

How did the remote work revolution change our work and leisure time?

Sabrina Wulff Pabilonia
U.S. Bureau of Labor Statistics
Pabilonia.Sabrina@bls.gov
ORCID: 0000-0001-9293-2339

Victoria Vernon
SUNY Empire State University
victoria.vernon@sunyempire.edu
ORCID: 0000-0003-1245-8046

December 31, 2025

Abstract: This paper examines how the remote work revolution has reshaped work and leisure time among U.S. wage and salary workers. Using 2017–18 and 2023–24 American Time Use Survey diaries linked with Current Population Survey measures of work-from-home intensity, we quantify post-pandemic changes in how much, when, and where people work and how they allocate time to sleep, household production, leisure, and caregiving. We find that work-location differences in total paid work hours, large before the pandemic, have disappeared, indicating that remote and hybrid work are now standard workplace arrangements. Hybrid days (days on which workers bring work home from the office) are still associated with longer paid hours and extended work spans, while work-from-home days eliminate 52 minutes of daily commuting. In 2023–24, men’s time on workdays saved by not commuting allows remote workers to spend more time on food preparation and leisure and hybrid workers to spend more time on sleep and exercise. Women’s time is reallocated to household chores by hybrid workers and primary childcare by remote mothers. Sleep time rose for workers in all work location arrangements, though especially for hybrid men—resulting in a 4% increase in overall sleep. On average, fathers have also substantially increased their childcare time, because of increases in primary childcare by hybrid and on-site fathers and increases in secondary childcare by remote fathers. We conclude that post-pandemic work arrangements have rebalanced rather than reduced labor supply, enhancing flexibility while modestly reshaping family roles and increasing healthy behaviors.

Keywords: time use, labor supply, household production, childcare, work-from-home

JEL codes: D13, J13, J22, J29

Acknowledgements: The information in this paper is being released for statistical purposes only. It is to inform interested parties and to encourage discussion of work in progress. All views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Bureau of Labor Statistics. We thank Charlene Kalenkoski and Peter Meyer for helpful comments.

1. Introduction

Remote and hybrid work schedules are now standard workplace arrangements for many office workers. While work from home (WFH) had been slowly increasing since 2003, the percentage of hours worked from home increased dramatically in 2020 during the COVID-19 pandemic and has since leveled off to 20.6% of hours devoted to work (Figure 1). How has this remote work revolution reshaped our work and leisure time? In this paper, we compare time allocation in 2017–18 versus 2023–24 for wage and salary workers by work location, providing separate analyses by sex and for parents, whose childcare time constraints may be more substantially eased by increased workplace flexibility.

Time use generally changes slowly. Since 2003, when time diaries first were collected in the American Time Use Survey (ATUS), there has been a long slow upward trend in sleep time on the average day for wage and salary workers, but in 2020, there is also a noticeable bump up in sleep time for men (Figure 2). For men, at least in recent years, this increase in sleep appears to be time reallocated from work and work-related activities. For women, the additional time sleeping appears to be reallocated from household production and care activities. While the advent of WFH may account for these trends, other potential explanations include behavioral or technological changes. Comparing time allocated to work and work-related activities, household production and care, leisure, and sleep on the average day in 2017–18 and 2023–24 (Figure 3), we observe that men’s work and work-related activities’ time fell by 5.0%, from 6.44 hours to 6.12 hours, while their time spent sleeping rose by 3.7%, from 8.36 hours to 8.67 hours. Women’s sleep time also rose (by 4.1%, from 8.50 hours to 8.85 hours), but the time was reallocated more generally from all other activities, with no statistically significant changes over time in work-related, leisure, or household production and care activities.

We begin by analyzing time diaries from the American Time Use Survey (ATUS), examining how people spend their time and with whom by work location on weekday workdays.

As part of this analysis, we look at the impact of the remote work revolution on workers bringing work home from the office to do in the evenings, which we refer to as hybrid days. Next, we link information on WFH frequency from the 2017–18 American Time Use Survey Leave and Job Flexibilities (ATUS-LV) module and the 2023–24 Current Population Survey (CPS) to examine time allocation for remote and hybrid workers on the average day to determine whether workers reallocate their activities over the week depending on their work location arrangements. The latter approach is a novel contribution of this paper.

To preview the results, we find substantial differences between workers in how they spend their time on weekday workdays by work location across four main time use categories—work and work-related activities, leisure, household production and care, and sleep—and select subcategories. However, there have been fewer changes in these level differences over time, even as many more workers have adopted hybrid and remote work. Compared with those working on-site on their diary day, men and women on remote days work the same number of paid hours while those working hybrid days work longer hours, pushing their workdays into the evening. Having eliminated their long commutes, men on remote days reallocate their time savings across leisure, household production and care, and sleep, though in 2023–24, most of the time was reallocated to leisure and sleep. Women on remote days, on the other hand, reallocate most of their time to sleep by waking up later in the morning in 2017–18 and household production and care in 2023–24.

Looking at time spent on the average day by work location arrangement, we document differences in time allocation between on-site, hybrid, and remote workers and across time, with results suggesting that workers shift some activities between nonworkdays and workdays or that hybrid and remote workers allocate their time differently. Remote workers who reported fewer paid hours of work on the average day pre-pandemic, now work comparable hours to those working on-site. Among men, remote workers on the average day spend more time on leisure activities, while hybrid workers spent more time on sleep in 2023–24. Among women, remote

workers on the average day spent more time on leisure pre-pandemic, but now their leisure time is similar to their on-site counterparts. Although there is no difference across time or between workers in the larger household production and care category for women, remote mothers increased their primary childcare post-pandemic. Fathers' supervisory time with children increased as a result of the rise in remote work among fathers.

2. Background

Prior to the COVID-19 pandemic, WFH was not very prevalent among full-time wage and salary workers in the U.S.—7% worked at least one day every other week but less than three days exclusively from home while 4% worked most of their days exclusively from home in 2017–18 (Pabilonia and Vernon, 2023a).¹ Some parents reported choosing to WFH to better balance work and family responsibilities (Woods, 2020). Thus, pre-pandemic, there was likely some unobservable selection by workers into these work location arrangements.

Pabilonia and Vernon (2023a) examine pre-pandemic (2017–18) differences in time allocation on weekday workdays by work location as well as differences on the average day by WFH intensity for full-time workers. We build heavily upon this earlier analysis because it accounts for differences in WFH intensity (rather than relying only on work location diary day estimates we can distinguish between hybrid and remote work schedules), which is often omitted from the time-use WFH literature. However, we adjust our definition of hybrid and remote workers in 2017–18 to allow for better comparisons with the CPS data available in 2023–24.²

¹ WFH was more prevalent among the self-employed before the pandemic (Bick et al., 2023). We exclude the self-employed (incorporated and unincorporated) from our analyses due to their exclusion from the ATUS-LV module target population and because many workers chose to be self-employed in order to WFH because of the work scheduling flexibility that it provides them.

² Pabilonia and Vernon (2023a) define hybrid workers as those working at least once every other week at home but fewer than three days at home. In this paper, hybrid workers are those working at least one day per week at home but not every day at home.

Among white-collar, wage and salary workers, Pabilonia and Vernon (2023a) find that those working remotely on weekday workdays spend less time working, commuting, and grooming and more time watching TV, using computers for leisure, and with their children. Among male workers, they find those working remotely spend more time eating and socializing. Among female workers, they find those working remotely spend more time sleeping and on household production. However, they also find that those working most days from home (three or more) shift the timing of their activities across days of the week so that on the average day, workers spend similar amounts of time working, watching TV, and sleeping, and female workers spend similar time on household production. There are some differences, though, by parental status, with fathers who frequently WFH spending more time on primary and secondary childcare on the average day, women without children who frequently WFH working more hours, and mothers who frequently WFH working fewer hours. Using a method that relates selection on unobservables to selection on observables (Oster 2019), they rule out that their results are driven by selection into remote work. Finally, using tempograms, they show that workers have more flexibility in scheduling their activities over the day on WFH days—with parents spending more time with children in the afterschool hours and on household production, mothers spending more time on housework during core working hours, and workers waking up later on WFH days.

To limit the transmission of the coronavirus during the pandemic, the U.S. government encouraged employers to allow their employees in teleworkable and nonessential jobs to WFH, leading to many more workers having the opportunity to WFH than had previously done so. CPS estimates suggested that 35.4% of workers worked from home in May 2020, while according to the ATUS, from May 10, 2020 to December 31, 2020, 25.9% of 4h workdays were worked exclusively from home (U.S. Bureau of Labor Statistics, 2000–2021; Pabilonia & Vernon 2023b). Many employers and employees found these WFH arrangements preferable to working exclusively on-site and planned to continue them, at least partially, beyond the pandemic

(Barrero et al., 2021; Bloom et al., 2023; Bick et al., 2023). For parents, WFH was essential in 2020–2021, because many day cares and public schools were closed, leaving parents to manage distance learning (Ameudo-Dorantes et al., 2023; Aughinbaugh and Rothstein, 2022; Burbio, 2021; Collins et al, 2021; Heggeness, 2020; Lee & Parolin, 2021; Russell & Sun, 2020; Zamarro & Prados, 2020). Time-diary studies about WFH during the pandemic indicate that parents in dual-earner couples increased their childcare time, especially their supervisory time while working from home if college educated, and mothers more so than fathers (Atalay 2025; Marcén & Morales, 2025; Pabilonia & Vernon, 2023b). Cowan (2024) also documents a large increase in childcare for college-educated fathers, who were more likely to be in teleworkable jobs (Dingel & Neiman, 2020). Parents working from home also increased their time spent on household chores (Pabilonia & Vernon, 2023b).

When coupled parents worked at home together, their paid work hours were comparable to parents working on-site; but when mothers worked from home alone, they worked fewer hours, suggesting that an increase in the availability of remote work arrangements has the potential to relieve mothers' burden of care (Pabilonia & Vernon, 2023b). Restrepo and Zeballos (2022) also document a substantial increase in work time for those primarily working from home on their diary day during the pandemic. There is also some evidence that the workday span (the difference between the end of the last episode of work and beginning of the first episode of work on a diary day) lengthened for those working from home, and it exceeded that of those working on-site as they worked later in the evening (Flood & Genadek, 2023; Pabilonia & Vernon, 2023b). However, time allocation during the pandemic may also have been influenced by social distancing restrictions, with those primarily working from home spending less time socializing with others and more time relaxing and in leisure activities than in the pre-pandemic period (Restrepo & Zeballos, 2022). Finally, many Americans were out of work, especially mothers who had to manage their children's distance learning, so the experiences of workers during the

COVID-recession might be different from those of workers today (Collins et al., 2021; Dey et al., 2020; Dunatchik et al., 2021; Heggeness et al., 2021; Petts et al., 2021).

Now, at the beginning of the post-COVID-19 era (2023-24), following a period of experimentation with WFH arrangements and stabilization of WFH rates (Buckman et al., 2025), with most children having returned to their school classrooms,³ we seek to determine whether the earlier findings about time allocation by work location arrangement hold or whether there have been changes, perhaps because of the reduction in stigma associated with WFH, shifted norms about the division of labor within the household, and/or changes in preferences about work-leisure tradeoffs. The latter two explanations could come about because fathers spent more time parenting during the pandemic and decided to keep doing so, i.e. a change in behavior even if they returned to working on-site (Stevenson, 2021). On the other hand, WFH could have reinforced sex differences as women increasingly stayed in the home and balanced both childcare and work responsibilities. Buckmann et al. (2025) find a small women-men gap in WFH rates in 2023 and conclude that the determinants of WFH are now similar by sex, while differences are based on the nature of the job and life-cycle career progression. However, women more than men still have a stronger desire to WFH into the future. In the only study to-date using the 2023 ATUS, Makridis (2025) finds increases in leisure time and decreases in work time from 2019 to 2023 among those in jobs that could potentially be done entirely remotely as described in Dingel and Neiman (2020).⁴

Compared with estimates from stylized survey questions, time diary estimates minimize recall bias, social desirability bias, and aggregation bias, and thus are the gold standard for tracking changes in time allocation (Juster, 1985; Robinson, 2002). Considering hybrid days

³ There has been a rise in homeschooling since the pandemic (Francis & Goodman, 2025), and we cannot rule out that some parents still WFH while supervising their school-aged children.

⁴ Some jobs may have a limited set of tasks that could be done at home occasionally, but these are excluded from the teleworkability index.

separate from on-site days is crucial to making time-use comparisons between on-site and remote workdays (Eldridge & Pabilonia, 2010; Song & Gao, 2020).

Using time diaries, we take a deep dive into the changes in work and leisure activities by work location on the diary day and by the frequency of WFH from 2017–18 to 2023–24. These comparisons may help us shed light on the role of WFH in gender inequality post-pandemic, because the structure of work has been shown to be important for women's career advancements and wages (e.g., Goldin, 2014; Cubas et al., 2021). They may also help us understand trends in educational differences, in investments in children's human capital, which have been trending upward over several decades, because WFH has been highly concentrated among the college-educated (Cowan, 2024; Doepke et al. 2019). Changes may also have implications for the health of workers and their families.

3. Data

3.1 American Time Use Survey

Our primary data source is the American Time Use Survey (ATUS) (U.S. Bureau of Labor Statistics, 2025a). The ATUS is a nationally representative sample of the civilian noninstitutionalized population. ATUS respondents (one per household) are typically interviewed 2–5 months (3 months on average) after their eighth and final month in the CPS. In addition to providing updated demographic and labor market information, respondents report by telephone about their activities over a 24h period starting at 4 a.m. on the day before their interview, referred to as the diary day. They report on primary activities and limited secondary activities (time when children under age 13 are in their care while doing a non-childcare activity, as well as secondary eating and drinking in some years). In addition, for most activities, respondents report where the activity took place and with whom. The ATUS has been ongoing since 2003, with diaries collected for most days of the year except for the day before major holidays.

We conduct analyses by work location on weekday workdays (excluding holidays) when respondents work at least 4 hours to examine typical workday differences in time allocation and by work location arrangement for all diary days to examine time allocation on the average day.⁵ In this way, we can allow for substitution between activities across days of the week.

3.2 Work location measures on weekday workdays

Our first WFH classification is based on the location of work on weekday workday diaries. We define a workday as a day when the ATUS respondent did at least 4 hours of paid work. A remote day is one in which all work is done from home, none on-site. An on-site day is one in which all paid work is done at an employer's worksite, none from home. And a hybrid day is one in which work occurs both at home and at an employer's worksite. This hybrid day type primarily covers those who are bringing extra work home from the office to complete in the evening but may also include a few who are working a second job, where the second job is done from home (only 1% of hybrid days are of the latter type).

3.3 Work location arrangement measures

Our second WFH classification is based on the frequency of WFH throughout the week. A key feature of the ATUS is that information collected in the CPS can be matched to respondents. We use the new CPS questions added in October 2022 about the number of hours worked from home for pay to create measures of intensity of WFH arrangements for ATUS respondents in 2023–24. In addition, ATUS fields modules about different topics on a rotating basis. To measure earlier WFH arrangements, we use the 2017–18 ATUS-LV module that includes questions about workers' schedules (days of the week worked) and the frequency of WFH days on their main jobs. Using the 2017–18 ATUS-LV module, we define 1) hybrid workers as those with at least one day of work per week at home but fewer than their usual

⁵ 80% of employed people work on an average weekday (U.S. Bureau of Labor Statistics, 2025b).

number of days worked and 2) full-time remote workers are those with 5 or more days at home if they typically work at least 5 days a week. Part-time workers who usually work 3–4 days a week are classified as remote workers if their usual number of remote days is 3–4 days and hybrid workers if they work 1–2 days per week remotely. Part-time workers who usually work 2 days a week are classified as remote if their usual number of remote days is 1–2 days and hybrid if they work at least once a week remotely. We also require hybrid and remote workers to be paid for WFH for consistency with CPS questions that ask respondents to report time working from home for pay. Using the CPS, we define 1) hybrid workers in 2023–24 as those working at least 20% of their time from home for pay but less than 100% (at least 20% so we can rule out workers bringing home minimal work to do in the evenings or on weekends [even though the questions ask about WFH for pay, some might consider all work for an employer as compensated], and because it is roughly equivalent to one day per week of work for the typical full-time worker with a 40-hour workweek) and 2) remote workers are those with 100% of their hours worked from home (U.S. Bureau of Labor Statistics and U.S. Census Bureau, 2022–2024a; 2022–2024b). The ATUS-LV module asks about usual WFH on the main job only, while the CPS asks about WFH on all jobs in the reference week for people at work. Thus, in a sensitivity analysis, we examine a sample of single jobholders.⁶ Because there is on average a 3-month gap between the final CPS and ATUS interviews, it is possible that a worker changed jobs so their work location arrangement determined from the CPS no longer applies to their job in the ATUS. To minimize this measurement error, we restrict respondents in the 2023–24 ATUS to those who had the same employer on their main job in the CPS.⁷ Yet, it is still possible that workers were subject to return-to-office orders during this period. To the extent that there is

⁶ Frazis (2025) also finds that there is some response bias in the CPS, with workers less likely to report WFH compared with the ATUS, even after accounting for bringing work home on the weekends and evenings. This could possibly be due to proxy response in the CPS or recall bias.

⁷ About 12% of ATUS respondents changed their employer since their final CPS interview or have missing information.

measurement error, we expect our WFH intensity estimates for the average day to be biased toward zero.

3.4 Time-use outcomes

As our main outcomes, we examine four major time use categories—work and work-related activities (including income-generating activities and travel related to work), household production and care, leisure, and sleep—that together sum to 24 hours in the day. In additional analyses, we also examine select subcategories of time including paid work (without travel time), commuting, chores, food preparation, personal care, exercise, and screen time (watching television or movies, playing games, and using computers for leisure). We also take a deeper dive into the typical full workday by looking at the work span (the difference between the start time of the first work episode and the end time of the last work episode on the diary day), the workday start time, the workday end time, and the number of work episodes on weekday workdays. Finally, because adults living with household children, ‘parents’, perform the majority of care activities, for the ‘all day’ samples we examine for parents three types of childcare: primary childcare, secondary childcare, and time with children present. Secondary childcare is only collected about time supervising children under age 13 for households that have at least one household or nonhousehold child under age 13. When looking at this outcome, we restrict the sample to adults living with at least one household child under age 13. Researchers (Caetano et al., 2019) have found that both primary and secondary childcare are important for children’s development, and most state laws require young children to be under adult supervision. Time with children present is defined as any time spent in the presence of minor children, including nonhousehold children. It includes primary childcare time and the portion of secondary childcare when the child is in the same room or accompanying the person when away from home. See Appendix Table A1 for detailed definitions of these time-use categories.

3.5 Analysis sample

The main sample includes nonagricultural wage and salary workers aged 22–64. We conduct analyses separately by sex using 4,434 2017–18 diaries and 2,969 2023–24 diaries for men and 4,604 2017–18 diaries and 2,797 2023–24 diaries women (Appendix Table A2). ‘Weekday workday’ samples are about 40% the size of the ‘all days’ samples. ‘Parent’ samples are considerably smaller, with the number of remote and hybrid days/workers dropping to between 47 and 65 in a few cases. BLS has determined that 77 observations is in general the minimum sufficient for a reliable ATUS cell mean. Thus we must be cautious interpreting results for parents, and for this reason we also only use the ‘all day’ sample when looking at parents only. All analyses are weighted using ATUS sample weights. In 2017–18, we use ATUS-LV module weights, while in 2023–24 we use ATUS final weights. By year and sex, we reweight our samples for equal-day-of-the-week representation. Standard errors are empirically derived using 160 replicate weights.

