test-optional

policies cause a decline in STEM completions. The ability sorting literature suggests that

the difference between a student’s SAT score and the institutional average is a strong, positive

predictor of whether they choose a STEM or business major (see Turner and Bowen (1999)

and Arcidiacono (2004)); Westrick et al. (2023) find that SAT scores are considerably more

predictive of STEM grades than non-STEM grades, suggesting that academic mismatch

may be partly responsible. Furthermore, in the context of affirmative action, Arcidiacono

et al. (2016) suggest that mismatch only becomes an issue when an individual’s preparation

is substantially below that of their peers. Consequently, if non-submitters tend to have

significantly lower scores than both submitters and displaced students, then one might expect

them to struggle in STEM curricula and for STEM completions to decline after policy

adoption.

3 Peer Institution Network

3.1 Network Creation

Networks consist of nodes representing agents and edges that connect them. Formally, I

model the peer institution network as both undirected and unweighted ; undirected means

that node i being connected to node j implies the reverse, and unweighted means that all

connections are equally strong. The set of all nodes is given by V = {1, · · · , N}, and the

set of all edges is given by E ⊆ {{i, j} | i, j ∈ V, i ̸= j}, which are unordered pairs of

nodes. {i, j} ∈ E indicates that node i and node j are directly connected in the network.

A walk between node i and k is a sequence of edges from i to k. For instance, if {i, j} ∈ E

and {j, k} ∈ E, then the sequence {{i, j}, {j, k}} is a walk from i to k. If there is no walk

between i and k, then i and k belong to different components of the network.

To construct the peer institution network, I let elements of V correspond to all private

colleges and universities. Two institutions i and j are connected, i.e. {i, j} ∈ E, if each

included the other in a list of peer institutions that they submitted to the National Center
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for Education Statistic’s Integrated Postsecondary Education Data System in reporting year

20206. I will commonly refer to such a relationship as a mutual peer relationship. While

one could define connections unilaterally – i.e. i and j are connected if either considers the

other a peer – defining connections based on mutual peer relationships prevents aspirational

peer choice from affecting the structure of the network. There are some situations where

an institution does not submit a custom set of peers, in which case it is excluded from the

network. Figure 1 shows the set of mutual peers for an example institution, The George

Washington University.

The peer institution network is comprised of one large component, one smaller compo-

nent, and many singleton or very small components. The purpose of the peer institution

network is to identify sets of institutions that can serve as controls for the treated mem-

bers of their community; communities that are too small will lead to imprecise estimates,

so I remove components with 5 or fewer nodes. This leaves the largest and second largest

components only, with a combined 617 nodes (institutions) and 1362 edges (mutual peer

relationships connecting them).

3.2 Community Detection

Let C be a partition of V ; then, each c ∈ C is a collection of nodes from the original network

called a community. The community detection problem is to find the “best” partition of

nodes, which requires a way of evaluating the quality of any given partition. Newman and

Girvan (2004) propose a quality measure they call modularity; for a given partition, modu-

larity captures how many more edges of the graph connect members of the same community

than would be expected if the graph were randomly generated. For a community c ∈ C,

let ec denote the observed number of edges connecting members of c to each other, and

let ac denote how many edges one would expect to connect members of c to each other if

the network were generated randomly according to a benchmark network formation model.

6Colleges submit peer institution lists in order to receive a “Data Feedback Report” comparing their
performance in a variety of metrics to their self-selected peers. See June (2022) for more background on how
colleges create their peer institution lists. Peer data were procured from The Chronicle of Higher Education
(2020)
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Figure 1: Mutual Peers for The George Washington University

Note: Lines reflect that both The George Washington University (GWU) and the connected institution included the other
among the set of peer institutions that they submitted to IPEDS in 2020. Figure only includes mutual peer relationships with
GWU; many of these institutions are peers with each other as well.

Then, modularity is defined as

H(C) = 1

2m

∑
c∈C

(ec − ac) , (1)

where m is the total number of edges in the network and 1
2m

simply serves as a normalization.

As is standard in the community detection literature, I choose the configuration model

of Bollobas (1980) to be the benchmark network formation model. Realizations of the

configuration model are random “re-wirings” of the original network, generated by “snipping”

all the original edges and reconnecting them randomly. Figure 2 depicts this process. This

is an attractive benchmark because it generates a random network where each node has the

same number of connections as in the original network.

To gain intuition for Equation (1), fix a community c. If (ec − ac) is positive, the total

number of observed intra-community edges exceeds what would be expected if the network

was a realization of the configuration model. Therefore, high values of H(C) correspond

to partitions of nodes into communities that have high intra-community edge density, and
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consequently lower inter-community edge density.

Figure 2: Configuration Procedure

Brandes et al. (2008) show that finding a global maximum of modularity is NP-Hard;

therefore, for sufficiently large networks, researchers must rely on heuristic algorithms to find

local maxima of modularity. For this paper, I use the Leiden Community Detection algorithm

of Traag et al. (2019). It detects 16 communities in the peer institution network. Figure 3

gives a visual depiction of the communities in the peer institution network; nodes sharing

the same color and shape combination belong to the same community. A comprehensive list

of communities and their members can be found in the Online Appendix.

While there is certainly commonality between the detected communities and, for in-

stance, the US News & World Report college rankings, it is clear that the network structure

is capturing something richer than what could be obtained by segmenting the sample by

selectivity, size, or institution type. For example, Clark University is considered a National

University according to U.S. News & World Report, but is found in community 15 among

selective national liberal arts colleges; this placement is capturing the fact that Clark consid-

ers its peers to be elite national liberal arts colleges, not elite national universities. Similarly,

Harvey Mudd College, a liberal arts college according to US News & World Report, is in

community 8, which is comprised mainly of technical colleges and universities like Rochester

Institute of Technology and Worcester Polytechnic Institute. This makes sense when you

consider that despite its status as a liberal arts college, Harvey Mudd College has a STEM-

focused curriculum. Of course, one with sufficiently strong institutional knowledge might

well have placed Clark University among liberal arts colleges and Harvey Mudd College

among STEM-focused institutions; however, the community detection algorithm is able to

make these distinctions without relying on a researcher’s input or subjective guidance.
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Figure 3: Communities in the Peer Institution Network

Note: Gr. = Group/Community. Dots and squares (nodes) represent colleges and lines connecting them (edges) indicate that
each institution included the other among the set of peer institutions that they submitted to IPEDS in 2020. Nodes sharing
the same color and shape combination belong to the same community.
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The Leiden algorithm will detect communities in any network, regardless of whether there

is an underlying community structure; in Appendix A, I apply a formal test to demonstrate

that the peer institution network exhibits an incredibly strong community structure.

