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Abstract

To investigate the heterogeneous impacts of test-optional policies, I construct a
network of private colleges based on their self-reported peer institutions and detect
communities within it using a network science algorithm. I then estimate treatment
effects by comparing adopters and non-adopters within the same community. Overall,
adoption increases reported SAT scores but decreases the share of bachelor’s degree
completions in STEM, consistent with mismatch. Effects vary by community; at the
most selective liberal arts colleges, policy adoption causes an 8 (23) percent decline
in the share of all (under-represented minority) bachelor’s completions with a STEM
major.
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1 Introduction

In this paper, I employ a network-based strategy to identify distinct communities of higher
education institutions that can facilitate investigation of heterogeneous treatment effects.
Relying on their self-reported peer institutions, I construct a novel network of private colleges
and universities and detect communities within it using an algorithm from the network
science literature. Communities differ substantially across observables and exhibit different
trends in key variables. These distinct trends can even complicate estimation of population-
level treatment effects if not accounted for.

I use several of these communities to investigate both the population-level and hetero-
geneous impacts of adopting a test-optional admission policy! on institution-level outcomes.
Methodologically, I estimate dynamic, population-level treatment effects by regressing out-
comes on treatment leads and lags, as well as institution and community-time fixed effects?.
I estimate community-level treatment effects by regressing outcomes on a post-treatment
indicator interacted with dummy variables for community membership (plus the same set of
fixed effects). If a parallel counterfactual trends assumption holds conditional on commu-
nity membership, these regressions consistently estimate population and community average
treatment effects on the treated, respectively. For the population-level dynamic estimates, I
show how including community-time fixed effects drastically attenuates the pre-trends that
can arise when time fixed effects are estimated at the population level.

I document that at 66 private colleges and universities that adopted a test-optional policy
between 2006 and 2016, nearly 25 percent of students enrolled in test-optional cohorts did not
submit a test score. However, these effects differ substantially across communities; at treated
New England Liberal Arts Colleges, nearly one in three enrolled students did not submit
an SAT or ACT score. On the other hand, non-submitters make up just 7 and 11 percent,

respectively, of test-optional cohorts at Elite National Universities and Liberal Arts Colleges

!These policies give applicants the option not to submit a college entrance exam (SAT or ACT) score
when applying for admission. Evaluating institutions claim that the decision not to submit a test score is
not viewed negatively (Syverson et al. (2018)). For an excellent review of the origins and rise of test-optional
admission policies, see Furuta (2017).

2Because this setting features staggered treatment timing and effects may be heterogeneous and/or de-
layed, I estimate treatment effects with the two-stage difference-in-differences estimator of Gardner et al.
(2024).



in the Midwest, and treated members of Less Selective National Universities seem to enroll
virtually no non-submitters. I find that test-optional policy adoption substantially increases
the 25" and 75" percentiles of the reported SAT score distribution. While dynamic effects
are modest at treatment onset, they increase thereafter, with the largest effects coming in
the third post-treatment period, where point estimates are 22 and 15 points, respectively,
and significant at the 1% level. Increases are most significant for the community of Liberal
Arts Colleges in New England and the community of Colleges and Universities on the Fast
Coast, who also enroll the largest share of non-submitting students. These results are con-
sistent with a censoring of the left tail of the reported score distribution. In an appendix,
I investigate outcomes related to student-body diversity. My results on population-level
effects largely agree with Bennett (2022) that test-optional policies increase racial and so-
cioeconomic diversity; however, community-level impacts are imprecisely measured, and I
cannot establish meaningful cross-community heterogeneity.

Motivated by the literature on ability sorting across majors, I create and investigate a
new outcome: the share of bachelor’s degree completions with a STEM major (overall and
by under-represented minority (URM) status), offering new evidence on how test-optional
policies shape academic choices and downstream outcomes. Across the full sample, policy
adoption causes statistically significant declines of around 5 percent in the overall share
of graduates with a STEM major, while effects on URM graduates are indistinguishable
from zero. I show in an appendix that when counterfactual trends are estimated at the
population-level, a negative pre-trend emerges, complicating causal inference; when I con-
struct an alternative grouping based on Carnegie Classifications, I find a null effect. Thus, my
network-based identification strategy leads to meaningfully different results than alternative
approaches.

I also find substantial cross-community heterogeneity in the impact of test-optional poli-
cies on STEM completions. The community of Colleges and Universities on the East Coast
and the community of Elite National Liberal Arts Colleges see the most precisely estimated
declines in both the overall and URM-only share of graduates majoring in a STEM field. In
those communities, adoption causes a 16 and 8 (26 and 23) percent decline, respectively, in

the share of all (URM) graduates majoring in a STEM field. All four estimates are statisti-



cally significant, and three are significant at the 1% level. The other communities see null
effects; accordingly, I can also reject at the 1% level that effect sizes are the same across
communities.

The decline in STEM graduates at policy adopters could simply be driven by students
who did not submit a test score (non-submitters) preferring different majors; however, it is
also consistent with mismatch. Theory and evidence (see Dessein et al. (2025) and Kelly
(2022)) suggest that non-submitters are substantially less academically prepared than their
submitting peers, which may cause them to switch out of STEM majors at a higher rate or
not pursue them in the first place (despite wanting to). To the extent that this mismatch is
driving the estimated decline in STEM bachelor’s completions, test-optional policies may be
adversely affecting students who would have completed a STEM degree at an institution for
which they are better academically matched. However, determining the relative importance
of these two mechanisms would require micro-level data, and therefore is an avenue for future
research.

To my knowledge, this is the first paper that uses network data and community de-
tection in a policy evaluation setting; however, this approach has applicability beyond the
higher education context. It would be particularly relevant in settings where access to high-
dimensional covariates is limited — precluding the use of other matching techniques — but
units can be linked in a network structure. These include development contexts with social
network information, as well as settings with private firms; in the latter, connections between
firms could be determined by worker flows.

This paper contributes to the growing literature investigating the effects of test-optional
admission policies with institution-level data®. Early studies focused on selective liberal arts
colleges only (Belasco et al. (2015); Rosinger and Ford (2019)), finding little effect on racial
or socioeconomic diversity, but positive effects on reported SAT scores. Using two-way fixed
effects to estimate treatment effects, Saboe and Terrizzi (2019) focus on a broader set of
adopting institutions; they similarly find no effect on student-body diversity, but in contrast

find imprecisely estimated declines in reported SAT scores. However, the control institutions

3Several studies investigate test-optional policies with admissions data (see Robinson and Monks (2005),
Conlin et al. (2013), Conlin and Dickert-Conlin (2017), Kelly (2022), McManus et al. (2023), and Sirolly
et al. (2024).



considered differed substantially from the treated institutions, making it unlikely that the
parallel counterfactual trends condition was satisfied.

Like Saboe and Terrizzi (2019), Bennett (2022) and Bevers and Mulholland (2022) con-
sider a broad set of adopters, but consider a more representative set of control institutions;
Bennett (2022) finds that test-optional policies lead to a 10 to 12 percent increase in under-
represented minority enrollment, a 6 to 8 percent increase in female enrollment, and a 3 to
4 percent increase in Pell grant recipient enrollment. Bevers and Mulholland (2022) report
higher average debt burdens among graduates; however, neither re-investigates the impact
on reported SAT scores. While my study is similar to both, I make a novel methodologi-
cal contribution by using peer networks and community detection to identify control units
and examine cross-community treatment effect heterogeneity, and a novel substantive con-
tribution by investigating the effect of test-optional policies on STEM major completions.
Bennett (2022) compares effects for liberal arts colleges and larger universities, as well as
more and less selective institutions; however, the community-level analysis I conduct is much
more granular. I also revisit the effect of test-optional policies on reported SAT scores.

