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Abstract

This study examines the productivity dynamics of artificial intelligence (AI) in American manufac-
turing. Working with the U.S. Census Bureau to collect detailed large-scale data for 2017 and 2021,
we find J-curve-shaped effects, with significant initial productivity losses preceding gains to industrial
AT use. We attribute this to costly adjustment, which we observe directly via increased work-in-
progress inventory, investment in industrial robots, and labor shedding. Over time, however, early Al
adopters exhibit stronger growth on average, conditional on weathering the initial “dip.” Losses vary
considerably across firms and establishments. A key contingency is age, with young firms faring better
than older incumbents—particularly startups with growth-oriented business strategies. Management
practices and production-process design also shape the uptake and effects of industrial Al use, as do
cross-establishment spillovers inside large, multi-unit firms. Overall, our detailed findings provide novel
evidence regarding Al-related J-curve effects, unveiling key mechanisms and extending our understand-
ing of emerging General Purpose Technologies.
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1 Introduction

Advances in artificial intelligence (AI) are poised to reshape firm performance, labor demand, and
competitive dynamics. Productivity gains from AI have been causally identified in narrow settings
such as software development (e.g., |Cui et al., [2024), drug and materials discovery (e.g., [Lou and
Wu, |2021; Strieth-Kalthoff et al., 2024)), and customer support (Brynjolfsson et al.l 2025). However,
evidence outside of modular, data-rich, and already prediction-focused applications (Bresnahan,
2024)) remains scarce—particularly beyond the level of a specific task.

Yet a firm- or establishment-level view is essential, given the importance of the organizational
context in shaping the returns to technology use (e.g., Bresnahan et al., 2002; Bloom et al.,|[2012)) and
recent theory emphasizing the need for a “system-wide” approach to leveraging Al (Agrawal et al.,
2024)). However, representative data on firm-level Al adoption has been in short supply (Seamans
and Raj, 2018]), while adoption has also lagged expectations (Bonney et al., 2024) and varied
significantly across industry and organizational contexts (Calvino and Fontanelli, [2023; McElheran
et al.l [2024). This has made it difficult to establish broad-based facts about AI’s prevalence and
average productivity effects—Ilet alone pin down the organizational complements and constraints
that have been central to the history of technological change (e.g., David} 1990; Bresnahan and
Trajtenberg, [1995; [Brynjolfsson and Hitt, |2000; [Feigenbaum and Gross|, 2024]).

We address this gap with new large-scale evidence on the use of A]E] among U.S. manufacturers
and performance data across nearly a decade, drawing on two surveys conducted for this purpose
in collaboration with the Census Bureau. In addition to providing representative statistics on both
early Al use and barriers to adoption in physical-goods production, we leverage a novel instrumental
variable (IV) strategy and visibility to within-firm changes to triangulate on the varied impacts of
AT on business performance. Our findings are consistent with a J-curve pattern at the micro-level:
the average effects of Al deployment are initially quite negative, followed by growth along multiple
dimensions over time. These early losses, however, do not unfold uniformly; they vary substantially
by age, business strategy, and other organizational characteristics and practices.

Even when voluntary, technology adoption does not guarantee productivity gains, particularly

'Defined as “a machine-based system that can perceive and learn about its environment and then make rel-
evant predictions, recommendations or decisions.” See https://www.census.gov/programs-surveys/mops/technical-
documentation/questionnaires.html



in the short run (Tambe and Hitt, 2012). With respect to AI, we find the initial relationship
between adoption and performance to be negative, despite selection into AI use. Specifically, a
one-standard deviation increase in our Al index is associated with a 1.33% lower total-factor pro-
ductivity (TFP), controlling for a large number of time-varying (and usually unobserved) establish-
ment characteristics. Moreover, when we employ quasi-experimental techniques commonly used to
address endogeneity and measurement error, losses grow considerably in magnitude. IV estimates
yield productivity losses of roughly 44%, which we interpret as a local average treatment effect
(LATE) experienced by marginal businesses whose AI adoption is sensitive to our instrumentﬂ
It is unlikely to represent the experience of infra-marginal “always adopters,” such as digitally-
advanced businesses poised to reap early returns from Al use in compatible applications. This
striking result, while requiring care in interpretation, reinforces the short-term cost of Al adoption.
It further underscores the heterogeneity endemic to this phenomenon and reflects the much greater
prevalence in our sample of smaller firms and establishments that lack the advantages of larger,
publicly-traded firms (e.g., [Babina et al., 2024]).

Critically, these initial losses do not imply that Al adoption is systematically a “mistake.” With
time for adjustment to unfold, we find growth to be significantly higher among early Al adopters,
on average. This is particularly true among younger firms and establishments. For example, a
one standard-deviation increase in Al use is associated with roughly 2% higher labor productivity
growth among younger plants from 2017 to 2021. Among firms of all ages, greater Al use is
associated with 0.8% employment growth over a period that saw a 1.5% decline, overall, in this
sector.

Data limitations prevent us from tracing out the precise inflection point where net returns
become positive or characterizing true long-term implicationsﬁ Yet, our results provide empirical
micro-foundations for J-curve patterns previously observed at the macro level (Brynjolfsson et al.,
2021b)). In particular, our findings include direct evidence of costly adjustment within firms. Not
only do productivity and profits initially suffer; inventory buffers also increase due to Al use,
as does investment in industrial robots. And (potentially linked to this complementary physical

automation), we further observe significant labor shedding in the short term, indicating that workers

2The ”compliers” in the Angrist et al. (1996) framework. In this case, it reflects businesses whose adoption of Al
was not impeded by the level of Al-specific expertise or skills at the plant.
3We do not observe the exact year of Al adoption and the panel of performance data ends in 2022.



also are exposed to this initial adjustment process when firms adopt AIE]

Perhaps most importantly, we also gain insight into specific mechanisms shaping AI’s impacts.
We can disentangle, for instance, how certain business strategies help mitigate the J-curve “dip”.
We also find that much of the productivity losses are driven by older manufacturing establishments
and show that productivity losses among older businesses are closely tied to a loss of structured
management practices (Bloom et al., 2019)—consistent with an important role for specific organi-
zational intangibles (Levitt et al., 2013]). Specifically, our quantitative analysis shows that roughly
half of the TFP losses at older establishments can be explained by de-adoption of structured man-
agement practices. We also find significant spillovers to non-Al using establishments in multi-unit
firms. IV estimates point to 40% higher labor productivity among non-adopting units in Al-using
firms. These details reveal specific channels through which losses and gains are transmitted, point-
ing out potentially valuable ways to improve overall returns to Al use, in practice, and helping to
explain conflicting estimates across differently-composed samples and empirical settings.

Our empirical context of manufacturing is a particularly interesting one for understanding AI’s
nuanced impacts. It encompasses a highly innovative set of industries, accounting for 60% of all
patents (National Science Foundation, 2021)) and 7 % of all corporate patents (Autor et al., 2020a).
Some estimates (e.g. Deloitte, [2020) suggest that manufacturing generates twice as much digi-
tal information as other data-intensive industries such as media and finance/banking. High levels
of physical automation also provide potential complements to Al-related technologies (McElheran
et al., [2024) and may reinforce labor-displacing effects (Acemoglu and Restrepo, 2018]). Yet, man-
ufacturing production processes are often not modular (Bresnahan, [2024)), but instead depend on
complex interactions of physical and virtual environments, requiring coordination of machinery,
material flows, management practices, differently-skilled employees, business strategy, information,
and technology (e.g., |Ichniowski et al. [1995; |Milgrom and Roberts, 1990} [1995; McElheran and Jin),
2020)). Heterogeneity in how to accomplish this—much less adjust it all to align with new technolog-
ical possibilities—abounds. Thus understanding how organizational precursors and more-mutable
managerial decisions determine returns to Al use is critical to gauging its broader implications for

firms, workers, and the economy.

“We do not observe worker-level outcomes, making it impossible to infer either individual-level or aggregate
labor-market impacts.



Our findings contribute to several streams of research. First, they contribute to longstand-

ing questions on the economic impacts of general-purpose technologies, or GPTs (Bresnahan and|

Trajtenberg) |1995), which Al-related technologies are increasingly argued to be (e.g., Brynjolfsson

et al., 2021b; Goldfarb et al.,|2023). This literature emphasizes the implementation lags and comple-

mentary organizational adaptations typically required for GPTs to achieve measurable gains (e.g.,

[David}, 1990} Bresnahan and Greensteinl, [1996; |Brynjolfsson and Hitt), |2000; [Feigenbaum and Gross|,

2024)). We extend this line of work by documenting micro-level J-curve patterns (Brynjolfsson et al.,

in which short-run losses reflect production-process and organizational disruptions (rather
than primarily mismeasurement of intangible investments) during early Industrial AI adoption,
followed by medium-term performance improvements for most firms.

Within this broader literature, we contribute to a growing subfield pinpointing specific orga-

nizational complements to modern technology use. Previous studies have revealed aspects of how

earlier digital technologies interacted with organizational characteristics (e.g., [Bartel et al.l 2007}

Bresnahan et al] [2002} [Tambe et al.| 2012; [Aral et al., [2012; Bloom et al. [2012; Brynjolfsson et al.
2021a)). Extending arguments that that production systems consist of mutually reinforcing clusters

of technologies, processes, and practices (e.g., Ichniowski et al. |1995; [Milgrom and Roberts, 1990,

[1995; Brynjolfsson and Milgrom, 2013), we provide the first large-scale evidence of technological,

process-design, and organizational contingencies affecting Al uptake and outcomes.
Third, we add to the nascent empirical evidence on Al adoption and its performance con-

sequences. A burgeoning approach relies on field studies of specific applications of Al in spe-

cific activities—e.g., computer programming (e.g., Peng et al., [2023; Hoffmann et al. |2024; |Cuil
2024), customer support (Brynjolfsson et al., 2025)), consulting (Dell’Acqua et al. [2023)),

entrepreneurship coaching (Otis et al 2024), or scientific discovery (Lou and Wu, [2021; Aspuru-|
\Guzik, [2023)—that may be considered “deep but narrow” (Bresnahan| [2024), and thus difficult

to generalize. Contrasting with this approach, other recent studies have inferred less-specified Al

use from job postings, finding mixed performance effects among more-diverse yet relatively large

publicly-traded firms (e.g.,|Alekseeva et al., 2020; Babina et al.,|2024). A complementary stream of

work relies on direct survey measurement by administrative agencies, yielding more-representative

statistics on adoption (Hoffreumon et al.l 2023} Fontanelli et al., [2024; Bonney et al., 2024) along

with contradictory findings regarding short-term productivity effects (Czarnitzki et al. 2023; Ace-|




moglu et al., 2022;|Calvino and Fontanelli, 2023; |[McElheran et al, [2024). By combining two Census
Bureau surveys conducted four years apart, along with administrative data covering tens of thou-
sands of manufacturing businesses across nearly a decade, we bridge these literatures to generate
insights that are unusually representative yet detailed, and reflecting the passage of time. Our
panel data reveal how AI’s negative and positive effects evolve over different horizons, while the
survey modules allow us to trace heterogeneity by production system, age, strategy, and within-firm
spillovers, offering a richly contextualized view of industrial Al use and its impacts.

Taken together, our findings highlight Al’s dual role as a transformative technology and catalyst
for initial organizational disruption, echoing patterns familiar to scholars of technological change.
They further underscore the importance of complementary practices, structures, and strategies that
mitigate adjustment costs and enhance longer-term returns, providing practical guidance to man-
agers and policy-makers on how to flatten the J-curve dip and realize Al’s longer-term productivity

potential at scale.

2 Literature and Motivation

Rising digitization and the diffusion of advanced tools to extract value from data have had profound
impacts on firm organization, management, competitive strategy, and performance (e.g., Bresnahan
et al., 2002; Bloom et al., 2012 |Goldfarb and Tucker, 2019; Adner et al., 2019; Tambe et al., 2020)).
In this section, we extend insights from digitization research in economics and management to
motivate our analyses of both the adoption and impact of AI use in industrial (i.e., physical goods)

production.

