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This paper examines how machine learning methods can improve the external 
validity of IV estimates. Using an empirical application on the effect of solid fuel 
use on cooking time across six developing countries and a series of simulation 
experiments, we compare the benchmark interacted two-stage least squares 
estimator with fixed effects (2SLS-IF) to a Double/Debiased Machine Learning 
(DML) approach. The DML estimator delivers more accurate out-of-sample 
predictions of LATEs when treatment effect heterogeneity and selection are driven 
by observable characteristics, outperforming 2SLS-IF under model misspecification. 
We also propose an algorithmic procedure for hyperparameter tuning (MLtune) 
that enhances the stability and generalization of DML predictions. 

Abstract

Case Study
• ML and MLtune produce more accurate LATE predictions in Ethiopia,
    Honduras, Kenya, and Cambodia.
• Nepal: all methods fail → indicates selection on unobservables and
    breakdown of external validity.

Simulation Findings
• When heterogeneity & selection operate through observables, DML clearly 

outperforms 2SLS-IF, especially under misspecified models.
• When covariate distributions differ sharply, 2SLS-IF suffers large extrapolation 

bias.

Overall
•ML improves external validity when key drivers are observable.

Conceptual Framework

2SLS-IF (benchmark):

𝑦𝑖𝑠  = 𝛼0 + 𝛼′ ෨𝑋𝑖 𝑇𝑖 + ෍

𝑠

𝛽𝑠
′ ෨𝑋𝑖 + 𝜋𝑠 + 𝜀𝑖𝑠

estimated by IV using 𝑍𝑖  and 𝑍𝑖
෨𝑋 as instruments, where 𝑖 represents each 

observation and 𝑠 represents each site in sample,  ෨𝑋 = 𝑋𝑖𝑠 − ത𝑋𝑠𝑎𝑚𝑝𝑙𝑒 . 

Then the predicted target LATE equals

Ƹ𝜏𝑝𝑟𝑒𝑑
2𝑆𝐿𝑆−𝐼𝐹 = ො𝛼0 + ො𝛼′ ത𝑋𝑡𝑎𝑟𝑔𝑒𝑡 − ത𝑋𝑠𝑎𝑚𝑝𝑙𝑒 .

DML estimator:
We estimate the partially linear IV model.

𝑌𝑖 =  𝜏0 𝑋𝑖 𝑇𝑖 + 𝑓0 𝑋𝑖 + 𝜀𝑖 ,

using orthogonalized moments and cross-fitting (Chernozhukov et al., 2018).
Machine learning (XGBoost) predicts nuisance functions 𝐸 𝑌 𝑋 , 𝐸[𝑇|𝑋], and 
𝐸 𝑇 𝑋, 𝑍 , which are used to compute debiased residuals for 𝜏0 𝑋𝑖 .
We then predict the target-site LATE a

Ƹ𝜏𝑝𝑟𝑒𝑑
𝐷𝑀𝐿 = 𝐸[ Ƹ𝜏0(𝑋𝑡𝑎𝑟𝑔𝑒𝑡)].

Methodology

With selection on unobservables, both DML and 2SLS-IF fail.

We plan to extend our study:
1. Case where observables are correlated with unobservables.
2. Develop a machine learning algorithm that can improve external validity with 

unobservables when it is correlated with observables.

Discussion

Motivation
Empirical evidence from instrumental variable (IV) studies often guides policy 
decisions beyond the original study setting.
However, IV estimates identify Local Average Treatment Effects (LATEs) that apply 
only to specific groups of compliers.
When the composition of compliers differs across populations, these LATEs may 
not generalize, raising concerns about external validity.

Results

Target populationSample population

Estimate Sample LATE: Ƹ𝜏(𝑋) Predict LATE: Ƹ𝜏(𝑋𝑡𝑎𝑟𝑔𝑒𝑡)

• Predicting target LATE using sample estimates
• Needed assumption: external unconfoundness among  compliers 

(Kwon and Lee, 2025)
𝑆𝑎𝑚𝑝𝑙𝑒 𝑜𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 ⊥ 𝜏|𝑋𝑖  , 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑟𝑠

Generate 𝑋 ~ 𝑁 0, 𝜎𝑋
2 , a binary instrument 𝑍, and treatment 𝑇. Treatment effects 

𝜏(𝑋) depend linearly on 𝑋𝑖.
We vary:
• Covariate dispersion (𝜎𝑋

2 =1,3,10)
• Instrument specification (𝑃(𝑍 ∣ 𝑋): linear vs. cubic)
• Outcome functional form (linear vs. step) 
• Selection strength (θ: 0.25, 0.75) ⟹𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑙𝑜𝑔𝑖𝑡−1(𝜃𝑋𝑖)

Simulation setup

Simulation Details
• Instrument specification: linear ⇾ 𝑃 𝑍 𝑋 = 𝑙𝑜𝑔𝑖𝑡−1 0.5 + 0.3𝑋𝑖 ; 

                                                  cubic ⇾ 𝑃 𝑍 𝑋 = 𝑙𝑜𝑔𝑖𝑡−1 0.5 + 0.3𝑋𝑖 + 0.06𝑋𝑖
3  

• Outcome functional form: linear ⇾5𝑋𝑖; step ⇾ 5 1{𝑋𝑖 > 0}
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