The test-optional literature is related to a broader literature examining the relationship
between barriers to college entrance exam taking and access to higher education. Studies
have investigated state-mandated college entrance exam taking policies (see Klasik (2013),
Hurwitz et al. (2015), Goodman (2016), and Hyman (2017)), finding positive effects on 4-
year college enrollment rates, with increases especially concentrated among students who
would not otherwise have taken a college entrance exam. Financial barriers may also be
important; Hurwitz et al. (2017) find that increasing the number of free score sends available
to applicants has a positive impact on college attendance and completion. Goodman et al.
(2020) find that as-if random SAT retakes increase scores, leading to higher 4-year college
enrollment rates, particularly among under-represented students. These studies suggest
that reducing barriers to taking and reporting college entrance exams can improve access to
higher education; test-optional policies, in contrast, seek to improve access by eliminating

the requirement altogether, which may lead to adverse outcomes such as mismatch.



2 Empirical Motivation

To many, the decision to adopt such a policy is puzzling: how could a college benefit from
allowing applicants to withhold information? A simple explanation is that colleges’ objective
functions contain inputs other than their students’ academic preparedness. They likely care
about the non-academic composition of their student bodies, aiming to enroll legacy students,
under-represented minorities, and recruited athletes, among other groups. They also want
to appear selective by reporting high test scores, which can lead to a higher ranking and
its associated benefits*. Under a test-required policy, these inputs may be in conflict. For
instance, admitting a legacy student with a low SAT score decreases both the academic
preparedness of the student body and the college’s perceived selectivity.

By contrast, a test-optional policy may allow a college to achieve its compositional goals
while simultaneously appearing more selective, since colleges are only required to report the
scores of submitting enrollees and low-scoring applicants may be induced to withhold their
scores. However, this is not without sacrifice: while low-scoring applicants who would have
been accepted under either regime now choose to withhold their scores, new applicants with
very low test scores but competitive non-test observables are incentivized to apply. Unable
to distinguish the two, colleges may end up enrolling applicants with very low test scores
and high non-test observables at the expense of applicants with intermediate values of both
who would have been admitted under a test-required policy.® This results in a separation
of admitted applicants along the test score dimension; while the college appears outwardly
more selective, the average admitted student has a lower test score than before. Kelly (2022)
finds suggestive evidence of this: at one selective test-optional college, the average admitted
non-submitter had an SAT score at the 67" percentile, compared to the 90 percentile for
the average admitted submitter. A college may find this outcome favorable if their objective
function places sufficient weight on their perceived selectivity and the composition of their

student-body.

4Reported SAT/ACT scores are an explicit input in the widely consulted US News & World Report
college ranking. Luca and Smith (2013) show that an as-if random one spot increase in this ranking increases
application volume by 1 percent. Highly ranked institutions may also find it easier to solicit donations.

Dessein et al. (2025) develop a formal model of test-optional admissions with similar underpinnings that
generates the same theoretical prediction.



This predicted replacement of intermediate scorers with low scorers, combined with the
literature on ability sorting across majors, motivates investigating whether test-optional
policies cause a decline in STEM completions. The ability sorting literature suggests that
the difference between a student’s SAT score and the institutional average is a strong, positive
predictor of whether they choose a STEM or business major (see Turner and Bowen (1999)
and Arcidiacono (2004)); Westrick et al. (2023) find that SAT scores are considerably more
predictive of STEM grades than non-STEM grades, suggesting that academic mismatch
may be partly responsible. Furthermore, in the context of affirmative action, Arcidiacono
et al. (2016) suggest that mismatch only becomes an issue when an individual’s preparation
is substantially below that of their peers. Consequently, if non-submitters tend to have
significantly lower scores than both submitters and displaced students, then one might expect
them to struggle in STEM curricula and for STEM completions to decline after policy

adoption.

3 Peer Institution Network

3.1 Network Creation

Networks consist of nodes representing agents and edges that connect them. Formally, I
model the peer institution network as both undirected and unweighted; undirected means
that node ¢ being connected to node j implies the reverse, and unweighted means that all
connections are equally strong. The set of all nodes is given by V' = {1,--- | N}, and the
set of all edges is given by F C {{i,7} | i,7 € V, ¢ # j}, which are unordered pairs of
nodes. {i,j} € E indicates that node i and node j are directly connected in the network.
A walk between node i and k is a sequence of edges from i to k. For instance, if {i,j} € E
and {j,k} € E, then the sequence {{7,j},{j, k}} is a walk from ¢ to k. If there is no walk
between ¢ and k, then ¢ and k belong to different components of the network.

To construct the peer institution network, I let elements of V' correspond to all private
colleges and universities. Two institutions ¢ and j are connected, i.e. {i,j} € E, if each

included the other in a list of peer institutions that they submitted to the National Center



for Education Statistic’s Integrated Postsecondary Education Data System in reporting year
2020°. T will commonly refer to such a relationship as a mutual peer relationship. While
one could define connections unilaterally — i.e. 7 and j are connected if either considers the
other a peer — defining connections based on mutual peer relationships prevents aspirational
peer choice from affecting the structure of the network. There are some situations where
an institution does not submit a custom set of peers, in which case it is excluded from the
network. Figure 1 shows the set of mutual peers for an example institution, The George
Washington University.

The peer institution network is comprised of one large component, one smaller compo-
nent, and many singleton or very small components. The purpose of the peer institution
network is to identify sets of institutions that can serve as controls for the treated mem-
bers of their community; communities that are too small will lead to imprecise estimates,
so I remove components with 5 or fewer nodes. This leaves the largest and second largest
components only, with a combined 617 nodes (institutions) and 1362 edges (mutual peer

relationships connecting them).

3.2 Community Detection

Let C be a partition of V; then, each ¢ € C is a collection of nodes from the original network
called a community. The community detection problem is to find the “best” partition of
nodes, which requires a way of evaluating the quality of any given partition. Newman and
Girvan (2004) propose a quality measure they call modularity; for a given partition, modu-
larity captures how many more edges of the graph connect members of the same community
than would be expected if the graph were randomly generated. For a community ¢ € C,
let e. denote the observed number of edges connecting members of ¢ to each other, and
let a. denote how many edges one would expect to connect members of ¢ to each other if

the network were generated randomly according to a benchmark network formation model.

6Colleges submit peer institution lists in order to receive a “Data Feedback Report” comparing their
performance in a variety of metrics to their self-selected peers. See June (2022) for more background on how
colleges create their peer institution lists. Peer data were procured from The Chronicle of Higher Education
(2020)



Figure 1: Mutual Peers for The George Washington University
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Note: Lines reflect that both The George Washington University (GWU) and the connected institution included the other
among the set of peer institutions that they submitted to IPEDS in 2020. Figure only includes mutual peer relationships with
GWU; many of these institutions are peers with each other as well.

Then, modularity is defined as

H(C) = % Z (ec - ac) 3 (1)
ceC

where m is the total number of edges in the network and ﬁ simply serves as a normalization.
As is standard in the community detection literature, I choose the configuration model
of Bollobas (1980) to be the benchmark network formation model. Realizations of the
configuration model are random “re-wirings” of the original network, generated by “snipping”
all the original edges and reconnecting them randomly. Figure 2 depicts this process. This
is an attractive benchmark because it generates a random network where each node has the
same number of connections as in the original network.

To gain intuition for Equation (1), fix a community ¢. If (e. — a.) is positive, the total
number of observed intra-community edges exceeds what would be expected if the network
was a realization of the configuration model. Therefore, high values of H(C) correspond

to partitions of nodes into communities that have high intra-community edge density, and



consequently lower inter-community edge density.

Figure 2: Configuration Procedure
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Brandes et al. (2008) show that finding a global maximum of modularity is NP-Hard;
therefore, for sufficiently large networks, researchers must rely on heuristic algorithms to find
local maxima of modularity. For this paper, I use the Leiden Community Detection algorithm
of Traag et al. (2019). It detects 16 communities in the peer institution network. Figure 3
gives a visual depiction of the communities in the peer institution network; nodes sharing
the same color and shape combination belong to the same community. A comprehensive list
of communities and their members can be found in the Online Appendix.