2.1 Understanding Al as a Specific Type of Production Input
2.1.1 Scale-Biased

Information and knowledge are well-understood to be non-rival goods whose consumption does not
reduce availability to others and whose reproduction occurs at near-zero marginal cost (Arrow,
1962; Romer} 1990; |Goldfarb and Tucker, 2019)). A recent return to these ideas focuses attention

on the organizational and strategic implications of “digital resources, such as data, software and



AT that are essentially scale free” (Giustiziero et al., 2023)E| AT algorithms, once trained, share
these features. As a result, they are prone to significant economies of scale, creating more value
at larger production volumes. These scale economies will be further reinforced by large up-front
training costs (Svanberg et al. 2024)E|

These characteristics work in favor one of the few robust “stylized Al facts” across countries
and industries: early AI adoption rates are systematically higher among larger firms (e.g., Calvino
and Fontanelli 2023; McElheran et al. 2024; Bonney et al. 2024; Hoffreumon et al. 2024). Note,
however that properly identifying size-related effects is challenging due to the high correlation
between size and other potential drivers of digital technology adoption and performance such as
age (Kueng et al., 2014)), organizational structure (e.g., multi-unit status, per Atalay et al., 2014)),
and production-process design (Brynjolfsson et al., |2021a; McElheran et al., 2019)). We control for
size in all of our specifications and lean on the richness of our plant- and firm-level data to tease

apart these often-confounded relationships.

2.1.2 Dependent on Prior Digital Transformation

Beyond firm size, another critical determinant of Al adoption is the availability of appropriate
digital infrastructure and data inputs (e.g., Tambe et al., [2020; Goldfarb et al., 2023; |Babina et al.,
2024). To date, Al adopters have tended to report significant levels of digitization and reliance
on cloud-based IT infrastructure (McElheran et al., [2024]), implying that AT adoption is embedded
in a broader, complementary process of digital transformation that may easily be confounded
with Al-specific effects. Omitting key features of the technological context may obscure drivers of
adoption and also bias estimates of AI’s marginal contribution to firm performance (e.g., Calvino
and Fontanelli, [2023). We thus control for both cloud-based and on-premises IT infrastructure
in all of our analyses to help address these concerns. We further disentangle prior investments

associated with “big data” initiatives focused on digitizing information and applying descriptive

®See Helfat et al. (2023)) for a review of related work.

SConsider the benefits of machine vision technology to analyze digital pictures of finished products to diagnose
any quality defects that might often be too subtle to quickly notice for human quality control employees. The initial
training of this technology with training data will be expensive but once a sufficient number of training instances is
used, the supervised learning algorithm will eventually outperform human vision. In terms of the unit cost economics,
training the machine vision algorithm is a large fixed cost, which will be spread out across many units, leading to
a decline in marginal cost. Additionally, ongoing training of the machine vision technology will increase accuracy,
thereby increasing value created from the technology by continued quality improvements of products



and predictive analytics to increasingly-important data resources.

2.1.3 Prediction-Biased

The need to account for prior technology investments and their complementary organizational ad-
justments (e.g., Bresnahan et al., |2002; |Bresnahan and Greensteinl 1996) goes deeper than poten-
tially misattributing the effects of digitization too-narrowly to Al use. Specifically, factors driving
both the use of Al—usefully conceptualized as a dramatic advance in “prediction technology”
(Agrawal et al.| [2018)—and adoption of pre-Al digital tools may have their origins in fundamental
differences in production system design.

Certain aspects of production design reflect the resolution of deep economic and organizational
tradeoffs and are essentially fixed once a production facility is established (McElheran et al., [2019).
At least two distinct approaches, based on differing solutions to essential uncertainty (Galbraith)
1973) have emerged in U.S. manufacturing: “make-to-order” versus “make-to-stock.” Milgrom and
Roberts (1988) demonstrate mathematically that profits are convex in the market share supplied
from inventory, driving firms to specialize in one of these production modes or the other. They
further argue that each approach tends to be complementary to different organizational and tech-
nological solutions (Milgrom and Roberts| 1990 [1995), leading firms to adopt clusters of practices,
rather than individual innovations in isolation[’]

“Make-to-order” production, exemplified by Lean Manufacturing (Womack et al., 2007; Holweg),
2007)) and related structured management practices (Bloom and Van Reenen, [2007; Bloom et al.,
2019)), prioritizes responsiveness to realized demand over prediction. This approach to addressing
uncertainty depends heavily on visibility, minimal inventory buffers, and empowering workers to
manage exceptions in real time. It has successfully diffused throughout U.S. manufacturing based
on “low-tech” elements drawn from the Toyota Production System such as kanban cards and andon
techniques (Ohno, [1988) that support information-sharing with relatively little IT.

At the other extreme, traditional “make-to-stock” manufacturing has evolved in U.S. manufac-
turing via substantial investments in both physical and I'T capital-—and relies heavily on prediction.
More-common in settings where lead times are long and/or production flexibility is limited, this

approach relies heavily on forecasting and inventory buffers to address uncertainty in supply and

"See also Ichniowski et al| (1995); [Brynjolfsson and Milgrom| (2013); |Aral et al.| (2012); [Tambe et al| (2012).



demand conditions (Galbraithl 1973; Toktay and Wein| 2001)).

More recently, as data availability has grown and IT costs have fallen, manufacturers of all types
have adopted increasingly sophisticated predictive analytics (Brynjolfsson et al., |2021a)). This has
not been universally productivity-enhancing, however. In particular, these systems appear to be
complementary to an organizational focus on external information from customers and supply
chains (Tambe et al.l [2012)), as well as being contingent on a low-product-mix, high-volume pro-
duction system design (Brynjolfsson et al., 2021a).

Such path dependencies and contingencies pose challenges for sharp predictions about interd-
pendencies among Al and certain other technologies. Take basic digital tools such as descriptive
analytics (Berman and Israeli, 2022; Galdon-Sanchez et al., 2022)). On the one hand, if we consider
digital capability development to be an evolving and cumulative process, the presence of descrip-
tive analytics tools and techniques may represent greater readiness to adopt advanced tools like Al.
Yet, given the organizational and technological interdependencies at work, they could also proxy for
deep organizational misalignment with prediction-focused management. This could work against
successful deployment of AI. Thus, the relationship between older digital technologies and Al is
ultimately an empirical question.

Regarding more-advanced digital tools such as predictive analytics, there is less ambiguity.
Production systems already-organized to leverage forecasting, exemplified by prior reliance on pre-

dictive analytics (Brynjolfsson et al., 2021a)), should more easily adapt to Al use.

2.2 Industrial Production, Adjustment, & the J-Curve

As our study takes place in the manufacturing sector, it is useful to take a moment to bridge
insights from the study of “digital firms” in the information sector with longstanding intuitions
about industrial production, which has become increasingly automated and digitized in the United
States (. The strategic implications of economies of scale in physical-goods production have been
understood since at least the early 1960s (Arrow, 1962; Henderson, 1968)@ One is early-mover

advantage. Economies of scale can be an important isolating mechanism, protecting early movers

8Indeed, Kiechel (2010) documents that the first popular tool sold by the Boston Consulting Group (BCG) in the
1960s was the “experience curve” or the empirical claim of a “consistent” decline of 20-30 percent of costs for each
doubling of output (Henderson, 1968). In turn, this tool was used in turn by companies such as Black & Decker to
undercut its competitors in terms of price, anticipating lower future unit costs.



(Rumelt, 2005). First-movers are by definition able to accumulate production experience earlier.

Under economies of scale, this increases value creation (by reducing unit costs, increasing quality, or

both), and feeds back into yet more demand and higher production volumes (Cabral and Riordan),

1994). While industrial firms do not have the same demand-side economies as firms whose products

and services are also digital (Giustiziero et al., 2023)), we anticipate that “traditional” economies of

scale combined with the non-rival attributes of Al technologies will mutually reinforce early-mover
benefits from AI adoption.

A key limiting factor, however, arises from the general-purpose nature of the technologies in
question. General-purpose technologies (GPTs), such as the steam engine, electricity or digital

computers, are a class of economically and socially transformative technologies that share char-

acteristics of being widely used, constantly improving, and innovation-spawning (Bresnahan and|

Trajtenberg) [1995). When we look at the family of technologies increasingly referred to as “AI”

(e.g., machine learning, machine vision, speech recognition, etc.) they are already observed in ev-

ery sector of the economy, in far-ranging use cases, advancing at unprecedented rates, and closely

linked to innovation (Cockburn et al., 2018 [Tansiti and Lakhani, 2020; Felten et al., [2021; Miric|

et al. [2023; [McElheran et al., 2024). While there is some debate at the moment as to whether

Al-related technologies will definitively emerge as the next influential GPT (Goldfarb et al., [2023}

Eloundou et al., 2023; Bresnahan|, 2024) or remain an important “enabling technology”

2018 Rathje and Katilal, 2021} |Gambardella et al., 2021)), the GPT lens is nevertheless useful for

focusing attention on early deployment challenges.
According to work in this vein, technologies with such broad potential, ongoing improvement,

and often-uncertain trajectories typically require significant investments in co-invention (Bresna-

lhan and Greenstein), [1996)) or co-specialization 1986)) to align technological capabilities with

core business activities, processes, products, and resources—and vice versa. The pervasiveness

and magnitude of this adjustment challenge is credited with widespread and lengthy delays in the

early diffusion and productivity impacts of important technologies (e.g. |David, [1990; Brynjolfsson|
1996)). Recent GPT research examines this process among public U.S. firms, predicting

and finding evidence for a “productivity J-curve” of initially declining measured productivity fol-

lowed by a sharp rise in returns for investments such as software and R&D that arguably require

significant—often intangible—complementary investment (Brynjolfsson et al., 2021b)).
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The implications of costly co-invention for scale-free Al-related technologies is that short-term
returns from deploying AI may be minimal (or even negative) on average, and any early-mover
advantages will emerge with a delay. Yet firms that can weather initial performance losses stand to
enjoy significant returns to Al use, as observed in early narrow applications among digital giants
like Amazon, Netflix, Google, and Facebook (Bresnahan) [2024).

How might this play out in our manufacturing context? Consider that a new Al-enabled produc-
tion line might use a reinforcement-learning algorithm to optimally adapt production parameters,
starting with a set of initial parameter values that are locally but not globally optimalﬂ However,
this exploration might prove costly in the short run, if trial parameter values lead to foregone output
that would otherwise have been produced if the Al system had stayed at the initial, locally optimal
parameter values. At the same time, however, exploration of new parameter values as production
volume increases enables reinforcement learning algorithms to try out new parameter values for
each newly produced unit, ultimately leading to rapidly improving performance at higher volumes
of production.

This example describes a J-curve at the level of a given algorithm. However, similar mecha-
nisms will arguably be at work beyond any individual Al deployment. Increasingly, the system-wide
challenges of deploying AT beyond a “point solution” are receiving attention (Agrawal et al., 2024]).
Reconfiguring production processes can lead to short term coordination failures and operational ef-
ficiencies that require additional buffers in the system (e.g., WIP). If responsiveness is improved at
one point in the production process, increased automation (e.g., robots or additional AI technolo-
gies) may be required elsewhere. Factor inputs may shift, particularly if this increased automation
substitutes for human labor (Acemoglu and Restrepo, [2018). Working through these adjustments
requires time and investment, with associated initial losses before returns fully materialize. As
this plays out at the producer level, we anticipate that returns to Al use will exhibit a “J-curve”
pattern, with performance declining upon initial adoption and eventually improving over time.

Furthermore, we should observe organizational adjustments along other dimensions (WIP, phys-
ical automation, and labor demand). We test these additional implications, empirically, recognizing

that many margins of adjustment will remain intangible (Brynjolfsson et al., [2021b).

9An example for a similar technology from practice can be found here: https://www.pwc.de/en/digitale-
transformation/the-perfect-match-digital-twins-and-reinforcement-learning.html.
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2.3 Strategic Responses

Thus, far, our predictions have concerned average tendencies and are of intense interest in eco-
nomics, management, and public policy. Yet the managerially-relevant question quickly becomes
how strategic decisions might help “flatten” the adjustment dip for a given producer.