4 Data

4.1 Policy Dates

Test-optional policy start dates are obtained from Bennett (2022), which in many cases

have been verified directly with admissions offices. Some policies are conditional, that is

to say that an applicant is given the non-submission option as long as they meet some

requirement, like exceeding a high-school GPA threshold. Following Bennett (2022), I include

these conditional policies in my analysis based on the assumption that the conditions are

typically lenient and therefore are satisfied by most applicants. Bennett (2022) also requires

that treated institutions are sufficiently selective; a test-optional policy would not matter for

an institution that accepts all students. In addition, public and “special-focus” institutions

are excluded; the latter include (but are not limited to) art schools and colleges for religious

training, and are institutions for which college entrance exams likely play a more limited

role in the selection criteria. There are some instances where a college adopts and then

rescinds its test-optional policy in a later year; I remove these schools from my sample. I

also exclude colleges that disproportionally serve historically marginalized groups, such as

Historically-Black Colleges and Universities and Women-only Colleges, as under-represented

or female enrollment will change very little over the sample period, making it unlikely that

the parallel trends assumption holds.

During my sample period, a number of institutions began accepting the Common Appli-

cation (CA) from applicants. I obtain CA adoption dates from Knight and Schiff (2022), who

find that CA adoption increases application volume, decreases acceptance rates, increases

out-of-state enrollment, and may increase the 25th and 75th percentiles of the distribution of

reported SAT scores for enrolled students. Consequently, an institution’s decision to accept

the CA may confound the effect of adopting a test-optional policy; therefore, I restrict my
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sample to colleges that began accepting the CA before going test-optional, and drop obser-

vations prior to CA adoption. To my knowledge, no other paper investigating test-optional

policies addresses CA adoption. All sample restrictions happen downstream from the com-

munity detection process, so the communities described in the Online Appendix include some

institutions that are excluded from the analytic sample.

4.2 Outcome Variables

Almost all outcome data is from the Integrated Postsecondary Education Data System (Na-

tional Center for Education Statistics (2022)), though I augment some outcomes with hand-

collected Common Data Sets from specific colleges and universities for which data is spotty.

To exclude the pandemic, I collect outcome data through 2019 (2022 for STEM completions).

I drop units treated between 2017 and 2019 and estimate treatment effects up to four peri-

ods post-treatment; this ensures that dynamic effects are not confounded by compositional

changes across event time.

The selectivity outcomes that I investigate are the 25th and 75th percentile of SAT scores

for enrolled and reporting students, which I define as the sum of the 25th and 75th per-

centile Math and Verbal subsection scores. Because of how scores are reported for each,

there is substantially more year-to-year variation in reported SAT scores than reported ACT

scores, which is why I only investigate the former. Bennett (2022) does not investigate these

outcomes, as many treated institutions stopped reporting test score variables to IPEDS fol-

lowing policy adoption. However, they continued to report exactly the same variables in

their Common Data Sets, which are typically maintained by their Institutional Research

offices. I augment the available IPEDS data with hand-collected historical Common Data

Sets. Though I do not get perfect coverage, I fill in at least some of the missing data for 26

treated institutions; post-treatment SAT data is still completely missing for 12 institutions.

I also investigate the log of the share of all graduates with a STEM major and the log of

the share of under-represented minority graduates with a STEM major, which I will typically

refer to as the overall and URM-only Log Graduate STEM Share, respectively. The URM

designation includes Black, Hispanic, and Native American students/graduates. Two-or-

more-race and unknown race students are not considered under-represented when those data
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are available. To my knowledge, this is the first paper to consider the effect of test-optional

policy adoption on this outcome. I construct this variable from data on bachelors degree

completions broken down by CIP code. To classify a CIP code as STEM or non-STEM,

I rely on the Department of Homeland Security’s STEM Code classification7. Because the

DHS list changes over time, I designate a given CIP code as STEM if it belonged to either

the 2016 or 2020 DHS STEM Code list. The Graduate STEM Share is given by the sum of

all bachelors degree completions in a STEM designated field in a given year divided by the

total number of bachelors degree completions in the same year. To align policy dates with

graduation cohorts, I lead the Graduate STEM Percent variable by four years. While some

students may graduate in fewer than four years, the largest effects should not materialize

until at least four years following the policy start year.

Another new outcome that I consider is the percent of enrolled students who did not sub-

mit a college entrance exam (the non-submitter percent), which would indicate how willing

policy adopters are to enroll non-submitting students. While the non-submitter percent is

not directly observable, institutions report the percent of enrolled students who submitted

SAT and ACT scores to IPEDS and in their Common Data Sets. I consider the sum of

the two percents to be an outcome, hereafter referred to as the Test Submission Percent,

with post-policy declines reflecting an increase in the non-submitter percent. Because many

students submit scores from both exams, this variable is frequently above 100, especially for

not-yet- and never-treated institutions. While imperfect, it nevertheless serves as a reason-

able proxy for measuring the extent to which policy adopters are enrolling non-submitting

students.

I also collect the following outcomes related to student-body diversity: logged first-time

full-time (FTFT) URM enrollment, logged FTFT enrollment of self-identified women, and

logged enrollment of FTFT students who are federal-grant recipients. I rely on the enrollment

of federal-grant recipients as a proxy for low-income students, as IPEDS does not provide

enrollment of Pell-grant recipients until after the start of my sample period8. While I do not

include the impact of test-optional policies on these outcomes in the main text of this paper,

7See 2020 DHS STEM Code List, 2016 DHS STEM Code List
8The correlation between FTFT federal-grant recipient and FTFT pell-grant recipient enrollment during

the period in which they overlap is greater than 0.9.
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they are an interesting dimension across which the network-detected communities differ; I

explore this in the next subsection.

4.3 Summary Statistics

In this section I highlight heterogeneity across the communities detected in Section 3; how-

ever, to avoid noisy estimates of community-time fixed effects, I only consider communities

with 10 or more never-treated members. Table 1 describes these 8 “policy relevant” commu-

nities by the number of treated and never-treated units in each and the median treatment

year for treated units. Communities differ in terms of treatment uptake. Only 3 of the

23 institutions in community 3 (Less Selective National Universities) adopt a test-optional

policy between 2006 and 2016, whereas 16 of the 24 institutions in community 6 (Liberal

Arts Colleges - Midwest) do. There is also cross-community variation in treatment timing;

Less Selective National Universities and Elite National Universities are the latest adopters,

while Colleges and Universities - Midwest are the earliest. In total, I observe 66 treated

institutions across the 8 communities. Figure 4 gives a visual depiction of the 8 communities

and where they are positioned in the peer institution network.