While there is certainly commonality between the detected communities and, for in-
stance, the US News & World Report college rankings, it is clear that the network structure
is capturing something richer than what could be obtained by segmenting the sample by
selectivity, size, or institution type. For example, Clark University is considered a National
University according to U.S. News & World Report, but is found in community 15 among
selective national liberal arts colleges; this placement is capturing the fact that Clark consid-
ers its peers to be elite national liberal arts colleges, not elite national universities. Similarly,
Harvey Mudd College, a liberal arts college according to US News & World Report, is in
community 8, which is comprised mainly of technical colleges and universities like Rochester
Institute of Technology and Worcester Polytechnic Institute. This makes sense when you
consider that despite its status as a liberal arts college, Harvey Mudd College has a STEM-
focused curriculum. Of course, one with sufficiently strong institutional knowledge might
well have placed Clark University among liberal arts colleges and Harvey Mudd College
among STEM-focused institutions; however, the community detection algorithm is able to

make these distinctions without relying on a researcher’s input or subjective guidance.



Figure 3: Communities in the Peer Institution Network
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Note: Gr. = Group/Community. Dots and squares (nodes) represent colleges and lines connecting them (edges) indicate that
each institution included the other among the set of peer institutions that they submitted to IPEDS in 2020. Nodes sharing
the same color and shape combination belong to the same community.
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The Leiden algorithm will detect communities in any network, regardless of whether there
is an underlying community structure; in Appendix A, I apply a formal test to demonstrate

that the peer institution network exhibits an incredibly strong community structure.

4 Data

4.1 Policy Dates

Test-optional policy start dates are obtained from Bennett (2022), which in many cases
have been verified directly with admissions offices. Some policies are conditional, that is
to say that an applicant is given the non-submission option as long as they meet some
requirement, like exceeding a high-school GPA threshold. Following Bennett (2022), I include
these conditional policies in my analysis based on the assumption that the conditions are
typically lenient and therefore are satisfied by most applicants. Bennett (2022) also requires
that treated institutions are sufficiently selective; a test-optional policy would not matter for
an institution that accepts all students. In addition, public and “special-focus” institutions
are excluded; the latter include (but are not limited to) art schools and colleges for religious
training, and are institutions for which college entrance exams likely play a more limited
role in the selection criteria. There are some instances where a college adopts and then
rescinds its test-optional policy in a later year; I remove these schools from my sample. I
also exclude colleges that disproportionally serve historically marginalized groups, such as
Historically-Black Colleges and Universities and Women-only Colleges, as under-represented
or female enrollment will change very little over the sample period, making it unlikely that
the parallel trends assumption holds.

During my sample period, a number of institutions began accepting the Common Appli-
cation (CA) from applicants. I obtain CA adoption dates from Knight and Schiff (2022), who
find that CA adoption increases application volume, decreases acceptance rates, increases
out-of-state enrollment, and may increase the 25" and 75" percentiles of the distribution of
reported SAT scores for enrolled students. Consequently, an institution’s decision to accept

the CA may confound the effect of adopting a test-optional policy; therefore, I restrict my
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sample to colleges that began accepting the CA before going test-optional, and drop obser-
vations prior to CA adoption. To my knowledge, no other paper investigating test-optional
policies addresses CA adoption. All sample restrictions happen downstream from the com-
munity detection process, so the communities described in the Online Appendix include some

institutions that are excluded from the analytic sample.

4.2 QOutcome Variables

Almost all outcome data is from the Integrated Postsecondary Education Data System (Na-
tional Center for Education Statistics (2022)), though I augment some outcomes with hand-
collected Common Data Sets from specific colleges and universities for which data is spotty.
To exclude the pandemic, I collect outcome data through 2019 (2022 for STEM completions).
I drop units treated between 2017 and 2019 and estimate treatment effects up to four peri-
ods post-treatment; this ensures that dynamic effects are not confounded by compositional
changes across event time.

The selectivity outcomes that I investigate are the 25" and 75" percentile of SAT scores
for enrolled and reporting students, which I define as the sum of the 25" and 75" per-
centile Math and Verbal subsection scores. Because of how scores are reported for each,
there is substantially more year-to-year variation in reported SAT scores than reported ACT
scores, which is why I only investigate the former. Bennett (2022) does not investigate these
outcomes, as many treated institutions stopped reporting test score variables to IPEDS fol-
lowing policy adoption. However, they continued to report exactly the same variables in
their Common Data Sets, which are typically maintained by their Institutional Research
offices. I augment the available IPEDS data with hand-collected historical Common Data
Sets. Though I do not get perfect coverage, I fill in at least some of the missing data for 26
treated institutions; post-treatment SAT data is still completely missing for 12 institutions.

I also investigate the log of the share of all graduates with a STEM major and the log of
the share of under-represented minority graduates with a STEM major, which I will typically
refer to as the overall and URM-only Log Graduate STEM Share, respectively. The URM
designation includes Black, Hispanic, and Native American students/graduates. Two-or-

more-race and unknown race students are not considered under-represented when those data
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are available. To my knowledge, this is the first paper to consider the effect of test-optional
policy adoption on this outcome. I construct this variable from data on bachelors degree
completions broken down by CIP code. To classify a CIP code as STEM or non-STEM,
I rely on the Department of Homeland Security’s STEM Code classification”. Because the
DHS list changes over time, I designate a given CIP code as STEM if it belonged to either
the 2016 or 2020 DHS STEM Code list. The Graduate STEM Share is given by the sum of
all bachelors degree completions in a STEM designated field in a given year divided by the
total number of bachelors degree completions in the same year. To align policy dates with
graduation cohorts, I lead the Graduate STEM Percent variable by four years. While some
students may graduate in fewer than four years, the largest effects should not materialize
until at least four years following the policy start year.

Another new outcome that I consider is the percent of enrolled students who did not sub-
mit a college entrance exam (the non-submitter percent), which would indicate how willing
policy adopters are to enroll non-submitting students. While the non-submitter percent is
not directly observable, institutions report the percent of enrolled students who submitted
SAT and ACT scores to IPEDS and in their Common Data Sets. I consider the sum of
the two percents to be an outcome, hereafter referred to as the Test Submission Percent,
with post-policy declines reflecting an increase in the non-submitter percent. Because many
students submit scores from both exams, this variable is frequently above 100, especially for
not-yet- and never-treated institutions. While imperfect, it nevertheless serves as a reason-
able proxy for measuring the extent to which policy adopters are enrolling non-submitting
students.

I also collect the following outcomes related to student-body diversity: logged first-time
full-time (FTFT) URM enrollment, logged FTFT enrollment of self-identified women, and
logged enrollment of FTF'T students who are federal-grant recipients. I rely on the enrollment
of federal-grant recipients as a proxy for low-income students, as IPEDS does not provide
enrollment of Pell-grant recipients until after the start of my sample period®. While I do not

include the impact of test-optional policies on these outcomes in the main text of this paper,

"See 2020 DHS STEM Code List, 2016 DHS STEM Code List
8The correlation between FTFT federal-grant recipient and FTFT pell-grant recipient enrollment during
the period in which they overlap is greater than 0.9.
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they are an interesting dimension across which the network-detected communities differ; I

explore this in the next subsection.

4.3 Summary Statistics

In this section I highlight heterogeneity across the communities detected in Section 3; how-
ever, to avoid noisy estimates of community-time fixed effects, I only consider communities
with 10 or more never-treated members. Table 1 describes these 8 “policy relevant” commu-
nities by the number of treated and never-treated units in each and the median treatment
year for treated units. Communities differ in terms of treatment uptake. Only 3 of the
23 institutions in community 3 (Less Selective National Universities) adopt a test-optional
policy between 2006 and 2016, whereas 16 of the 24 institutions in community 6 (Liberal
Arts Colleges - Midwest) do. There is also cross-community variation in treatment timing;
Less Selective National Universities and Elite National Universities are the latest adopters,
while Colleges and Universities - Midwest are the earliest. In total, I observe 66 treated
institutions across the 8 communities. Figure 4 gives a visual depiction of the 8 communities

and where they are positioned in the peer institution network.