Traditional learning-by-doing in manufacturing is well known to eventually run into diminishing
returns, based in physical or cognitive limits of workers (e.g., [Thompson, 2012; |Levitt et al., [2013).
In contrast, scale economies of digital resources such as Al are unlikely to face similar limitsm
As a result, acceleration of benefits (the upward part of the “J-curve) from AI will tend to be
supported by business strategies that emphasize growth. That said, we argue that the nature of a
given growth-oriented strategy will matter.

To understand this, consider the BCG consultants that sold insights from the experience curve
to manufacturing firms in the 1960s. This typical “cost-leadership” strategy (Porter, |1980) was
designed to increase sales volume. Yet cost-leadership strategies quickly run into decreasing re-
turns to scale on the demand side (Giustiziero et al., 2023). In contrast, growth through market
expansion—via novel offerings and tapping new customer segments, including new domestic and
international markets (Yang et al., 2015| 2021)—avoids these demand-side diseconomieﬂ Indeed,
co-occurrence of growth-oriented strategies and Al use has recently been documented among U.S.
startups (McElheran et al., 2024)); however, the performance implications in a broader popula-
tion remain unknown. We anticipate that business strategies focused on adding scale via market
expansion or innovation will attenuate any initial performance declines due to Al use, while cost-

leadership strategies will worsen initial performance declines.

2.4 Al vs. the Experience Curve

Our examination of J-curve effects at the micro level further has important implications for how
mature, more-experienced firms compete with young startups. This “creative destruction” debate

about whether larger incumbents or smaller startups are best equipped and/or incentivized to

0This does, of course, not mean that we believe that Al resources are literally scale-free. Indeed Bajari et al.
(2019) argue that dataset size runs into diminishing returns at a “square-root N” rate for forecasting tasks.

1 One way to reduce such demand-side diseconomies is to use product-differentiation, as argued by [Porter} [1980.
See |Babina et al., |2024] for empirical evidence of predictive analytics leading to higher product differentiation
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undertake this adjustment dates back at least to Schumpeter (1934, 1950)117] and is too large to
summarize, here. Our contribution to this long-standing conversation, however, is to highlight
that, if J-curve effects are both strong and uniform across incumbents and entrants, incumbents
will naturally benefit from scale economies earlier, leading to entry barriers for startups (Cabral
and Riordan, 1994)) and eventually higher industry concentration, as incumbents continue to benefit
disproportionately from Al use. This dynamic seems to be emerging with regard to “superstar”
firms in settings where intangible capital is very important (Autor et al., 2020b; | Tambe et al., [2020).
Yet, if short-run performance losses are instead worse for mature incumbents, then Al adoption
might conversely lead to less industry concentration, in the long run.

Anchoring again in our industrial production settings, we argue that old firms or establishments
are more likely to derive productivity from accumulated experience (Thompson, |[2012; Levitt et al.,
2013)), the accumulation of firm-specific resources such as customized IT capital (Jin and McElheran),
2024)), and an established set of operational capabilities (Helfat and Peteraf, 2003)). Corresponding
management practices (Bloom et al., 2019), vintage-specific human capital (Chari and Hopenhayn),
1991; Barth et al.l 2023), and other core competencies (Henderson) 1993) will also tend to sustain
incumbent performance derived from a familiar set of technologies. When old firms intensively
adopt a novel, Al-based technology, experience with prior technologies may not be transferable
to the new system, leading to relatively larger productivity losses for more-established firms. In
contrast, young startups by definition have none of this accumulation and will thus have lower
opportunity costs of innovating (Arrow, 1962 inter alia). Thus, we anticipate that older producers

will experience greater performance losses from Al adoption than younger ones.

2.5 Mechanisms Rooted in Organizational Routines and Practices

To better understand the specific channels by which older manufacturing firms might exhibit larger
initial performance losses in response to Al adoption, we build on recent work showing that certain
structured management practices—often drawing from the Lean tradition— work to capture, retain,
and exploit organizational knowledge and capabilities (Bloom et al., [2012; |Scur et al., 2021} [Scur

and Wolfolds| 2024).

12Schumpeter (1934) initially suggested that technological change and innovation would be led by small en-
trepreneurial firms yet subsequently (Schumpeter 1950) argued that large incumbents possessed superior incentives
and resources to innovate and appropriate the returns to innovation.
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By way of example, |Levitt et al. (2013)) analyze a single car manufacturing plant in the U.S.
and show the critical role of management practices in realizing learning-by-doing gains from pro-
duction. Specifically, they document the use of real-time reports and quality audits by engineers,
combined with whiteboard system that allowed frontline workers to report individually-experienced
production problems on an ongoing basis, thereby leading to generation and sharing of valuable
knowledgeﬁ which [Levitt et al. (2013) argue can be understood as a form of “organizational capi-
tal.” Structured management practices as measured by Bloom et al. (2013;2019)) similarly scaffold
the generation and aggregation of employee knowledge by defining standard operating practices,
promoting proactive investigation of root causes of problems, routinizing the review of key per-
formance indicators (KPIs) by managers and employees, and enabling widespread awareness of
production targets among all factory workers to make production exceptions quickly salient and
less costly to address (Womack et al., 2007; Holweg) 2007). But such structured practices are fun-
damentally still ‘analog’ in that they do not rely on digitalized information or much technology at
all, but rather on the interaction of standardized operating procedures and employee training and
practices. Older factories will tend have more accumulated organizational capital of this type. The
implication, then, is that Al adoption could interfere with reliance on the old knowledge genera-
tion system, yielding observable declines in structured management practices and, potentially, the

employees in which they are embodied.

2.6 Spillovers within Multi-Unit Firms

The non-rival or scale-free nature of Al as a digital resource opens up additional considerations for
large multi-unit manufacturing firms. E.g., Pratt (2015) has argued that robotics or Al systems
that are remotely connected via cloud computing could lead to increased knowledge spillovers across
these systems, as newly valuable information of each system is immediately accessible and valuable

to all connected systems. A similar argument should apply to establishments or factories as unit of

13Levitt et al.| (2013)) describe the interaction of one structured practices, namely the use of whiteboard for prob-
lem tracking and frontline employees in knowledge creation as follows: “(...) large amounts of information about
production still originated from the workers on the line. (...) Aggregation and diffusion of this knowledge were the
purposes of the whiteboard system. Workers were encouraged to note problems on the boards, (...) The system
therefore quickly pulled information from individual line workers and allowed management to manipulate the pro-
duction process in ways that benefited any worker at a similar position (...). The system therefore acted as a conduit
that gathered worker knowledge and, through the complementary efforts of management, transformed it into plant
knowledge that became embodied in the plant’s physical and organizational capital.”

14



analysis: Al systems in one factory will generate productivity spillovers in other connected factors,
even enabling “parallelization” of learning if production problems are modular across factories.
Thus Al adoption at other establishments within the same firm should tend to increase productivity

at non-adopting manufacturing establishments.

3 Data and Measurement

3.1 Two Datasets and Samples

To provide robust estimates and study dynamics, we use two datasets on Al use by U.S. manu-
facturers at different time periods. Our main dataset is the 2021 Management and Organizational
Practices Survey (MOPS), supplement to the Annual Survey of Manufactures (ASM). The ASM is
one of the oldest large-scale Census Bureau data collections, sampling 10% of the roughly 300,000
manufacturing establishments across the country. Stratified by size and industry to provide repre-
sentative statistics, the ASM nevertheless oversamples large establishments, covering over 70% of
the sector’s total value added in the certainty sample. A government-mandated survey, the MOPS
had a response rate of 68% in 2021@ Panel A of Table |l|reports that the average establishment in
our main sample has roughly 170 employees, is 29 years old, ships more than 60% of its products
via e-commerce, and has approximately $11 million in profits.

Linking the MOPS to the broader ASM yields a useful breadth of organizational measures.
In addition to fine-grained data on the use of Al-related technologies, it provides information on
the use of other digital technologies (predictive analytics, descriptive analytics, cloud computing,
digitalization of information, IT capital) and structured management practices (Bloom et al., 2013,
2019). Dimensions of organizational and production design are captured in the ASM-MOPS linked
data, as well (see below).

Our second main dataset is a panel of approximately 55,000 manufacturing firms combining

data from the 2018 Annual Business Survey (ABS)E with the Economic Census of Manufacturing

MFor more details go to https://www.census.gov /programs-surveys/asm.html. We also link to the Longitudinal
Business Database (LBD), a dataset of tax records covering the entire non-farm employer economy of the United
States, to acquire data on establishment and firm age. Establishment age is measured as the number of years since
the establishment first reported having March 12 employment on their tax records. Firm age is determined by the
age of the oldest establishment.

5Note that 2017 is the reference year for the 2018 ABS. See |Zolas et al.| (2020)) for details.

15



(CMF) from 2012 to 2017. This panel dataset allows us to estimate the effects of AI adoption on
performance while controlling for firm fixed effects. The ABS-CMF data are more representative of
the large population of single-unit firms in the U.S. economy (Zolas et al.,2020). This different size
coverage adds robustness to our findings, while also supporting an identification strategy focused
on within-firm changes over time.

Panel B of Table [1] describes manufacturing firms in the ABS—-CMF sample. The average firm
in this sample is by no means small or young, with mean employment of 344 workers and age of
25. However, when comparing the MOPS—ASM data to the ABS-CMF sample, it is useful to keep
in mind that the latter is a firm-level dataset whereas the former is at the establishment level.
Moreover the majority of establishments in MOPS—ASM belong to larger, multi-unit firms (hence

our ability to identify within-firm spillovers).

3.2 Measurement
3.2.1 New Measures of AI Use in the MOPS

Members of the author team worked with the Census Bureau to create new, designed-for-purpose
measures of Al-related technologies and their applications for the 2021 MOPS. Measuring fast-
emerging technologies systematically and at scale is a perennial challenge. Given the recency and
some lack of consensus about what “AI” encompasses, our measurement approach is multifaceted.
First, we clearly define what we mean by “AI” in the survey, as well as “predictive analytics,” which
we separately measure to avoid confusion (and to distinguish from prior work, e.g., Brynjolfsson
et al.l 2021al). These definitions underwent systematic cognitive testing involving members of the
research team and dedicated Census experts, as well as respondents pulled from the official ASM
sampling frame, to ensure validity and reliability of responsesm According to the survey, “Artificial
Intelligence is a machine-based system that can perceive and learn about its environment and then
make relevant predictions, recommendations or decisions for an objective that is determined by

humans.” This definition is close to the legal definition of AI in the recent EU Al Actm Two

MOPS respondents are typically plant managers (Bloom et al., [2013).

1"Specifically, the EU definition is: “a machine-based system that is designed to operate with varying levels of
autonomy that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, from
the input it receives, how to generate outputs such as predictions, content, recommendations or decisions that can
influence physical or virtual environments.”
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points are worth emphasizing about this definition of AI. First, it shares with the EU Al Act
the emphasis on systems that learn from their environment and adapt. Second, the last part was
added because respondents were resistant to the idea that adaptive technologies might actually be
choosing the objectives (more in line with “artificial general intelligence”). Including this caveat
increased confidence and reduced cognitive burden for respondents, as required by the U.S. Office
of Management and Budget to approve the survey.

A second feature of our approach to measuring Al is that we rely on two question “blocks”
to triangulate AI use. In one, the survey asks about AI use in six business functions: production
scheduling/monitoring, quality control, environmental and safety compliance, equipment mainte-
nance, logistics, and sales forecasting. In the other, we ask about specific Al technologies, such as
machine vision, speech recognition, automated guided vehicles, and Al-enabled industrial robots.
This combined measurement allows us to capture two related but distinct ways in which respon-
dents tend to be aware of Al use in their establishments, mitigate concerns that respondents might
overlook Al technology “under the hood” of factory equipment or software. For instance, users
of tools with Al capabilities tend to recall “we do have Al in our sales forecasting module,” or
“our predictive maintenance software relies on AL” At the same time, managers of establishments
that are training their own machine learning or machine vision algorithms readily respond to that
specific, more-technical terminology.