4. Descriptive Statistics

4.1. The growth in work-from-home days and arrangements, 2017–18 to 2023–24

Figure 4 illustrates the change in the percentage of remote and hybrid workers among wage and salary workers aged 22–64 from 2017–18 to 2023–24. In 2017–18, only 2–3% of men and women were working exclusively from home, while 5–6% were hybrid. By 2023–24, 10% of men and 14% of women were fully remote, while 11% of men and women were hybrid. Parents saw similar increases in remote and hybrid work arrangements.

Consistent with the larger percentage of women working remotely, a larger percentage of women’s weekday workdays are now worked completely from home—23% for women versus 19% for men. In 2023–24, fewer days are hybrid days—with work at a worksite and at home on

the same day. Twelve percent of men worked hybrid days in 2017–18, which decreased to 10% in 2023–24, while 11% of women worked hybrid days in 2017–18, but only 9% did in 2023–24. We note that the increases in remote and hybrid work in Figure 4 are similar for fathers and mothers.

4.2. Changes in sample characteristics

Tables 1 and 2 show average demographic characteristics by work location on the diary day for the ‘weekday workdays’ sample in both time periods, while Tables 3 and 4 show means by work location arrangements across the week for the ‘all days’ sample. There are few statistically significant differences across time by workday type. Differences across workday types, however, are larger. First, for men, on hybrid days in 2023–24 relative to 2017–18, there are fewer married workers and more with a high school degree. On remote days in 2023–24, there are more Asian workers. There are also more workers with a disability but fewer living in a metropolitan area. For women, on on-site days in 2023–24 relative to 2017–18, there are more Hispanic workers and more living with an additional adult, but fewer with some college or living with a young child. They are also younger. There are no compositional differences for hybrid/remote days for women.

By work location arrangement type, there also are few differences for men according to Table 3. Among male on-site workers, there are more Hispanic workers. Among hybrid workers, there are more Asian and foreign-born workers. Among remote workers but not hybrid workers, there are more workers with a disability (4.8% versus 0% pre-pandemic).⁸ Among hybrid and

⁸ Using the basic monthly CPS, we find that 5.0% of male remote workers are disabled in 2023–24. This finding is consistent with recent research (Bloom et al., 2025) linking the increased prevalence of fully remote work to increased labor market participation among the disabled.

remote workers, there are more workers with a college degree but the differences are not statistically significant at convention levels.

For women compared with men, there are more differences across time by work location arrangement shown in Table 4. There are Hispanic and foreign-born workers among on-site workers. Among hybrid workers, there are more Black and Asian workers and more foreign-born workers. Among remote workers, there are more younger workers, Asian workers, cohabiting workers, and many more college-educated workers (46.3% versus 33.1%). Thus, in our regression analyses, we control for these demographic characteristics to reduce the risk that changes in time allocation across the periods are driven by compositional changes in the workforce. We also control for occupation and industry because there are differences in normal working hours and overtime hour requirements across these dimensions and because some jobs are more amenable to WFH (Chen, 2024; Dingel & Neiman, 2020).

4.3. The timing of work on weekday workdays

Figure 5 shows tempograms of paid work on weekday workdays. These figures show the share of workers at work for each workday type, illustrating how the WFH revolution has reshaped the timing of work. There are changes in the timing of work for those who do at least some WFH. Compared with 2017–18, men and women on remote days have shifted the start of their work to later in the morning and finished earlier in the day. They are less likely to be working during traditional dinner hours (6–8 p.m.). On hybrid days, women are less likely to be working later than 6 p.m. but more likely to be working at 7 a.m., while men are less likely to be working in the afterschool hours. It appears that post-pandemic, the span of work on remote and hybrid days decreased, with less work being done in the evenings and more during traditional 8 a.m.–5 p.m. hours. Thus, the flexibility gained from WFH in 2023–24 has become less of a double-edged sword impinging on family life as cautioned for in prior studies (Eurofund and the International Labour Office, 2017; Chung, 2022). We also find evidence of a downward trend in the

percentage of all work being done on weekday evenings/nights outside of normal working hours (6 a.m.–6 p.m.) and on weekend days from 2003 to 2024 (Figure 6); although the percentage of this work done from home increased from 2.2% in 2019 to 2.8% in 2024.

5. Empirical strategy

We model the relationship between remote work and time allocation as follows:

$$Y_i = \beta_0 + \beta_1 Hybrid_i + \beta_2 Remote_i + \beta_3 Year2023_24_i + \beta_4 Hybrid_i \times Year2023_24_i + \beta_5 Remote_i \times Year2023_24_i + \beta_6 X_i + \varepsilon_i \quad (1)$$

where the dependent variable Y_i is time spent on an activity measured in hours per day (either on weekday workdays or all days) for person i , $Hybrid_i$ and $Remote_i$ are indicator variables for the person's work location on a weekday workday or work location arrangement over a week with the omitted category being on-site, $Year2023_24_i$ indicates whether the person was interviewed in 2023 or 2024 compared with being interviewed in 2017 or 2018. The vector X_i includes a quadratic in age and binary indicators for educational attainment (no high school degree, some college, bachelor's degree, advanced degree), race and ethnicity (non-Hispanic Black, non-Hispanic Asian, Hispanic), spouse, unmarried partner, presence of household children (age 0–5, age 6–12, age 13–17), presence of another adult, foreign born, disability, month, Census division, metropolitan area residence, 22 occupations, and 20 industries. β_0 – β_6 are vectors of coefficients to be estimated and ε_i is the error term. These models are estimated separately by sex using ordinary least squares (OLS). For the reader's ease, we present predicted conditional means from these regressions visually and provide regression results in the Appendix. For the 'all days' sample, we also provide analyses of parents' paid work and childcare time by work location arrangement.

6. Results

6.1 Weekday workday results for men

Figure 7 shows predicted conditional mean hours per weekday workday based on regressions estimates for equation 1 for our four major time-use categories (work and work-related activities including commuting, household production and care, leisure, and sleep) by sex and by work location over time. OLS estimates are presented in Table A3. Although we find large and statistically significant differences in time devoted to work on remote days, there are no statistically significant differences across time. In 2023–24, men, on average, devoted 10.06 hours to work on hybrid days, 9.61 hours on on-site days, and 8.53 hours on remote days. The differences are primarily explained by hours spent commuting rather than working: Figure 8 and Table A4 show that men on on-site/hybrid days spent 0.93 hours commuting post-pandemic, several minutes less than in prior years, but remote men spent no time commuting, reallocating the time saved for the most part to sleep and leisure, and to a smaller extent to household production and care. Paid work itself lasted 8.57 hours, 8.77 hours and 9.20 hours on remote, on-site, and hybrid days, respectively, with the 0.63-hour difference for hybrid being statistically significantly different. (This result highlights the importance of examining three work location groups rather than categorizing diaries as primarily remote and primarily on-site.) Men working hybrid days have the longest work spans, 11.64 hours in 2023–24, though they have become shorter over time. Remote days also correlate with longer work spans, 9.69 hours compared with 9.34 hours on on-site days, as remote workers less constrained by commuting can choose early and late hours. We observe higher popularity of late hours: men ended their workdays almost 2 hours later in the evening on hybrid days and half an hour later on remote days, although end times were earlier on hybrid days than pre-pandemic, as shown in the tempograms. Men working hybrid days also report a greater number of work episodes throughout their day than men working on-site only (3.26 and 2.39 episodes, respectively), also

suggesting they take advantage of flexibility in scheduling all activities. Men working remotely also report more episodes than those on-site (2.65 episodes).

Turning to household production and care, we observe that on hybrid and remote days in 2023–24, men allocated 1.75 hours to these activities compared with 1.49 hours on on-site days. We cannot reject the hypothesis that this hours gap in household production and care was similar pre-pandemic. Examining two of the largest household production subcategories (chores and food preparation), we find that all men spend 25.9% more time on food preparation compared with 2017–18 (Figure 9 and Table A5), and men on remote days spent more time on food preparation than men on on-site days in both periods (55.5% more in 2017–18). Men on hybrid days spend 20% more time doing chores than men on on-site days.

In both periods, men on remote days enjoyed more leisure than men working on-site (10.8% more in 2017–18), though leisure time decreased by about 6% on on-site and remote days. Men on hybrid days enjoyed less leisure in both periods (8.7% less in 2017–18). Looking at select leisure subcategories, we examine personal care, exercise and screen time. In both periods, men on remote days spent less time on personal care, 0.30 fewer hours compared with those on hybrid/on-site days in 2023–24, which is consistent with their not having to spend time grooming to prepare for an in-person day. Exercise time more than doubled in 2023–24 on remote days compared with those on hybrid/on-site days (0.45 hours versus 0.21 hours), whereas it did not change on on-site days. In both periods, screen time was highest on remote days (3.07 hours versus 2.69 hours on hybrid/on-site days in 2023–24).

Sleep time increased for most men, with the largest hike on remote days and a smaller hike for on-site days, although the difference in the increase is not statistically significant at conventional levels. In 2023–24, men on remote days slept 0.38 hours more than men working on-site who slept 7.96 hours, while men on hybrid days slept 0.58 hours less because they went to bed later (Table A6). Compared with on-site days, men's sleep schedules on remote days in

both periods started and ended later in the day.⁹ In 2023–24, they woke on average 41 minutes later in the morning. This correlates with their starting work later (Figure 5).

6.2 Weekday workday results for women

Total work and work-related time for women shows no statistically significant changes by work location (Table A7). Hybrid workdays are longer, with less leisure and less sleep, as is the case of men. On hybrid days, women did 8.86 hours of paid work hours, or 6.5% more in 2023–24 than on other days, whereas women on-site and remote days did similar amounts of work, 8.3 hours. Women working remotely gained over three-quarters of an hour by not commuting (Table A8).¹⁰ As we saw for men, average commute time decreased slightly post-pandemic (0.1 hours). Both pre- and post-pandemic, women's work span differed dramatically by work location, and these differences were larger compared with men. In 2023–24, women's work span was 11.52 hours on hybrid days, 9.40 hours on remote days, and 8.82 hours on on-site days. Like men, women are ending their workdays almost two hours later in the evening on hybrid days. Hybrid workdays are more fragmented than remote and on-site days (and compared with men)—possibly a sign that women on hybrid days are flexing their hours to participate in other activities, such as caring for children after school and then working later in the evenings. On-site days became less fragmented post-pandemic.

Women report more household production and care activities than men—2.08, 2.29, and 2.48 hours, respectively, on on-site, hybrid, and remote days in 2023–24 (Figure 7, Table A7). Only the difference between on-site and remote days is statistically significant. On remote days, women spend 0.15 hours more on chores (Table A10). Over time, all women spent 16.7% more time on food preparation relative to on-site days.

⁹ We define bedtime as the start of the first sleep episode between 7 p.m. and 3:59 a.m. We define wake-up time as the end of the last sleep episode between 4 a.m. and 11:59 a.m.

¹⁰ Post-pandemic, men and women combined gained 52 minutes by not commuting (Table A9).

Women on hybrid days spent less time on leisure activities than on on-site days in both periods—0.70 fewer hours overall in 2017–18, with about half of that time attributable to a difference in screen time. In 2023–24, there was no difference between hybrid and on-site days in screen time because women on on-site days decreased their screen time, while women on hybrid days increased their screen time, relative to 2017–18. On remote days compared with on-site days in both periods, women spent more time on screen activities (0.36 hours more in 2023–24) but less time on personal activities (0.25 hours less), suggesting a reallocation of leisure activities.

Finally, we turn to sleep time results for women. In 2017–18, women on remote days slept the most (8.21 hours), those on on-site days slept 7.75 hours, and those on hybrid days slept the least (7.54 hours). Some of the extra time devoted to work on hybrid days was reallocated from sleep. In 2023–24, women on on-site and hybrid days slept even more (8.16 and 7.89 hours, respectively), but the difference in the gap was not statistically significantly different over time. Sleep estimates for remote and on-site days were more similar (the gap in sleep hours was reduced by 0.30 hours, but not statistically significant at conventional levels). Female workers on remote days sleep the most because they wake up about half an hour later in the morning, while female workers on hybrid days sleep the least (in 2017–18 they went to bed about a quarter of an hour later, and we cannot reject the hypothesis that there was no change in the bedtime gap) (Table A6).

6.3 All day results for men

On the average day in 2023–24, on-site (hybrid, remote) employees devoted 6.16 hours (5.81, 5.58) to work and work-related activities, with no statistically significant change for on-site and remote workers compared with 2017–18, but a 0.9 drop in hours for hybrid workers (Figure 10 and Table A11). The hours gap between remote and on-site workers was statistically significant in both periods, but the difference in paid work net of commuting was not (Figure 11

and Table A12). In 2023–24, time spent in paid work was around 5.5 hours per average day for men regardless of location. The relatively larger difference in paid work for remote workers in the 'all days' sample versus on remote days in the 'weekday workdays' sample in 2017–18 (-0.64 versus -0.35 hours) results from splitting the remote days into hybrid and remote workers because hybrid workers do relatively more paid work than on-site workers (though the difference is not statistically significant). This comparison highlights the importance of examining outcomes by both the intensity of WFH and for the 'all days' sample. As a robustness check, we pooled men and women given their similar coefficients on paid work; we find the 2017–18 difference (-0.70) is precisely estimated and statistically significant at the 5% level, whereas the difference (0.06) is small and not statistically significant in 2023–24 (Table A9). Thus, pre-pandemic but not post-pandemic, the average remote worker worked fewer paid hours than the average on-site worker. However, we also consider a sample of parents and find that among fathers, the average remote worker pre-pandemic worked similar hours but post-pandemic they decreased their hours (Table A13).

Household production and care time increased by 0.16 hours (6.5%) for all men to around 2.5 hours per day in 2023–24. Consistent with our weekday workday analysis, food preparation time on the average day increased for all men, by 0.7 hours for on-site men and about 0.2 hours for hybrid and remote men (with the 0.13 hour gap between remote and on-site men being statistically significant in 2023–24, although we cannot reject the hypothesis that it was similarly large in 2017–18), so now the average man spends almost half an hour on food preparation per day. This rise in food-related time may be a result of men's increased contributions during the early part of the pandemic (i.e., new habit formation). This result is also consistent with recent research (Baker et al., 2025) finding that remote workers are spending more money on groceries. The time spent in chores also increased for on-site and hybrid workers over time, but in neither period do we see statistically significant differences by work location arrangement.

Pre-pandemic, remote fathers spent 0.34 hours more on primary childcare than on-site fathers, though the difference was imprecise. Post-pandemic, on-site and hybrid fathers spent substantially more time on primary childcare (a 25.3% increase compared with 2017–18), perhaps due to their greater involvement during the pandemic (Figure 12, Table A13). Thus, primary childcare conditional means converged across work location arrangements in 2023–24. Thus, on average, men were spending more time on primary childcare after the pandemic—a 25.8% increase between 2018 and 2024 (Figure 13). Nonetheless, we cannot reject the hypothesis that the gap between remote and on-site fathers was the same pre-pandemic. Fathers working remotely spent about two hours more per average day on secondary childcare in both periods. Given the increase in remote work among fathers, fathers on average are spending 2.9% more time on secondary care in 2024 than 2018. Post-pandemic, they also spent over an hour more with children in their presence. The 0.80-hour difference in the remote-on-site gaps is quite substantial, although we cannot reject the hypothesis that the gap in time with children is similar pre-pandemic. We also see that the increase is driven by greater time with children in 2023, but not 2024.

Leisure time differs by work location arrangement. Remote workers enjoyed 7.27 hours of leisure per day in 2023–24 compared with 6.7 hours for on-site workers (a 0.55-hour difference). Leisure decreased slightly for all men, by 0.22 hours (3.2%) on average. Personal care time remained about the same over time, ~0.68 hours, for on-site workers, but increased among remote workers from 0.42 hours in 2017–18 to 0.56 hours in 2023–24. In both periods, remote workers spent less time on personal care on the average day, a result consistent with our findings for the average weekday workday. Hybrid workers spent the most time exercising (0.13 hours more than on-site workers in 2023–24—a 40.6% difference). Screen time remained at 2.7 hours among on-site workers. Though the increase in the gap between remote and on-site workers is imprecise, remote workers in 2023–24 spent 0.38 hours per day more than on-site workers in front of the computer or watching TV. This suggests that remote days allow

workers to enjoy more screen time (i.e., there appears to be no reallocation of screen time over the week for men).

Sleep increased for on-site/hybrid men (Table A11, Figure 10). Hybrid workers experienced the largest gains of 0.66 hours (8.2%), while on-site men gained 0.26 hours (3.1%). Although remote workers enjoyed almost half an hour more of sleep before the pandemic, because they did not increase their sleep, remote and on-site worker slept about the same post-pandemic. This increase in sleep by hybrid workers may explain some of the increase in the sleep trend since the pandemic.

On-site/hybrid workers go to bed earlier, and hybrid workers also wake-up up later as their WFH days are more accommodating (Table A14). Compared with on-site workers, remote workers' sleep schedules are shifted later in the day. Perhaps, these are all new habits as a result either of the pandemic and/or continued public health announcements about the importance of getting adequate sleep for one's health (Berg, 2025).

6.4 All day results for women

Work and work-related time was about 5.4 hours for all women regardless of work location arrangement in 2023–24. Pre-pandemic, however, remote women devoted an hour less to work and work-related activities than on-site employees did (Table A15). In part, this was the time saved by not commuting, but as for men, paid work also used to be lower among remote women (Table A16). By 2023–24, women working remotely spent the same amount of time on paid work as on-site workers.

There were no overall differences in household production and care on the average day over time or by work location arrangement (Figure 10), which suggests that women in 2023–24 reallocate their time across days of the week. However, in 2023–24, all female workers (like male workers) spent more time on food preparation (0.08 hours more) (Table A16). This is also possibly a result of new habits formed during the pandemic social distancing period. In 2023–

24, female hybrid workers spent more time on chores, but we cannot reject the hypothesis that they also worked more in 2017–18. This result is consistent with the positive coefficient on remote day for the 'weekday workday' sample.

Post-pandemic, female remote workers spent more time on primary childcare (0.25 hours more, 15.5% increase) compared with on-site workers, but not at the expense of their paid work (Table A17). Thus, on average, women were providing 3.7% more hours of primary childcare in 2024 than 2018—a result of both the rise in female remote workers and a rise in primary childcare among remote workers (Figure 13). In both periods, female remote workers also spent more time on secondary childcare and time with children compared with female on-site workers, although the remote-on-site hours gaps, large in magnitude but not statistically significant, shrank over time. Given that more mothers are working remotely, there is also a 5.5% rise in mothers' secondary childcare time between 2018 and 2024.

In 2017–18, female remote workers spent more time on leisure activities on the average day than on-site workers (7.36 hours versus 6.50 hours), suggesting that they spent more time on their leisure time on nonworkdays because they spend no more or less time on leisure in the 'weekday workday' sample. However, in 2023–24, workers spent similar amounts of time on leisure (6.42 hours). Some of the extra leisure time in 2017–18 was spent on exercise (0.24 hours, a 104.3% difference). We note that in both periods, female hybrid and remote workers spent less time on personal care activities than on-site workers. Unlike men, there are no differences in screen time on the average day for women by work location arrangement or over time, which also suggests that female remote and hybrid workers reallocate their time over the week, spending less time on these activities on nonworkdays compared with on-site workers.

Similar to male workers, all female workers were sleeping 4.1% more hours per average day compared with 2017–18. However, we find no differences in total sleep time by work location arrangement in either period, suggesting some shifting of sleep over the week in 2017–18.