Table 1: Policy Relevant Communities

# Community Name Treated Never-Treated Median Treatment Year
2 Less Selective National Universities 3 19 2015
4 Liberal Arts Colleges - New England 12 8 2011
5 Colleges and Universities - East 11 20 2011
6 Liberal Arts Colleges - Midwest 16 8 2011
12 Colleges and Universities - Midwest 4 12 2007
14  Colleges and Universities - Southeast 5 22 2009
15 Elite National Liberal Arts Colleges 11 24 2010
16  Elite National Universities 4 26 2013.50

Note: Communities are detected from the Peer Institution Network. Only communities with 2 or more treated institutions are
included. An institution is treated if it adopted a test-optional policy between 2006 and 2016, and Never-Treated if it did not
adopt a test-optional policy by 2020. Institutions that adopted a policy between 2017 and 2019 are excluded.

Table 2 reports the average reported 25" percentile SAT score, the admit rate, the num-
ber of first-time full-time (FTFT) applications, and the number of FTFT enrollees broken
down by community and treatment status. The latter two variables are from IPEDS. Sum-

mary statistics are calculated using data from 2001 to 2005 only, and therefore excludes

treated observations. There is substantial heterogeneity across community. Elite National
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Figure 4: Policy Relevant Communities in the Peer Institution Network
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Table 2: Selectivity and Enrollment by Community and Treatment Status

Community SAT 25 %ile Admit Rate FTFT Applications FTFT Enrollment

T NT T NT T NT T NT
Less Selective 1046 1078.74 75.73 66.14 7185.20 6423.45 1500.54  1208.55
National Universities  (63.01) (56.71) (8.24)  (16.99) (3332.02) (3269.50) (596.26)  (553.05)

Liberal Arts Colleges - 942.70  907.40  71.44  74.95 277461 233586  483.33  549.11
New England  (105.83)  (53.04)  (10.71) (15.74) (1438.36) (1977.65) (214.24) (380.02)

Colleges and ~ 1044.93  932.89  64.79  74.76  5799.75  2358.79  865.87  534.17
Universities - East  (74.07)  (76.69)  (11.03) (12.23) (3249.45) (1806.01) (368.72)  (366.21)

Liberal Arts Colleges -  1049.97 1031.22 69.68 76.66 2022.83 1957.90 387.27 465.77
Midwest  (68.13) (62.45) (11.88)  (8.09) (739.09) (768.48) (76.02)  (169.16)

Colleges and 1091 931.84  69.43  76.74  2084.12  1225.61  444.07  331.36
Universities - Midwest ~ (40.28)  (118.28)  (12.42) (12.97)  (640.36)  (661.92)  (157.57) (159.38)

Colleges and 1016.20 1007 81.31 78.29 2366.88 2341.10 574.10 566.85
Universities - Southeast  (42.59) (62.47) (4.33) (9.88) (500.48)  (1329.48)  (113.97) (239.31)

Elite National ~ 1157.15  1251.21  51.60  41.04  4135.05  4152.95  589.33  520.49
Liberal Arts Colleges  (73.07)  (59.27)  (14.44) (15.94) (1291.80) (1630.74) (105.25)  (160.30)

Elite National ~ 1218.35  1281.45  44.59 3244  10165.75 15984.31  1316.87  1839.05
Universities  (34.19)  (86.61)  (3.93)  (16.37) (4965.57) (6862.15) (640.51)  (933.01)

Full Sample ~ 1050.78  1080.60  66.35  63.39  3841.64  4987.92  639.17  771.48
(107.59)  (164.42)  (14.45) (22.77) (3019.66) (5934.47) (414.68)  (694.65)

Note: Summary statistics are calculated using data from 2001 to 2005. Standard deviations are in parentheses. FTFT =
First-time full-time. T denotes that a column’s statistics are conditional on a unit being eventually treated, and N'T denotes
that a column’s statistics are conditional on never being treated.

Liberal Arts Colleges (community 15) and Elite National Universities (community 16) re-
port the highest SAT scores, while institutions in community 4 (Liberal Arts Colleges - New
England) report the lowest SAT scores, with reported 25 percentile SAT scores below the
population average. There is some heterogeneity across treatment status and within com-
munity; treated Elite National Liberal Arts Colleges and Elite National Universities report
25 percentile SAT scores that are lower than their never-treated counterparts; however,
the heterogeneity goes the other direction in other communities. Differences in Admit Rates
are qualitatively similar to the differences in standardized test scores. Communities differ
substantially in terms of size, with Elite National Universities and Less Selective National
Universities (community 2) enrolling the most FTFT students, while community 12 (Colleges
and Universities - Midwest) is comprised of smaller schools with average FTFT enrollment

around 400.
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Table 3 reports student demographics by community and treatment status. Variables in-
clude the percent of FTFT students who are under-represented minorities, women, and fed-
eral grant recipients, and the overall and under-represented minority-only Graduate STEM
Share (expressed as a percent). As with Table 2, the data are from 2001 to 2005. Commu-
nity 2 (Less Selective National Universities) and community 16 (Elite National Universities)
are the most racially diverse. On average, treated institutions are less racially and socioeco-
nomically diverse than their never-treated counterparts, which may suggest that improving
student-body diversity is the key motivation for adopting a test-optional policy. There is
less variation across community in the percent of FTFT students who are women, who seem
to outnumber men in every community and are more overrepresented at treated institutions.
There is some variation in the percent of students receiving federal grants, which is my
proxy for Pell-grant receiving students. Elite National Liberal Arts Colleges and Elite Na-
tional Universities enroll relatively fewer federal grant recipients than the other communities.
The overall Graduate STEM Share varies a little across communities, but hovers between
10 and 20 percent for most. Almost without exception, the mean Graduate STEM Share is

lower for under-represented minorities than for the overall student-body.

4.4 Community-Specific Trends

If treated and untreated community members share the same counterfactual trends, population-
level treatment effects can be estimated based on a version of the parallel counterfactual
trends assumption that is conditional on community membership; however, this assumption
is unnecessary if trends do not differ by community. Figure 5 plots trends in the reported
25 percentile SAT scores at three communities: community 5 (Colleges and Universities -
East), community 15 (Elite Liberal Arts Colleges), and community 16 (Elite National Uni-
versities). Only never-treated institutions are used to calculate the trend. It is clear that the
elite national universities are on a substantially different trend than the other two communi-
ties. Elite national universities report 25" percentile SAT scores more than 40 points higher
in 2016 than in 2005, while the other two communities see declines in the 25" percentile of
reported SAT scores.

When estimating population-level treatment effects, these differences can lead to biased
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Figure 5: Trends in Reported 25" Percentile SAT Scores for Selected Communities

40+
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Year

== Colleges and Unis East == Elite LACs Elite Nat'l Unis

Note: Unis = Universities. LAC = Liberal Arts College. Nat’l = National. Time-series represents the trend in the average
25%h percentile SAT score of enrolled students at never-treated members of each selected community. Trends are relative to
the average 25" percentile SAT score in each community in 2005.

estimates. For instance, assuming that treated members of Colleges and Universities - East
would have evolved in the same way as their never-treated counterparts, including Elite
National Universities as controls would lead to a severe downward bias in the estimated effects
on reported SAT scores, as the underlying trends between the two groups are diverging. A
counterfactual trends assumption that is conditional on community avoids this problem. Of
course, many papers, including Bennett (2022), use techniques like Rosenbaum and Rubin
(1985)’s propensity score matching to balance the control and treated groups; however, if
treatment timing differs by community, then estimates can still be biased. For instance,
if treated Elite National Universities become treated later than other treated institutions
(Table 1 indicates this to be the case), they will be over-represented in the control sample
for units that are treated earlier, introducing a similar downward bias. Again, if a parallel
trends assumption holds conditional on community membership, community-specific trends

eliminate this bias.
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5 Empirical Strategy

When treatment timing is staggered, heterogeneous and/or delayed effects can introduce bias
and complicate interpretation when treatment effects are estimated by two-way fixed-effect
regression. These issues are discussed at length in many papers, including Borusyak et al.
(2024), Gardner et al. (2024), Goodman-Bacon (2021), Callaway and Sant’Anna (2021),
and Sun and Abraham (2021). To ensure estimation of easily interpretable impacts of test-
optional policy adoption, I employ the two-stage difference-in-differences estimator of Gard-
ner et al. (2024)°.