Contrary to a number of unofficial accounts, baseline adoption of “predictive” Al (i.e., not the
LLMs introduced after 2021) in the U.S. has been low for some time, including in manufacturing
(see McElheran et al. 2024; Bonney et al. 2024). Combining all of our Al-related questions to
capture a measure of at least some use of Al, we estimate only about 23 percent of plants used any
form of AI by 2021. Intensity of use is even lower, at around 8 percent (Panel C of Table .

For our regression analysis, we construct a continuous measure of Al use. First, we construct
dummy indicators of whether the establishment reports using Al in specific business functions |E|
or in terms of adopting specific Al technologies, across the two question blocksE We normalize

these, i.e. subtract the sample mean and divide by the sample standard deviation, and then sum

8Each dummy for business functions is one if Al is relied upon “Up to 50%”, “More than 50% but not all” and
“All or nearly all” the time. The dummies are otherwise zero.

9Fach dummy for AI technologies is one if Al is reported to cover “Up to 50% of direct production”, “More than
50% of direct production but not all” and “All direct production”. It is otherwise zero, including if the AI technology
is reported to be used in “Testing or piloting only”.
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them into an overall index, which in turn is normalized again. This facilitates interpretation in
terms of a standard-deviation change and is a longstanding practice in the related literature (e.g.,

Bloom and Van Reenen) 2007)).

3.2.2 AI Measurement in the ABS

Our AI measure in the MOPS is even more expansive than that captured in the ABS, which focuses
on a range of Al-related technologies such as machine vision, voice recognition etc. (McElheran
et al. 2024), but not applications. Replicating this narrower measure in the MOPS data, we
estimate Al use in 2021 at only 13% with intensity even lower at 2.3% as shown in Panel C of
Table [I} Since our assessment of Al use between 2012 and 2017 relies on the ABS, we follow the

narrower McElheran et al. (2024) definition for that analysis.

3.2.3 Other Variables in the MOPS

Barriers to AI use. A critical set of variables for our identification strategy includes questions
on what respondents report to be the main barriers to Al use. Additionally, Al adoption barriers
help us understand why Al adoption is low despite rising interest and attention.

As Panel D of Table [I| shows, the leading consideration preventing or delaying Al use was
cost, which approximately 43% of plant managers consider prohibitive. In descending order of
prevalence, other barriers include difficulty of identifying business use cases for AT (28%), the level
of AT expertise at the establishment (12%), and employee attitudes towards AI (9%). Only about
1% of respondents see uncertainty about government regulations or industry standards as a barrier,
while nearly 6% of plant managers reported no barriers to Al use and stated that AT is widely used
in the establishment.

Non-AI Digitization. We directly measure other digital technologies in order to empirically sep-
arate them from AI. Closest to Al is predictive analytics (PA), defined as “statistical or algorithm-
based models that analyze historical and current data to make predictions about future or unknown
events.” Cognitive testing indicated that respondents found this description helped them separate
out algorithms that can learn on their own from predictions based on statistical models (e.g., mul-
tivariate regression) or older rule-based algorithms. Our question on PA ask respondents to report

its use across the same six business functions discussed above for Al usage. In contrast to Al, PA
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use is high at nearly 65% of respondents reporting at least some use, with 30% reliance on this
technology. This high adoption rate of PA reinforces the notion that respondents are unlikely to
overlook ” AT under the hood”, as a majority of plant managers clearly recognizes PA technologies
and is likely to similarly be able to recognize Al technologies.

Another potentially related technology is the use of descriptive analytics and statistics (DS)
which is defined as “descriptive analyses of data ... typically used to support making key decisions,”
such as summary statistics, time trends, and real-time dashboards. Panel E of Table [1| shows
that DS adoption is also very high, with 73% of establishments using at least one DS technology.
Intensity is also high at 52 % of production relying on DS.

Underlying these data-intensive technologies is the background digitalization of information,
defined on the survey as “information stored in digital format” and measured across the previously-
described six business functions. The vast majority of plants report some level of data availability:
91% report at least some information being digitized, along with high intensities at 64%. The MOPS
and ASM also allow us to measure IT infrastructure, either measured by IT capital—cumulative
computer equipment expenses over the last 3 years—or cloud computing expenses.
Management Practices. In addition to digital technologies, the MOPS also includes a compre-
hensive list of variables to measure structured management practices. These measures have been
extensively discussed by Bloom et al. (2013;[2019) in the Census data and more-generally by Scur

et al. (2021} [2024)), so we refer the interested reader to this work.

3.2.4 Business Strategy Measures in the ABS

A particularly useful set of variables from the 2018 ABS are questions about the business strategies
that firms pursue. Prior work has shown systematic relationships between business strategies and
AT adoption (McElheran et al., 2024)), technology use (Wu et al., 2020) firm organization and
innovation outcomes (Yang et al. 2015), and firm performance responses to competitive shocks
(Yang et al., 2021). The ABS asks respondents about the importance of 14 different business
strategies, from a focus on “introducing new products or services” and “expand into new markets”
(domestic and international) to “low price” and “reduction costs.” We use principal component
analysis to extract three factors. The first factor captures the intensity of pursuing growth through

new markets, including expansions into new (domestic or international) existing markets or creation
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of new markets through innovation, and we call it “new markets strategy.” The second factor is
about pursuit of growth via cost leadership, close in spirit to Porter’s cost leadership strategy
(Porter}, 1980). The third factor captures the intensity of pursuing satisfaction of current main

> and it is close

customers via excellent product and service quality. We call this “quality strategy,’
in spirit to Porter’s “differentiation strategy.” These three generic business strategies are similar to

ones found by Yang et al. (2015) in the Workplace and Employee Survey (WES) in Canada.

3.2.5 The Implications of “Shadow AI”

Although the timing of our survey precedes the introduction of generative Al tools in late 2022,
the issue of “shadow AI” is an increasing concern when it comes to measuring Al diffusion and its
impacts. The worry is that there could be Al use taking place in the firm, either undetected in
machinery or software— or, as seems to be common with the rise of LLLMs, in use by individual
employees— without managerial knowledge. We think the risk of this is lower with the Industrial Al
applications studied here (compared to newer generative Al technologies). That said, it is worth
considering the implications for our analyses. Ultimately, widespread “shadow AI” might bias
downwards our adoption statistics. However, if Al use is prevalent and undetected in our sample,
this should work against finding any significant productivity differences between firms based on

observed Al usage.

4 Endogeneity and Identification Strategies

We are interested in regressions of the form

yi = BAL + Ciy + € (1)

where i indexes different establishments, and the dependent variable y; is typically (log) value
added or profits, defined as value of shipments minus salaries/wages, employee benefits, cost of
work-in-progress, raw materials, intermediate inputs, fuels, purchased energy, services, and resales.
C; denotes a matrix of control variables typical in productivity regressions, including input controls

such as number of employees and non-IT capital capital stock, as well as other controls described
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below. The key endogeneity problem for regressions such as (1) is selection bias (e.g. |Angrist and
Pischkel |2009), where better performing or better managed businesses will tend to use AI more
intensively. This will bias upwards any effects estimated via ordinary least squares (OLS). We
pursue three identification strategies to address this selection bias.

Our first identification strategy is the use of an unusually rich set of proxy variables to control
for typically-unobservable organizational factors (e.g., managerial skill or digital capabilities) and
can therefore be understood as a matching, or “selection-on-observables,” identification strategy.
As mentioned, the particular strength of the MOPS-ASM data is the availability of four sets
of variables that are rarely available at scale. The first set includes controls for data-intensive
technologies that are not AI. Similar to the Al index, we construct continuous indices for PA and
DS, which we use as controls throughout. The second set captures IT infrastructure, both on-
premises I'T capital and cloud computing expenses, both of which have been closely linked to the
use of prediction technologies and Al (Brynjolfsson et al.,[2021a; McElheran et al., 2024). Our third
set includes indices for structured management as in Bloom et al. (2019)), as well as controls for the
percent of college-educated employees and union membership. These directly proxy for the quality
of management as well as for worker skill and organization. The fourth set includes indicators for
the establishment being part of a multi-unit firm (MU), being co-located with the firm headquarters
(HQ), or having one of three different production-process designs: job shops, batch production, or
continuous flow manufacturing. These quasi-fixed organizational design characteristics have been
associated with business performance and technology adoption in prior work (e.g., |Atalay et al.,
2014; Bloom et al., 2013; |McElheran et al., [2019; Brynjolfsson et al., 2021a)).

A shortcoming of the selection-on-observables approach is that it cannot account for unobserved
factors that are correlated with performance but uncorrelated with our controls. We therefore lever-
age a natural experiment available in the MOPS—ASM data to address unobservable confounders.
Specifically, we use the reported perception of “no lack of Al expertise” as an instrument for more
intensive Al use. This IV is relevant for Al adoption and plausibly exogenous: lack of Al expertise
does not necessarily imply lack of manufacturing operations expertise. The logic underpinning our
approach proceeds in steps.

First, we build on recent work on Al use by firms that has argued extensively that Al-related

skills are distinct, technology-specific, and sought by firms that seek to adopt AI (Acemoglu et al.,
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2018; Babina et al., |2024). A specific question on the 2021 MOPS asks about the relationship
between Al adoption and Al-specific skills. We document the strong correlation between lack of a
reported Al skills gap and Al adoption, below.

The exclusion restriction, however, will be violated if Al-specific skills are correlated with other
human capital at the plant that also affects productivity. Thus, a few nuances of our setting and
our approach are worth keeping in mind. First, the relative recency of Al applications (as opposed
to inventions) suggests that many competently-run organizations will not have recruited plant-
managers for AT skills, specifically—particularly if other barriers (such as lack of obvious use cases)
are predominant. In this context, the vast majority of our respondents are plant managers with
tenure exceeding 5 years (Bloom et al., 2019), which makes it very unlikely that Al skills important
consideration when they were hired. For example, managers hired in 2016 (5 years prior to the
sample year of 2021), we unlikely to be hired for their AI expertise as machine vision had just
begun to outperform human vision in 201@

Second, lack of AI skills by plant managers may be offset by access to Al skills by other
employees, such as engineers. We address this concern to a large extent by directly controlling for
the percent of workers at the plant with a formal Bachelor’s degree. Use of structured management
practices is also controlled for (Bloom et al., 2019). For these reasons, we assume that an in-house,
Al-specific skills gap will increase the costs of Al adoption while being conditionally uncorrelated
with the overall performance of the plant. In addition, we follow Angrist and Pischke (2009)) and
evaluate the plausibility of the exclusion restriction by showing, for a subset of establishments with
“zero first-stage” effects, that reduced-form estimates exhibit zero effects as expected.

Since exclusion restrictions in IV estimation can never be directly tested, we leverage a third
identification strategy based on the ABS—-CMF panel data. Specifically, as documented by McEl-
heran et al. (2024)), AT adoption by U.S. firms by 2017 was very low. Maintaining the assumption
that AT adoption as of 2012 (the closest year for the full Census of Manufactures, which maximizes
our balanced panel sample) was essentially nonexistenﬂ allows us to estimate regressions of the
form

yro =B Al + Criy+ Dy + gy (2)

29With ImageNet achieving an error rate of 5% narrowly beating the average human error rate of 5.1%
21This identifying assumption is similar in spirit to that used by Forman et al. (2012) and Forman and McElheran
(2025) to study the impact of the commercial internet in the 1990s.
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where f is a manufacturing firm, ¢ indicates different years (2012 and 2017), and D denotes
a full set of firm fixed effects. We thus use within-firm changes to control for permanent or slowly
changing unobservable confounders. As before, we use firm productivity (labor productivity and
TFP) to measure value creation and profits to measure value captured.

It is useful to remember that first difference approaches like (2) will exacerbate attenuation bias
of coefficients towards zero as a result of “over-differencing” (Angrist and Pischke, 2009), so, setting
aside potential upward bias due to selection (which is unaddressed in this approach), we expect
the estimates for this specification to be smaller in magnitude compared to the IV estimates, as IV

automatically corrects for classical measurement error.