As a robustness check for our main results for the ‘all days’ sample, we restricted the sample to single jobholders, given that the CPS does not ask which jobs someone works from home on. Estimates are similar (Tables A18–A19). For our 2023–24 ‘all days’ sample, we also calculated bounds on the coefficients based on Oster (2019). These suggest that our main results are robust to omitted variable bias (Tables A20–A21).

7. Conclusion

In this study, we compare time diaries from before the pandemic (2017–18) to those collected after the pandemic (2023–24) to shed light on whether the pandemic-induced remote work revolution changed patterns of work and leisure. This study offers one of the first post-pandemic comparisons of time allocation by work location arrangement. Importantly, it distinguishes between differences in day-level work location and worker-level WFH intensity to examine whether individuals reallocate activities across the week and whether hybrid/remote workers have differences in time allocation.

Between 2017–18 and 2023–24, differences in total paid hours by work location have largely vanished. Remote workers—both men and women—who reported shorter workdays pre-pandemic now work comparable hours to their on-site counterparts. This may reflect in part the selection of caregivers and night owls into remote schedules in the past and a shift in selection criteria now. It also marks a shift from remote work as a privilege to a normalized workplace arrangement. Days on which workers bring work home from the office are still associated with longer paid hours and extended work spans. These changes suggest that remote work arrangements could lead to higher wages for women and a decrease in the gender wage gap given recent research associating long working hours with higher wages and career advancement.

On remote days, workers spent about 52 fewer minutes commuting in 2023–24. While eliminating commutes allows male workers to spend more time on household production and

care (food preparation), leisure (screen, exercise), and sleep on their weekday workdays, over the week remote workers spend relatively more time on food preparation, leisure (screen) activities, while hybrid workers spend relatively more time on sleep and exercise as male workers shift their activities across the week. While eliminating commutes allows female workers to spend more time on household production and care (chores) on weekday workdays, we only find that female hybrid workers increase their chores time and female remote workers increase their primary childcare time on the average day, because some female workers also shift activities across the week. Total sleep time rose for all workers, especially for hybrid men—resulting in about a 4% increase in overall sleep.

Post-pandemic, parents are spending more time on childcare. Fathers working on-site/hybrid have increased their primary childcare time. Mothers working remotely are also doing more primary childcare. Mothers and fathers working remotely continue to do more secondary childcare than on-site workers. Given the substantial increase in remote workers, this suggests that the remote revolution is changing parents' childcare. This increase in childcare time may have positive implications for child development as evidenced by Achard et al. (2025), who found that when parents work from home, their children score higher on high-stake exams. However, it could also drive further inequities in education and development outcomes, because remote workers are more likely to be college-educated than on-site workers.

Overall, post-pandemic work location arrangements have rebalanced, rather than reduced, labor supply, enhancing flexibility while modestly reshaping family roles. We also see a rise in healthy behaviors for men (e.g., more time is spent on sleep, food preparation, and exercising) that appear to be directly related to an increase in remote work and may also be indirectly related through workers' experiences with remote work during the pandemic.

Several data limitations warrant mention. First, sample sizes for some subgroups, particularly remote fathers in 2017–18, are small, rendering many of our estimates imprecise. Second, the roughly three-month lag between the CPS and ATUS interview may introduce

misclassification of work location arrangements if return to the office policies were implemented during that time. To the extent that it does, differences between the arrangements may be understated. Research using the future 2024–25 ATUS Leave module may provide more clarity on work location arrangement relationships with time use.

References

Achard, P., Belot, M., & Chevalier, A. (2025). When Parents Work from Home. IZA Discussion Paper No. 17957. <https://www.iza.org/publications/dp/17957>.

Amuedo-Dorantes, C., Marcén, M., Morales, M, & Sevilla, A. (2022). Schooling and parental labor supply: Evidence from COVID-19 school closures in the United States. *ILR Review*, 76, 56–85. <https://doi.org/10.1177/00197939221099184>.

Atalay, E., Kobler, R., & Michaels, R. (2025). School closures, parental labor supply, and time use. Manuscript. <https://enghinatalay.github.io/schools.pdf>.

Aughinbaugh, A. & Rothstein, D. R. (2022). How did employment change during the COVID-19 pandemic? Evidence from a new BLS survey supplement. *Beyond the Numbers: Employment and Unemployment*, 11(1), U.S. Bureau of Labor Statistics. <https://www.bls.gov/opub/btn/volume-11/how-did-employment-change-during-the-covid-19-pandemic.htm>.

Baker, S. R., Bloom, N., Johnson, S., & Obradovic, J. (2025). Shopping from home. Presentation at 2025 Stanford Remote Work Conference. <https://www.remoteworkconference.org/>.

Barrero, J. M., Bloom, N., & Davis, S. J. (2021). Why working from home will stick. NBER Working Paper No. 28731. <https://www.nber.org/papers/w28731>. Accessed 18 May 2023.

Berg, S. (2025). What doctors wish patients knew about getting a good night's sleep. American Medical Association. <https://www.ama-assn.org/public-health/prevention-wellness/what-doctors-wish-patients-knew-about-getting-good-night-s-sleep>.

Bick, A., Blandin, A., & Mertens, K. (2023). Work from home before and after the COVID-19 outbreak. *American Economic Journal: Macroeconomics* 15:1–39. <https://doi.org/10.1257/mac.20210061>.

Bloom, N., Barrero, J.M., & Davis, S. et al. (2023). Survey: remote work isn't going away—and executives know it. *Harvard Business Review*, August 28. <https://hbr.org/2023/08/survey-remote-work-isnt-going-away-and-executives-know-it>.

Bloom, N., Dahl, G., & Rooth, D. (2024). Work from home and disability employment. NBER Working Paper No. 32943. <https://www.nber.org/papers/w32943>.

Buckman, S., Barrero, J. M., Bloom, N., & Davis, S. J. (2025). Measuring work from home. BFI Working Paper 2025-31. <https://bfi.uchicago.edu/working-papers/measuring-work-from-home/>.

Burbio. (2021). K-12 School Opening Tracker. Retrieved November 3, 2021, <https://ca1.burbio.com/schooloopening-tracker/>.

Caetano, G., Kinsler, J., & Teng, H., (2019). Towards Causal Estimates of Children's Time Allocation on Skill Development. *Journal of Applied Econometrics*, 34, 588–605.
<https://doi.org/10.1002/jae.2700>.

Carlson, D. L., Petts, R. J., & Pepin, J. R. (2021). Flexplace work and partnered fathers' time in housework and childcare. *Men and Masculinities*, 24, 547–570.
<https://doi.org/10.1177/1097184X211014929>.

Chen, G. X. (2024). Working hours, shift, and remote work by industry and occupation in U.S. full-time workers. *Workplace Health & Safety*, 72, 392–400.
<https://doi.org/10.1177/21650799241257157>.

Collins, C., Landivar, L. C., Ruppanner, L., & Scarborough, W. J. (2021). COVID-19 and the gender gap in work hours. *Gender, Work & Organization*, 28, 101–112.
<https://doi.org/10.1111/gwao.12506>.

Cowan, B. (2024). Time use, college attainment, and the working-from-home revolution. *Journal of Population Economics*, 37. <https://doi.org/10.1007/s00148-024-01036-5>.

Cubas, G., John, C., & Silos, P. (2021). Work-care balance over the day and the gender wage gap. *American Economic Association Papers and Proceedings*, 111, 149–153.
<https://doi.org/10.1257/pandp.20211021>.

Dey, M., Frazis, H., Loewenstein, M. A., & Sun, H. (2020). Ability to work from home: Evidence from two surveys and implications for the labor market in the COVID-19 pandemic. *Monthly Labor Review*. <https://www.bls.gov/opub/mlr/2020/article/ability-to-work-from-home.htm>.

Dingel, J., & Neiman, B. (2020). How many jobs can be done at home? *Journal of Public Economics*, 189. <https://doi.org/10.1016/j.jpubeco.2020.104235>.

Doepke, M., Sorrenti, G., & Zilibotti, F. (2019). The economics of parenting. *Annual Review of Economics* 11, 55–84. <https://doi.org/10.1146/annurev-economics-080218-030156>.

Dunatchik, A., Gerson, K., Glass, J., Jacobs, J. A., & Stritzel, H. (2021). Gender, parenting, and the rise of remote work during the pandemic. *Gender & Society*, 35, 194–205.
<https://doi.org/10.1177/08912432211001301>.

Eldridge, L. P., & Pabilonia, S. W. (2010). Bringing work home: Implications for BLS productivity measures. *Monthly Labor Review*, 133(12), 18–35.
<https://www.bls.gov/opub/mlr/2010/12/art2full.pdf>.

Flood, S. M., & Genadek, K. R. (2023). Change and continuity in Americans' work day characteristics, 2019 to 2021. In: Hamermesh, D.S., Polachek, S.W. (eds). *Time use in economics (Research in Labor Economics)*. Emerald Publishing Limited, Leeds, 219–245. <https://doi.org/10.1108/S0147-912120230000051009>.

Francis, A., & Goodman, J. (2025). School enrollment shifts five years after the pandemic. *Economics of Education Review*, 109.
<https://doi.org/10.1016/j.econedurev.2025.102734>.

Frazis, H. (2024). Sources of increases in time alone during the COVID pandemic: Evidence from the American Time Use Survey. *Review of Economics of the Household*, 22, 965–997. <https://doi.org/10.1007/s11150-023-09679-1>.

Frazis, H. (2025). A comparison of hours of work at home estimates between the Current Population Survey and the American Time Use Survey. *Monthly Labor Review*, April. <https://doi.org/10.21916/mlr.2025.9>.

Goldin, C. (2014). A grand gender convergence: Its last chapter. *American Economic Review*, 104, 1091–1119. <https://doi.org/10.1257/aer.104.4.1091>.

Heggeness, M. L. (2020). Estimating the immediate impact of the COVID-19 shock on parental attachment to the labor market and the double bind of mothers. *Review of Economics of the Household*, 18, 1053–1078. <https://doi.org/10.1007/s11150-020-09514-x>.

Heggeness, M. L., Fields, J., Trejo, Y. A. G., & Schulztenberg, A. (2021). Tracking job losses for mothers of school-age children during a health crisis. *America Counts: Stories Behind the Numbers*. <https://www.census.gov/library/stories/2021/03/moms-work-and-the-pandemic.html>.

Juster, F.T., 1985. The validity and quality of time use estimates obtained from recall diaries. In: Juster, F.T., Stafford, F.P. (Eds.), *Time, goods, and well-being*. Ann Arbor: Survey Research Center, Institute for Social Research, University of Michigan, pp. 63–92.

Lee, E. K., & Parolin, Z. (2021). The care burden during COVID-19: A national database of child care closures in the United States. *Socius* 7. <https://doi.org/10.1177/23780231211032028>.

Makridis, C. A. (2025). The allocation of time and remote work. *SSRN Working Paper*. <https://dx.doi.org/10.2139/ssrn.4517661>.

Marcén, M., & Morales, M. (2025). The gender gap in working from home after the onset of the COVID-19. *Review of Economics of the Household*. <https://doi.org/10.1007/s11150-025-09809-x>.

Oster, E. (2019). Unobservable selection and coefficient stability: theory and evidence. *Journal of Business & Economic Statistics*, 37, 187–204. <https://doi.org/10.1080/07350015.2016.1227711>.

Pabilonia, S. W., & Vernon, V. (2023a). Telework, wages, and time use in the United States. *Review of Economics of the Household*, 20, 687–734. <https://doi.org/10.1007/s11150-022-09601-1>.

Pabilonia, S. W., & Vernon, V. (2023b). Who is doing the chores and childcare in dual-earner couples during the COVID-19 era of working from home? *Review of Economics of the Household*, 21, 519–565. <https://doi.org/10.1007/s11150-022-09642-6>.

Petts, R. J., Carlson, D. L., & Pepin, J. R. (2021). A gendered pandemic: Childcare, homeschooling, and parents' employment during COVID-19. *Gender, Work and Organization*, 28(S2), 515–534. <https://doi.org/10.1111/gwao.12614>.

Restrepo, B. J., & Zeballos, E. (2020). The effect of working from home on major time allocations with a focus on food-related activities. *Review of Economics of the Household*, 18, 1165–1187. <https://doi.org/10.1007/s11150-020-09497-9>.

Restrepo, B., & Zeballos, E. (2022). Work from home and daily time allocations: Evidence from the coronavirus pandemic. *Review of Economics of the Household*, 20, 735–758. <https://doi.org/10.1007/s11150-022-09614-w>.

Robinson, J. P. (2002). The time-diary method. In W. E. Pentland, A. S. Harvey, M. P. Lawton & M. A. McColl Eds., *Time use research in the social sciences*. Boston, MA: Springer. https://doi.org/10.1007/0-306-47155-8_3.

Russell, L., & Sun, C. (2020). The effect of mandatory child care center closures on women's labor market outcomes during the COVID-19 pandemic. *Covid Economics, Vetted and Real-Time Papers*, 62(18), 124–54.

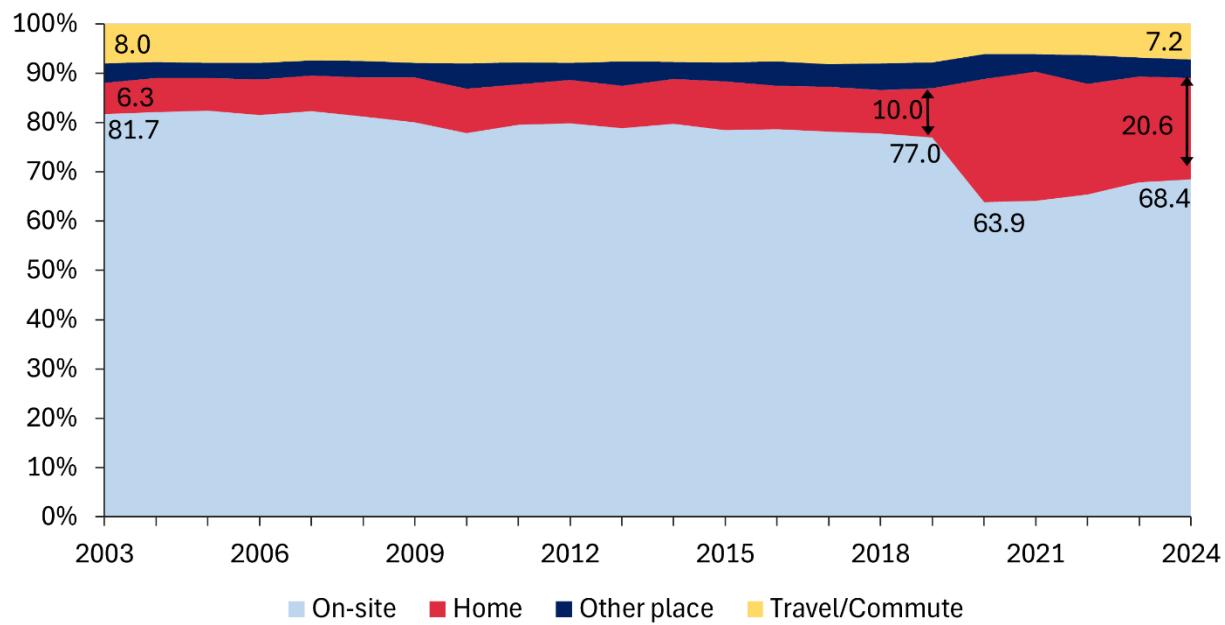
Song, Y., & Gao, J. (2020). Does telework stress employees out? A study on working at home and subjective well-being for wage/salary workers. *Journal of Happiness Studies*, 21(7), 2649–2668. <https://doi.org/10.1007/s10902-019-00196-6>.

Stevenson, B. (2021). Women, work, and families: Recovering from the pandemic-induced recession. Washington D.C.: Brookings Institute. https://www.hamiltonproject.org/papers/women_work_and_families_recovering_from_the_pandemic_induced_recession.

U.S. Bureau of Labor Statistics. (2020–2021). Supplemental data measuring the effects of the coronavirus (COVID-19) pandemic on the labor market. Retrieved July 21, 2022, <https://www.bls.gov/cps/effects-of-the-coronavirus-covid-19-pandemic.htm>.

U.S. Bureau of Labor Statistics. (2025a). American Time Use Survey microdata files. Retrieved 24 June 2025, <https://www.bls.gov/tus/data.htm>.

U.S. Bureau of Labor Statistics. (2025b). American Time Use Survey Summary. Retrieved 2 December 2025, <https://www.bls.gov/news.release/atus.nr0.htm>.

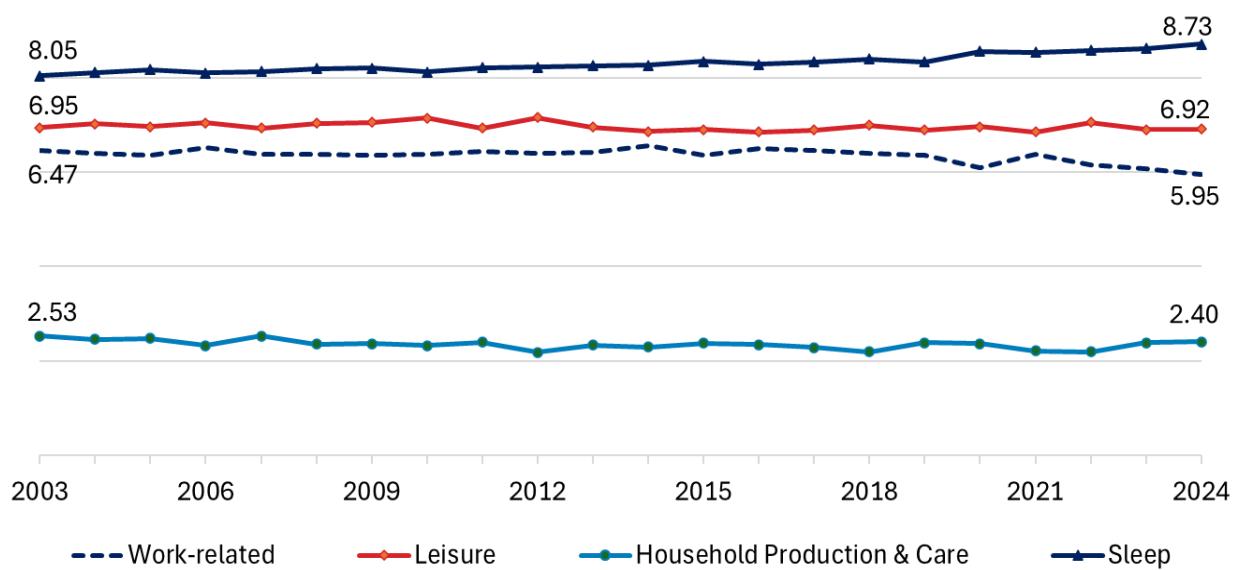

U.S. Bureau of Labor Statistics and U.S. Census Bureau. (2022–2024a). Current Population Survey [Dataset], <https://www.census.gov/data/datasets/timeseries/demo/cps/cps-basic.html>.

U.S. Bureau of Labor Statistics and U.S. Census Bureau. (2022–2024b). Telework/COVID-19 data from the CPS [Dataset], https://www.census.gov/data/datasets/time-series/demo/cps/cps-supp_cpsrepwgt/telework-cps-covid.html.

Woods, R. A. (2020). Job flexibilities and work schedules in 2017–18. U.S. Bureau of Labor Statistics Spotlight on Statistics. <https://www.bls.gov/spotlight/2020/job-flexibilities-and-work-schedules/home.htm>.

Zamarro, G., & Prados, M. J. (2021). Gender differences in couples' division of childcare, work and mental health during COVID-19. *Review of Economics of the Household*, 19, 11–40. <https://doi.org/10.1007/s11150-020-09534-7>.