Table 1: Policy Relevant Communities

# Community Name Treated Never-Treated Median Treatment Year
2 Less Selective National Universities 3 19 2015
4 Liberal Arts Colleges - New England 12 8 2011
5 Colleges and Universities - East 11 20 2011
6 Liberal Arts Colleges - Midwest 16 8 2011

12 Colleges and Universities - Midwest 4 12 2007
14 Colleges and Universities - Southeast 5 22 2009
15 Elite National Liberal Arts Colleges 11 24 2010
16 Elite National Universities 4 26 2013.50

Note: Communities are detected from the Peer Institution Network. Only communities with 2 or more treated institutions are
included. An institution is treated if it adopted a test-optional policy between 2006 and 2016, and Never-Treated if it did not
adopt a test-optional policy by 2020. Institutions that adopted a policy between 2017 and 2019 are excluded.

Table 2 reports the average reported 25th percentile SAT score, the admit rate, the num-

ber of first-time full-time (FTFT) applications, and the number of FTFT enrollees broken

down by community and treatment status. The latter two variables are from IPEDS. Sum-

mary statistics are calculated using data from 2001 to 2005 only, and therefore excludes

treated observations. There is substantial heterogeneity across community. Elite National
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Figure 4: Policy Relevant Communities in the Peer Institution Network

Note: Nat’l = National. LAC = Liberal Arts College. Unis = Universities. Dots and squares (nodes) represent colleges and
lines connecting them (edges) indicate that each institution included the other among the set of peer institutions that they
submitted to IPEDS in 2020. Nodes sharing the same color and shape combination belong to the same community.
Highlighted nodes belong to communities with more than one treated institution; communities with one or fewer treated
institutions are not used to evaluate test-optional policies.
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Table 2: Selectivity and Enrollment by Community and Treatment Status

Community SAT 25th %ile Admit Rate FTFT Applications FTFT Enrollment
T NT T NT T NT T NT

Less Selective 1046 1078.74 75.73 66.14 7185.20 6423.45 1500.54 1208.55
National Universities (63.01) (56.71) (8.24) (16.99) (3332.02) (3269.50) (596.26) (553.05)

Liberal Arts Colleges - 942.70 907.40 71.44 74.95 2774.61 2335.86 483.33 549.11
New England (105.83) (53.04) (10.71) (15.74) (1438.36) (1977.65) (214.24) (380.02)

Colleges and 1044.93 932.89 64.79 74.76 5799.75 2358.79 865.87 534.17
Universities - East (74.07) (76.69) (11.03) (12.23) (3249.45) (1806.01) (368.72) (366.21)

Liberal Arts Colleges - 1049.97 1031.22 69.68 76.66 2022.83 1957.90 387.27 465.77
Midwest (68.13) (62.45) (11.88) (8.09) (739.09) (768.48) (76.02) (169.16)

Colleges and 1091 931.84 69.43 76.74 2084.12 1225.61 444.07 331.36
Universities - Midwest (40.28) (118.28) (12.42) (12.97) (640.36) (661.92) (157.57) (159.38)

Colleges and 1016.20 1007 81.31 78.29 2366.88 2341.10 574.10 566.85
Universities - Southeast (42.59) (62.47) (4.33) (9.88) (500.48) (1329.48) (113.97) (239.31)

Elite National 1157.15 1251.21 51.60 41.04 4135.05 4152.95 589.33 520.49
Liberal Arts Colleges (73.07) (59.27) (14.44) (15.94) (1291.80) (1630.74) (105.25) (160.30)

Elite National 1218.35 1281.45 44.59 32.44 10165.75 15984.31 1316.87 1839.05
Universities (34.19) (86.61) (3.93) (16.37) (4965.57) (6862.15) (640.51) (933.01)

Full Sample 1050.78 1080.60 66.35 63.39 3841.64 4987.92 639.17 771.48
(107.59) (164.42) (14.45) (22.77) (3019.66) (5934.47) (414.68) (694.65)

Note: Summary statistics are calculated using data from 2001 to 2005. Standard deviations are in parentheses. FTFT =
First-time full-time. T denotes that a column’s statistics are conditional on a unit being eventually treated, and NT denotes
that a column’s statistics are conditional on never being treated.

Liberal Arts Colleges (community 15) and Elite National Universities (community 16) re-

port the highest SAT scores, while institutions in community 4 (Liberal Arts Colleges - New

England) report the lowest SAT scores, with reported 25th percentile SAT scores below the

population average. There is some heterogeneity across treatment status and within com-

munity; treated Elite National Liberal Arts Colleges and Elite National Universities report

25th percentile SAT scores that are lower than their never-treated counterparts; however,

the heterogeneity goes the other direction in other communities. Differences in Admit Rates

are qualitatively similar to the differences in standardized test scores. Communities differ

substantially in terms of size, with Elite National Universities and Less Selective National

Universities (community 2) enrolling the most FTFT students, while community 12 (Colleges

and Universities - Midwest) is comprised of smaller schools with average FTFT enrollment

around 400.
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Table 3 reports student demographics by community and treatment status. Variables in-

clude the percent of FTFT students who are under-represented minorities, women, and fed-

eral grant recipients, and the overall and under-represented minority-only Graduate STEM

Share (expressed as a percent). As with Table 2, the data are from 2001 to 2005. Commu-

nity 2 (Less Selective National Universities) and community 16 (Elite National Universities)

are the most racially diverse. On average, treated institutions are less racially and socioeco-

nomically diverse than their never-treated counterparts, which may suggest that improving

student-body diversity is the key motivation for adopting a test-optional policy. There is

less variation across community in the percent of FTFT students who are women, who seem

to outnumber men in every community and are more overrepresented at treated institutions.

There is some variation in the percent of students receiving federal grants, which is my

proxy for Pell-grant receiving students. Elite National Liberal Arts Colleges and Elite Na-

tional Universities enroll relatively fewer federal grant recipients than the other communities.

The overall Graduate STEM Share varies a little across communities, but hovers between

10 and 20 percent for most. Almost without exception, the mean Graduate STEM Share is

lower for under-represented minorities than for the overall student-body.

4.4 Community-Specific Trends

If treated and untreated community members share the same counterfactual trends, population-

level treatment effects can be estimated based on a version of the parallel counterfactual

trends assumption that is conditional on community membership; however, this assumption

is unnecessary if trends do not differ by community. Figure 5 plots trends in the reported

25th percentile SAT scores at three communities: community 5 (Colleges and Universities -

East), community 15 (Elite Liberal Arts Colleges), and community 16 (Elite National Uni-

versities). Only never-treated institutions are used to calculate the trend. It is clear that the

elite national universities are on a substantially different trend than the other two communi-

ties. Elite national universities report 25th percentile SAT scores more than 40 points higher

in 2016 than in 2005, while the other two communities see declines in the 25th percentile of

reported SAT scores.