5 Results

5.1 Correlates of AI Use

In this section we examine the variables that help predict Al adoption in our MOPS-ASM sample.
Controlling for size, which is a well-established correlate of AI uptake (McElheran et al., 2024;
Calvino and Fontanelli, 2023), industry (at the 3-digit NAICS level), multi-unit and headquarters
status of the plant, production-process design, and the prevalence of bachelor’s degrees among

employees, there remains a great deal of heterogeneity in Al adoption among U.S. manufacturers.

5.1.1 Other Technologies

The first two rows in Table 2| demonstrate that Al is distinct from and co-varies with the presence
of other digital technologies. The descriptive analytics index, DS, is negatively correlated with Al
use, consistent with substitution between Al and less-sophisticated uses of digital information such
as summary statistics and descriptive dashboards. In contrast, the index of predictive analytics,
PA, is positive and significantly related to Al use. However, the overlap between Al and PA is
far from perfect. Quantitatively, a standard-deviation increase in the PA index is only associated
with a 0.39 standard deviation increase in the Al index. These results underscore the importance
of disentangling different digital technologies from each other and taking a nuanced approach to
understanding their interactions with each other and the broader organizational context.

The next two rows in Table [2 document the correlation between IT infrastructure and Al use.
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The data allow us to separate I'T infrastructure into on-premises I'T equipment, such as computers
and servers, and cloud computing, which have been shown to differently affect the surviavl and
productivity of firms of different ages (Jin and McElheran, |2024)). The results across specifications
indicate that AI use is systematically correlated with cloud computing but not with on-premises
IT capital, consistent with potential benefits of cloud-connected Al systems hypothesized by Pratt

(2015) and the technological interdependencies conjectured in McElheran et al. (2024).

5.2 Organizational Complements

A key test for complementarity between technology and organizational characteristics (Milgrom
and Roberts| [1990) is the “correlation test” for co-adoption of technology and key organizational
features (Brynjolfsson and Milgrom, 2013; Brynjolfsson et al., 2021a). The next rows in Table
provide insights along these lines.

Rows 5 and 6 provide nuanced insight into how structured management practices may affect Al
adoption. We find a positive relationship only with process-focused Lean management practices.
Plants with greater managerial attention to key performance indicators, production targets, and
other practices related to monitoring and managing production activities report a higher Al index.
In contrast, structured people-focused management practices are negatively associated with Al use.
Tying compensation to production targets, promoting employees primarily based on performance
(rather than tenure) and quickly firing or re-assigning under-performing workers is associated with
less AT uptake. This is controlling for unionization, which correlates positively with AT use (see
row 7 of Table .

Other organizational interactions are less surprising (and thus exact estimates are not dis-
closed as of this writing). Age is negatively correlated with Al use, although the coefficient is
only statistically significant in the richer specification in column 3 (row 8). Al use is also more
prevalent alongside greater (non-IT) capital investment (column 3, row 9). This is worth noting
as capital stocks are often missing or mismeasured in standard data sets (e.g., Bryzgalova et al.,
2025)). Statistically, this will cause unobserved returns to capital equipment to load onto correlated
observables—which we show here includes Al—potentially biasing upward the estimated returns

to Al use (more on this, below).
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5.3 Potential for Reverse Causality

While examining potential drivers of Al use, we can probe how earlier plant performance is condi-
tionally associated with 2021 Al usage. Columns 4 and 5 of Table [2] document that prior growth
(change in value-added from 2019 to 2021) and 2019 labor productivity are either insignificantly or
negatively correlated with Al use. This runs counter to standard concerns in productivity studies
(i.e., that reverse causality would lead to a positive correlation between Al use and performance;

see, e.g., [Brynjolfsson and Hitt, [2000).

5.4 IV Relevance

A key question for this analysis is the relevance of the instrumental variable. Based on the im-
portance of “lack Al expertise” as a reported barrier to Al adoption in panel D of Table [I we
reverse-code this question to construct an indicator equal to one if “lack of Al expertise” is not
reported to be a barrier. As the final row of Table [2|shows, this proposed instrument significantly
and robustly predicts more intensive Al adoption. Plants where a lack of Al expertise at their
establishments is not flagged have slightly over 8% higher AI usage, on average, conditioning on a

wide range of other factors.

5.5 Al Use is Associated with Initial Performance Losses
5.5.1 OLS Estimates in the 2021 MOPS

We turn next to systematically exploring the relationship between Al use and performance. Panel
A of Table [3] provides a cumulative regression build of OLS regressions of value added on AI and
increasingly rich sets of controls to examine near-term plant performance in the 2021 MOPS data.
The first column indicates that, absent other controls, Al adoption appears significantly correlated
with (log) value added, even controlling for the presence of other data-intensive analytics tools (DS
and PA). This continues to be true when we control for IT infrastructure in column (2). However,
once we control for size and industry in column (3), along with multi-unit status and energy ex-
penditure, the precision of the estimate improves while its magnitude falls to point of statistical
insignificance. Columns (4) and (5) add controls for structured management practices and other

organizational characteristics including plant age, resulting in a negative yet statistically insignif-

25



icant correlation between Al use and labor productivity. Finally, adding capital stock controls in
column (5) allows us to analyze whether more Al-intensive plants tend to have higher or lower total
factor productivity (TFP). Here, the negative coefficient is much larger and statistically significant
at the five-percent level., indicating that plants with a standard-deviation higher AI index tend
to be 1.33% less productive. The conditional correlation between AI use and profits is small and
noisy in a similar specification (column 7).

A common concern regarding OLS performance estimates is the potential for bias due to se-
lection bias or plant-level unobservables. Typically, the concern is that larger, better-managed
firms with richer organizational complements will be both more likely to adopt a new technology
and more likely to gain from its use. This is often referred to as “selection on gains” in related
technology and economics studies (e.g.,(Bloom and Van Reenen) [2007)). It should be noted that
in our context this concern will bias the results against finding a negative effect of Industrial Al
adoption. One might therefore expect that well-identified causal effects may exhibit much more

negative productivity effects of Al adoption.

5.6 IV Results

Next we employ quasi-experimental methods to address common endogeneity concerns regarding
OLS estimation. Before turning to these results, it is important to underscore that a hypothetical
natural experiment “treating” firms randomly with Al technologies would not necessarily yield a
realistic estimate of the average treatment effect (ATE) of Al on performance, due to the importance
of adjustment and co-invention in realizing gains from transformative technologies (Bresnahan and
Greenstein, (1996 Bresnahan et al., 2002)), leading to large treatment effect heterogeneity (Angrist
et al., 1996).

Our aim in developing a novel IV strategy is not to derive definitive “causal” estimates, but
rather to add to a collage of evidence depicting the heterogeneous impacts of early Al use in indus-
trial production. These results are best interpreted as the local average treatment effect (LATE) of
AT use among firms that had a greater propensity to adopt Al early for reason conditionally unre-
lated to anticipated gains. This section discusses these estimates along with a number of tests of the
identifying assumptions underlying the approach and exploration of key drivers of heterogeneity.

The first column of Panel B in Table [3| reprises findings in Table 2 that the instrument of “no
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lack of Al expertise” is indeed relevant. Columns (2) and (3) report second-stage IV results, with
column (2) estimating the impact of a one standard deviation higher Al index on labor productivity
while column (3) estimates the impact on TFP (i.e., revenues controlling for production inputs
including capital stock). The estimated effects are quantitatively very large. Focusing on TFP,
column (3) indicates that a one standard deviation increase in AI reduces TFP by roughly 44%
(—0.44 = exp{—0.587} —1). Although these effects are substantially larger than the OLS coefficient
reported in column (6) of Panel A, these effects should be interpreted with a few things in mind.

First, selection on gains would predict that firms with a high correlation between productivity
and Al adoption will not be sensitive to the instrument (” Always Takers” in the treatment effects
terminology, e.g., [Angrist et al., [1996; Angrist and Pischke] 2009), so this approach plausibly
strips out the firms with the highest returns to AI use. Second, OLS is well known to suffer
from attenuation bias when classical measurement error is sizable, which is both likely in the
context of fast-changing AI technologies (i.e., they are inherently hard to define and measure) and
addressed by IV estimation. Third, the quantitative implications of our IV results on TFP may be
usefully situated in prior research on productivity drivers in firms. One reference for well-estimated
causal effects on productivity concerns the adoption of structured management on establishment
TFP from a field experiment in Indian manufacturing from Bloom et al. (2013). They suggest
that a one standard deviation higher structured management score increases plant TFP by 60%
(0.59 = exp{0.49} — 1). These productivity effects are of the same order of magnitude as the
negative TFP effects estimated here. This sheds important light on the experience of an important
subset of firms that were early adopters of Al for conditionally uncorrelated reasons.

Column (7) of Panel A and column (4) of Panel B in Table (1| report the relationship of Al
adoption and profits. Although positive and quantitatively small in OLS, our IV estimates suggest
that a one standard deviation more AI use causes a loss of about $11 million for the average
manufacturing establishment in our sample. Given very similar average profits in the estimation
sample (see Table 1, Panel A), this is a quantitatively important magnitude and underscores the

short-term risks of industrial AI adoption.
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5.6.1 IV Robustness

All econometric identification strategies embed tradeoffs, and the central concern of any IV analysis
is whether failure of the exclusion restriction could bias the estimates. For example, the early timing
of adoption notwithstanding, one could worry that lack of AI expertise within the plant leading
up to adoption by 2021 could indicate of a broader lack of operational capability (again, despite
our direct controls for management practices and employee education), which could directly reduce
establishment productivity. In this case, establishments with no lack of Al expertise should directly
demonstrate higher productivity than those reporting such a barrier. However, as the first column
of Panel A in Table 4| shows, the opposite appears (and is statistically significant) when we regress
labor productivity directly on the instrument.

A related selection-based bias could arise if the response of “no lack of Al expertise” were
indicative of plant managers who expect disproportionate gains from Al If true, this would imply
that respondents that instead reported “Al is widely used” in the same question block should
exhibit systematically higher Al-related productivity. We therefore use the response “Al is widely
used” as a placebo instrument, for which we report the first stage in the second column of Panel A
in Table[dl As expected, this response is strongly positively correlated with AT use in the first stage.
However, as column (3) shows, the second stage effect is statistically indistinguishable from zero,
albeit positive. This is consistent with plants led by managers who expect higher returns to Al being
more likely to adopt in the first place. However, they cannot rule out that the realized costs exceed
anticipated gains, at least in the short term. Stories of big Al and automation implementations
needing to be reversed due to unanticipated performance problems are an increasing feature of
recent news cycle@ Note, further, that the sign and significance of the placebo effects differ from
our main IV results, ruling out a mechanical relationship driven by this “barriers” question block.

To further probe the plausibility of the exclusion restriction, we follow Angrist and Pischke
(2009)) in using a “zero first stage” approach. For this, we require a subsample of plants for

which no lack of AI expertise nevertheless fails to lead to more AI adoption. In other words,

228wedish firm Klarna made headlines for replacing large numbers of employees with AI chatbots, only to have
to hire them back because of low quality results (https://www.techradar.com/pro/over-half-of-uk-businesses-who-
replaced-workers-with-ai-regret-their-decision). Tesla also famously confirmed that challenges associated with au-
tomation hindered vital Model 3 production, echoing earlier challenges with automation in car manufacturing
(https://www.igsdirectory.com/resources/teslas-big-problem-excessive-automation.html).
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in such a subsample, the instrument is irrelevant to being treated. If the exclusion restriction
holds, one should then observe no correlation between the eventual performance outcome and the
instrument, since the exclusion restriction requires that the instrument only impact performance
via the treatment (in our case, Al use). There are good theoretical reasons to believe that the IV
is irrelevant for at least two particular subsamples of manufacturing establishments.

The first is “job shops,” which flexibly make a variety of made-to-order products in small batches
or even one-off prototypes. Products and production parameters will typically vary widely from
order to order. In this high-mix, low-volume context (Hayes and Wheelwright, |1979), uncertainty
is high by design. An AI technology such as machine vision will typically not have enough data or
repeated use cases to train and leverage prediction algorithms. Previous work on the use of predic-
tive analytics found a similar constraint on prediction’s benefits in these production environments
(Brynjolfsson et al., [2021a)).