Let y. be the outcome of interest for college ¢ observed in period t. In the first stage,
all treated observations (observations that fall after a unit has been treated) are removed,
and institution and community-time fixed effects are estimated, i.e. the following model is

estimated with pre-treatment data only:

Yoo =Ye+ Y Yul{c € g} + Var. (2)
9€g
In Equation (2), g represents a community in the set of all communities G, . is an institution-
specific component, and v, is a community-time specific component. I assume that Equation
(2) describes the data generating process for y.; in the absence of treatment; in the potential
outcomes framework of Rubin (1974), v, + 4 is the never-treated potential outcome for
college ¢ in period ¢.

Let 4. and 44 be estimates of 7. and ~, obtained from the first stage. Then, d. =
Yet — Ve — Vgt 1s the deviation of y. from where it would have been in expectation had
it followed the process described by Equation (2). Also, let T, represent the period that
college c initially becomes treated. In the second-stage, I calculate d. for all treated and

never-treated observations and regress it on leads and lags from policy adoption to estimate

9This procedure produces identical treatment effect estimates to the “imputation” estimator of Borusyak
et al. (2024) when treated units are given equal weight; however, the two approaches differ in their asymptotic
theories and corresponding variance estimators.
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dynamic treatment effects, estimating

b

do =Y 7l{t —T. =k} +7,-1{t - T. < —a} + e, (3)
k=—a

where 1{t — T, = k} is an indicator function that takes value 1 if a unit was first treated
exactly k periods ago and 1{t—T, < —a} takes value 1 if college ¢ will be treated in more than
a periods; therefore, 74, for k € {—a,--- ,b} represent period-level dynamic treatment effects
and 7,- represents the treatment effect more than a periods prior to treatment. Estimates of
7 reflect the average deviation from the estimated never-treated potential outcome for treated
units in the k' treatment period; therefore, -y, are estimates of the Average Treatment Effect
on the Treated. If there is no treatment anticipation and treated units follow community-

specific trends prior to treatment, 75, should be zero when k is negative!”.
I investigate whether there is treatment effect heterogeneity across communities by esti-

mating the following equation:

do =Y 1 {t=T.>0AcE g} +eq (4)
g€g

Here, 1{t — T, > 0 A ¢ € g} is an indicator that takes value 1 if college ¢ has been treated
and belongs to community ¢. In practice, I estimate the 7, by regressing d.; on interaction
terms between a post-treatment dummy and dummy variables for community membership.
Estimates of 7, reflect the average deviation from the estimated never-treated potential
outcome for treated units in community ¢ across all post-treatment periods and therefore
reflect Average Treatment Effects on the Treated in community g.

To formally test whether there is treatment effect heterogeneity across communities, I
perform an F-test to compare the unrestricted model where effects are community specific
against a restricted model where effects are assumed to be equal across communities; this
comparison implies a null hypothesis that effects are equal across communities. I calculate

the relevant F-statistic and report the corresponding p-value. For simplicity, I estimate

100ne feature of the Gardner et al. (2024) estimator is that 7_; # 0, whereas most event studies make the
normalization 7_; = 0. To interpret estimates in the “usual” way, one can simply compare post-treatment
effect sizes to the last pre-treatment estimate. I do this several times in Section 6 to facilitate interpretation.
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the restricted and unrestricted models by OLS; however, all reported treatment effects are
obtained from the two-stage difference-in-differences procedure. I also selectively document
pairwise heterogeneity across communities with a standard Student’s t-test using the re-
ported effect sizes and standard errors.

Because d is a generated regressor, the standard errors must be corrected as in Gardner
et al. (2024) . I use the R package did2s from Butts and Gardner (2021) to perform the
two-stage procedure and calculate standard errors, which are clustered at the institution
level. I estimate dynamic treatment effects for the first four treatment periods only; more
distant effects may reflect unobserved policy changes and not the impact of the policy of

interest.

6 Results

6.1 Dynamic Effects (Event-Studies)

I start by highlighting the advantage of estimating community-specific time fixed effects
(9,4¢) rather than population-level time fixed effects (4;) in Equation (2). Consider the 75
percentile of reported SAT scores as the outcome of interest. Figure 6 panel (a) presents
estimated dynamic treatment effects when time trends are community specific, and Figure
6 panel (b) presents estimated dynamic treatment effects when time trends are estimated
at the population-level. In panel (a), the pre-treatment estimates are small in magnitude
and stable, indicating that, conditional on community, treated and never-treated institutions
evolve similarly prior to treatment. In contrast, there is a severe negative pre-trend in panel
(b), indicating that, prior to treatment, the 75'® percentile of reported SAT scores is growing
more quickly at control institutions than at treated institutions. Post-treatment estimates in
panel (a) are positive and statistically significant, capping out at just under 15 points, but are
negative on average in panel (b). If estimates were relative to the final pre-treatment period,
they would still be more than 6 points higher in panel (a) than in panel (b), suggesting that
the disparate trends is introducing the negative bias discussed in Section 4.4. Therefore,

unless otherwise specified, all treatment effect estimates in the main body of the paper
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Figure 6: Dynamic Estimates of Policy Adoption on 75" %jile SAT Score

(a) Model With Community-Specific Time Fixed Effects
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Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals. Coefficients are in terms of
SAT points. Point estimates for panel (a) and (b) can be found in Appendix B.
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will come from models featuring community-specific time fixed effects. Treatment effects
estimated from models with population-level time fixed effects can be found in Appendix
B. In Appendix C, I consider an alternative grouping of colleges based on their Carnegie
Classification (hereafter CC) and estimate dynamic effects with a model where community-
trends are based on those groups; network-detected communities still perform better from a

pre-trends perspective and provide different results for some outcome variables.

Figure 7: Dynamic Effects of Policy Adoption on 25" %ile SAT Score
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Note: Estimates from model with community-specific trends. Coefficients represent deviations from the counterfactual
potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error bars represent
90 percent confidence intervals. Point estimates found in Appendix B.

Figure 7 presents dynamic treatment effect estimates for the 25" percentile of reported
SAT scores. Reported SAT scores for enrolled and submitting students increase substantially
following policy adoption. Comparing Figure 7 to Figure 6 panel (a), effects are larger for
the 25'" percentile of reported scores than the 75" percentile, with effect sizes of more
than 20 points (estimated effects are 8 points larger if compared to the last pre-treatment
estimate). While the pre-trend on the 25" percentile of reported scores is less substantial
when using within-community comparisons only (see Appendix Table B2 for the alternative),
it still warrants discussion. As I discuss in the next section, the pre-trend is driven mainly
by the communities of Less Selective and Elite National Universities, who both exhibit
strong negative pre-trends in the reported test score variables. Excluding these communities

compresses the pre-treatment estimates towards zero and increases each of the post-treatment
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estimates by over 5 points. This suggests that — in the context of test-optional policy adoption
— within community comparisons might lead to consistent estimation of treatment effects for
some community/outcome combinations and not others. In any case, the direction of the
pre-trend would serve to downwardly bias my estimates, so the estimated effects are, if
anything, an underestimate of the true effect of policy adoption on reported scores. Strong
negative pre-trends in the SAT score variables indicates that reported scores were increasing
more quickly (or decreasing less quickly) at untreated members than at treated members of

the same community, which may explain the motivation to adopt a test-optional policy.

Figure 8: Effect of Policy Adoption on Test Submission Percent
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Note: Estimates from model with community-specific trends. Coefficients represent deviations from the counterfactual
potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error bars represent

90 percent confidence intervals. Point estimates found in Appendix B.

Figure 8 presents dynamic treatment effects of policy adoption on the Test Submission
Percent. Effect sizes start at around -15 percentage points and decrease to around -25
percentage points by the fourth treatment period. These estimates suggest that test-optional
schools do enroll a substantial fraction of non-submitters; assuming that the percent of
enrolled students submitting both SAT and ACT scores is unaffected by policy adoption,
the entire decline in the Test Submission Percent represents non-submitters. All dynamic
estimates for the test score variables can be found in Appendix B.