When estimating population-level treatment effects, these differences can lead to biased
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Figure 5: Trends in Reported 25th Percentile SAT Scores for Selected Communities

Note: Unis = Universities. LAC = Liberal Arts College. Nat’l = National. Time-series represents the trend in the average
25th percentile SAT score of enrolled students at never-treated members of each selected community. Trends are relative to
the average 25th percentile SAT score in each community in 2005.

estimates. For instance, assuming that treated members of Colleges and Universities - East

would have evolved in the same way as their never-treated counterparts, including Elite

National Universities as controls would lead to a severe downward bias in the estimated effects

on reported SAT scores, as the underlying trends between the two groups are diverging. A

counterfactual trends assumption that is conditional on community avoids this problem. Of

course, many papers, including Bennett (2022), use techniques like Rosenbaum and Rubin

(1985)’s propensity score matching to balance the control and treated groups; however, if

treatment timing differs by community, then estimates can still be biased. For instance,

if treated Elite National Universities become treated later than other treated institutions

(Table 1 indicates this to be the case), they will be over-represented in the control sample

for units that are treated earlier, introducing a similar downward bias. Again, if a parallel

trends assumption holds conditional on community membership, community-specific trends

eliminate this bias.
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5 Empirical Strategy

When treatment timing is staggered, heterogeneous and/or delayed effects can introduce bias

and complicate interpretation when treatment effects are estimated by two-way fixed-effect

regression. These issues are discussed at length in many papers, including Borusyak et al.

(2024), Gardner et al. (2024), Goodman-Bacon (2021), Callaway and Sant’Anna (2021),

and Sun and Abraham (2021). To ensure estimation of easily interpretable impacts of test-

optional policy adoption, I employ the two-stage difference-in-differences estimator of Gard-

ner et al. (2024)9.

Let yct be the outcome of interest for college c observed in period t. In the first stage,

all treated observations (observations that fall after a unit has been treated) are removed,

and institution and community-time fixed effects are estimated, i.e. the following model is

estimated with pre-treatment data only:

yct = γc +
∑
g∈G

γgt1{c ∈ g}+ νct. (2)

In Equation (2), g represents a community in the set of all communities G, γc is an institution-

specific component, and γgt is a community-time specific component. I assume that Equation

(2) describes the data generating process for yct in the absence of treatment; in the potential

outcomes framework of Rubin (1974), γc + γgt is the never-treated potential outcome for

college c in period t.

Let γ̂c and γ̂gt be estimates of γc and γgt obtained from the first stage. Then, dct =

yct − γ̂c − γ̂gt is the deviation of yct from where it would have been in expectation had

it followed the process described by Equation (2). Also, let Tc represent the period that

college c initially becomes treated. In the second-stage, I calculate dct for all treated and

never-treated observations and regress it on leads and lags from policy adoption to estimate

9This procedure produces identical treatment effect estimates to the “imputation” estimator of Borusyak
et al. (2024) when treated units are given equal weight; however, the two approaches differ in their asymptotic
theories and corresponding variance estimators.
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dynamic treatment effects, estimating

dct =
b∑

k=−a

τk1{t− Tc = k}+ τa−1{t− Tc < −a}+ εct, (3)

where 1{t − Tc = k} is an indicator function that takes value 1 if a unit was first treated

exactly k periods ago and 1{t−Tc < −a} takes value 1 if college c will be treated in more than

a periods; therefore, τk for k ∈ {−a, · · · , b} represent period-level dynamic treatment effects

and τa− represents the treatment effect more than a periods prior to treatment. Estimates of

τk reflect the average deviation from the estimated never-treated potential outcome for treated

units in the kth treatment period; therefore, γk are estimates of the Average Treatment Effect

on the Treated. If there is no treatment anticipation and treated units follow community-

specific trends prior to treatment, τk should be zero when k is negative10.

I investigate whether there is treatment effect heterogeneity across communities by esti-

mating the following equation:

dct =
∑
g∈G

τg1{t− Tc ≥ 0 ∧ c ∈ g}+ εct. (4)

Here, 1{t − Tc ≥ 0 ∧ c ∈ g} is an indicator that takes value 1 if college c has been treated

and belongs to community g. In practice, I estimate the τg by regressing dct on interaction

terms between a post-treatment dummy and dummy variables for community membership.

Estimates of τg reflect the average deviation from the estimated never-treated potential

outcome for treated units in community g across all post-treatment periods and therefore

reflect Average Treatment Effects on the Treated in community g.

To formally test whether there is treatment effect heterogeneity across communities, I

perform an F -test to compare the unrestricted model where effects are community specific

against a restricted model where effects are assumed to be equal across communities; this

comparison implies a null hypothesis that effects are equal across communities. I calculate

the relevant F -statistic and report the corresponding p-value. For simplicity, I estimate

10One feature of the Gardner et al. (2024) estimator is that τ̂−1 ̸= 0, whereas most event studies make the
normalization τ̂−1 = 0. To interpret estimates in the “usual” way, one can simply compare post-treatment
effect sizes to the last pre-treatment estimate. I do this several times in Section 6 to facilitate interpretation.
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the restricted and unrestricted models by OLS; however, all reported treatment effects are

obtained from the two-stage difference-in-differences procedure. I also selectively document

pairwise heterogeneity across communities with a standard Student’s t-test using the re-

ported effect sizes and standard errors.

Because dct is a generated regressor, the standard errors must be corrected as in Gardner

et al. (2024) . I use the R package did2s from Butts and Gardner (2021) to perform the

two-stage procedure and calculate standard errors, which are clustered at the institution

level. I estimate dynamic treatment effects for the first four treatment periods only; more

distant effects may reflect unobserved policy changes and not the impact of the policy of

interest.

6 Results

6.1 Dynamic Effects (Event-Studies)

I start by highlighting the advantage of estimating community-specific time fixed effects

(γ̂gt) rather than population-level time fixed effects (γ̂t) in Equation (2). Consider the 75th

percentile of reported SAT scores as the outcome of interest. Figure 6 panel (a) presents

estimated dynamic treatment effects when time trends are community specific, and Figure

6 panel (b) presents estimated dynamic treatment effects when time trends are estimated

at the population-level. In panel (a), the pre-treatment estimates are small in magnitude

and stable, indicating that, conditional on community, treated and never-treated institutions

evolve similarly prior to treatment. In contrast, there is a severe negative pre-trend in panel

(b), indicating that, prior to treatment, the 75th percentile of reported SAT scores is growing

more quickly at control institutions than at treated institutions. Post-treatment estimates in

panel (a) are positive and statistically significant, capping out at just under 15 points, but are

negative on average in panel (b). If estimates were relative to the final pre-treatment period,

they would still be more than 6 points higher in panel (a) than in panel (b), suggesting that

the disparate trends is introducing the negative bias discussed in Section 4.4. Therefore,

unless otherwise specified, all treatment effect estimates in the main body of the paper
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Figure 6: Dynamic Estimates of Policy Adoption on 75th %ile SAT Score

(a) Model With Community-Specific Time Fixed Effects

(b) Model With Population-Level Time Fixed Effects

Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals. Coefficients are in terms of
SAT points. Point estimates for panel (a) and (b) can be found in Appendix B.
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will come from models featuring community-specific time fixed effects. Treatment effects

estimated from models with population-level time fixed effects can be found in Appendix

B. In Appendix C, I consider an alternative grouping of colleges based on their Carnegie

Classification (hereafter CC) and estimate dynamic effects with a model where community-

trends are based on those groups; network-detected communities still perform better from a

pre-trends perspective and provide different results for some outcome variables.