The second subsample is single-unit (SU) establishments. Systmatically smaller than multi-unit
plants, they will be less likely to adopt Al systems due to lack of scale (Svanberg et al. 2024).

For both of these subsamples, we find that the instrument fails as predicted in the first stage,
as documented in columns (1) and (3) of panel B of Table {4l Importantly, not only are the IV first
stages for the subsamples statistically insignificant, they exhibit opposite signs compared to the first
stage in column (1) of Panel B in Table 3| Further, in each of these cases, the reduced-form labor
productivity regressions (columns (2) and (4) of panel B) show a quantitatively small, statistically
insignificant, and negative relationship between AI use and. This is exactly the result one would

expect if the IV exclusion restriction holds.

5.6.2 Understanding LATE

Given the large magnitude of the IV estimate, we are interested in better understanding treatment
heterogeneity and how broadly we should extrapolate from the local average treatment effect, or
LATE (Angrist and Pischke, [2009). First, we explore heterogeneity based on exogenous organi-
zational characteristics. Consistent with prior work linking I'T performance to product mix and
volume (McElheran and Jin, 2020)), we find that the IV estimates vary across production designs.
Specifically, Al-related productivity is higher in continuous-flow plants, where production mix fo-

cuses on few products in service of higher volume. Plants with this type of stable (i.e., predictable)
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production exhibit less of a J-curve dip (Column 2, Panel A of Table . This lends indirect support
to the exclusion restriction, as these plants tend to be relatively capital-intensive, more-intensively
managed, and relatively higher-productivity than other plant types (McElheran et al. 2019). It
further underscores the fit of Al for prediction-friendly production environments, as discussed in
section 2.1.3.

In contrast, older establishments show a more-pronounced negative LATE (Column 3, panel
A, Table , consistent with our discussion in section 2.4. We return to the challenges of older
businesses, below.

To understand what types of plants are sensitive to the instrument and therefore driving the
IV results (the “Compliers” if we had a binary treatment, per |Angrist et al., 1996)), in panel B of
we report the odds ratio for various firm characteristics among the population of plants for which
“no skills gap” is associated with being above the median Al-index. These plants, which represent
about 3% of the analysis sample (recalling the low average adoption rates) should be thought of
as the “marginal” adopters: they would not adopt Industrial Al, “but-for” plant managers’ view
of no Al-related skills gap. To better understand marginal Al adopters conceptually and interpret
our results, it is useful to contrast Compliers with two other groups of establishments, following the
logic of /Angrist et al.| (1996). On the one hand, ” Always Takers” are infra-marginal establishments
whose perceived net benefits of Al adoption are so high that they would adopt this technology,
irrespective of whether they happen to have sufficient Al expertise right now. In other words, they
are willing to incur the additional costs of acquiring the necessary skills if needed. In terms of
observable characteristics, we would expect Always Takers to have the digital inputs and cloud
computing infrastructure previously found to be associated with AI use (Goldfarb et al.l 2023}
Calvino and Fontanelli, 2023; McElheran et all |2024)). We further would expect them to benefit
from the scale-effects of digital technologies (Giustiziero et al. 2023), exemplified by being part
of large multi-unit firms, by using e-commerce to ship their goods nation-wide, or by deploying
AT technologies at their headquarters (HQ) to coordinate other production units. The adjustment
costs might further be lower at HQ, all else equal, if proximity to firm leadership and managerial
capabilities is greater in these locations.

On the other hand, “Never Takers” are least likely to adopt Industrial Al—even if they happen

to have sufficient Al expertise—due to insufficient anticipated net benefits. Empirically, we would
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expect them to be the opposite of Always Takers: not digitalized, not reliant on cloud computing,
not using e-commerce, single-unit in structure or, if not, located away from HQ within multi-
establishment firms.

As a result of this characterization of Never Takers and Always Takers, Compliers should
be between these extremes: they will demonstrate some characteristics of Always Takers while
resembling Never Takers on other dimensions. Panel B of |5 shows exactly this. More like Always
Takers, Compliers are 33% more likely than the average plant to ship all their goods through e-
commerce, 23% more likely to exhibit above-median cloud use, and 42% more likely to be part of
a mult-unit firm. At the same time, Compliers are similar to Never Takers on the dimensions of
digitalization and headquarters status. They are 60% less likely to be highly digitalized than the
average plant and 48% less likely to be co-located with HQ.

Our empirical profiling of Complier plants can help to shed light on why the LATE from our
IV analysis is so negative. Specifically, despite these plants exhibiting characteristics that make
them likely to eventually benefit from Industrial Al adoption (such as multi-unit status), being
less-advanced in their digitization journey likely diminishes the quantity and/or quality of training
data to hand, leading to worse short-term performance. The lower likelihood of being co-located
with HQ may further represent uncertainty about the system-wide benefits or lack of organizational
support, again negatively impacting short-term returns to Al use above and beyond the average

adjustment costs observed in the broader population.

5.7 Within-Business Changes

Despite the plausibility of our IV exclusion restriction, exclusion restrictions can never be conclu-
sively tested unless the instrument is generated by an actual randomized controlled trial (RCT). We
therefore pursue yet another identification strategy to triangulate on the causal effects of Al use on
business performance. Leveraging the panel structure of the ABS-CMF data, we estimate equation
(2) with either plant or firm fixed effects to control for time-invariant organizational confounders.

The first three columns of Panel A in Table [6] show that more-intensive AI adoption between
2012 and 2017 is associated with declining sales, lower TFP, and lower profits. The magnitudes of
these effects are all an order of magnitude smaller than effects estimated via IV. This is unsurprising,

since any type of classical measurement error (discussed above) will be magnified in simple first-
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difference estimators, attenuating their magnitude compared to the IV results. In addition, this
approach “over-controls” for slow-moving organizational characteristics such as those discussed in
the complier analysis, above. Finally, the effect reflects more time for adjustment among any plants
that adopted early in the five-year window. While we do not directly estimate how long it takes for
the J-curve to reverse direction or net out, overall, some improvement amongst survivors in this
more medium-term analysis is to be expected.

Those caveats aside, the sign of the effects is consistent with both the OLS estimates and the
IV estimates from the MOPS—-ASM data. Al adoption is associated, again, with short-term within-
firm productivity declines. In these analyses, the magnitude of a one standard deviation higher Al
use comes with a performance loss of around 2% (—0.019 = exp{—0.02} — 1).

The panel data also allow us to investigate the dynamic patterns predicted by the J-curve theory,
expressed in section 2.2. Specifically, we can analyze the longer-term growth and performance
outcomes of manufacturing firms as a function of their Al use in 2017. For this, we track growth in
terms of employment, sales, and labor productivity in the Longitudinal Business Database (LBD)
from 2017 to 2021.

Columns (1) to (3) in Panel B of Table |§| show growth in employment, sales, and labor pro-
ductivity to be significantly higher for manufacturing firms that deployed AI in production (the
ABS definition of adoption) by 2017 and persisted in our sample through 2021. These positive
growth effects are consistent with section 2.2 (and J-curve arguments more generally), that ini-
tial performance losses should be considered investments in co-investment and intangible capital
accumulation that yield returns in the longer run.

Columns (5)—(7) of Panel B in Table [3| report additional IV estimates that reinforce this adjust-
ment explanation and deepen our understanding of the causal effect. Motivating the specification
in column (5) is recognition of how important “Lean” production has become in U.S. manufac-
turing (e.g., Womack at al. 2007), as discussed in Section 2. Key characteristics of Lean include
purposefully driving down inventory in the production process so as to make problems and de-
fects more visible, to force responsiveness to process exceptions, and to improve (shorten) the lead
times and inventory carrying costs of the entire system (e.g., Holweg 2007). It also tends to be a
very “pull-based” and often low-tech approach to operating a production process, focused more on

responsiveness to demand and preventing defects than buffering for them (Milgrom and Roberts,
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1988). As such it is arguably not a straightforward fit for more-digitized methods associated with
sophisticated prediction, make-to-forecast, and ultimately Al. Disrupting established “analog” pro-
cesses rooted in the Lean tradition should therefore become visible in other metrics such as inventory
levels and carrying costs. We find empirical evidence consistent with this in column (5) of Panel B
in Table [3] which shows that WIP systematically increases in response to Al adoption.

Another consideration is that Al systems might be replacing manual, human-led activities with
physical automation. If this is the case, then early adjustment should also manifest as increased
investment in production capital—especially industrial robots. Robot use and reliance on Al in
production have been correlated in prior work McElheran et al.l 2024), but the timing of adoption
and causality remain poorly understood. Column (6) of Panel B in Table shows that the number of
active and purchased industrial robots increases as a result of Al adoption. Again, this is consistent
with significant co-invention in production processes due to moving to reliance on Al.

Finally, Al use causes the number of workers to decline, as shown in column (7) of Panel B in
Table |3} While this is, at first glance, consistent with substitution of human labor with automation
(Autor and Salomons, 2018), it is a short-term result that must be interpreted in the context of
employment growth over time. We do not observe which workers are shed, nor which ones contribute
to employment growth over time. We note, however, that this pattern is consistent with a need to

shuffle labor inputs as businesses shed prior practices and reconfigure their operating systems.

5.8 The Role of Business Strategy

In this section we investigate what firm characteristics might impact how AI shapes competition.
We first begin with generic business strategies. Following section 2.3, we expect that the strategic
decisions of how firms pursue growth matter for the initial performance decline of their J-curve.
Column (4) of Panel A in Table |§| yields results consistent with this hypothesis. Specifically,
firms with more strategic emphasis on growth through market expansion and innovation (“new
markets strategy”) tend to exhibit significantly lower initial productivity losses as seen in the
positive and significant interaction term. This result is consistent with early benefits from scale
economies helping to reduce initial foregone output from adopting Al. At the same time, pursuing
scale through cost leadership does not work as well, as shown by corresponding interaction term

in column (4) of Panel A in Table @ Although we do not find statistically significant results, the
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negative sign of this effect is consistent with the view that growth through cost leadership still
implies demand-side dis-economies of scale, which limit how much firms can avoid initial J-curve
losses from foregone output.

We now move to the tests of our predictions from section 2.2, which predicts that old firms will
exhibit greater performance losses from Al adoption because they disproportionately lose produc-
tivity benefits from prior accumulated experience.

Results in Panel A of Table [f| confirm this intuition. Column (5) of Panel A shows that after
controlling for the interaction of firm age and AI adoption, the main effect of Al adoption on
productivity is actually positive and statistically significant. The last two columns of Panel B
in Table [6] build on this analysis and estimate growth outcomes from 2017 to 2021 in the LBD
as a function of Al adoption and firm age. These estimates show that older firms systematically
benefit less in the wake of Al adoption and that once the interaction of Al adoption and firm
age is controlled for, other firms also gain substantially more in terms of sales growth and labor

productivity.

5.9 Mechanisms

In this section we dig into the specific channels underlying the age effects documented in the last

section as well as the implications of Al as a scale-free resource within large multi-unit firms.

5.9.1 What is Driving Age Effects of Al Adoption?

We begin by documenting that age effects documented for the ASM—CMF data are indeed also
present in the MOPS—-ASM data. For purposes of this analysis, we define old establishments as
establishments that are at least 25 years old, with the average plant age being almost 29 as shown
in Table [

The first two columns of Panel A in Table [7| show that the negative effects of Al adoption
on labor productivity (in column 1) and TFP (in column 2) are either substantially larger in old
establishments, or even completely driven by old establishments.

We then move to exploit a key strength of the MOPS data to investigate whether Al adoption
causes a change of structured management practices. Column (1) of Panel B in Table [7| shows that

more intensive Al adoption causes a de-adoption of structured management practices, concentrated

34



in old establishments. Quantitative magnitudes of the de-adoption of structured management are
large: estimates from column (1) of Panel B in Table [7|imply that a one standard deviation in AI
intensity reduces structured management by 0.83 standard deviations. This result is meaningful in
at least two ways. First, de-adoption of structured management practices is likely to have a direct
effect by reducing the quality of management. Second, de-adoption of structured management
practices is indicative of a broader loss of production experience/know-how and “organizational
capital” (Levitt et al. 2012) as argued in section 2.5.