Figure 1. Percentage of total time devoted to work by location



Note: The sample includes all employed persons. Annual estimates from 2020 are not strictly comparable because ATUS call centers were closed from March 18–May 10, 2020 because of the COVID-19 pandemic. ATUS final weights are used.

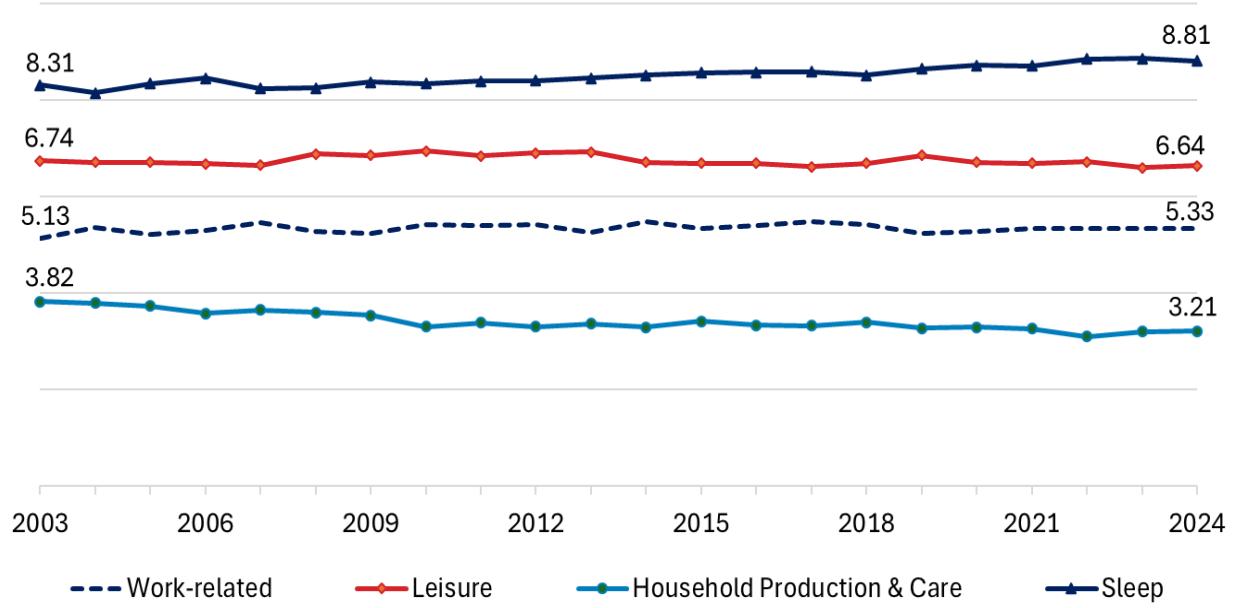
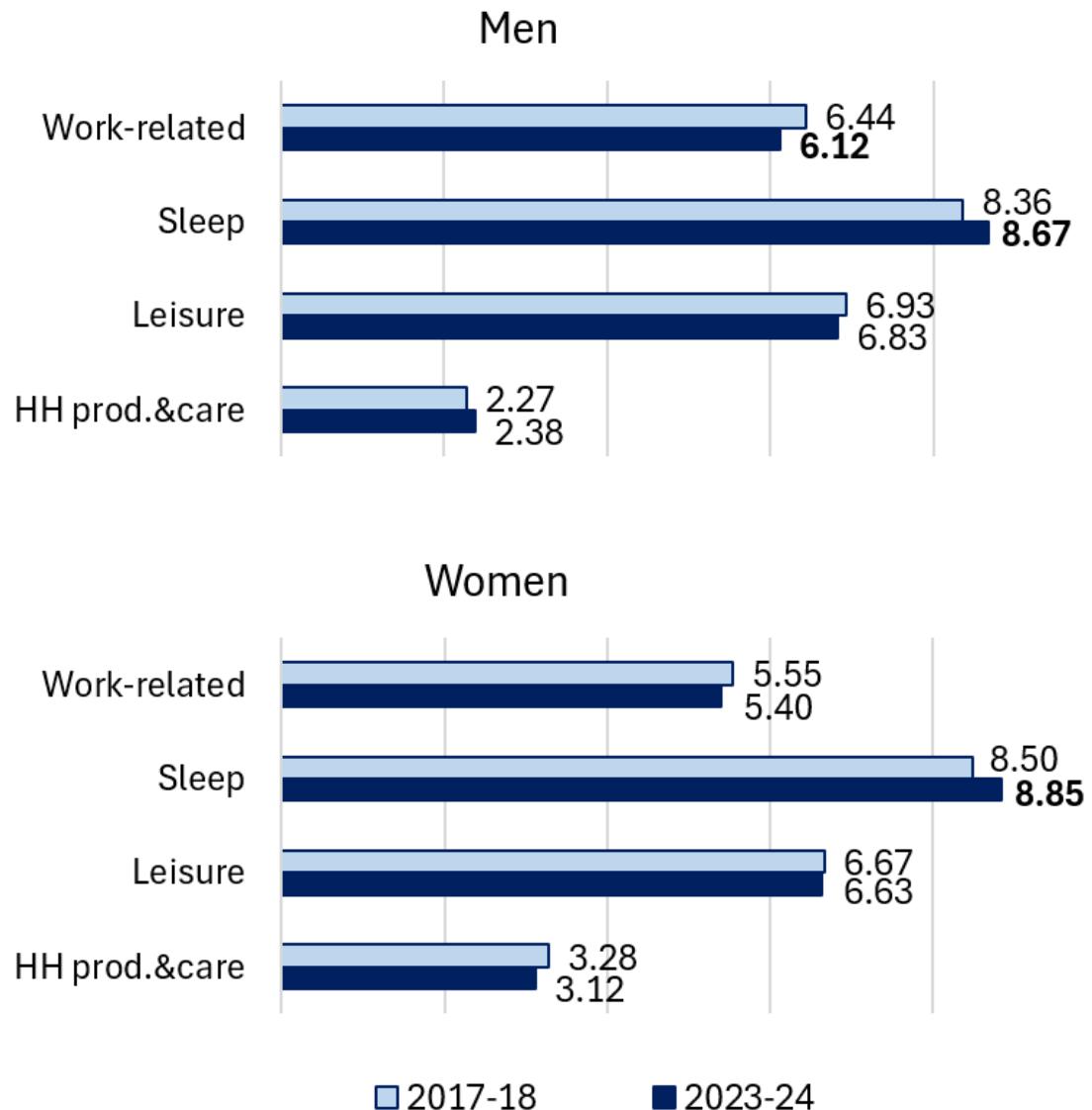

Source: 2003–2024 American Time Use Survey, author's calculations

Figure 2. Trends in time use among wage and salary workers aged 22–64 on the average day, hours/day

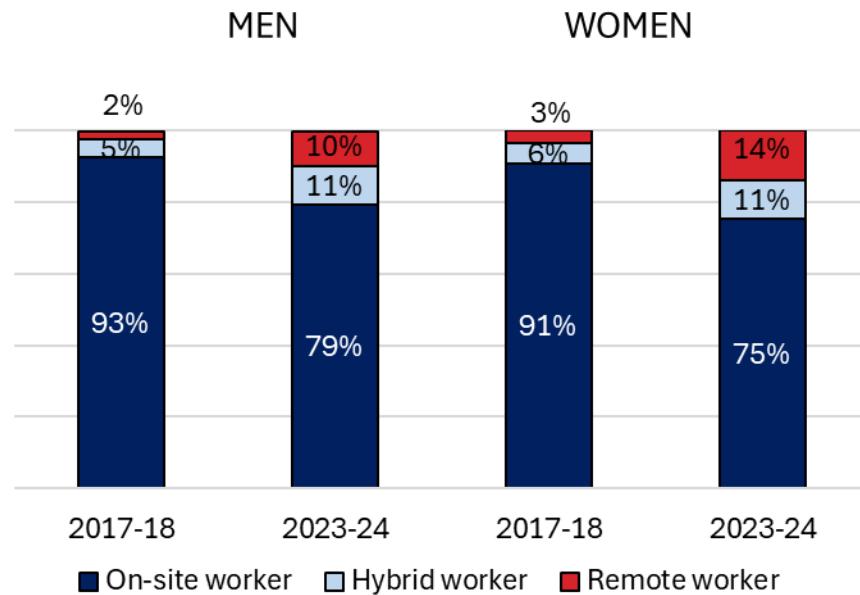
A. Men



B. Women

Note: The time in these four activities sums to 24 hours. Annual estimates from 2020 are not strictly comparable because ATUS call centers were closed from March 18–May 10, 2020 because of the COVID-19 pandemic. ATUS final weights are used. Source: 2003–2024 American Time Use Survey, author's calculations

Figure 3. Hours spent in main activities on the average day among wage and salary workers aged 22–64



Notes: Values in bold are statistically significantly different from those in 2017–18. ATUS final weights are used.

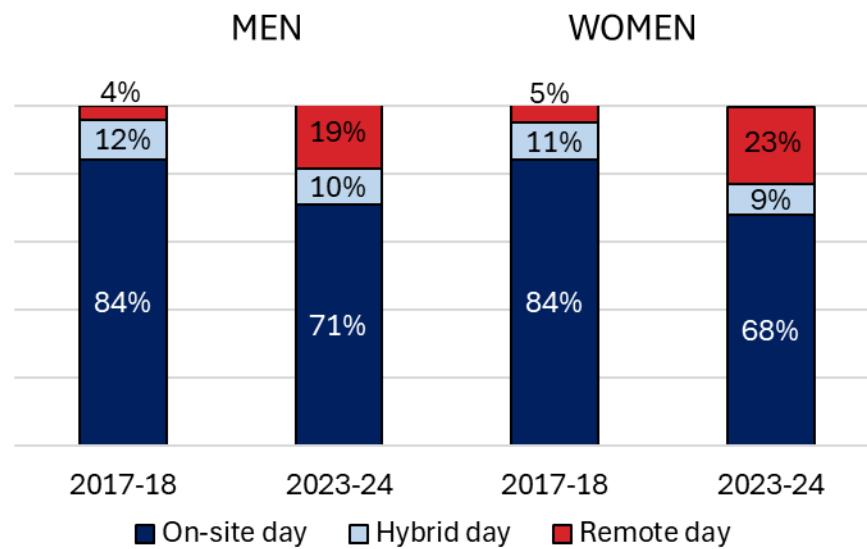
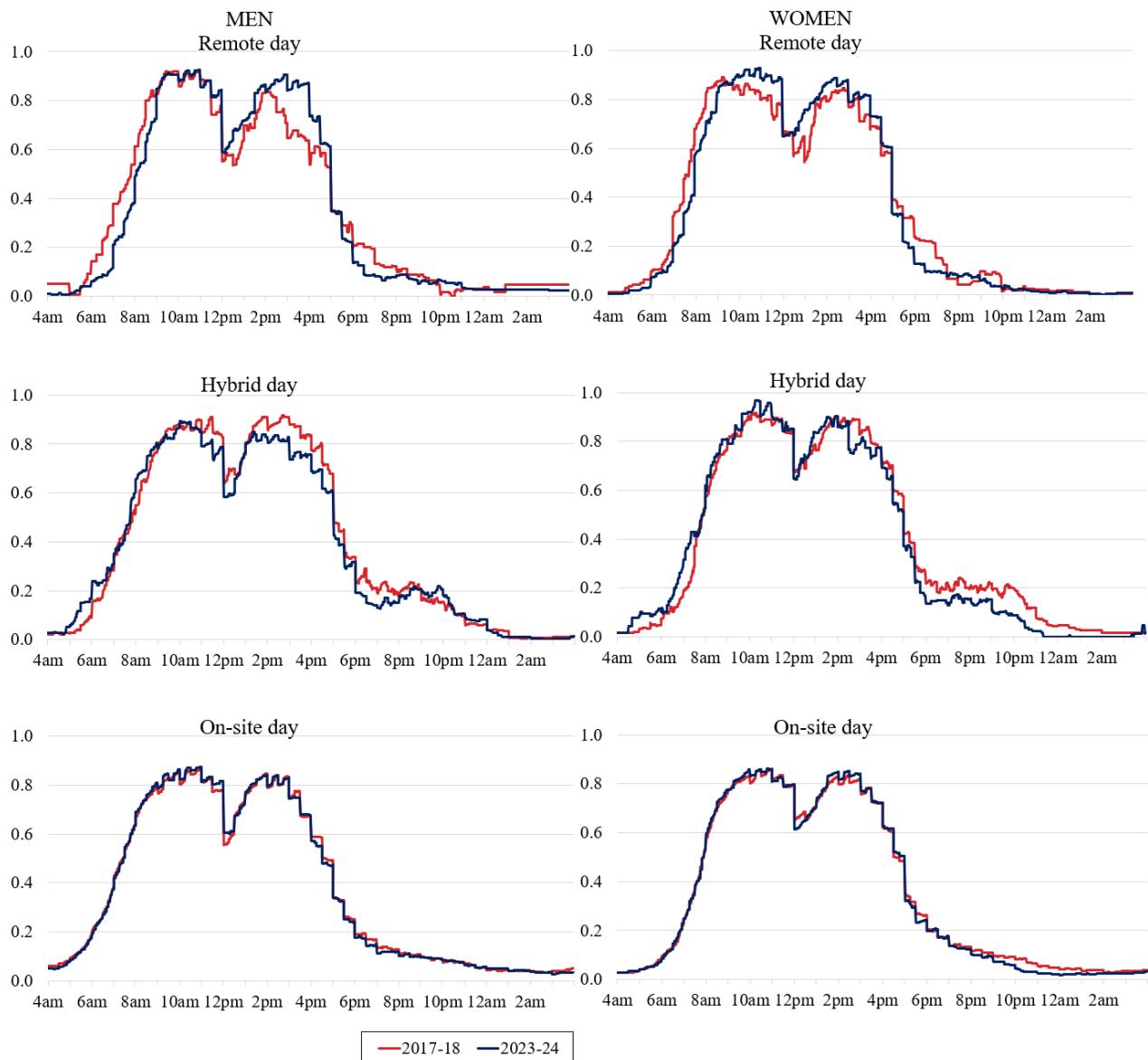

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

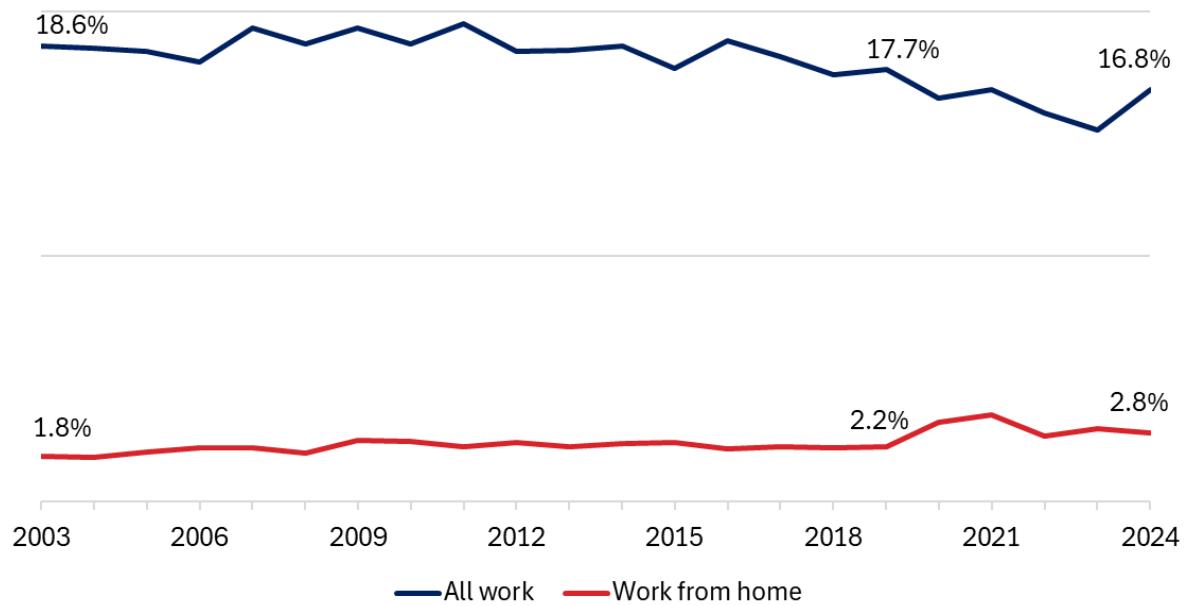
Figure 4. Percentage of wage and salary workers aged 22–64 by sex and by work location/arrangement

A. All days


B. Weekday workdays

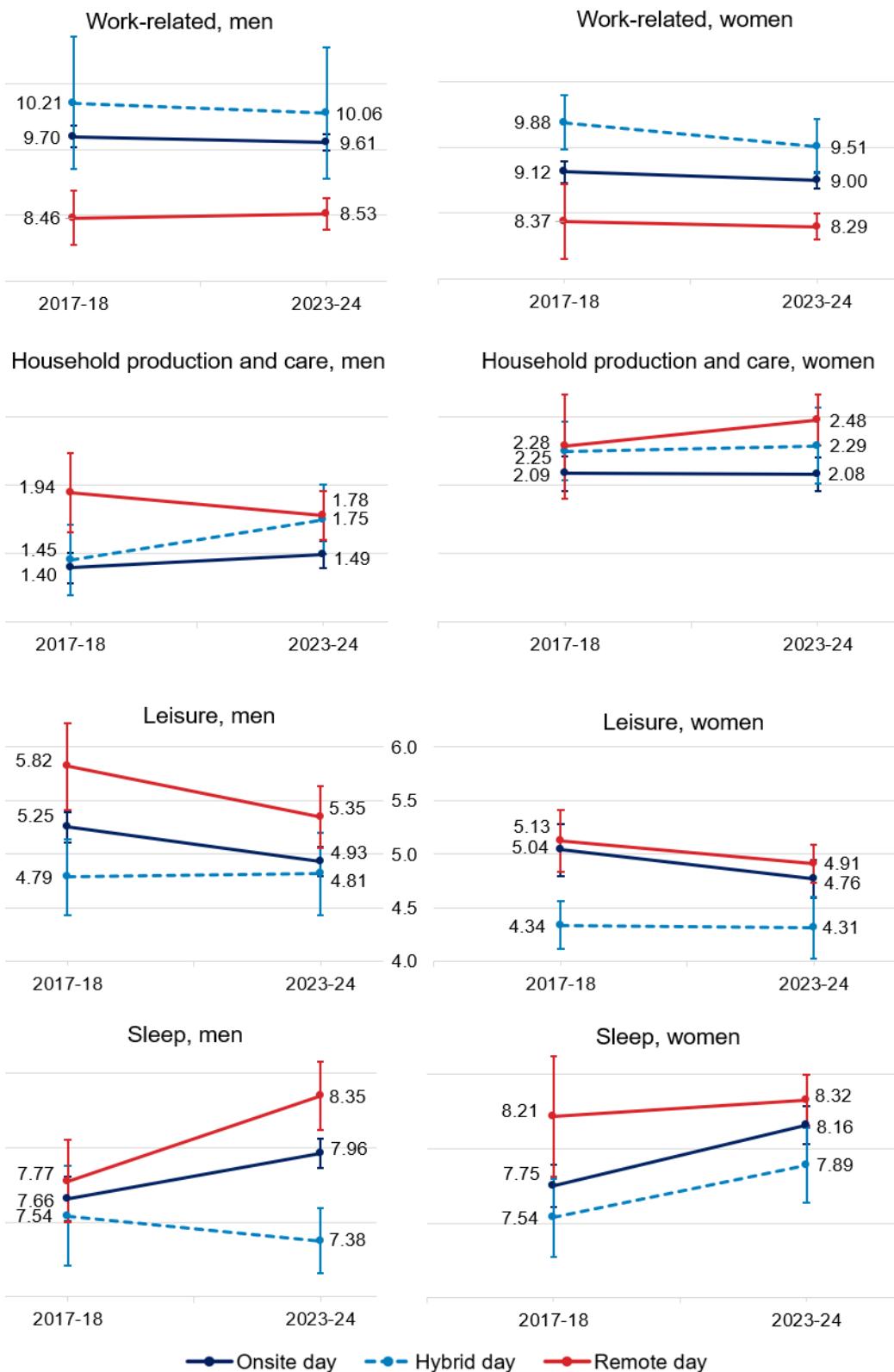
Notes: ATUS sample weights are used.