Figure 7: Dynamic Effects of Policy Adoption on 25th %ile SAT Score

Note: Estimates from model with community-specific trends. Coefficients represent deviations from the counterfactual
potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error bars represent
90 percent confidence intervals. Point estimates found in Appendix B.

Figure 7 presents dynamic treatment effect estimates for the 25th percentile of reported

SAT scores. Reported SAT scores for enrolled and submitting students increase substantially

following policy adoption. Comparing Figure 7 to Figure 6 panel (a), effects are larger for

the 25th percentile of reported scores than the 75th percentile, with effect sizes of more

than 20 points (estimated effects are 8 points larger if compared to the last pre-treatment

estimate). While the pre-trend on the 25th percentile of reported scores is less substantial

when using within-community comparisons only (see Appendix Table B2 for the alternative),

it still warrants discussion. As I discuss in the next section, the pre-trend is driven mainly

by the communities of Less Selective and Elite National Universities, who both exhibit

strong negative pre-trends in the reported test score variables. Excluding these communities

compresses the pre-treatment estimates towards zero and increases each of the post-treatment
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estimates by over 5 points. This suggests that – in the context of test-optional policy adoption

– within community comparisons might lead to consistent estimation of treatment effects for

some community/outcome combinations and not others. In any case, the direction of the

pre-trend would serve to downwardly bias my estimates, so the estimated effects are, if

anything, an underestimate of the true effect of policy adoption on reported scores. Strong

negative pre-trends in the SAT score variables indicates that reported scores were increasing

more quickly (or decreasing less quickly) at untreated members than at treated members of

the same community, which may explain the motivation to adopt a test-optional policy.

Figure 8: Effect of Policy Adoption on Test Submission Percent

Note: Estimates from model with community-specific trends. Coefficients represent deviations from the counterfactual
potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error bars represent
90 percent confidence intervals. Point estimates found in Appendix B.

Figure 8 presents dynamic treatment effects of policy adoption on the Test Submission

Percent. Effect sizes start at around -15 percentage points and decrease to around -25

percentage points by the fourth treatment period. These estimates suggest that test-optional

schools do enroll a substantial fraction of non-submitters; assuming that the percent of

enrolled students submitting both SAT and ACT scores is unaffected by policy adoption,

the entire decline in the Test Submission Percent represents non-submitters. All dynamic

estimates for the test score variables can be found in Appendix B.

Figure 9 presents dynamic effects of policy adoption on the overall Log Graduate STEM

Share. All four post-treatment estimates are negative and statistically significant at the
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Figure 9: Effect of Policy Adoption on the Overall Log Graduate STEM Share

Note: Estimates from model with community-specific trends. Coefficients represent deviations from the counterfactual
potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error bars represent
90 percent confidence intervals. Point estimates found in Appendix B.

10% level. In the fourth post-treatment period, the Graduate STEM Share is more than

6 percent lower than in the never-treated counterfactual. Regressing dct on a single post-

treatment indicator yields a point estimate of −0.05, significant at the 5% level. I take this

as compelling evidence that policy adoption leads to a decline in the share of graduates with

a STEM major. Figure 10 presents analogous effects for the under-represented minority-only

Log Graduate STEM Share. Post-treatment estimates are noisy and indistinguishable from

zero. Point estimates can be found in Appendix B.

6.2 Community-Level Estimates

Table 4 presents community-level static treatment effect estimates for the two reported SAT

score variables and the Test Submission Percent. Effects on the reported SAT score variables

are positive for all communities except Less Selective and Elite National Universities. In

Appendix E, I show that these negative estimates are driven by a strong negative pre-trend,

suggesting that treated members of these communities may have been motivated to adopt

a test-optional policy by declining selectivity relative to their peers. Thus, the assumption

of parallel counterfactual trends is unlikely to be satisfied in those communities for these
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Figure 10: Effect of Policy Adoption on the URM-only Log Graduate STEM Share

Note: Estimates from model with community-specific trends. URM = Under-represented minority. Coefficients represent
deviations from the counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the
institution level. Error bars represent 90 percent confidence intervals. Point estimates found in Appendix B.

particular outcomes. Other communities see more stable pre-trends.

Colleges and Universities - East and Colleges and Universities - Midwest see the largest

increases in the 25th percentile of reported SAT scores, with an effect size around 31 points,

though the latter estimate is noisy. Across community, effects are larger for the 25th percentile

of reported scores, with little exception. Liberal Arts Colleges - New England see the most

significant effects, with both estimates positive and significant at the 5% level. However, after

excluding the Less Selective and Elite National Universities, I can not reject that effect sizes

are the same across community. In general, communities see a statistically significant decline

in the Test Submission Percent, but the declines are smallest for Less Selective National

Universities, Elite National Universities, and Liberal Arts Colleges - Midwest; the other five

communities see declines over 20 percentage points. The decline is largest at Liberal Arts

Colleges - New England, who see a 32 percent decline in the Test Submission Percent, with a

95% confidence interval of [-39.24, -25.12]. Accordingly, I can reject at all three conventional

levels that declines in the Test Submission Percent are equal across communities.

Table 5 reports community-level static treatment effects for the Log Graduate STEM

Share overall and by under-represented minority status. There is considerable heterogeneity

across communities. For the overall Graduate STEM Share, Colleges and Universities -
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Table 4: Effects on Test Score Variables by Community

Outcome: SAT 25th %ile SAT 75th %ile Test Submission
Percent

Model: (1) (2) (3)

Community
Less Selective Nat’l Unis -18.78∗∗ -1.642 3.015

(9.236) (6.548) (4.983)
LACs - New England 25.23∗∗∗ 25.45∗∗ -32.18∗∗∗

(9.644) (11.22) (3.602)
Colleges and Unis - East 30.99∗∗ 22.69 -26.15∗∗∗

(14.03) (15.13) (4.874)
LACs - Midwest 13.37 8.925 -10.89∗

(10.22) (9.091) (5.648)
Colleges and Unis - Midwest 31.17 10.13 -25.61∗∗∗

(32.83) (12.88) (6.527)
Colleges and Unis - Southeast 21.03 11.17 -23.11∗∗∗

(20.48) (15.10) (6.450)
Elite Nat’l LACs 13.54 4.376 -22.47∗∗∗

(14.48) (10.09) (5.412)
Elite Nat’l Unis -31.05∗∗∗ -6.418 -7.347∗∗

(9.534) (11.42) (3.668)