To quantify the direct productivity effect of the de-adoption of structured management, we can
combine the estimate of column (3) with estimates of the causal effect of structured management
on TFP from Bloom et al. 2013. Doing so results in an estimated TFP loss of 32% (—0.32 =
exp{—0.83 x 0.477)} — 1) at old establishments. Alternatively, one can use the OLS regression
estimates of TFP on structured management by Bloom et al.| (2019) of 0.209 in combination with
the finding in that paper that classical measurement error attenuates the OLS coefficient by 1/2
to obtain a measurement error corrected coefficient of 0.418(= 0.209 x 2), which then implies a
productivity loss of 29% (0.29 = exp{—0.83 x 0.418} —1). These TFP losses should be compared to
the TFP effects at old establishments shown in column (2) of Table which indicate a 68% TFP loss
(0.68 = exp{—1.133} —1). In both cases, this mechanism alone can explain roughly half (32%/68%)
of the TFP loss from Al adoption in column (2) of Panel A in Table [7| for old establishments.
Another way to restate this result is that the residual loss of experience/organizational capital
could potentially explain up to half of the measured TFP loss due to Al adoption.

Additionally, the MOPS data allows us to more fully understand which of the structured man-
agement practices are affected in particular. Indeed, columns (2) —(4) of Panel B in Table [7] show
that the de-adoption is driven by production monitoring and targeting practices and especially by
de-adoption of “KPI reviews by non-managerial employees” and the degree of “Target awareness
across employees,” which is higher the more non-managerial employees are typically aware of pro-
duction targets. These results are consistent with old establishments removing operations practices
that previously helped them to utilize frontline employee knowledge (section 2.5). This is also
consistent with the results from the last two columns of Panel A in Table[7] which show that more
intensive Al adoption causes reduction in employee wages and overall workforce, consistent with

the replacement of frontline employees with industrial Al systems such as predictive maintenance

35



and Al-enabled industrial robots.

5.9.2 Within-Firm Spillover Benefits of Al Adoption

Section 2.6 suggests large multi-unit establishments might mitigate some of the direct losses from
AT adoption by indirectly benefiting from positive spillovers across establishments within the same
firm. We investigate this mechanism by deriving a second instrument from our first for multi-unit
firms. Specifically, we construct an Al measure for Al adopted at other establishments of the same
firm and call it “elsewhere Al index” (EAI). This EAI index increases with the average Al index for
other establishments within the same firm, excluding the focal one. In other words, it is a “leave
out mean” Al index with the mean being calculated across all establishments belonging to the same
firm as the focal establishment but excluding the focal establishment. We then use the number of
plants outside the focal plant but inside the same firm which reported no lack of Al expertise as
instrument for EATL.

Columns (1) and (2) of Panel C in Table [7] shows that the system of equations of two IV first
stages confirm that both instruments are relevant. Column (3) of Panel C in Table [7| shows that
the causal effect of Al adoption at the focal plant is still negative, but that Al adoption at other

plants within the same firm has a positive and sizable causal effect.

6 Conclusion

This paper examined the performance impact of Al on U.S. manufacturing over different time
horizons and across diverse organizational settings. Using two distinct but related datasets on
tens of thousands of establishments and firms, we document three key findings. First, early indus-
trial Al adoption in U.S. manufacturing robustly causes statistically and economically significant
productivity losses in the short run. Second, however, we find evidence for recovery and growth
in the longer run. Together these findings are consistent with J-curve mechanisms that have not
heretofore been established at the micro-level.

Last but not least, we unpack heterogeneity in these effects and their implications for compet-
itive dynamics. Productivity losses are driven by old establishments and old firms. This suggests

that industrial AI adoption does not favor incumbents over entrants, at least not in our context
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of industrial Al in U.S. manufacturing. In addition, we find that growth-oriented startups benefit
disproportionately, suggesting that Industrial Al use may tend to promote “creative destruction”
in the sector, as Al diffuses. Further, we provide direct evidence on the quantitative importance
of a particular causal mechanism leading to the Al-related decline in establishment productivity:
the displacement of structured management practices (Bloom et al. 2012; Bloom et al. 2019) and
obliteration of knowledge management systems combining worker feedback and structured practices
(Grant, 1996; Levitt et al. 2012). The labor shedding we observe is likely linked to this adjustment
process, which also manifests in WIP and increased robot investment

Our empirical analysis has several limitations that constitute opportunities for future research.
The first is that industrial Al diffusion remains in its early stages. As Al matures as a technology
or co-invention know-how also diffuses, productivity losses from initial adoption might be better
balanced by productivity gains. Further, our estimates of dynamic effects are not as well-identified
as the baseline short-term losses and probably suffer from some remaining (upward) selection bias.
So, the long-term effects could be less rosy than portrayed in these estimates. It will be useful to
continue gathering empirical evidence on this question as Al-related technologies continue to evolve
and diffuse.

A second limitation of this study is the focus on (U.S.) manufacturing. This focus on a given
industry context allows us to better understand and interpret the results. But if Al is really a
GPT, then it will be widely adopted across many different industries and sectors of the economy.
Future work should therefore continue to explore other business contexts to better understand and
evaluate the effects of Al on productivity and workers across the economy.

Finally, more work is needed on the specific uses to which Al-related technologies are being
put by firms. The low baseline adoption, combined with Census’ disclosure avoidance rules pre-
vents us from providing more-granular breakdowns of Al use and potentially differing performance
implications. Yet a hallmark of GPTs is their broad applicability. Better understanding specific
applications of Al in specific contexts is needed to understand other dimensions of heterogeneity,

trace dynamics, and “flatten” the curve for more organizations and industries.
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Table 1: Summary Statistics

(1) (2)
Mean Std. Dev.

Panel A: Establishment Characteristics (MOPS-ASM)

Number of employees 171.5 263.4
Age of establishment 28.54 14.23
Percentage of shipments through e-commerce 62% 42%
Number of active and purchased industrial robots 1.73 6.96
Establishment-level profits (in thousands) 11,000 16,000
Change in work-in-progress inventory (in thousands) 445 6370

Panel B: Firm Characteristics (ABS-CMF)

Number of employees 344.3 7,678
Age of firm 24.85 12.59
Percentage of shipments through e-commerce 23.5% 37.7%
Establishment-level profits (in thousands) 19,500 42,000
Early adopters 7.5% 9.1%

Panel C: AI Adoption (MOPS-ASM)

Any Al 22.8% 41.9%
Any technical AI application 12.6% 33.2%
Production using Al 8.0% 20.4%
Production using technical Al applications 2.3% 9.1%

Panel D: Barriers to AT Adoption (MOPS-ASM)

No applications or business use cases 28.4% 45.1%
Regulation uncertainty 1.0% 10.1%
No expertise 12.3% 32.8%
Cost 43.2% 49.5%
Employee attitudes 9.4% 29.2%
No barriers 5.5% 22.9%

Panel E: Other Digital Technologies (MOPS-ASM)

Any predictive analytics 64.6% 47.8%
Any descriptive statistics 72.8% 44.5%
Any digitalized data 91.0% 28.6%
Expenditures on cloud computing (in thousands) 7.63 33.21

Notes: Panel A is using the MOPS—ASM sample and is comprised of roughly 28,500 manufacturing establishments.
Panel B is using the ABS-CMF data and consists of roughly 55,000 manufacturing firms. Panels C, D, and E
report weighted summary statistics based on data from the MOPS—ASM, combined with sample weights that make
estimates representative for roughly 300,000 manufacturing establishments in the U.S. The Al, descriptive statistics,
and predictive analytics indices are normalized, with zero mean and unit standard deviation, which is why we do not
report summary statistics for these indices here.
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Table 2: Correlates of Al Use by U.S. Manufacturers
MOPS—ASM: Establishment-level

(1) (2) (3) (4) (5)
DS Index -0.0504***  -0.0506*%**  -0.0526*** -0.0506%**** -0.0502***
(0.0177)  (0.0177)  (0.0177) (0.0177) (0.0176)
PA Index 0.386*** 0.385%*** 0.385%*** 0.385%** 0.385%**
(0.0119)  (0.0119)  (0.0118) (0.0119) (0.0119)
Log IT Capital -0.0007 -0.0006 -0.0047 -0.0006 -0.0002
(0.0032)  (0.0032)  (0.0033) (0.0032) (0.0032)
Log Cloud Expense 0.0116** 0.0117** 0.0117** 0.0117** 0.0119**
(0.0049)  (0.0049)  (0.0049) (0.0049) (0.0049)
Structured Mgmt - Process ~ 0.0433%**  (0.0434***  (0.0407*** 0.0434*** 0.0440%***
(0.0092)  (0.0092)  (0.0091) (0.0092) (0.0093)
Structured Mgmt - HR -0.0283*F*F  _0.0287***  -0.0281*F**  -0.0288%F*F  -0.0294***
(0.0072)  (0.0072)  (0.0072) (0.0072) (0.0071)
Union 0.0771** 0.0813** 0.0755%* 0.0812** 0.0826**
(0.0363)  (0.0363)  (0.0361) (0.0363) (0.0362)
Plant Age 0 () ) )
Log Capital (H)x*
VA Growth 2019-2021 -0.0013 -0.0060
(0.0077) (0.0085)
Log Labor Prod. 2019 -1.521%*
(0.894)
No lack of Al expertise (IV)  0.0827***  0.0824***  0.0840*** 0.0824***  (.0818***
(0.0174)  (0.0174)  (0.0175) (0.0174) (0.0174)
Additional Controls: Size, Industry, Skill, Plant Type, MU, Energy, HQ

Notes: Al Index (the dependent variable) measures adoption of applications of Al in business functions or adoption
of specific Al technologies, with the index being normalized to have zero mean and unit standard deviation. DS index
measures use of descriptive statistics in decision making with the index being normalized to have zero mean and unit
standard deviation. PA index measures use of prediction algorithms across six business functions with index being
normalized to have zero mean and unit standard deviation. Other variables include log IT capital (accumulated IT
equipment expenses in the past 3 years), logged expenditure on cloud computing (from the MOPS), an indicator that
AT skills were not mentioned as a barrier to Al adoption; an index of “structured management-process” practices
focused on production monitoring and target setting (Bloom et al., 2019), an index of “structured management —
HR” related to incentives and promotion practices (Bloom et al., 2019; |Cornwell et al.| [2021]), extent of unionization,
plant age (from the LBD), and logged capital stock calculated using the perpetual inventory method, value added
growth from 2019-2021 and log labor productivity in 2019. Unreported controls include Size (logged employment),
Industry (3-digit NAICS fixed effects), Skill (percentage of employees with BA degrees), Plant Type (production-
process design), MU (multi-unit status), Energy (logged energy expenditure), and HQ (indicator that headquarters
for the firm is co-located). Standard errors are clustered at the firm level and reported in parentheses.