Source: 2017–18 and 2023–24 American Time Use Survey and 2022–2024 Current Population Survey, author's calculations


Figure 5. Share of workers engaged in core work on weekday workdays by work location

Note: The sample includes wage and salary workers aged 22–64. ATUS sample weights are used.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations


Figure 6. Percentage of total time devoted to work and work from home by wage and salary workers aged 22–64 on weekend days and on weekdays outside 6 a.m. –6 p.m.

Note: Work includes income-generating activities but excludes travel time. The proportion is obtained by dividing the weighted sum of all work hours per year reported in the evenings, early mornings, and on weekends by the sum of total work hours. ATUS final weights are used.

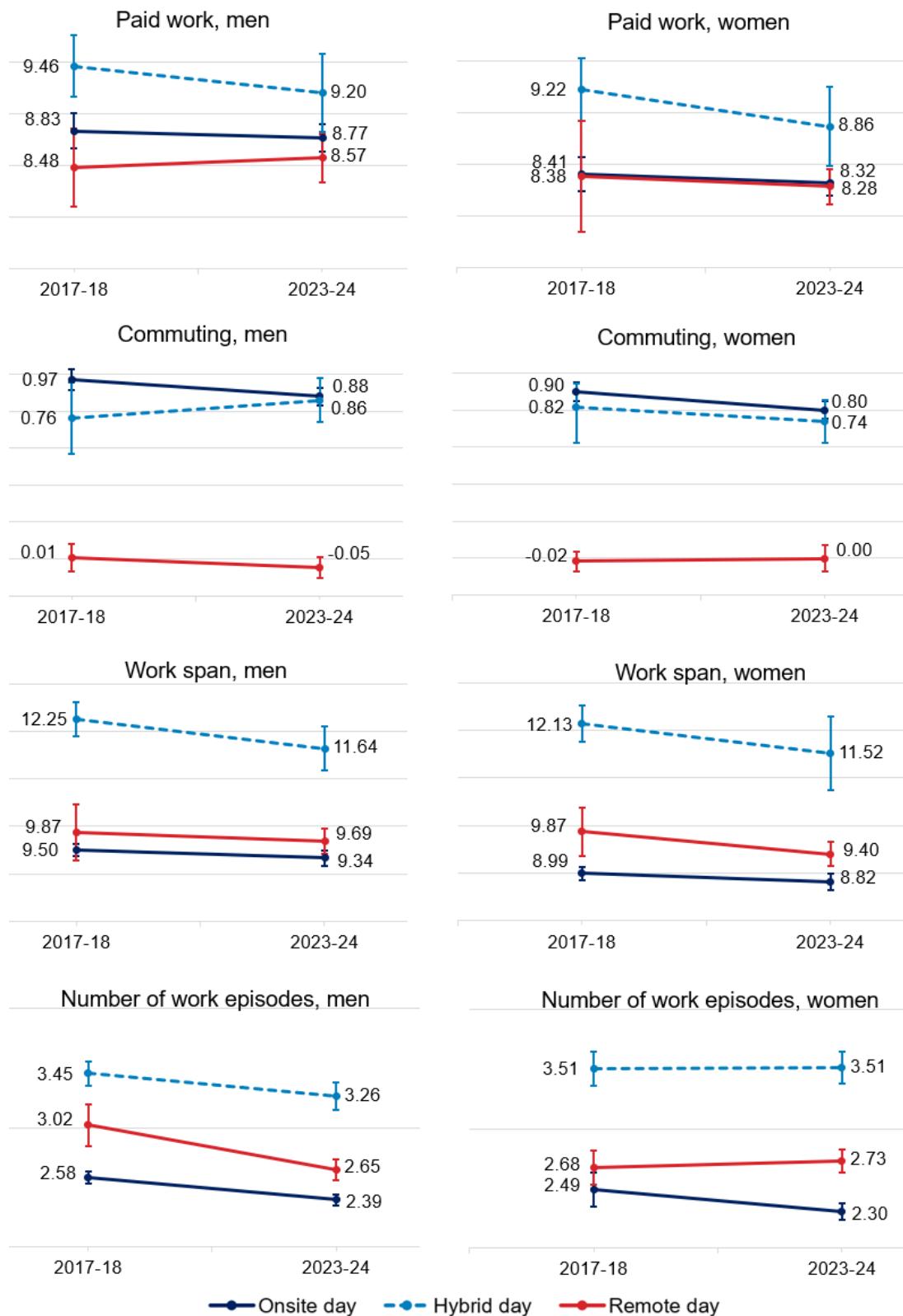

Source: 2003–2024 American Time Use Survey, author's calculations

Figure 7. Conditional mean hours spent in main activities on weekday workdays

Note: Estimates and 90% confidence intervals are based on regression models in Tables A3 and A7. Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Figure 8. Conditional mean workday characteristics on weekday workdays

Note: Estimates and 90% confidence intervals are based on regression models in Tables A4 and A8. Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Figure 9. Conditional mean hours spent in selected activities on weekday workdays

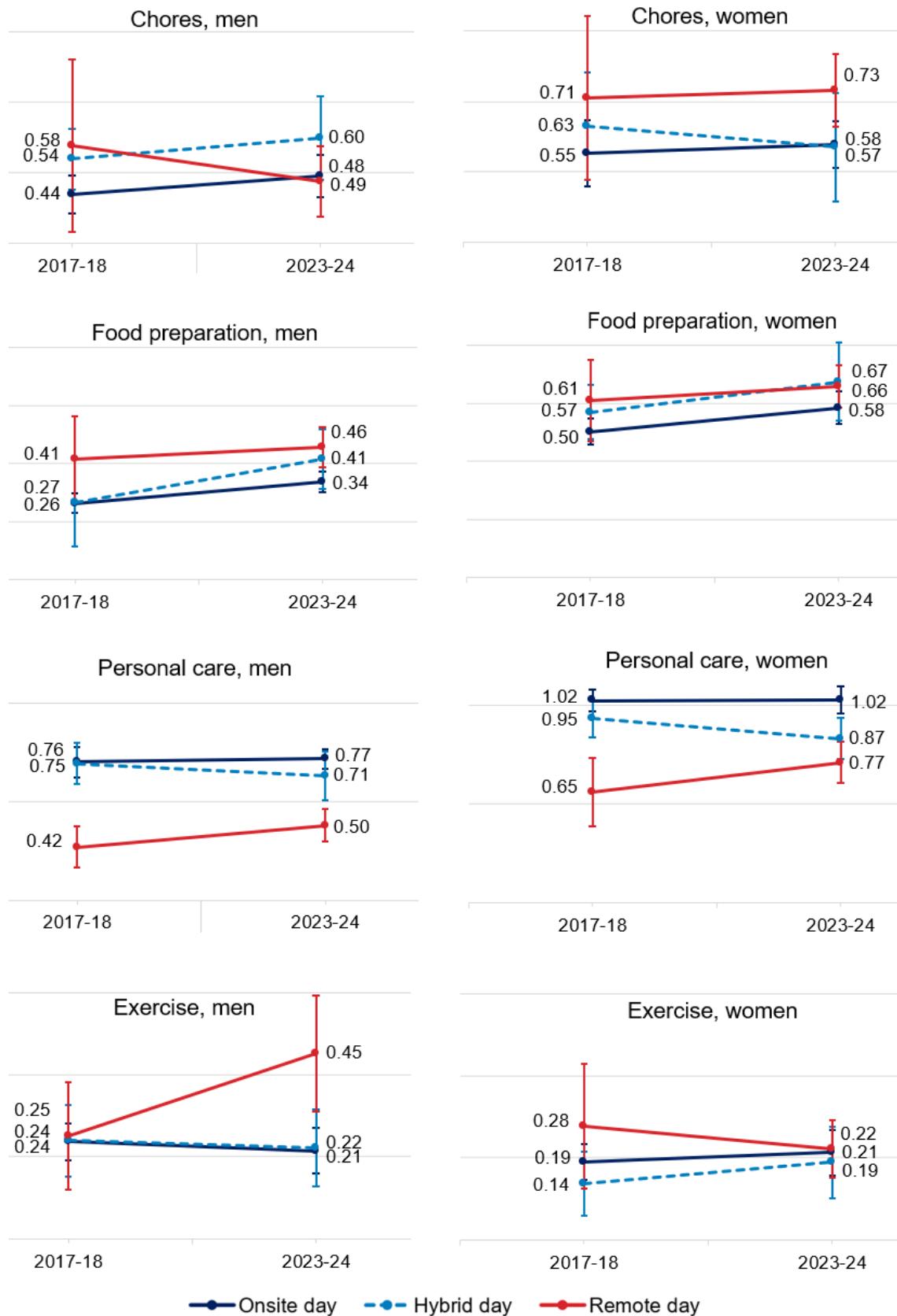
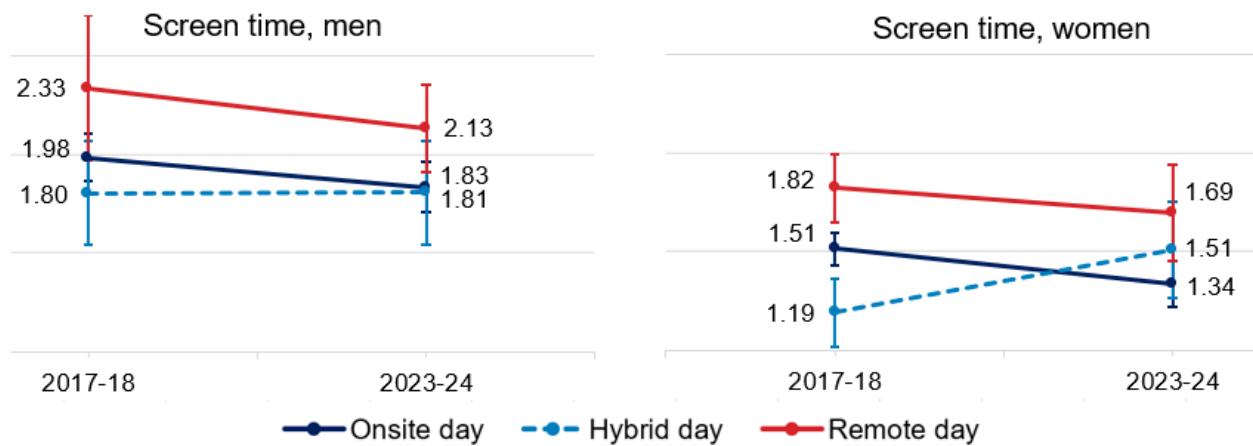
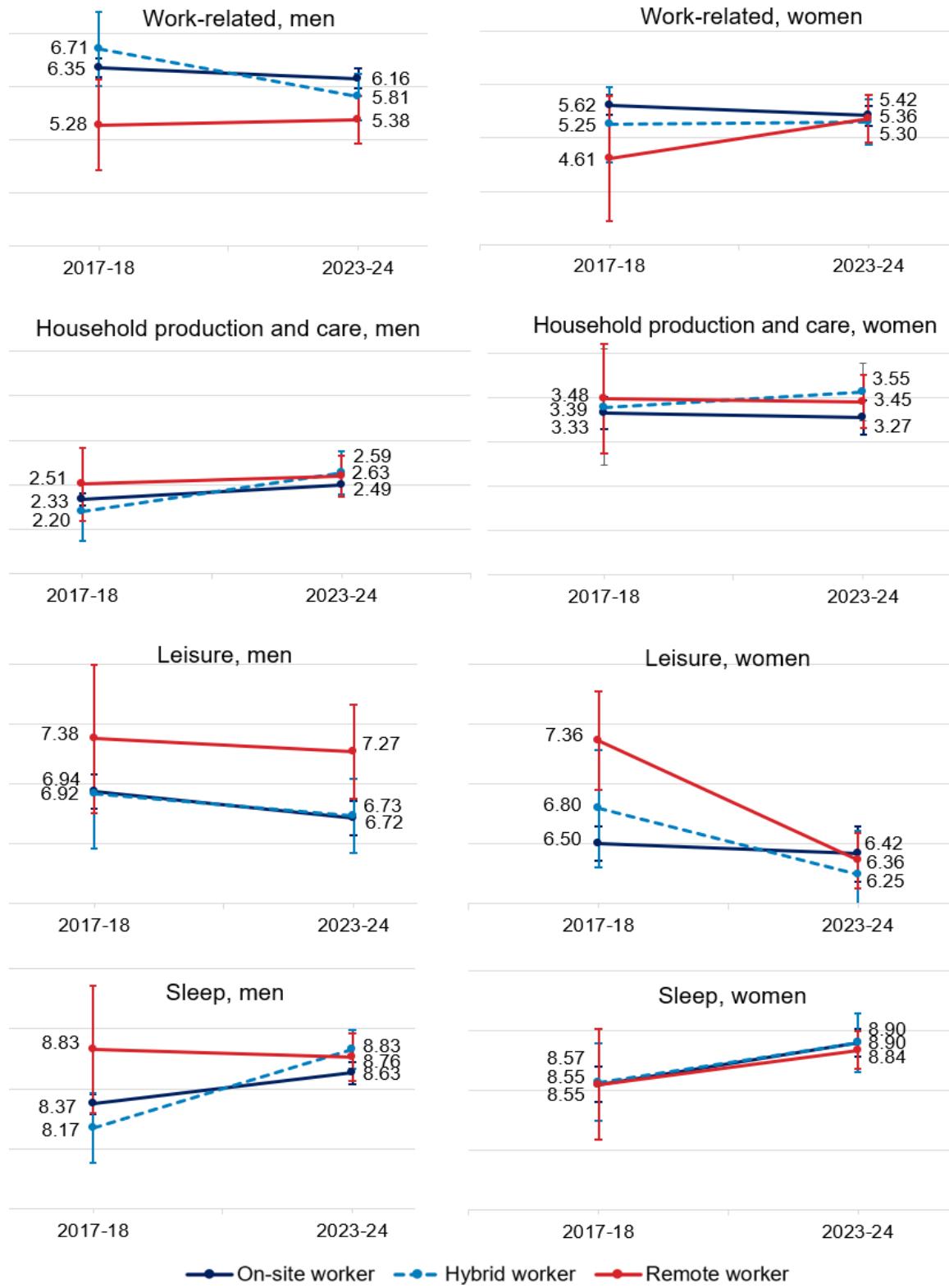




Figure 9 (cont'd). Conditional mean hours spent in selected activities on weekday workdays

Note: Estimates and 90% confidence intervals are based on regression models in Tables A5 and A10. Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Figure 10. Conditional mean hours spent in main activities on the average day by work location arrangement

Note: Estimates and 90% confidence intervals are based on regression models in Tables A11 and A15. Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Figure 11. Conditional mean hours spent in selected activities on the average day by work location arrangement