Figure 9 presents dynamic effects of policy adoption on the overall Log Graduate STEM

Share. All four post-treatment estimates are negative and statistically significant at the
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Figure 9: Effect of Policy Adoption on the Overall Log Graduate STEM Share
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Note: Estimates from model with community-specific trends. Coefficients represent deviations from the counterfactual
potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error bars represent
90 percent confidence intervals. Point estimates found in Appendix B.

10% level. In the fourth post-treatment period, the Graduate STEM Share is more than
6 percent lower than in the never-treated counterfactual. Regressing d. on a single post-
treatment indicator yields a point estimate of —0.05, significant at the 5% level. I take this
as compelling evidence that policy adoption leads to a decline in the share of graduates with
a STEM major. Figure 10 presents analogous effects for the under-represented minority-only
Log Graduate STEM Share. Post-treatment estimates are noisy and indistinguishable from

zero. Point estimates can be found in Appendix B.

6.2 Community-Level Estimates

Table 4 presents community-level static treatment effect estimates for the two reported SAT
score variables and the Test Submission Percent. Effects on the reported SAT score variables
are positive for all communities except Less Selective and Elite National Universities. In
Appendix E, I show that these negative estimates are driven by a strong negative pre-trend,
suggesting that treated members of these communities may have been motivated to adopt
a test-optional policy by declining selectivity relative to their peers. Thus, the assumption

of parallel counterfactual trends is unlikely to be satisfied in those communities for these

26



Figure 10: Effect of Policy Adoption on the URM-only Log Graduate STEM Share

20

-
o
1

o

Effect Size (%)

-10 4

<-6 0 3
Periods From Treatment

Note: Estimates from model with community-specific trends. URM = Under-represented minority. Coefficients represent
deviations from the counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the
institution level. Error bars represent 90 percent confidence intervals. Point estimates found in Appendix B.

particular outcomes. Other communities see more stable pre-trends.

Colleges and Universities - East and Colleges and Universities - Midwest see the largest
increases in the 25 percentile of reported SAT scores, with an effect size around 31 points,
though the latter estimate is noisy. Across community, effects are larger for the 25" percentile
of reported scores, with little exception. Liberal Arts Colleges - New England see the most
significant effects, with both estimates positive and significant at the 5% level. However, after
excluding the Less Selective and Elite National Universities, I can not reject that effect sizes
are the same across community. In general, communities see a statistically significant decline
in the Test Submission Percent, but the declines are smallest for Less Selective National
Universities, Elite National Universities, and Liberal Arts Colleges - Midwest; the other five
communities see declines over 20 percentage points. The decline is largest at Liberal Arts
Colleges - New England, who see a 32 percent decline in the Test Submission Percent, with a
95% confidence interval of [-39.24, -25.12]. Accordingly, I can reject at all three conventional
levels that declines in the Test Submission Percent are equal across communities.

Table 5 reports community-level static treatment effects for the Log Graduate STEM
Share overall and by under-represented minority status. There is considerable heterogeneity

across communities. For the overall Graduate STEM Share, Colleges and Universities -
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Table 4: Effects on Test Score Variables by Community

Outcome: SAT 25*" %ile SAT 75*™" %ile Test Submission
Percent
Model: (1) (2) (3)
Community
Less Selective Nat’l Unis -18.78** -1.642 3.015
(9.236) (6.548) (4.983)
LACs - New England 25.23*** 25.45%* -32.18%**
(9.644) (11.22) (3.602)
Colleges and Unis - East 30.99** 22.69 -26.15"**
(14.03) (15.13) (4.874)
LACs - Midwest 13.37 8.925 -10.89*
(10.22) (9.091) (5.648)
Colleges and Unis - Midwest 31.17 10.13 -25.61%*
(32.83) (12.88) (6.527)
Colleges and Unis - Southeast 21.03 11.17 -23.117%*
(20.48) (15.10) (6.450)
Elite Nat’l LACs 13.54 4.376 -22.47**
(14.48) (10.09) (5.412)
Elite Nat’l Unis -31.05*** -6.418 -7.347
(9.534) (11.42) (3.668)
Prob. All Effects Equal <0.01 0.093 <0.01
Fit statistics
Observations 2,700 2,700 2,518
R2 0.04556 0.02310 0.27751
Adjusted R? 0.04308 0.02056 0.27550

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

28

5% level that effects are the same across communities.

East and Elite National Liberal Arts Colleges see statistically significant declines, with point
estimates of -0.1571, and -0.0837, and both are statistically significant at the 1% level. The
other communities see no significant change in the Log Graduate STEM Share following
adoption. Effect sizes are less precisely estimated for the URM-only Graduate STEM Share,
where declines are concentrated in the same two communities; following policy adoption,
Colleges and Universities - East and Elite National Liberal Arts Colleges see 26 and 23
percent declines, on average, in the proportion of under-represented minorities completing
bachelor’s degrees in STEM, with the latter effect significant at the 1% level. Across all
three outcomes (overall, URM, and non-URM Graduate STEM Share), I can reject at the

As with the negative effect on reported SAT scores at Less Selective and Elite National



Table 5: Effects on Graduate STEM Share

Outcome: Log Graduate STEM Share
Overall URM Only non-URM Only
(1) (2) (3)
Community
Less Selective Nat’l Unis 0.0565 0.0191 0.0568
(0.1363) (0.0749) (0.1471)
LACs - New England -0.0917 0.0901 -0.0979
(0.0845) (0.1970) (0.0884)
Colleges and Unis - East -0.1571*** -0.2646* -0.1511%**
(0.0590) (0.1423) (0.0541)
LACs - Midwest 0.0019 0.1151 -0.0070
(0.0395) (0.0879) (0.0384)
Colleges and Unis - Midwest -0.0973 0.0373 -0.1016*
(0.0602) (0.1922) (0.0591)
Colleges and Unis - Southeast 0.0394 0.0430 0.0267
(0.0350) (0.1283) (0.0401)
Elite Nat’l LACs -0.0837***  -0.2300*** -0.0664**
(0.0314) (0.0786) (0.0314)
Elite Nat’l Unis 0.0539 0.0516 0.0597
(0.0878) (0.0892) (0.0884)
Prob. All Effects Equal <0.01 0.019 <0.01
Fit statistics
Observations 2,714 2,714 2,714
R? 0.02687 0.01659 0.02415
Adjusted R? 0.02435 0.01405 0.02162

Custom standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Universities, statistically significant static effects could be driven by different underlying
trends between treated and control institutions; in Appendix E, I present estimates from a
regression of d,; (deviations from counterfactual potential outcomes) on treatment leads plus
a post-treatment indicator, allowing me to determine if treated institutions were evolving
similarly to control institutions prior to treatment. I find that the significant negative effect
of policy adoption on the overall and URM-only Graduate STEM Share at Colleges and
Universities on the East Coast and Elite National Liberal Arts Colleges is not explained by
different underlying trends between treated and control units; estimates are stable and near

zero prior to treatment, dropping sharply thereafter.
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7 Discussion and Conclusion

In this paper, I exploit a peer institution network to identify communities of colleges and
universities. Communities differ substantially in selectivity, size, and student-body diversity.
I use these detected communities to estimate both the population- and community-level
impacts of test-optional policies, relying on a parallel counterfactual trends assumption that
is conditional on community membership.

Across 66 institutions that adopted a test-optional policy between 2006 and 2016, I find
significant increases in the perceived selectivity of adopting institutions, as measured by the
reported SAT scores of enrolled students. The 25™ and 75" percentiles of the reported SAT
score distribution are 22 and 15 points higher, respectively, in the third post-treatment period
than in the never-treated counterfactual. Increases are largest among Liberal Arts Colleges
in New England and Colleges and Universities on the East Coast, where point estimates
on the 25" (75'™) percentile are 25 and 31 (25 and 23) points, respectively; however, after
excluding two communities for which pre-trends complicate identification, I cannot reject
that effect sizes are equal across communities. Interestingly, the two communities who see
the largest increase in reported scores also see the largest decrease in the Test Submission
Percent, a proxy for the proportion of non-submitting students. Taken together, these results
are consistent with the prediction described in Section 2 and by Dessein et al. (2025); test-
optional policies lead to a left censoring of the reported score distribution and a corresponding
increase in its quartiles.