Statistical significance: *** p<0.01, ** p<0.05, * p<0.1

39



Table 3: Performance Regressions of Al Adoption
MOPS—ASM: Establishment-level

Panel A: OLS
Log Value Added (VA) Profits
(1) (2) (3) (4) (5) (6) (7)
Al Index 0.097***  0.078%** 0.006 -0.004 -0.003 -0.013** 81.63
(0.014) (0.013) (0.007) (0.007) (0.007) (0.007) (130.3)
DS Index 0.559%*%*  0.451%%F  0.077***  0.031%** 0.032%** 0.015* 7.42
(0.014) (0.014) (0.008) (0.009) (0.009) (0.009) (113.8)
PA Index 0.063***  0.054%** 0.008 -0.002 -0.0009 -0.002 -39.46
(0.013) (0.012) (0.007) (0.007) (0.007) (0.007) (107.2)
Controls:
IT Capital and Cloud No Yes Yes Yes Yes Yes Yes
Size & Energy & MU Status No No Yes Yes Yes Yes Yes
Skill, Structured Mgmt,
Plant Type, HQ, &gUnionization No No No Yes Yes Yes Yes
Plant Age No No No No Yes Yes Yes
Capital Stock No No No No No Yes No
Industry No No Yes Yes Yes Yes Yes
Panel B: IV
Change in WIP  Log # of Log
Al Index Log Value Added Profits Inventory Robots  Employment
(1) (2) LP _ (3) TFP (4) (5) (6) (7)
No lack of AT expertise 0.0827***
(0.0174)
AT Index -0.775%*% - 0.587*F  -11,300%*** 2,900%* 0.412%* -0.555%*
(0.271)  (0.230) (4,110) (1,408) (0.184) (0.243)
DS Index -0.050%** -0.007 -0.015 -565%* 111 0.039%** 0.087#**
(0.018) (0.020) (0.017) (271) (103) (0.0125) (0.0166)
PA Index 0.386***  0.297FFF  (0.219** 4339%** -1202%* -0.155%* 0.238**
(0.012)  (0.104)  (0.089) (1585) (545.8) (0.0710)  (0.0943)
Additional Controls See table notes

Notes: Al Index (the dependent variable) measures adoption of applications of AI in business functions or adoption of specific
AT technologies, with the index being normalized to have zero mean and unit standard deviation. DS index measures use
of descriptive statistics in decision making with the index being normalized to have zero mean and unit standard deviation.
PA index measures use to prediction algorithms across six business functions with index being normalized to have zero mean
and unit standard deviation. Panel A: As indicated by the with control variable listings, control variables may include:
accumulated capitalized IT equipment expenditures over the prior 3 years; expenditures on Cloud computing; size in terms of
logged employment; log energy expenses; indicator of multi-unit status; worker skill in terms of the percentage of employee with
a BA degree; indexes of structured management practices, for both process and HR separately (see Bloom et al. 2019); a plant
type variable capturing production strategy (0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow
or cellular manufacturing); percentage of unionized employees; logged plant age from the LBD; logged capital stock; industry
at the 3-digit NAICS level. Column 6 includes an indicator for missing data on non-IT capital to stablize the sample size.
Panel B: All columns include all control variables from column 5 of Panel A. “No lack of Al expertise” is a dummy, reverse-
coded from respondents reporting lack of Al expertise as reason not to adopt or to delay AI use (see Table 1, Panel D). “WIP”
denotes the value of work-in-progress inventory reported on the ASM. Number of robots includes active and purchased industrial
robots from the ASM.

Standard errors for both panels are clustered at the firm level and reported in parentheses. Note that we do not report first
stage F-Stats, since according to Angrist and Pischke (2007), a significant first stage and significant second stage are sufficient
if the endogenous variable is just-identified (as many endogenous variables as instruments).

Statistical significance: *** p<0.01, ** p<0.05, * p<0.1
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Table 4: TV Robustness
MOPS—ASM: Establishment-level

Panel A: Ruling out sample-selected IV

log VA AT Index log VA
(1) 2) (3)
No lack of AI expertise -0.06397***
(0.0176)
Al is widely used 0.603***
(0.041)
AT Index 0.065
(0.044)
DS Index 0.0320*** -0.043** 0.035%**
(0.00866) (0.018) (0.009)
PA Index -0.00175 0.373%%* -0.027
(0.00673) (0.012) (0.019)
Log IT Capital ()% (-) ()***
Log Cloud Expense ()%= ()%= ()%=

Additional Controls See table notes
Panel B: Plausibility of Exclusion Restriction

Job Shops SU Firms
Al Index Log VA Al Index Log VA

(1) (2) (3) (4)

No lack of Al expertise  -0.0204  -0.0213 | -0.0149  -0.011
(0.034)  (0.0308) | (0.0272) (0.0284)

See table notes

Additional Controls

Panel A Notes: Placebo instrument is the affirmative response that “Artificial intelligence is widely or increasingly used
at this establishment.” Unreported controls include: size in terms of logged employment; log energy expenses; indicator of
multi-unit status; worker skill in terms of the percentage of employee with a BA degree; indexes of structured management
practices, for both process and HR separately (see Bloom et al. 2019); a plant type variable capturing production strategy
(0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow or cellular manufacturing); percentage of
unionized employees; logged plant age from the LBD; industry at the 3-digit NAICS level.

Panel B Notes: Instrumenting “no lack of Al expertise” for the AI Index. First stage is reported in columns 1 and 3.
Reduced forms are reported in columns 2 and 4. Job Shops are plants reporting high mix, low volume production in a job
shop or prototyping production strategy. SU firms are single-unit firms. Controls match the unreported controls of Panel A.
Unreported controls in both panels include all controls used in the second column of panel B in Table 3, which are controls
used in Panel A of this table, including the DS and PA indexes.

Standard errors for both panels are clustered at the firm levellglld reported in parentheses.Statistical significance: *** p<0.01,
** p<0.05, * p<0.1



Table 5: Heterogeneity in Treatment Effects
MOPS—ASM: Establishment-level

Panel A: Treatment Effects

Full Sample Cont. Flow Prod.  Old (25+ years)
(1) (2) (3)
First Stage 0.083%** 0.136%** 0.068%**
(0.017) (0.031) (0.022)
Second Stage -0.775%** -0.394 -1.424%%*
(0.271) (0.257) (0.556)
Controls See table notes

Panel B: Complier Characteristics

Characteristic Value

Fraction of compliers in overall sample 0.03

(a) Complier characteristics resembling Always Takers

Odds Ratio for All Sales through E-Commerce 1.33
Odds Ratio for above-median Cloud Computing expenditure 1.23
Odds Ratio for Part of Multi-Unit Firm (MU) 1.42
(b) Complier characteristics resembling Never Takers

Odds Ratio for Highly Digitalized 0.40
Odds Ratio for HQ Plant 0.52
Controls See table notes

Notes: Panel A presents I'V estimates for different subsamples. Standard errors in parentheses. Statistical significance:
*** p<0.01, ** p<0.05, * p<0.1.

Panel B displays complier characteristics, showing the fraction of compliers in the overall sample and odds ratios for
various firm characteristics.

Unreported controls in both panels include all controls used in the second column of panel B in Table 3, such as:
DS index measuring use of descriptive statistics in decision making with the index being normalized to have zero
mean and unit standard deviation; PA index on use of prediction algorithms across six business functions with index
being normalized to have zero mean and unit standard deviation; accumulated capitalized IT equipment expenditures
over the prior 3 years; expenditures on Cloud computing; size in terms of logged employment; log energy expenses;
indicator of multi-unit status; worker skill in terms of the percentage of employee with a BA degree; indexes of
structured management practices, for both process and HR separately (see Bloom et al. 2019); a plant type variable
capturing production strategy (0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow or
cellular manufacturing); percentage of unionized employees; logged plant age from the LBD; industry at the 3-digit
NAICS level.
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Table 6: Performance of Early Al Adopters
ABS—CMEF': Firm-level

Panel A: First Difference 2012—2017

Log Sales Log Value Added Profits Log Value Added
(1) (2) (3) (4) (5)
AT Index -0.0262*** -0.0187*** -4073.1%* -0.0247*** 0.0790**
(0.00467) (0.00473) (2241.5) (0.00561) (0.0352)
Al Index X Strategy: Quality -0.00189
(0.00667)
Al Index X Strategy: New Markets 0.0144%**
(0.00491)
Al Index X Strategy: Cost Leadership -0.0014
(0.00547)
AT Index X log firm age -0.0307***
(0.0103)
Additional Controls See table notes
Number of firms ~ 55,000
Number of obs ~ 110,000

Panel B: Growth during 2017-2021

Growth: Growth: Growth: Labor Growth: Growth: Labor
Employment Revenue Productivity Revenue Productivity
(1) (2) (3) (4) (5)
Al Index 0.00843%** 0.00473%** 0.00336** 0.0330%** 0.0197**
(0.00225) (0.00178) (0.00160) (0.0108) (0.00910)
AT Index X Log Firm Age -0.00895%** -0.00514*
(0.00324) (0.00274)
Additional Controls See table notes
Number of firms ~ 55,000
Number of obs =~ 55,000

Notes: AI Index measures adoption of applications of Al in business functions or adoption of specific Al tech-
nologies, with the index being normalized to have zero mean and unit standard deviation. Strategy measures from
the 2018 Annual Business Survey. Firm age per the LBD. Panel A Notes: Unreported controls include logged
employment, logged capital stock, logged capitalized IT equipment expenses, logged I'T outsourcing expenses, logged
energy expenses, logged software expenses. Standard errors are clustered at the firm level. Years included are 2012
and 2017 with year fixed effects. Number of firm observations is roughly 55,500. Panel B Notes: Growth rates are
calculated using Davis, Haltiwanger and Schuh (1996) symmetric growth rates between 2017 and 2021. Additional
controls include initial year (2017) logged employment (column 1), initial year logged sales (columns 2 & 4), initial
year logged sales per worker (columns 3 & 5). Robust standard errors are reported in parentheses. Panels A and B
also include a full set of 3-digit NAICS fixed effects.

Unreported controls in both panels include all controls used in the second column of panel B in Table 3, such as:
DS index measuring use of descriptive statistics in decision making with the index being normalized to have zero
mean and unit standard deviation; PA index on use of prediction algorithms across six business functions with index
being normalized to have zero mean and unit standard deviation; accumulated capitalized I'T equipment expenditures
over the prior 3 years; expenditures on Cloud computing; size in terms of logged employment; log energy expenses;
indicator of multi-unit status; worker skill in terms of the percentage of employee with a BA degree; indexes of
structured management practices, for both process and HR separately (see Bloom et al. 2019); a plant type variable
capturing production strategy (0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow or
cellular manufacturing); percentage of unionized employees; logged plant age from the LBD; industry at the 3-digit
NAICS level.

Statistical significance: *** p<0.01, ** p<0.05, * p<0.1

43



Table 7: Investigating the Causal Mechanism
MOPS—ASM: Establishment-level

Panel A: Causal Effects of AI at Old Establishments

Log Value Added (LP) Log Value Added (TFP) Log Wages Log Employment
(1) (2) (3) (4)
AT Index -0.1497 0.0835 -0.0534 -0.0952
(0.2643) (0.2456) (0.166) (0.2584)
AT Index X Old -1.224%* -1.133** -0.6961** -0.9205*
(0.5766) (0.4678) (0.3265) (0.5199)

Additional Controls

See table notes

Panel B: Causal Effects of AI on Structured Management at Old Establishments

Structured Structured KPI Review by Production Target
Management Management: Process Non-Managers Awareness
(1) ) (3) (4)
Al Index 0.1189 0.1795 0.1734 0.2534
(0.2051) (0.2088) (0.0865) (0.1109)
Al Index X Old -0.8322%* -0.8602** -0.286%** -0.2941%*
(0.3991) (0.397) (0.1363) (0.1486)

Additional Controls

See table notes

Panel C: Within-Firm Spillover Effects of AI

AT Index EAI Index Log Value Added (LP)
(1) (2) 3)
No lack of AT expertise 0.0810*** -0.000746 -0.822%**
(0.0174) (0.0172) (0.278)
No lack of AI expertise elsewhere 0.0922%** 0.790%** 0.343%**
(0.0348) (0.0847) (0.0632)

Additional Controls See table notes

Notes: Panel A: “Old” is any plant older than 25 years. Additional control variables include: DS index, PA
index, accumulated IT equipment expenses in the past 3 years, expenses on cloud computing, size in terms of logged
employment, energy expenditures, multi-unit indicator, skill in terms of number of employees with bachelors degrees,
a plant type indicatory capturing production strategy, and percentage of unionized employees. Columns (1), (2) and
(7) and (8) also include an index of structured management practicess (Bloom et al.| 2019)). Column (2) includes
logged capital stock, calculated via perpetual inventory method. Panel B includes controls from column 1 of Panel
A. Both Panels A and B include 3 digit NAICS industry fixed effects. Number of establishment observations is
roughly 28,500. Standard errors are clustered at the firm level and reported in parentheses.

Statistical significance: *** p<0.01, ** p<0.05, * p<0.1
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