Prob. All Effects Equal <0.01 0.093 <0.01

Fit statistics
Observations 2,700 2,700 2,518
R2 0.04556 0.02310 0.27751
Adjusted R2 0.04308 0.02056 0.27550

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

East and Elite National Liberal Arts Colleges see statistically significant declines, with point

estimates of -0.1571, and -0.0837, and both are statistically significant at the 1% level. The

other communities see no significant change in the Log Graduate STEM Share following

adoption. Effect sizes are less precisely estimated for the URM-only Graduate STEM Share,

where declines are concentrated in the same two communities; following policy adoption,

Colleges and Universities - East and Elite National Liberal Arts Colleges see 26 and 23

percent declines, on average, in the proportion of under-represented minorities completing

bachelor’s degrees in STEM, with the latter effect significant at the 1% level. Across all

three outcomes (overall, URM, and non-URM Graduate STEM Share), I can reject at the

5% level that effects are the same across communities.

As with the negative effect on reported SAT scores at Less Selective and Elite National
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Table 5: Effects on Graduate STEM Share

Outcome: Log Graduate STEM Share
Overall URM Only non-URM Only
(1) (2) (3)

Community
Less Selective Nat’l Unis 0.0565 0.0191 0.0568

(0.1363) (0.0749) (0.1471)
LACs - New England -0.0917 0.0901 -0.0979

(0.0845) (0.1970) (0.0884)
Colleges and Unis - East -0.1571∗∗∗ -0.2646∗ -0.1511∗∗∗

(0.0590) (0.1423) (0.0541)
LACs - Midwest 0.0019 0.1151 -0.0070

(0.0395) (0.0879) (0.0384)
Colleges and Unis - Midwest -0.0973 0.0373 -0.1016∗

(0.0602) (0.1922) (0.0591)
Colleges and Unis - Southeast 0.0394 0.0430 0.0267

(0.0350) (0.1283) (0.0401)
Elite Nat’l LACs -0.0837∗∗∗ -0.2300∗∗∗ -0.0664∗∗

(0.0314) (0.0786) (0.0314)
Elite Nat’l Unis 0.0539 0.0516 0.0597

(0.0878) (0.0892) (0.0884)

Prob. All Effects Equal <0.01 0.019 <0.01

Fit statistics
Observations 2,714 2,714 2,714
R2 0.02687 0.01659 0.02415
Adjusted R2 0.02435 0.01405 0.02162

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Universities, statistically significant static effects could be driven by different underlying

trends between treated and control institutions; in Appendix E, I present estimates from a

regression of dct (deviations from counterfactual potential outcomes) on treatment leads plus

a post-treatment indicator, allowing me to determine if treated institutions were evolving

similarly to control institutions prior to treatment. I find that the significant negative effect

of policy adoption on the overall and URM-only Graduate STEM Share at Colleges and

Universities on the East Coast and Elite National Liberal Arts Colleges is not explained by

different underlying trends between treated and control units; estimates are stable and near

zero prior to treatment, dropping sharply thereafter.
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7 Discussion and Conclusion

In this paper, I exploit a peer institution network to identify communities of colleges and

universities. Communities differ substantially in selectivity, size, and student-body diversity.

I use these detected communities to estimate both the population- and community-level

impacts of test-optional policies, relying on a parallel counterfactual trends assumption that

is conditional on community membership.

Across 66 institutions that adopted a test-optional policy between 2006 and 2016, I find

significant increases in the perceived selectivity of adopting institutions, as measured by the

reported SAT scores of enrolled students. The 25th and 75th percentiles of the reported SAT

score distribution are 22 and 15 points higher, respectively, in the third post-treatment period

than in the never-treated counterfactual. Increases are largest among Liberal Arts Colleges

in New England and Colleges and Universities on the East Coast, where point estimates

on the 25th (75th) percentile are 25 and 31 (25 and 23) points, respectively; however, after

excluding two communities for which pre-trends complicate identification, I cannot reject

that effect sizes are equal across communities. Interestingly, the two communities who see

the largest increase in reported scores also see the largest decrease in the Test Submission

Percent, a proxy for the proportion of non-submitting students. Taken together, these results

are consistent with the prediction described in Section 2 and by Dessein et al. (2025); test-

optional policies lead to a left censoring of the reported score distribution and a corresponding

increase in its quartiles.

Additionally, I find that nearly 25 percent of students in observed test-optional cohorts

chose not to submit a college entrance exam score. There is significant variation across

community; at treated New England Liberal Arts Colleges, nearly one in three enrolled

students did not submit an SAT or ACT score. On the other hand, non-submitters make

up just 7 and 11 percent, respectively, of test-optional cohorts at Elite National Universities

and Liberal Arts Colleges in the Midwest, and treated members of Less Selective National

Universities seem not to enroll any non-submitters. Estimates are precisely estimated, and

I can reject at any conventional level that effects are equal across community.

Policy adoption also causes significant declines in the overall share of graduates majoring
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in a STEM field. There is substantial cross-community variation, with these declines con-

centrated in three communities; consequently, I can reject at the 5% level that effects on the

Graduate STEM Share are equal across community. Declines are most precisely estimated

for Colleges and Universities on the East Coast and Elite National Liberal Arts Colleges,

with policy adoption causing a 16 and 8 percent decline, respectively, in the overall share

of graduates majoring in a STEM field, with both point estimates significant at the 1%

level. Those communities also see significant policy-induced declines of 26 and 23 percent,

respectively, in the proportion of under-represented minority graduates majoring in a STEM

field. These results are consistent with test-optional policies leading to a replacement of

intermediate scorers with very low scorers and the literature on ability sorting across college

majors.

There are still outstanding questions with respect to test-optional policies, especially

regarding student outcomes and major choice. It is unclear what mechanism is driving the

declines in the share of graduates with a STEM major. Non-submitters may prefer different

majors; alternatively, it could reflect academic mismatch. Non-submitting students may

wish to pursue a STEM major, but find themselves unprepared for the coursework; in the

spirit of Arcidacono et al. (2011) and Arcidiacono et al. (2016), one could test for mismatch

by comparing STEM major exit rates between submitting and non-submitting students.

Understanding the mechanism causing the decline has important implications for policy-

makers; if non-submitters would have completed a STEMmajor at a less selective institution,

test-optional admission policies may have an adverse effect on the labor market outcomes

of the students they aim to benefit, as many studies have documented wage premiums for

STEM majors (see Grogger and Eide (1995), Loury (1997), Arcidiacono (2004), Kirkeboen

et al. (2016)). Future research may also investigate the documented cross-community treat-

ment effect heterogeneity; for instance, Elite National Liberal Arts Colleges may be less

likely to consider applicant major when making admissions decisions, leading to a decline in

STEM driven by compositional changes.