Additionally, I find that nearly 25 percent of students in observed test-optional cohorts
chose not to submit a college entrance exam score. There is significant variation across
community; at treated New England Liberal Arts Colleges, nearly one in three enrolled
students did not submit an SAT or ACT score. On the other hand, non-submitters make
up just 7 and 11 percent, respectively, of test-optional cohorts at Elite National Universities
and Liberal Arts Colleges in the Midwest, and treated members of Less Selective National
Universities seem not to enroll any non-submitters. Estimates are precisely estimated, and
I can reject at any conventional level that effects are equal across community.

Policy adoption also causes significant declines in the overall share of graduates majoring
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in a STEM field. There is substantial cross-community variation, with these declines con-
centrated in three communities; consequently, I can reject at the 5% level that effects on the
Graduate STEM Share are equal across community. Declines are most precisely estimated
for Colleges and Universities on the East Coast and Elite National Liberal Arts Colleges,
with policy adoption causing a 16 and 8 percent decline, respectively, in the overall share
of graduates majoring in a STEM field, with both point estimates significant at the 1%
level. Those communities also see significant policy-induced declines of 26 and 23 percent,
respectively, in the proportion of under-represented minority graduates majoring in a STEM
field. These results are consistent with test-optional policies leading to a replacement of
intermediate scorers with very low scorers and the literature on ability sorting across college
majors.

There are still outstanding questions with respect to test-optional policies, especially
regarding student outcomes and major choice. It is unclear what mechanism is driving the
declines in the share of graduates with a STEM major. Non-submitters may prefer different
majors; alternatively, it could reflect academic mismatch. Non-submitting students may
wish to pursue a STEM major, but find themselves unprepared for the coursework; in the
spirit of Arcidacono et al. (2011) and Arcidiacono et al. (2016), one could test for mismatch
by comparing STEM major exit rates between submitting and non-submitting students.

Understanding the mechanism causing the decline has important implications for policy-
makers; if non-submitters would have completed a STEM major at a less selective institution,
test-optional admission policies may have an adverse effect on the labor market outcomes
of the students they aim to benefit, as many studies have documented wage premiums for
STEM majors (see Grogger and Eide (1995), Loury (1997), Arcidiacono (2004), Kirkeboen
et al. (2016)). Future research may also investigate the documented cross-community treat-
ment effect heterogeneity; for instance, Elite National Liberal Arts Colleges may be less
likely to consider applicant major when making admissions decisions, leading to a decline in
STEM driven by compositional changes.

While the vast majority of selective institutions adopted a test-optional policy in response
to the COVID-19 pandemic, several high profile institutions (such as MIT, Dartmouth, and

Harvard) have reinstated their pre-pandemic testing policy. As more colleges and universities
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follow suit, investigating the impact of rescinding a test-optional policy would complement
this analysis. The college admissions landscape may be vastly different in the post-pandemic
world than in the pre-pandemic period I study. Of course, such an investigation would
require many more colleges to return to a test-required policy; to the extent that colleges
care about appearing both selective and diverse, my results suggest that there may be little

incentive to abandon the new status-quo.
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A Evaluating Community Strength

The Leiden algorithm will detect communities even when none are present (as in a ran-
domly generated configuration network); therefore, it is natural to wonder if the detected
communities are “real”. Stating this more formally, do the detected communities lead to a
higher value of modularity than would be expected from a realization of the configuration
model? I follow the inference procedure described in Fortunato and Hric (2016) to determine
if the observed modularity is significantly different from what would be expected if the peer
institution network was randomly generated. Let Ho denote the observed modularity of the
network given the communities identified by the Leiden algorithm. Let G's; be a simulated
network with the same nodes and node degree as the observed network, but with connec-
tions determined randomly by the configuration procedure. Let Hg; denote the simulated
modularity of G's; given communities identified by applying the Leiden algorithm to the
simulated network. After simulating 50 networks, I calculate

Ho — Hs

Z — Score = ,
o(Hs)

(A.1)

where Hg and o(Hg) are the mean and standard deviation, respectively, of the simulated
modularities. Table 1 displays the results of this analysis; the observed modularity is 18.34
standard deviations above the mean modularity in the simulated networks, which indicates

that the peer institution network exhibits an incredibly strong community structure.

Table Al: Strength of Community Structure

Ho Hs o(Hs) Z— Score
0.819 0.499 0.0175 18.34
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B Event-Study Tables

Table B1 presents the point estimates and standard errors used to construct Figures 6
through 10. The number in parentheses matches the number of the figure in the main
text that the estimates correspond to. Coefficients represent average deviations from the
estimated counterfactual potential outcome. Standard errors are from Gardner et al. (2024)
and clustered at the institution level.

Table B2 presents treatment effect estimates and their standard errors when time fixed
effects are estimated at the population-level rather than the community-level. There are
severe pre-trends in many of the event-studies; for instance, pre-treatment effect sizes on
the 25" percentile of reported SAT scores (Table B2 Column 1) decrease monotonically
from 6 to -14, and pre-treatment effect sizes on logged under-represented minority (URM)
enrollment (Table B2 Column 3) rise almost monotonically from -0.03 to 0.07. These pre-
trends severely limit ones ability to interpret post-treatment effect sizes and strongly support

the use of community level time fixed effects when estimating treatment effects.
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C Alternative Classification

In this appendix, I consider an alternative (simpler) classification of institutions that relies
on their Carnegie Classification rather than the peer network. First, I classify institutions
along two dimensions: degree-granting level and selectivity. These are the two dimensions
considered (separately) by Bennett (2022) in his heterogeneity analysis. First, I distinguish
between institutions whose highest degree offered is a bachelor’s degree and those that also
offer graduate degrees (master’s or doctorates). Second, I divide institutions into more
selective and less selective groups based on their undergraduate profile; institutions rated
“More Selective” by the Carnegie Classification are in the more selective category, and all
other institutions are considered less selective. This results in four institutional categories:
(1) less selective, bachelor’s-only institutions; (2) more selective, bachelor’s-only institutions;
(3) less selective, graduate-granting institutions; and (4) more selective, graduate-granting
institutions. Table B1 describes these four groups and the number of treated and never-
treated institutions in each.

Table C1: Groups based on Carnegie Classification

Group Treated Never-Treated Median Treatment Year
Less Selective, Bachelor’s-Only 22 30 2010.50
More Selective, Bachelor’s-Only 13 28 2010
Less Selective, Graduate-Granting 29 71 2012
More Selective, Graduate-Granting 8 49 2012

Note: Only communities with 2 or more treated institutions are included. An institution is treated if it adopted a
test-optional policy between 2006 and 2016, and Never-Treated if it did not adopt a test-optional policy by 2020. Institutions
that adopted a policy between 2017 and 2019 are excluded.

I repeat the empirical analysis for dynamic effects with group-specific trends correspond-
ing to the aforementioned groups. Table C2 presents the event study estimates for the eight
outcomes of interest. Figures C1 and C2 show plots of the event study estimates for logged
FTFT URM enrollment and the logged Graduate STEM Share. Figure C1 has a clear pos-
itive pre-trend that is not present when community trends are based on network detected
communities (Appendix Figure D1). Post-treatment estimates are larger, likely biased up-
wards by the positive pre-trend and possibly overstating the effect of policy adoption on
improving racial diversity. In contrast to Figure 12 in the main text, Figure C2 shows no

effect of policy adoption on the logged Graduate STEM Share.
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Figure C1: Effect of Policy Adoption on Logged FTFT URM Enrollment - Carnegie Classi-
fication Trends

20+

-
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o

-10 4

<-6 0 3
Periods From Treatment
Note: Estimates from model with carnegie classification group-specific trends. FTFT = First-Time Full-Time. URM =
under-represented minority. Coefficients represent deviations from the counterfactual potential outcome. Standard errors are

from Gardner et al. (2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals. Point
estimates found in Table C2.