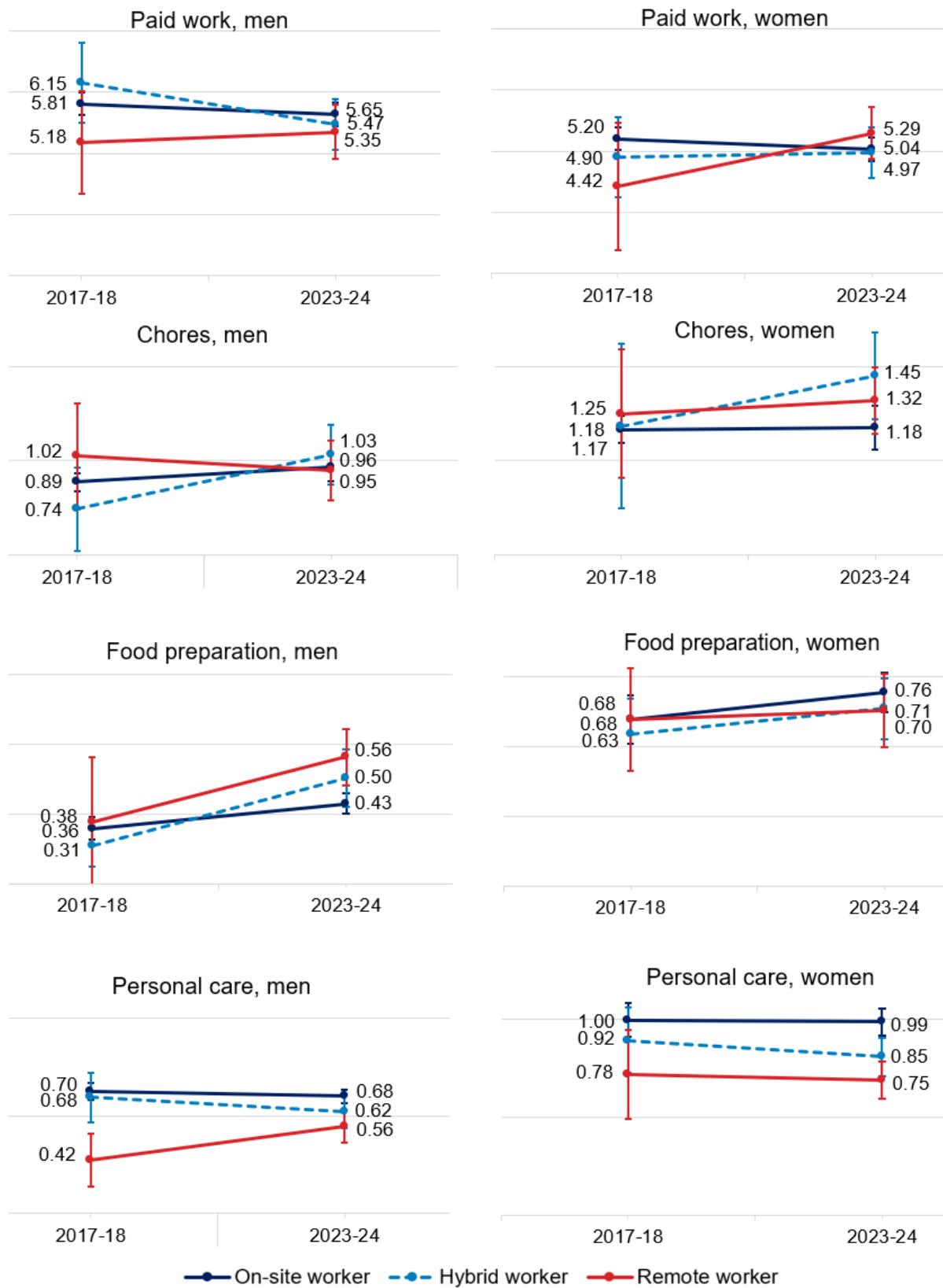
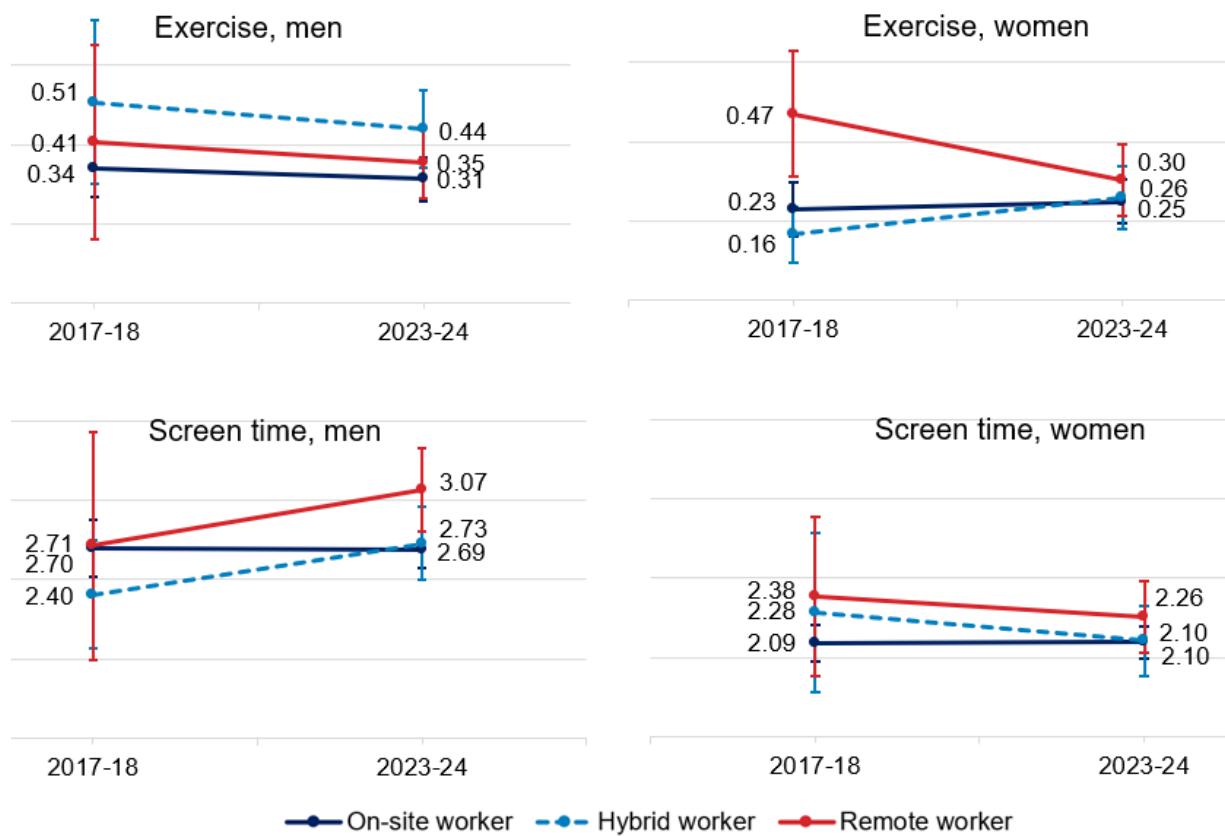
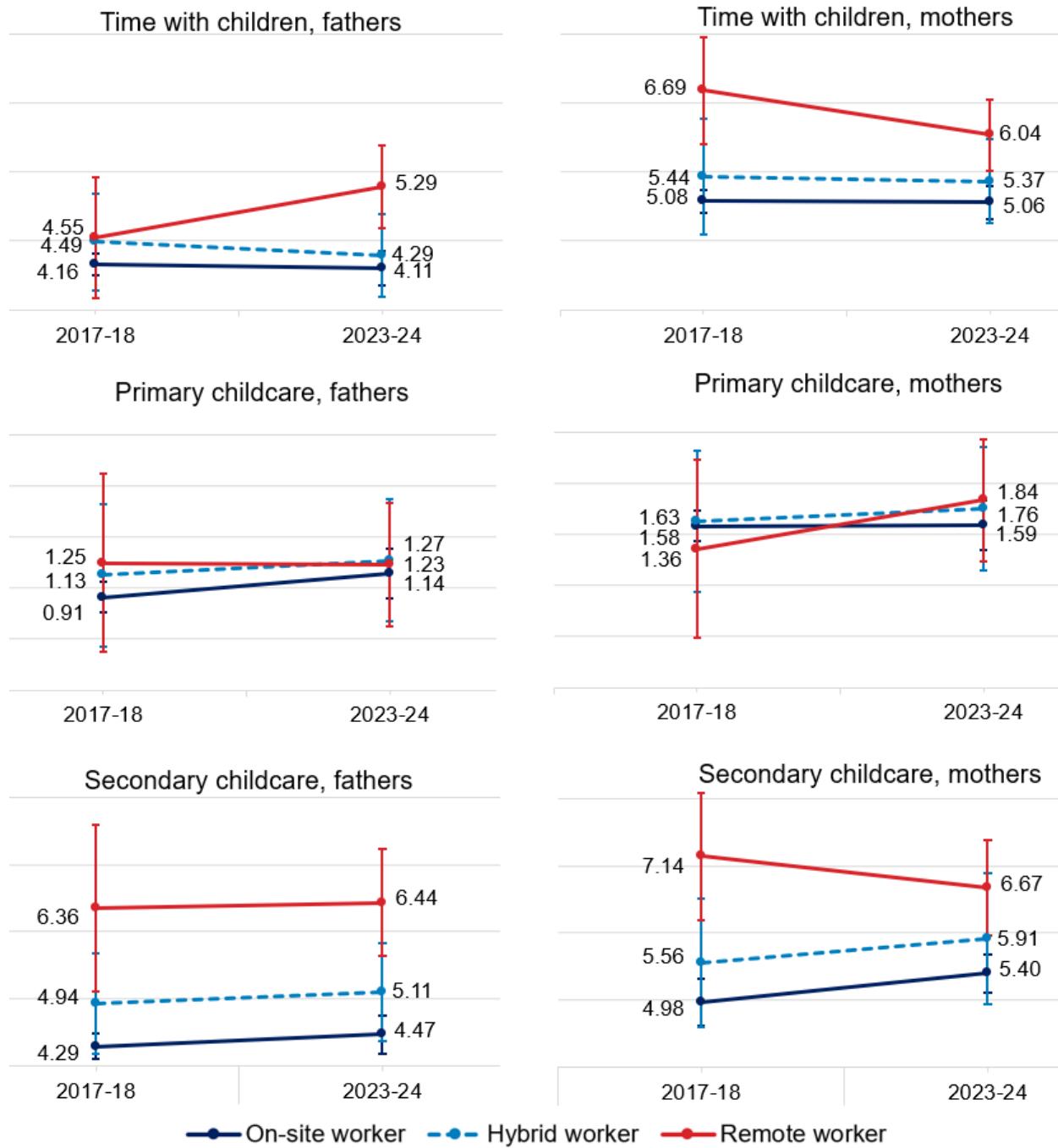
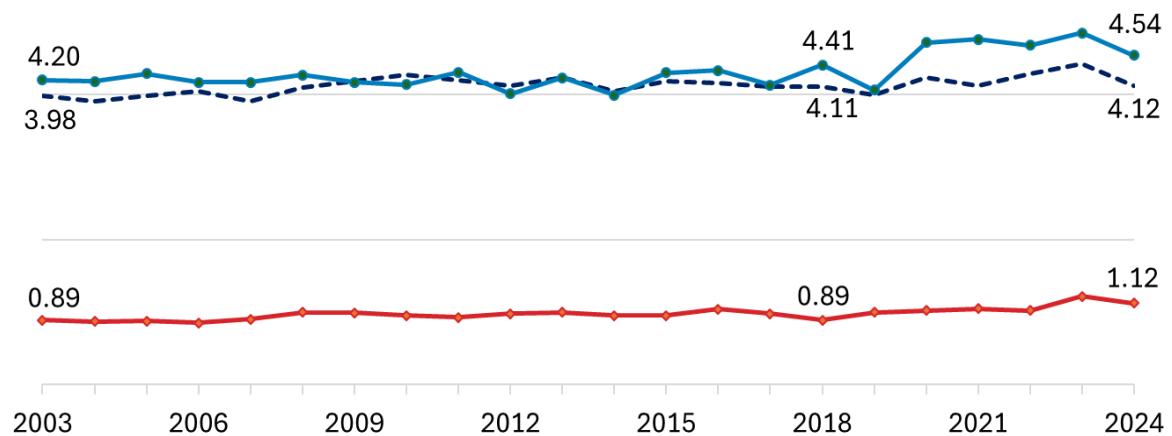




Figure 11 (cont'd). Conditional mean hours spent in selected activities on the average day by work location arrangement

Note: Estimates and 90% confidence intervals are based on regression models in Tables A12 and A16. Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations


Figure 12. Conditional mean hours of childcare by parents on the average day work location arrangement

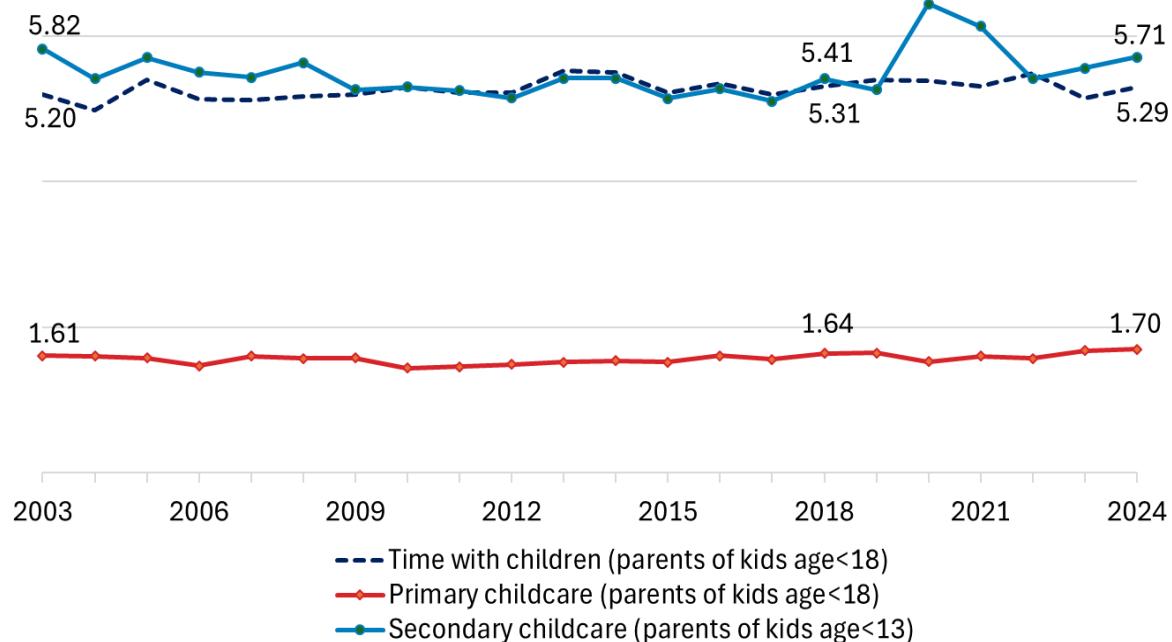

Note: Estimates and 90% confidence intervals are based on regression models in Tables A13 and A17. Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Figure 13. Trends in childcare time among wage and salary workers aged 22–64 with household children on the average day, hours/day

A. Fathers

B. Mothers

Note: Annual estimates from 2020 are not strictly comparable because ATUS call centers were closed from March 18–May 10, 2020 because of the COVID-19 pandemic. ATUS final weights are used. Source: 2003–2024 American Time Use Survey, author's calculations

Table 1. Sample means by work location for the 'weekday workdays' sample, men

Characteristic	On-site 2017–18	On-site 2023–24	Hybrid 2017–18	Hybrid 2023–24	Remote 2017–18	Remote 2023–24
Age	40.8 (0.5)	41.6 (0.4)	43.1(1.3)	40.6 (1.2)	43.4 (1.3)	41.9 (0.8)
Black, non-Hispanic	0.106	0.098	0.071	0.051	0.125	0.087
Asian, non-Hispanic	0.063	0.070	0.070	0.111	0.048	0.131
Hispanic	0.187	0.225	0.136	0.113	0.116	0.113
No high school	0.059	0.088	0.023	0.000	0.000	0.015
High school	0.333	0.310	0.111	0.218	0.064	0.111
Some college	0.244	0.232	0.216	0.111	0.187	0.127
College degree	0.244	0.237	0.358	0.358	0.434	0.470
Graduate degree	0.120	0.134	0.291	0.306	0.315	0.283
Lives with spouse	0.561	0.573	0.690	0.536	0.552	0.585
Lives with partner	0.086	0.081	0.078	0.135	0.109	0.080
Household children age<=5	0.184	0.151	0.179	0.199	0.206	0.132
Household children age 6–12	0.140	0.155	0.152	0.102	0.155	0.140
Household children age 13–17	0.081	0.082	0.116	0.091	0.106	0.100
Other adult in household	0.295	0.334	0.226	0.311	0.210	0.278
Foreign born	0.195	0.218	0.187	0.138	0.133	0.192
Has a disability	0.041	0.023	0.044	0.012	0.000	0.030
Metropolitan residence	0.852	0.873	0.908	0.928	0.991	0.958
N	1,505	894	250	144	91	251

Note: The sample includes wage and salary workers aged 22–64. Standard deviations are in parentheses. Differences in bold are statistically significantly different at 5% level from their corresponding value in 2017–18. ATUS sample weights used. Replicate weights are used to empirically derive standard errors.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table 2. Sample means by work location for the 'weekday workdays' sample, women

Characteristic	On-site 2017–18	On-site 2023–24	Hybrid 2017–18	Hybrid 2023–24	Remote 2017–18	Remote 2023–24
Age	42.1 (0.3)	41.5 (0.5)	42.0 (1.3)	43.5 (1.0)	41.8 (1.9)	42.0 (0.7)
Black, non-Hispanic	0.154	0.147	0.075	0.040	0.103	0.129
Asian, non-Hispanic	0.045	0.068	0.081	0.083	0.078	0.093
Hispanic	0.156	0.189	0.099	0.122	0.054	0.138
No high school	0.035	0.039	0.010	0.034	0.015	0.003
High school	0.238	0.262	0.060	0.065	0.158	0.075
Some college	0.299	0.236	0.165	0.141	0.135	0.185
College degree	0.274	0.294	0.380	0.369	0.335	0.451
Graduate degree	0.155	0.172	0.385	0.391	0.357	0.284
Lives with spouse	0.535	0.548	0.581	0.661	0.606	0.554
Lives with partner	0.063	0.069	0.040	0.053	0.031	0.072
Household children age<=5	0.174	0.141	0.147	0.150	0.179	0.147
Household children age 6–12	0.152	0.157	0.222	0.169	0.154	0.169
Household children age 13–17	0.094	0.101	0.054	0.155	0.033	0.047
Other adult in household	0.325	0.388	0.276	0.309	0.224	0.252
Foreign born	0.152	0.182	0.106	0.144	0.127	0.191
Has a disability	0.030	0.050	0.017	0.027	0.022	0.008
Metropolitan residence	0.861	0.853	0.942	0.924	0.965	0.932
N	1,446	719	210	106	99	283

Note: The sample includes wage and salary workers aged 22–64. Standard deviations are in parentheses. Differences in bold are statistically significantly different at 5% level from their corresponding value in 2017–18. ATUS sample weights used. Replicate weights are used to empirically derive standard errors.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table 3. Sample means by work location arrangement for the 'all days' sample, men

Characteristic	On-site 2017–18	On-site 2023–24	Hybrid 2017–18	Hybrid 2023–24	Remote 2017–18	Remote 2023–24
Age	40.9 (0.3)	41.3 (0.3)	42.9 (1.7)	40.5 (0.7)	42.8 (2.9)	43.2 (0.7)
Black, non-Hispanic	0.108	0.105	0.120	0.083	0.115	0.077
Asian, non-Hispanic	0.059	0.064	0.072	0.183	0.062	0.115
Hispanic	0.188	0.221	0.085	0.058	0.083	0.128
No high school	0.066	0.078	0.003	0.000	0.032	0.004
High school	0.309	0.328	0.051	0.036	0.086	0.058
Some college	0.248	0.235	0.144	0.073	0.221	0.133
College degree	0.243	0.225	0.458	0.503	0.406	0.528
Graduate degree	0.134	0.134	0.344	0.387	0.255	0.277
Lives with spouse	0.562	0.576	0.692	0.594	0.621	0.626
Lives with partner	0.079	0.079	0.084	0.087	0.120	0.074
Household children age<=5	0.182	0.170	0.151	0.144	0.204	0.158
Household children age 6–12	0.141	0.141	0.143	0.137	0.144	0.152
Household children age 13–17	0.080	0.087	0.108	0.082	0.101	0.129
Other adult in household	0.303	0.346	0.249	0.180	0.196	0.221
Foreign born	0.196	0.212	0.143	0.219	0.098	0.178
Has a disability	0.041	0.033	0.014	0.023	0.000	0.048
Metropolitan residence	0.860	0.871	0.980	0.960	0.901	0.960
N	4,098	2,239	228	369	108	361

Note: The sample includes wage and salary workers aged 22–64. Standard deviations are in parentheses. Differences in bold are statistically significantly different at 5% level from their corresponding value in 2017–18. ATUS sample weights used. Replicate weights are used to empirically derive standard errors.

Source: 2017–18 and 2023–24 American Time Use Survey and 2022–2024 Current Population Survey, author's calculations

Table 4. Sample means by work location arrangement for the 'all days' sample, women

Characteristic	On-site 2017–18	On-site 2023–24	Hybrid 2017–18	Hybrid 2023–24	Remote 2017–18	Remote 2023–24
Age	41.7 (0.2)	41.7 (0.3)	42.0 (1.6)	41.1(0.7)	45.0 (1.0)	42.2(0.7)
Black, non-Hispanic	0.135	0.135	0.065	0.129	0.195	0.130
Asian, non-Hispanic	0.057	0.058	0.040	0.094	0.036	0.136
Hispanic	0.155	0.195	0.103	0.069	0.086	0.113
No high school	0.042	0.043	0.003	0.000	0.000	0.004
High school	0.229	0.241	0.061	0.059	0.208	0.095
Some college	0.278	0.251	0.115	0.129	0.186	0.159
College degree	0.277	0.291	0.460	0.444	0.331	0.463
Graduate degree	0.174	0.177	0.361	0.368	0.275	0.278
Lives with spouse	0.541	0.529	0.622	0.591	0.658	0.572
Lives with partner	0.066	0.075	0.061	0.081	0.012	0.079
Household children age<=5	0.171	0.148	0.194	0.159	0.192	0.170
Household children age 6–12	0.156	0.159	0.154	0.157	0.187	0.124
Household children age 13–17	0.092	0.109	0.090	0.085	0.070	0.066
Other adult in household	0.331	0.377	0.175	0.211	0.302	0.244
Foreign born	0.155	0.187	0.078	0.156	0.080	0.176
Has a disability	0.035	0.041	0.018	0.027	0.050	0.028
Metropolitan residence	0.858	0.859	0.955	0.954	0.929	0.923
N	4,173	2,047	267	338	164	412

Note: The sample includes wage and salary workers aged 22–64. Standard deviations are in parentheses. Differences in bold are statistically significantly different at 5% level from their corresponding value in 2017–18. ATUS sample weights used. Replicate weights are used to empirically derive standard errors.