While the vast majority of selective institutions adopted a test-optional policy in response

to the COVID-19 pandemic, several high profile institutions (such as MIT, Dartmouth, and

Harvard) have reinstated their pre-pandemic testing policy. As more colleges and universities
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follow suit, investigating the impact of rescinding a test-optional policy would complement

this analysis. The college admissions landscape may be vastly different in the post-pandemic

world than in the pre-pandemic period I study. Of course, such an investigation would

require many more colleges to return to a test-required policy; to the extent that colleges

care about appearing both selective and diverse, my results suggest that there may be little

incentive to abandon the new status-quo.
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A Evaluating Community Strength

The Leiden algorithm will detect communities even when none are present (as in a ran-

domly generated configuration network); therefore, it is natural to wonder if the detected

communities are “real”. Stating this more formally, do the detected communities lead to a

higher value of modularity than would be expected from a realization of the configuration

model? I follow the inference procedure described in Fortunato and Hric (2016) to determine

if the observed modularity is significantly different from what would be expected if the peer

institution network was randomly generated. Let HO denote the observed modularity of the

network given the communities identified by the Leiden algorithm. Let GS,i be a simulated

network with the same nodes and node degree as the observed network, but with connec-

tions determined randomly by the configuration procedure. Let HS,i denote the simulated

modularity of GS,i given communities identified by applying the Leiden algorithm to the

simulated network. After simulating 50 networks, I calculate

Z − Score =
HO −HS

σ(HS)
, (A.1)

where HS and σ(HS) are the mean and standard deviation, respectively, of the simulated

modularities. Table 1 displays the results of this analysis; the observed modularity is 18.34

standard deviations above the mean modularity in the simulated networks, which indicates

that the peer institution network exhibits an incredibly strong community structure.

Table A1: Strength of Community Structure

HO HS σ(HS) Z − Score
0.819 0.499 0.0175 18.34
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B Event-Study Tables

Table B1 presents the point estimates and standard errors used to construct Figures 6

through 10. The number in parentheses matches the number of the figure in the main

text that the estimates correspond to. Coefficients represent average deviations from the

estimated counterfactual potential outcome. Standard errors are from Gardner et al. (2024)

and clustered at the institution level.

Table B2 presents treatment effect estimates and their standard errors when time fixed

effects are estimated at the population-level rather than the community-level. There are

severe pre-trends in many of the event-studies; for instance, pre-treatment effect sizes on

the 25th percentile of reported SAT scores (Table B2 Column 1) decrease monotonically

from 6 to -14, and pre-treatment effect sizes on logged under-represented minority (URM)

enrollment (Table B2 Column 3) rise almost monotonically from -0.03 to 0.07. These pre-

trends severely limit ones ability to interpret post-treatment effect sizes and strongly support

the use of community level time fixed effects when estimating treatment effects.
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C Alternative Classification

In this appendix, I consider an alternative (simpler) classification of institutions that relies

on their Carnegie Classification rather than the peer network. First, I classify institutions

along two dimensions: degree-granting level and selectivity. These are the two dimensions

considered (separately) by Bennett (2022) in his heterogeneity analysis. First, I distinguish

between institutions whose highest degree offered is a bachelor’s degree and those that also

offer graduate degrees (master’s or doctorates). Second, I divide institutions into more

selective and less selective groups based on their undergraduate profile; institutions rated

“More Selective” by the Carnegie Classification are in the more selective category, and all

other institutions are considered less selective. This results in four institutional categories:

(1) less selective, bachelor’s-only institutions; (2) more selective, bachelor’s-only institutions;

(3) less selective, graduate-granting institutions; and (4) more selective, graduate-granting

institutions. Table B1 describes these four groups and the number of treated and never-

treated institutions in each.

Table C1: Groups based on Carnegie Classification

Group Treated Never-Treated Median Treatment Year
Less Selective, Bachelor’s-Only 22 30 2010.50
More Selective, Bachelor’s-Only 13 28 2010
Less Selective, Graduate-Granting 29 71 2012
More Selective, Graduate-Granting 8 49 2012

Note: Only communities with 2 or more treated institutions are included. An institution is treated if it adopted a
test-optional policy between 2006 and 2016, and Never-Treated if it did not adopt a test-optional policy by 2020. Institutions
that adopted a policy between 2017 and 2019 are excluded.

I repeat the empirical analysis for dynamic effects with group-specific trends correspond-

ing to the aforementioned groups. Table C2 presents the event study estimates for the eight

outcomes of interest. Figures C1 and C2 show plots of the event study estimates for logged

FTFT URM enrollment and the logged Graduate STEM Share. Figure C1 has a clear pos-

itive pre-trend that is not present when community trends are based on network detected

communities (Appendix Figure D1). Post-treatment estimates are larger, likely biased up-

wards by the positive pre-trend and possibly overstating the effect of policy adoption on

improving racial diversity. In contrast to Figure 12 in the main text, Figure C2 shows no

effect of policy adoption on the logged Graduate STEM Share.
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Figure C1: Effect of Policy Adoption on Logged FTFT URM Enrollment - Carnegie Classi-
fication Trends

Note: Estimates from model with carnegie classification group-specific trends. FTFT = First-Time Full-Time. URM =
under-represented minority. Coefficients represent deviations from the counterfactual potential outcome. Standard errors are
from Gardner et al. (2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals. Point
estimates found in Table C2.

Figure C2: Effect of Policy Adoption on Log Graduate STEM Share - Carnegie Classification
Trends

Note: Estimates from model with carnegie classification group-specific trends. Coefficients represent deviations from the
counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error
bars represent 90 percent confidence intervals. Point estimates found in Table C2.
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D Effects on Student-Body Diversity

D.1 Event-Studies

Figure D1: Effect of Policy Adoption on Logged FTFT URM Enrollment

Note: FTFT = First-time full-time. URM = Under-Represented Minority. Estimates from model with community-specific
trends. Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals. Point estimates found in
Appendix Table D2.

Figure D2: Effect of Policy Adoption on Logged FTFT Enrollment of Women

Note: FTFT = First-time full-time. Estimates from model with community-specific trends. Coefficients represent deviations
from the counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution
level. Error bars represent 90 percent confidence intervals. Point estimates found in Appendix Table D2.
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Figure D3: Effect of Policy Adoption on Logged FTFT Enrollment of Fed. Grant Recipients

Note: FTFT = First-time full-time. Estimates from model with community-specific trends. Coefficients represent deviations
from the counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution
level. Error bars represent 90 percent confidence intervals. Point estimates found in Appendix Table D2.