Figure C2: Effect of Policy Adoption on Log Graduate STEM Share - Carnegie Classification
Trends
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Note: Estimates from model with carnegie classification group-specific trends. Coefficients represent deviations from the

counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution level. Error
bars represent 90 percent confidence intervals. Point estimates found in Table C2.
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D Effects on Student-Body Diversity

D.1 Event-Studies

Figure D1: Effect of Policy Adoption on Logged FTFT URM Enrollment
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Note: FTFT = First-time full-time. URM = Under-Represented Minority. Estimates from model with community-specific
trends. Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.

(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals. Point estimates found in
Appendix Table D2.

Figure D2: Effect of Policy Adoption on Logged FTFT Enrollment of Women
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Note: FTFT = First-time full-time. Estimates from model with community-specific trends. Coefficients represent deviations

from the counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution
level. Error bars represent 90 percent confidence intervals. Point estimates found in Appendix Table D2.

44



Figure D3: Effect of Policy Adoption on Logged FTFT Enrollment of Fed. Grant Recipients
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Note: FTFT = First-time full-time. Estimates from model with community-specific trends. Coefficients represent deviations
from the counterfactual potential outcome. Standard errors are from Gardner et al. (2024) and clustered at the institution
level. Error bars represent 90 percent confidence intervals. Point estimates found in Appendix Table D2.

Figures D1, D2, and D3 present dynamic effects of policy adoption on logged first-time
full-time (FTFT) enrollment of under-represented minorities (URMs), women, and federal
grant recipients, respectively. My estimates largely agree with the findings of Bennett (2022),
though my point estimates are, in general, slightly smaller (not statistically significantly so).
At treatment onset, effects on FTFT URM enrollment increase sharply and are almost 9
percent higher than in the never-treated counterfactual. Effects stay positive thereafter,
and are statistically significant in two of the four post-treatment periods. Effects on the
enrollment of women are smaller. At treatment onset, FTFT enrollment of women is around
1.3 percent higher than would be expected in the absence of treatment, and estimates decline
thereafter; however, estimates would be about twice as large if compared to the last pre-
treatment period, though they would still not be statistically significant. Effects on the
enrollment of federal grant recipients fall somewhere between the effects for under-represented
minorities and women. At treatment onset, FTFT federal grant recipient enrollment is about
7.6 percent higher than in the never-treated counterfactual, and effect sizes are positive in all
post-treatment periods; however, the last pre-treatment estimate is around 0.036. Thus, the
estimated effect would be smaller if the post-treatment comparison was the T-1 estimate.

Point estimates can be found in Table D2.
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D.2 Community-Level Treatment Effects

Table D1: Effects on Student Demographics by Community

Outcome: Logged URM Logged Enrlt. Logged Fed. Grant
Enrlt. of Women Recipient Enrlt.
(1) (2) (3)
Community
Less Selective Nat’l Unis -0.0951 -0.1236*** -0.0795
(0.0871) (0.0425) (0.0600)
LACs - New England 0.2122 -0.0295 0.0454
(0.2040) (0.0717) (0.1032)
Colleges and Unis - East 0.0019 0.0456 0.0790
(0.0797) (0.0350) (0.0659)
LACs - Midwest 0.0433 0.0029 0.1011*
(0.0738) (0.0337) (0.0541)
Colleges and Unis - Midwest -0.0394 -0.0631 -0.0308
(0.1262) (0.0722) (0.1098)
Colleges and Unis - Southeast 0.1424 0.0137 -0.0980
(0.1150) (0.0816) (0.1218)
Elite Nat’l LACs 0.0853 0.0126 -0.0213
(0.0603) (0.0157) (0.0629)
Elite Nat’l Unis 0.2190*** 0.0954*** 0.2634**
(0.0492) (0.0293) (0.1142)
Prob. All Effects Equal 0.017 <0.01 <0.01
Fit statistics
Observations 2,988 2,990 3,099
R? 0.01886 0.01406 0.01447
Adjusted R? 0.01656 0.01175 0.01224

Custom standard-errors in parentheses, clustered at institution-level.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table D1 presents community-level static treatment effect estimates for the three diversity
outcomes. Elite National Universities see statistically significant increases in all three out-
comes; however, a pre-trend investigation reveals that — despite mostly stable pre-treatment
estimates — the final pre-treatment estimate for each outcome is large and positive. This
suggests that other policies may have been enacted prior to test-optional admissions with
the goal of increasing student-body diversity.

Enrollment of federal grant recipients increases by 10, 8, and 5 percent at Liberal Arts
Colleges - Midwest, Colleges and Universities - East, and liberal Arts Colleges - New England,

but only the first of these estimates is statistically significant, and none are statistically
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Table D2: Dynamic Effects of Policy Adoption on Student-Body Diversity

Outcome: Logged URM Logged Enrlt. Logged Fed. Grant
Enrlt. of Women Recipient Enrlt.
Model: (9) (10) (11)
Variables
T->6 0.0011 0.0132** 0.0123
(0.0133) (0.0055) (0.0105)
T-5 -0.0386 0.0031 -0.0158
(0.0278) (0.0100) (0.0187)
T-4 -0.0002 -0.0080 -0.0189
(0.0326) (0.0106) (0.0181)
T-3 -0.0002 -0.0233** -0.0435*
(0.0255) (0.0110) (0.0239)
T-2 0.0070 -0.0134 -0.0108
(0.0266) (0.0111) (0.0205)
T-1 0.0248 -0.0124 0.0361
(0.0321) (0.0123) (0.0221)
T-0 0.0860* 0.0142 0.0761**
(0.0468) (0.0172) (0.0331)
T+1 0.0756 0.0128 0.0467
(0.0509) (0.0207) (0.0332)
T+2 0.1201** 0.0040 0.0473
(0.0496) (0.0239) (0.0366)
T+3 0.0748 -0.0014 0.0610
(0.0582) (0.0248) (0.0501)
Fit statistics
Community Trends? Yes Yes Yes
Observations 2,872 2,874 2,873
R? 0.01124 0.00335 0.00739
Adjusted R? 0.00813 0.00021 0.00427

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

significant from the others. The other communities see imprecisely estimated declines in

federal grant recipient enrollment.

47



E Community-Level Event Studies

In this appendix, I report estimates from community-by-community regressions of deviations
from counterfactual potential outcomes (d.) on treatment leads plus a post-treatment indi-
cator. Treatment effects estimated in the pre-period will allow me to determine if treated
and control units in the same community evolved similarly prior to treatment.

Figure E1 displays these community-level event studies for the 75" percentile of reported
SAT scores. Pre-treatment estimates are around zero for most communities except for Less
Selective National Universities (top left panel) and Elite National Universities (bottom right
panel). These communities exhibit strong pre-trends, suggesting that treated members of
these communities were becoming less selective (relative to untreated members) prior to
treatment. Figure E2 displays community-level event studies for the 25" percentile, where
a qualitatively similar but quantitatively more extreme pattern emerges. These negative
trends are partly responsible for the negative pre-trend in Figure 7. These pre-trends suggest
that reported SAT scores were increasing faster at untreated members of these communities
than treated members. Thus, for this outcome in particular, the assumption of parallel
counterfactual trends may not hold for those community /outcome combinations specifically.

Figure E3 displays community-level event studies for the overall Graduate STEM Share.
It is clear that the large, statistically significant declines at Colleges and Universities on the
East Coast and Elite National Liberal Arts Colleges are not driven by different underlying
trends between treated and control units in those communities. Pre-treatment estimates for
both are stable and drop sharply post-treatment. Figure E4 tells a similar story for the
URM-only Graduate STEM Share in these communities, with stable pre-trends followed by

a drop at treatment onset.
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Figure E1: Community-Level Effects on 75" %ile of Reported SAT Scores
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Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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Figure E2: Community-Level Effects on 25" %ile of Reported SAT Scores
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Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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Figure E3: Community-Level Effects

on Overall Graduate STEM Share
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Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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Figure E4: Community-Level Effects on URM-Only Graduate STEM Share
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Note: Coefficients represent deviations from the counterfactual potential outcome. Standard errors are from Gardner et al.
(2024) and clustered at the institution level. Error bars represent 90 percent confidence intervals.
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