Source: 2017–18 and 2023–24 American Time Use Survey and 2022–2024 Current Population Survey, author's calculations

Appendix

Table A1. Time-use variable definitions

Variable	Definitions
Work and work-related activities	Work and work-related activities including income-generating but excluding job search; travel related to work
Paid work	Work and work-related activities excluding job search and travel related to work
Commuting	Travel related to working and additional travel activities using the trip tour method described in Kimbrough (2019)
Work span	End of last paid work episode minus start of first paid work episode
Work start time	Start time of first paid work episode
Work end time	End time of last paid work episode
Household production and care	Household activities; consumer purchases, professional and personal care services (excluding medical and personal); household services; government services and civic obligations; caring for and helping household members; related telephone calls; related travel
Chores	Household activities (excluding food and drink preparation, presentation and cleanup); related travel
Food preparation	Food and drink preparation, presentation, and cleanup
Primary childcare	Caring for and helping household and non-household children; activities related to household and non-household children's education; activities related to household and non-household children's health; related travel
Secondary childcare	Total time spent during diary day providing secondary childcare for all household and nonhousehold children under age 13
Time with children	All activities where own household child, grandchild, foster child, nonhousehold children < age 18 is in the room with the person or accompanied them.
Leisure	Personal care activities excluding sleeping; education; eating and drinking; socializing, relaxing and leisure; sports, exercise and recreation; religious and spiritual activities; volunteer activities; telephone calls to/from family members, friends, neighbors, and acquaintances; job search; data codes not unable to code; related travel
Personal care	Personal care activities excluding sleeping; medical and personal care services; related travel
Exercise	Participating in sports, exercise, and recreation; related travel

Variable	Definitions
Screen time	Watching TV and movies (religious and not religious); playing games; using computers for leisure
Sleep	Sleeping including naps and spells of sleeplessness
Wake-up time	End time of last sleep episode between 4 a.m. and 11:59 a.m.
Bedtime	Start time of first sleep episode between 7 p.m. and 3:59 a.m.

Note: The definitions in the right column are from the ATUS 2003–2024 Activity coding lexicon (U.S. Bureau of Labor Statistics, 2025). The ATUS does not ask who was with a person during the following activities: sleeping, grooming, personal activities, refused, can't remember. To measure commuting time, Kimbrough (2019) excludes diary days when the first and last episode of the day are not at home and when these episodes are work. The method ties together travel episodes between home and worksites when intervening activity episodes are less than 30 minutes in length.

Table A2. Sample sizes by sex and work location/arrangement

Sample	Years	On-site	Hybrid	Remote	Total
All days	—	—	—	—	—
Men	2017–18	4,098	228	108	4,434
Men	2023–24	2,239	369	361	2,969
Women	2017–18	4,173	267	164	4,604
Women	2023–24	2,047	338	412	2,797
Fathers	2017–18	1,983	122	65	2,170
Fathers	2023–24	873	138	159	1,170
Mothers	2017–18	2,145	149	94	2,388
Mothers	2023–24	843	135	160	1,138
Weekday workdays	—	—	—	—	—
Men	2017–18	1,505	250	91	1,846
Men	2023–24	894	144	251	1,289
Women	2017–18	1,446	210	99	1,755
Women	2023–24	719	106	283	1,108
Fathers	2017–18	736	139	51	926
Fathers	2023–24	336	62	95	493
Mothers	2017–18	732	115	47	894
Mothers	2023–24	291	49	107	447

Note: Unweighted counts. The sample includes employed persons aged 22–64. A workday is defined as a day when the ATUS respondent did at least 4h of paid work.

Source: 2003–2024 American Time Use Survey and 2022–2024 Current Population Survey, author's calculations

Table A3. Main activities' conditional associations with work location for men (hours per weekday workday)

Outcome:	Work and work-related	Household production & care		
		Leisure	Sleep	
Hybrid day	0.52 (0.31)	0.06 (0.21)	-0.46* (0.26)	-0.11 (0.27)
Remote day	-1.23*** (0.31)	0.55*** (0.20)	0.57** (0.24)	0.12 (0.18)
Years 2023–24	-0.09 (0.12)	0.10 (0.10)	-0.32*** (0.12)	0.31*** (0.10)
Hybrid x Years 2023–24	-0.07 (0.46)	0.20 (0.30)	0.34 (0.32)	-0.47 (0.33)
Remote x Years 2023–24	0.15 (0.35)	-0.26 (0.23)	-0.15 (0.28)	0.26 (0.23)
N	3,135	3,135	3,135	3,135
R-squared	0.12	0.13	0.10	0.09
Joint hypothesis tests:				
Years 2023–24 + Hybrid x Years 2023–24	-0.15 (0.37)	0.30 (0.23)	0.03 (0.28)	-0.17 (0.26)
Years 2023–24 + Remote x Years 2023–24	0.06 (0.30)	-0.16 (0.19)	-0.47 (0.29)	0.57*** (0.22)
Hybrid + Hybrid x Years 2023–24	0.45 (0.27)	0.26 (0.17)	-0.12 (0.25)	-0.58*** (0.14)
Remote + Remote x Years 2023–24	-1.08*** (0.16)	0.28** (0.13)	0.41** (0.19)	0.38** (0.15)
Mean for on-site in 2017–18	9.54	1.43	5.30	7.72
Mean for hybrid in 2017–18	10.21	1.52	4.70	7.57
Mean for remote in 2017–18	8.43	1.90	5.84	7.84

Note: The four activities sum to 24 hours. The sample includes wage and salary workers aged 22–64. Regressions also include a quadratic in age and binary variables for educational attainment (no high school degree, some college, bachelor's degree, advanced degree), race and ethnicity (non-Hispanic black, non-Hispanic Asian, Hispanic), spouse, unmarried partner, household children (age 0–5, age 6–12, age 13–17), presence of another adult, foreign born, disability, month, Census division, metropolitan area residence, 22 occupations, and 20 industries. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A4. Workday characteristics' conditional associations with work location for men (hours per weekday workday)

Outcome:	Paid Work	Commuting	Work span	Work start time	Work end time	Number of work episodes
Hybrid day	0.63*** (0.22)	-0.21 (0.14)	2.74*** (0.23)	-0.15 (0.40)	2.60*** (0.37)	0.87*** (0.11)
Remote day	-0.35 (0.27)	-0.96*** (0.07)	0.36 (0.38)	0.14 (0.60)	0.50 (0.43)	0.44** (0.18)
Years 2023–24	-0.07 (0.10)	-0.09** (0.04)	-0.17 (0.13)	-0.03 (0.26)	-0.18 (0.19)	-0.19*** (0.06)
Hybrid x Years 2023–24	-0.19 (0.38)	0.19 (0.15)	-0.44 (0.39)	-0.15 (0.46)	-0.61 (0.44)	-0.01 (0.15)
Remote x Years 2023–24	0.16 (0.33)	0.04 (0.05)	-0.01 (0.46)	0.02 (0.64)	0.01 (0.43)	-0.19 (0.19)
N	3,135	2,846	3,095	3,095	3,095	3,135
R-squared	0.10	0.23	0.17	0.11	0.14	0.12
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.26 (0.32)	0.10 (0.14)	-0.61* (0.34)	-0.18 (0.27)	-0.79** (0.34)	-0.19 (0.14)
Years 2023–24 + Remote x Years 2023–24	0.09 (0.29)	-0.06 (0.04)	-0.18 (0.41)	-0.01 (0.44)	-0.17 (0.34)	-0.37** (0.17)
Hybrid + Hybrid x Years 2023–24	0.44* (0.26)	-0.02 (0.08)	2.30*** (0.31)	-0.30 (0.20)	1.99*** (0.32)	0.87*** (0.12)
Remote + Remote x Years 2023–24	-0.20 (0.15)	-0.93*** (0.05)	0.35* (0.19)	0.16 (0.14)	0.51*** (0.19)	0.25*** (0.09)
Mean for on-site in 2017–18	8.68	0.97	9.49	7.86	17.33	2.52
Mean for hybrid in 2017–18	9.42	0.78	12.30	7.77	20.04	3.33
Mean for remote in 2017–18	8.41	0.03	10.27	7.66	17.90	2.95

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A5. Select household production and leisure activities' conditional associations with work location for men (hours per weekday workday)

Outcome:	Chores	Food preparation	Personal care	Exercise	Screen time
Hybrid day	0.10* (0.06)	0.00 (0.11)	-0.01 (0.06)	0.00 (0.06)	-0.18 (0.18)
Remote day	0.14 (0.15)	0.15 (0.11)	-0.34*** (0.07)	0.01 (0.08)	0.35 (0.22)
Years 2023–24	0.05 (0.05)	0.07*** (0.03)	0.01 (0.03)	-0.02 (0.03)	-0.15 (0.10)
Hybrid x Years 2023–24	0.01 (0.10)	0.08 (0.13)	-0.06 (0.08)	0.00 (0.07)	0.16 (0.25)
Remote x Years 2023–24	-0.15 (0.15)	-0.03 (0.11)	0.08 (0.07)	0.22** (0.11)	-0.05 (0.26)
N	3,135	3,135	3,135	3,135	3,135
R-squared	0.06	0.07	0.06	0.07	0.13
Joint hypothesis tests:	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	0.06 (0.09)	0.15 (0.12)	-0.05 (0.08)	-0.02 (0.07)	0.01 (0.22)
Years 2023–24 + Remote x Years 2023–24	-0.10 (0.15)	0.04 (0.10)	0.09 (0.07)	0.20* (0.11)	-0.20 (0.26)
Hybrid + Hybrid x Years 2023–24	0.11 (0.08)	0.08 (0.07)	-0.07 (0.07)	0.01 (0.06)	-0.03 (0.17)
Remote + Remote x Years 2023–24	-0.02 (0.07)	0.12** (0.05)	-0.30*** (0.05)	0.24** (0.09)	0.30* (0.16)
Mean for on-site in 2017–18	0.49	0.27	0.74	0.23	2.04
Mean for hybrid in 2017–18	0.51	0.29	0.71	0.23	1.66
Mean for remote in 2017–18	0.45	0.44	0.44	0.31	2.26

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A6. Sleep outcomes' conditional associations with work location (hours per weekday workday)

Outcome:	Men Sleep	Men Wake-up time	Men Bedtime	Women Sleep	Women Wake-up time	Women Bedtime
Hybrid day	-0.11 (0.27)	0.05 (0.15)	0.10 (0.12)	-0.21* (0.12)	0.07 (0.10)	0.27* (0.15)
Remote day	0.12 (0.18)	0.56*** (0.16)	0.52*** (0.20)	0.46** (0.21)	0.57*** (0.17)	0.19 (0.16)
Years 2023–24	0.31*** (0.10)	0.07 (0.10)	-0.19* (0.10)	0.41*** (0.11)	0.07 (0.07)	-0.27*** (0.08)
Hybrid x Years 2023–24	-0.47 (0.33)	-0.21 (0.20)	0.31 (0.19)	-0.06 (0.22)	-0.06 (0.18)	-0.22 (0.23)
Remote x Years 2023–24	0.26 (0.23)	0.13 (0.19)	-0.18 (0.24)	-0.30 (0.22)	-0.07 (0.21)	0.05 (0.22)
N	3,135	2,855	2,994	2,863	2,710	2,762
R-squared	0.09	0.19	0.12	0.10	0.19	0.11
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.17 (0.26)	-0.14 (0.15)	0.12 (0.18)	0.35* (0.18)	0.01 (0.18)	-0.48** (0.23)
Years 2023–24 + Remote x Years 2023–24	0.57*** (0.22)	0.20 (0.17)	-0.36* (0.19)	0.11 (0.23)	-0.002 (0.19)	-0.21 (0.22)
Hybrid + Hybrid x Years 2023–24	-0.58*** (0.14)	-0.16 (0.12)	0.41*** (0.15)	-0.27 (0.17)	0.01 (0.14)	0.05 (0.17)
Remote + Remote x Years 2023–24	0.38** (0.15)	0.69*** (0.11)	0.34*** (0.12)	0.17 (0.12)	0.49*** (0.10)	0.24* (0.12)
Mean for on-site in 2017–18	7.72	6.18	22.44	7.81	6.21	22.39
Mean for hybrid in 2017–18	7.57	6.19	22.58	7.52	6.19	22.61
Mean for remote in 2017–18	7.84	6.76	23.05	8.31	6.78	22.53

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A7. Main activities' conditional associations with work location for women (hours per weekday workday)

Outcome:	Work and work-related	Household production & care	Leisure	Sleep
Hybrid day	0.75*** (0.19)	0.16 (0.14)	-0.70*** (0.21)	-0.21* (0.12)
Remote day	-0.75** (0.37)	0.20 (0.25)	0.09 (0.39)	0.46** (0.21)
Years 2023–24	-0.13 (0.12)	-0.01 (0.10)	-0.27 (0.20)	0.41*** (0.11)
Hybrid x Years 2023–24	-0.24 (0.36)	0.05 (0.22)	0.25 (0.32)	-0.06 (0.22)
Remote x Years 2023–24	0.04 (0.38)	0.20 (0.26)	0.06 (0.42)	-0.30 (0.22)
N	2,863	2,863	2,863	2,863
R-squared	0.11	0.27	0.14	0.10
Joint hypothesis tests:	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.37 (0.31)	0.04 (0.20)	-0.02 (0.23)	0.35* (0.18)
Years 2023–24 + Remote x Years 2023–24	-0.08 (0.33)	0.19 (0.23)	-0.22 (0.29)	0.11 (0.23)
Hybrid + Hybrid x Years 2023–24	0.51* (0.27)	0.21 (0.19)	-0.45** (0.22)	-0.27 (0.17)
Remote + Remote x Years 2023–24	-0.71*** (0.13)	0.39** (0.13)	0.14 (0.16)	0.17 (0.12)
Mean for on-site in 2017–18	9.04	2.07	5.08	7.81
Mean for hybrid in 2017–18	9.82	2.33	4.33	7.52
Mean for remote in 2017–18	8.34	2.16	5.18	8.31

Note: The four activities sum to 24h. The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A8. Workday characteristics' conditional associations with work location for women (hours per weekday workday)

Outcome:	Paid Work	Commuting	Work span	Work start time	Work end time	Number of work episodes
Hybrid day	0.82*** (0.17)	-0.08 (0.07)	3.14*** (0.24)	-0.42* (0.23)	2.71*** (0.28)	1.02*** (0.24)
Remote day	-0.03 (0.34)	-0.92*** (0.04)	0.87*** (0.33)	-0.69*** (0.26)	0.19 (0.31)	0.19 (0.12)
Years 2023–24	-0.09 (0.11)	-0.10*** (0.04)	-0.18 (0.11)	-0.12 (0.13)	-0.25* (0.13)	-0.18* (0.10)
Hybrid x Years 2023–24	-0.27 (0.31)	0.02 (0.09)	-0.44 (0.52)	-0.21 (0.29)	-0.82** (0.41)	0.19 (0.25)
Remote x Years 2023–24	-0.01 (0.37)	0.11** (0.05)	-0.29 (0.39)	0.64** (0.27)	0.29 (0.38)	0.23 (0.15)
N	2,863	2,705	2,840	2,840	2,840	2,863
R-squared	0.11	0.23	0.19	0.13	0.15	0.15
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.36 (0.28)	-0.08 (0.08)	-0.61 (0.50)	-0.33 (0.26)	-1.07*** (0.39)	0.01 (0.19)
Years 2023–24 + Remote x Years 2023–24	-0.10 (0.33)	0.01 (0.03)	-0.47 (0.36)	0.51** (0.22)	0.04 (0.35)	0.05 (0.14)
Hybrid + Hybrid x Years 2023–24	0.54** (0.24)	-0.06 (0.07)	2.70*** (0.47)	-0.63*** (0.21)	1.89*** (0.31)	1.21*** (0.14)
Remote + Remote x Years 2023–24	-0.04 (0.12)	-0.80*** (0.05)	0.58*** (0.18)	-0.05 (0.18)	0.49** (0.22)	0.42*** (0.09)
Mean for on-site in 2017–18	8.33	0.88	9.08	8.24	17.31	2.44
Mean for hybrid in 2017–18	9.19	0.77	12.30	7.70	19.98	3.39
Mean for remote in 2017–18	8.33	0.00	9.95	7.69	17.61	2.52

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A9. Paid work and commuting time' conditional associations with work location/work location arrangement for the pooled sample, men and women combined

Outcome:	Paid Work (hours/day)	Commuting (hours/day)	Commuting (hours/weekday workday)
Hybrid	0.02 (0.29)	-0.07 (0.05)	-0.15** (0.07)
Remote	-0.70** (0.35)	-0.35*** (0.10)	-0.94*** (0.04)
Years 2023–24	-0.19 (0.15)	-0.08*** (0.02)	-0.09*** (0.03)
Hybrid x Years 2023–24	-0.13 (0.41)	-0.04 (0.07)	0.12 (0.09)
Remote x Years 2023–24	0.75** (0.34)	-0.04 (0.10)	0.08** (0.04)
Female	-0.56*** (0.09)	-0.07*** (0.02)	-0.06*** (0.02)
N	14,804	13,920	5,551
R-squared	0.02	0.06	0.22
Joint hypothesis tests:	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.33 (0.31)	-0.12** (0.06)	0.02 (0.08)
Years 2023–24 + Remote x Years 2023–24	-0.56 (0.38)	0.12 (0.11)	-0.01 (0.02)
Hybrid + Hybrid x Years 2023–24	-0.11 (0.21)	-0.11*** (0.04)	-0.03 (0.05)
Remote + Remote x Years 2023–24	0.06 (0.23)	-0.39*** (0.03)	-0.86*** (0.03)
Mean for on-site in 2017–18	5.33	0.54	0.92
Mean for hybrid in 2017–18	5.53	0.49	0.79
Mean for remote in 2017–18	4.72	0.20	0.01

Note: See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey and 2022–2024 Current Population Survey, author's calculations

Table A10. Select household production and leisure activities' conditional associations with work location for women (hours per weekday workday)

Outcome:	Chores	Food preparation	Personal care	Exercise	Screen time
Hybrid day	0.08 (0.12)	0.07 (0.06)	-0.08 (0.06)	-0.05 (0.05)	-0.32*** (0.11)
Remote day	0.16 (0.18)	0.11 (0.09)	-0.37*** (0.09)	0.09 (0.09)	0.31 (0.25)
Years 2023–24	0.02 (0.07)	0.08* (0.04)	0.00 (0.04)	0.02 (0.03)	-0.18** (0.08)
Hybrid x Years 2023–24	-0.08 (0.16)	0.02 (0.10)	-0.08 (0.07)	0.03 (0.07)	0.49** (0.19)
Remote x Years 2023–24	-0.00 (0.18)	-0.03 (0.11)	0.12 (0.10)	-0.08 (0.10)	0.05 (0.27)
N	2,863	2,863	2,863	2,863	2,863
R-squared	0.05	0.19	0.08	0.08	0.10
Joint hypothesis tests:	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.06 (0.13)	0.10 (0.10)	-0.08 (0.06)	0.05 (0.06)	0.32* (0.17)
Years 2023–24 + Remote x Years 2023–24	0.02 (0.14)	0.05 (0.09)	0.12 (0.09)	-0.05 (0.09)	-0.13 (0.23)
Hybrid + Hybrid x Years 2023–24	-0.01 (0.14)	0.09 (0.09)	-0.16*** (0.06)	-0.02 (0.05)	0.17 (0.17)
Remote + Remote x Years 2023–24	0.15** (0.07)	0.07 (0.06)	-0.25*** (0.05)	0.01 (0.05)	0.36*** (0.12)
Mean for on-site in 2017–18	0.55	0.48	1.05	0.17	1.59
Mean for hybrid in 2017–18	0.63	0.55	0.97	0.18	1.16
Mean for remote in 2017–18	0.68	0.51	0.61	0.31	1.88

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A11. Main activities' conditional associations with work location arrangement for men (hours per day)

Outcome:	Work and work-related	Household production & care			Leisure	Sleep
		Leisure	Sleep	Household production & care		
Hybrid worker	0.36 (0.43)	-0.14 (0.20)	-0.02 (0.26)	-0.20 (0.18)		
Remote worker	-1.07* (0.55)	0.17 (0.25)	0.44 (0.40)	0.46 (0.35)		
Years 2023–24	-0.20 (0.14)	0.16* (0.08)	-0.22** (0.11)	0.26*** (0.07)		
Hybrid x Years 2023–24	-0.71 (0.49)	0.28 (0.24)	0.03 (0.31)	0.40** (0.20)		
Remote x Years 2023–24	0.29 (0.60)	-0.07 (0.28)	0.11 (0.49)	-0.33 (0.37)		
N	7,403	7,403	7,403	7,403		
R-squared	0.02	0.09	0.04	0.06		
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.90* (0.47)	0.43* (0.23)	-0.19 (0.29)	0.66*** (0.19)		
Years 2023–24 + Remote x Years 2023–24	0.09 (0.56)	0.09 (0.27)	-0.11 (0.48)	-0.07 (0.35)		
Hybrid + Hybrid x Years 2023–24	-0.35 (0.20)	0.14 (0.16)	0.02 (0.20)	0.20* (0.11)		
Remote + Remote x Years 2023–24	-0.78** (0.31)	0.10 (0.16)	0.55** (0.26)	0.13 (0.13)		
Mean for on-site in 2017–18	6.19	2.45	6.91	8.44		
Mean for hybrid in 2017–18	6.74	2.27	6.93	8.06		
Mean for remote in 2017–18	5.06	2.69	7.55	8.71		

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations.