Figures D1, D2, and D3 present dynamic effects of policy adoption on logged first-time

full-time (FTFT) enrollment of under-represented minorities (URMs), women, and federal

grant recipients, respectively. My estimates largely agree with the findings of Bennett (2022),

though my point estimates are, in general, slightly smaller (not statistically significantly so).

At treatment onset, effects on FTFT URM enrollment increase sharply and are almost 9

percent higher than in the never-treated counterfactual. Effects stay positive thereafter,

and are statistically significant in two of the four post-treatment periods. Effects on the

enrollment of women are smaller. At treatment onset, FTFT enrollment of women is around

1.3 percent higher than would be expected in the absence of treatment, and estimates decline

thereafter; however, estimates would be about twice as large if compared to the last pre-

treatment period, though they would still not be statistically significant. Effects on the

enrollment of federal grant recipients fall somewhere between the effects for under-represented

minorities and women. At treatment onset, FTFT federal grant recipient enrollment is about

7.6 percent higher than in the never-treated counterfactual, and effect sizes are positive in all

post-treatment periods; however, the last pre-treatment estimate is around 0.036. Thus, the

estimated effect would be smaller if the post-treatment comparison was the T-1 estimate.

Point estimates can be found in Table D2.
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D.2 Community-Level Treatment Effects

Table D1: Effects on Student Demographics by Community

Outcome: Logged URM Logged Enrlt. Logged Fed. Grant
Enrlt. of Women Recipient Enrlt.
(1) (2) (3)

Community
Less Selective Nat’l Unis -0.0951 -0.1236∗∗∗ -0.0795

(0.0871) (0.0425) (0.0600)
LACs - New England 0.2122 -0.0295 0.0454

(0.2040) (0.0717) (0.1032)
Colleges and Unis - East 0.0019 0.0456 0.0790

(0.0797) (0.0350) (0.0659)
LACs - Midwest 0.0433 0.0029 0.1011∗

(0.0738) (0.0337) (0.0541)
Colleges and Unis - Midwest -0.0394 -0.0631 -0.0308

(0.1262) (0.0722) (0.1098)
Colleges and Unis - Southeast 0.1424 0.0137 -0.0980

(0.1150) (0.0816) (0.1218)
Elite Nat’l LACs 0.0853 0.0126 -0.0213

(0.0603) (0.0157) (0.0629)
Elite Nat’l Unis 0.2190∗∗∗ 0.0954∗∗∗ 0.2634∗∗

(0.0492) (0.0293) (0.1142)

Prob. All Effects Equal 0.017 <0.01 <0.01

Fit statistics
Observations 2,988 2,990 3,099
R2 0.01886 0.01406 0.01447
Adjusted R2 0.01656 0.01175 0.01224

Custom standard-errors in parentheses, clustered at institution-level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table D1 presents community-level static treatment effect estimates for the three diversity

outcomes. Elite National Universities see statistically significant increases in all three out-

comes; however, a pre-trend investigation reveals that – despite mostly stable pre-treatment

estimates – the final pre-treatment estimate for each outcome is large and positive. This

suggests that other policies may have been enacted prior to test-optional admissions with

the goal of increasing student-body diversity.

Enrollment of federal grant recipients increases by 10, 8, and 5 percent at Liberal Arts

Colleges - Midwest, Colleges and Universities - East, and liberal Arts Colleges - New England,

but only the first of these estimates is statistically significant, and none are statistically
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Table D2: Dynamic Effects of Policy Adoption on Student-Body Diversity

Outcome: Logged URM Logged Enrlt. Logged Fed. Grant
Enrlt. of Women Recipient Enrlt.

Model: (9) (10) (11)

Variables
T-≥ 6 0.0011 0.0132∗∗ 0.0123

(0.0133) (0.0055) (0.0105)
T-5 -0.0386 0.0031 -0.0158

(0.0278) (0.0100) (0.0187)
T-4 -0.0002 -0.0080 -0.0189

(0.0326) (0.0106) (0.0181)
T-3 -0.0002 -0.0233∗∗ -0.0435∗

(0.0255) (0.0110) (0.0239)
T-2 0.0070 -0.0134 -0.0108

(0.0266) (0.0111) (0.0205)
T-1 0.0248 -0.0124 0.0361

(0.0321) (0.0123) (0.0221)
T-0 0.0860∗ 0.0142 0.0761∗∗

(0.0468) (0.0172) (0.0331)
T+1 0.0756 0.0128 0.0467

(0.0509) (0.0207) (0.0332)
T+2 0.1201∗∗ 0.0040 0.0473

(0.0496) (0.0239) (0.0366)
T+3 0.0748 -0.0014 0.0610

(0.0582) (0.0248) (0.0501)

Fit statistics
Community Trends? Yes Yes Yes
Observations 2,872 2,874 2,873
R2 0.01124 0.00335 0.00739
Adjusted R2 0.00813 0.00021 0.00427

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

significant from the others. The other communities see imprecisely estimated declines in

federal grant recipient enrollment.
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E Community-Level Event Studies

In this appendix, I report estimates from community-by-community regressions of deviations

from counterfactual potential outcomes (dct) on treatment leads plus a post-treatment indi-

cator. Treatment effects estimated in the pre-period will allow me to determine if treated

and control units in the same community evolved similarly prior to treatment.

Figure E1 displays these community-level event studies for the 75th percentile of reported

SAT scores. Pre-treatment estimates are around zero for most communities except for Less

Selective National Universities (top left panel) and Elite National Universities (bottom right

panel). These communities exhibit strong pre-trends, suggesting that treated members of

these communities were becoming less selective (relative to untreated members) prior to

treatment. Figure E2 displays community-level event studies for the 25th percentile, where

a qualitatively similar but quantitatively more extreme pattern emerges. These negative

trends are partly responsible for the negative pre-trend in Figure 7. These pre-trends suggest

that reported SAT scores were increasing faster at untreated members of these communities

than treated members. Thus, for this outcome in particular, the assumption of parallel

counterfactual trends may not hold for those community/outcome combinations specifically.

Figure E3 displays community-level event studies for the overall Graduate STEM Share.

It is clear that the large, statistically significant declines at Colleges and Universities on the

East Coast and Elite National Liberal Arts Colleges are not driven by different underlying

trends between treated and control units in those communities. Pre-treatment estimates for

both are stable and drop sharply post-treatment. Figure E4 tells a similar story for the

URM-only Graduate STEM Share in these communities, with stable pre-trends followed by

a drop at treatment onset.
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Figure E1: Community-Level Effects on 75th %ile of Reported SAT Scores

Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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Figure E2: Community-Level Effects on 25th %ile of Reported SAT Scores

Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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Figure E3: Community-Level Effects on Overall Graduate STEM Share

Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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Figure E4: Community-Level Effects on URM-Only Graduate STEM Share

Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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