Table A12. Select household production and leisure activities' conditional associations with work location arrangement for men (hours per day)

Outcome:	Paid Work	Chores	Food preparation	Personal care	Exercise	Screen time
Hybrid worker	0.34 (0.39)	-0.14 (0.14)	-0.05 (0.04)	-0.02 (0.07)	0.17 (0.12)	-0.29 (0.27)
Remote worker	-0.64 (0.54)	0.14 (0.17)	0.02 (0.10)	-0.28*** (0.07)	0.07 (0.15)	0.01 (0.40)
Years 2023–24	-0.17 (0.13)	0.08 (0.06)	0.07*** (0.02)	-0.02 (0.02)	-0.03 (0.03)	-0.01 (0.13)
Hybrid x Years 2023–24	-0.51 (0.44)	0.21 (0.18)	0.12* (0.06)	-0.04 (0.08)	-0.04 (0.14)	0.33 (0.30)
Remote x Years 2023–24	0.34 (0.59)	-0.15 (0.18)	0.11 (0.12)	0.16* (0.08)	-0.03 (0.16)	0.36 (0.42)
N	7,403	7,403	7,403	7,403	7,403	7,403
R-squared	0.02	0.04	0.04	0.02	0.03	0.07
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.68 (0.42)	0.29* (0.16)	0.20*** (0.06)	-0.06 (0.07)	-0.07 (0.13)	0.32 (0.24)
Years 2023–24 + Remote x Years 2023–24	0.17 (0.55)	-0.08 (0.17)	0.19 (0.13)	0.14 (0.08)	-0.05 (0.16)	0.36 (0.46)
Hybrid + Hybrid x Years 2023–24	-0.17 (0.27)	0.07 (0.10)	0.07 (0.05)	-0.06 (0.05)	0.13* (0.07)	0.04 (0.15)
Remote + Remote x Years 2023–24	-0.30 (0.29)	-0.02 (0.11)	0.13** (0.05)	-0.12*** (0.04)	0.04 (0.06)	0.38** (0.17)
Mean for on-site in 2017–18	5.66	0.98	0.37	0.69	0.32	2.76
Mean for hybrid in 2017–18	6.13	0.76	0.34	0.69	0.57	2.33
Mean for remote in 2017–18	4.96	1.07	0.42	0.45	0.47	2.69

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A13. Childcare and paid work outcomes' conditional associations with work location arrangement for fathers (hours per day)

Outcome:	Paid Work	Time with children (fathers of kids age<18)	Primary childcare (fathers of kids age<18)	Secondary childcare (fathers of kids age<13)
Hybrid worker	-0.44 (0.63)	0.33 (0.45)	0.21 (0.18)	0.65 (0.47)
Remote worker	0.58 (0.71)	0.39 (0.57)	0.34 (0.21)	2.06*** (0.78)
Years 2023–24	-0.31 (0.23)	-0.05 (0.19)	0.23*** (0.08)	0.18 (0.20)
Hybrid x Years 2023–24	0.03 (0.73)	-0.14 (0.65)	-0.09 (0.24)	-0.01 (0.66)
Remote x Years 2023–24	-1.69* (0.87)	0.80 (0.75)	-0.25 (0.26)	-0.10 (0.88)
N	3,340	3340	3340	2766
R-squared	0.05	0.13	0.15	0.08
Joint hypothesis tests:	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.28 (0.74)	-0.19 (0.58)	0.15 (0.22)	0.17 (0.60)
Years 2023–24 + Remote x Years 2023–24	-2.00** (0.87)	0.74 (0.65)	-0.02 (0.25)	0.08 (0.81)
Hybrid + Hybrid x Years 2023–24	-0.42 (0.47)	0.18 (0.42)	0.13 (0.18)	0.64 (0.51)
Remote + Remote x Years 2023–24	-1.11** (0.49)	1.18*** (0.42)	0.09 (0.15)	1.97*** (0.53)
Mean for on-site in 2017–18	6.02	4.17	0.91	4.25
Mean for hybrid in 2017–18	5.48	4.50	1.24	5.01
Mean for remote in 2017–18	6.58	4.79	1.43	6.85

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Table A14. Sleep outcomes' conditional associations with work location (hours per day)

Outcome:	Men Sleep	Men Wake-up time	Men Bedtime	Women Sleep	Women Wake-up time	Women Bedtime
Hybrid worker	-0.20 (0.18)	-0.12 (0.17)	0.11 (0.18)	0.02 (0.28)	0.20 (0.22)	0.20** (0.09)
Remote worker	0.46 (0.35)	0.53*** (0.18)	0.20 (0.15)	0.00 (0.22)	0.33** (0.16)	0.37* (0.22)
Years 2023–24	0.26*** (0.07)	0.00 (0.07)	-0.17** (0.07)	0.35*** (0.11)	0.07 (0.07)	-0.20*** (0.06)
Hybrid x Years 2023–24	0.40** (0.20)	0.37* (0.21)	-0.01 (0.18)	-0.02 (0.34)	-0.03 (0.26)	-0.13 (0.12)
Remote x Years 2023–24	-0.33 (0.37)	-0.05 (0.19)	0.09 (0.16)	-0.06 (0.22)	-0.02 (0.19)	-0.14 (0.23)
N	7,403	6,797	7,128	7,401	7,010	7,169
R-squared	0.06	0.12	0.10	0.05	0.10	0.06
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	0.66*** (0.19)	0.37** (0.17)	-0.18 (0.19)	0.33 (0.26)	0.04 (0.21)	-0.33*** (0.11)
Years 2023–24 + Remote x Years 2023–24	-0.07 (0.35)	-0.05 (0.16)	-0.09 (0.17)	0.28 (0.27)	0.05 (0.20)	-0.34 (0.26)
Hybrid + Hybrid x Years 2023–24	0.20* (0.11)	0.25*** (0.08)	0.10 (0.09)	-0.003 (0.13)	0.17 (0.10)	0.07 (0.09)
Remote + Remote x Years 2023–24	0.13 (0.13)	0.48*** (0.08)	0.29*** (0.10)	-0.06 (0.12)	0.30*** (0.10)	0.23** (0.10)
Mean for on-site in 2017–18	8.44	6.85	22.49	8.57	6.90	22.43
Mean for hybrid in 2017–18	8.06	6.65	22.71	8.50	6.97	22.57
Mean for remote in 2017–18	8.71	7.36	22.81	8.41	7.08	22.75

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A15. Main activities' conditional associations with work location arrangement for women (hours per day)

Outcome:	Work and work-related	Household production & care	Leisure	Sleep
Hybrid worker	-0.37 (0.40)	0.06 (0.36)	0.29 (0.32)	0.02 (0.28)
Remote worker	-1.01* (0.61)	0.15 (0.35)	0.86*** (0.32)	0.00 (0.22)
Years 2023–24	-0.21 (0.20)	-0.06 (0.15)	-0.09 (0.13)	0.35*** (0.11)
Hybrid x Years 2023–24	0.26 (0.54)	0.22 (0.33)	-0.46 (0.37)	-0.02 (0.34)
Remote x Years 2023–24	0.95 (0.60)	0.03 (0.30)	-0.92** (0.40)	-0.06 (0.22)
N	7,401	7,401	7,401	7,401
R-squared	0.03	0.14	0.07	0.05
Joint hypothesis tests:	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	0.05 (0.43)	0.17 (0.39)	-0.55 (0.37)	0.33 (0.26)
Years 2023–24 + Remote x Years 2023–24	0.75 (0.66)	-0.03 (0.34)	-1.00*** (0.36)	0.28 (0.27)
Hybrid + Hybrid x Years 2023–24	-0.11 (0.32)	0.29 (0.24)	-0.17 (0.23)	-0.003 (0.13)
Remote + Remote x Years 2023–24	-0.06 (0.31)	0.18 (0.24)	-0.06 (0.23)	-0.06 (0.12)
Mean for on-site in 2017–18	5.41	3.45	6.57	8.57
Mean for hybrid in 2017–18	5.27	3.56	6.68	8.50
Mean for remote in 2017–18	4.73	3.73	7.12	8.41

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations.

Table A16. Select household production and leisure activities' conditional associations with work location arrangement for women (hours per day)

Outcome:	Paid Work	Chores	Food preparation	Personal care	Exercise	Screen time
Hybrid worker	-0.30 (0.37)	0.02 (0.26)	-0.04 (0.05)	-0.08 (0.08)	-0.06 (0.05)	0.19 (0.27)
Remote worker	-0.78 (0.53)	0.08 (0.21)	-0.00 (0.09)	-0.22** (0.10)	0.24** (0.10)	0.29 (0.44)
Years 2023–24	-0.17 (0.20)	0.01 (0.08)	0.08* (0.04)	-0.01 (0.04)	0.02 (0.02)	0.01 (0.08)
Hybrid x Years 2023–24	0.24 (0.50)	0.26 (0.26)	-0.00 (0.07)	-0.06 (0.10)	0.07 (0.07)	-0.19 (0.33)
Remote x Years 2023–24	1.04* (0.54)	0.06 (0.27)	-0.05 (0.11)	-0.02 (0.11)	-0.19* (0.11)	-0.13 (0.42)
N	7,401	7,401	7,401	7,401	7,401	7,401
R-squared	0.03	0.04	0.10	0.03	0.05	0.06
Joint hypothesis tests:	—	—	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	0.08 (0.40)	0.27 (0.30)	0.07 (0.07)	-0.07 (0.09)	0.09 (0.06)	-0.18 (0.35)
Years 2023–24 + Remote x Years 2023–24	0.87 (0.60)	0.07 (0.22)	0.03 (0.10)	-0.03 (0.11)	-0.17* (0.10)	-0.13 (0.39)
Hybrid + Hybrid x Years 2023–24	-0.06 (0.30)	0.27* (0.16)	-0.05 (0.06)	-0.14** (0.06)	0.01 (0.05)	0.01 (0.16)
Remote + Remote x Years 2023–24	0.26 (0.30)	0.14 (0.13)	-0.05 (0.07)	-0.24*** (0.05)	0.05 (0.06)	0.16 (0.13)
Mean for on-site in 2017–18	5.01	1.21	0.67	1.01	0.23	2.16
Mean for hybrid in 2017–18	4.95	1.23	0.60	0.89	0.26	2.15
Mean for remote in 2017–18	4.55	1.32	0.67	0.76	0.53	2.17

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A17. Childcare and paid work outcomes' conditional associations with work location arrangement for mothers (hours per day)

Outcome:	Paid Work	Time with children (mothers of kids age<18)	Primary childcare (mothers of kids age<18)	Secondary childcare (mothers of kids age<13)
Hybrid worker	-0.27 (0.56)	0.36 (0.50)	0.05 (0.23)	0.58 (0.51)
Remote worker	-0.37 (0.61)	1.61*** (0.49)	-0.23 (0.31)	2.16*** (0.65)
Years 2023–24	-0.09 (0.29)	-0.02 (0.17)	0.01 (0.08)	0.42 (0.28)
Hybrid x Years 2023–24	0.09 (0.82)	-0.04 (0.62)	0.12 (0.32)	-0.07 (0.69)
Remote x Years 2023–24	0.31 (0.68)	-0.63 (0.55)	0.47 (0.34)	-0.89 (0.81)
N	3,526	3526	3526	2814
R-squared	0.05	0.19	0.23	0.10
Joint hypothesis tests:	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	0.001 (0.64)	-0.07 (0.59)	0.13 (0.29)	0.36 (0.66)
Years 2023–24 + Remote x Years 2023–24	0.22 (0.77)	-0.65 (0.52)	0.48 (0.30)	-0.47 (0.70)
Hybrid + Hybrid x Years 2023–24	-0.18 (0.49)	0.31 (0.41)	0.17 (0.22)	0.51 (0.65)
Remote + Remote x Years 2023–24	-0.07 (0.43)	0.98*** (0.34)	0.25* (0.15)	1.27*** (0.47)
Mean for on-site in 2017–18	4.97	5.20	1.61	5.02
Mean for hybrid in 2017–18	4.73	5.58	1.96	5.55
Mean for remote in 2017–18	4.72	6.44	1.51	6.81

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A18. Main activities' conditional associations with work location for single jobholders, men (hours per day)

Outcome:	Work and work-related	Household production & care	Leisure	Sleep
Hybrid worker	0.23 (0.45)	-0.10 (0.18)	-0.01 (0.28)	-0.12 (0.18)
Remote worker	-1.18** (0.55)	0.25 (0.27)	0.45 (0.48)	0.47 (0.36)
Years 2023–24	-0.09 (0.14)	0.14 (0.09)	-0.25** (0.11)	0.21*** (0.07)
Hybrid x Years 2023–24	-0.68 (0.50)	0.23 (0.22)	0.05 (0.33)	0.40* (0.20)
Remote x Years 2023–24	0.28 (0.62)	-0.12 (0.30)	0.12 (0.58)	-0.29 (0.39)
N	6,748	6,748	6,748	6,748
R-squared	0.03	0.09	0.05	0.06
Joint hypothesis tests:	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.78* (0.47)	0.37* (0.21)	-0.20 (0.30)	0.61*** (0.20)
Years 2023–24 + Remote x Years 2023–24	0.19 (0.56)	0.02 (0.28)	-0.13 (0.57)	-0.08 (0.37)
Hybrid + Hybrid x Years 2023–24	-0.45 (0.32)	0.13 (0.16)	0.04 (0.21)	0.28** (0.11)
Remote + Remote x Years 2023–24	-0.90*** (0.33)	0.14 (0.17)	0.57** (0.27)	0.19 (0.13)
Mean for on-site in 2017–18	6.10	2.46	6.97	8.47
Mean for hybrid in 2017–18	6.53	2.28	7.01	8.18
Mean for remote in 2017–18	4.77	2.73	7.71	8.79

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations

Table A19. Main activities' conditional associations with work location for single jobholders, women (hours per day)

Outcome:	Work and work-related	Household production & care	Leisure	Sleep
Hybrid worker	-0.27 (0.43)	-0.09 (0.39)	0.36 (0.36)	-0.00 (0.30)
Remote worker	-0.98 (0.60)	0.19 (0.37)	0.77** (0.33)	0.02 (0.26)
Years 2023–24	-0.19 (0.19)	-0.09 (0.13)	-0.07 (0.14)	0.34*** (0.12)
Hybrid x Years 2023–24	0.16 (0.56)	0.38 (0.36)	-0.52 (0.39)	-0.01 (0.35)
Remote x Years 2023–24	0.94 (0.63)	0.02 (0.32)	-0.86** (0.40)	-0.10 (0.27)
N	6,707	6,707	6,707	6,707
R-squared	0.03	0.14	0.07	0.05
Joint hypothesis tests:	—	—	—	—
Years 2023–24 + Hybrid x Years 2023–24	-0.04 (0.43)	0.29 (0.40)	-0.59 (0.39)	0.34 (0.26)
Years 2023–24 + Remote x Years 2023–24	0.75 (0.66)	-0.07 (0.34)	-0.93** (0.36)	0.25 (0.32)
Hybrid + Hybrid x Years 2023–24	-0.11 (0.32)	0.28 (0.24)	-0.16 (0.24)	-0.01 (0.14)
Remote + Remote x Years 2023–24	-0.04 (0.31)	0.20 (0.24)	-0.09 (0.25)	-0.08 (0.12)
Mean for on-site in 2017–18	5.29	3.50	6.61	8.60
Mean for hybrid in 2017–18	5.31	3.39	6.80	8.50
Mean for remote in 2017–18	4.62	3.89	7.03	8.46

Note: The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2017–18 and 2023–24 American Time Use Survey, author's calculations.

Table A20. Main activities' conditional associations with work location arrangement for men with Oster bounds, 2023–24 (hours/day)

Outcome:	Work and work-related	Household production & care	Leisure	Sleep
Hybrid worker	-0.15 (0.25)	0.08 (0.13)	-0.05 (0.16)	0.12 (0.10)
Remote worker	-0.91*** (0.28)	0.17 (0.14)	0.44** (0.21)	0.30** (0.12)
R-squared	0.02	0.09	0.04	0.05
Hybrid upper bound	-0.16	0.06	-0.07	0.18
Hybrid lower bound	-0.14	0.09	-0.02	0.07
Remote upper bound	-1.05	0.17	0.50	0.38
Remote lower bound	-0.78	0.18	0.39	0.22

Note: N = 2,969. The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Oster bounds are based on 1.3 x R-squared and the assumption that unobserved and observed characteristics are equally related to selection into remote and hybrid work.

Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2023–24 American Time Use Survey, author's calculations

Table A21. Main activities' conditional associations with work location arrangement for women with Oster bounds, 2023–24 (hours/day)

Outcome:	Work and work-related	Household production & care	Leisure	Sleep
Hybrid worker	-0.27 (0.23)	0.19 (0.22)	-0.01 (0.21)	0.09 (0.12)
Remote worker	-0.35 (0.27)	0.15 (0.20)	0.11 (0.17)	0.09 (0.09)
R-squared	0.03	0.14	0.06	0.04
Hybrid upper bound	-0.33	0.21	-0.02	0.13
Hybrid lower bound	-0.21	0.17	0.01	0.04
Remote upper bound	-0.28	0.14	0.05	0.10
Remote lower bound	-0.42	0.16	0.16	0.09

Note: N = 2,797. The sample includes wage and salary workers aged 22–64. See Table A3 for controls. ATUS sample weights are used. Standard errors in parentheses are empirically derived from replicate weights. Oster bounds are based on 1.3 x R-squared and the assumption that unobserved and observed characteristics are equally related to selection into remote and hybrid work.

Significance levels: ***p<0.01, **p<0.05, *p<0.1.

Source: 2023–24 American Time Use Survey, author's calculations

Appendix References

Kimbrough, G. (2019). Measuring commuting in the American Time Use Survey. *Journal of Economic and Social Measurement*, 44(1), 1–17. <https://doi.org/10.3233/JEM-180459>.

U.S. Bureau of Labor Statistics. (2025). American Time Use Survey Activity Lexicon 2003–2024. <https://www.bls.gov/tus/lexicons/lexiconnoex0324.pdf>.