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Abstract

This study examines the productivity dynamics of artificial intelligence (AI) in American manufac-
turing. Working with the U.S. Census Bureau to collect detailed large-scale data for 2017 and 2021,
we find J-curve-shaped effects, with significant initial productivity losses preceding gains to industrial
AI use. We attribute this to costly adjustment, which we observe directly via increased work-in-
progress inventory, investment in industrial robots, and labor shedding. Over time, however, early AI
adopters exhibit stronger growth on average, conditional on weathering the initial “dip.” Losses vary
considerably across firms and establishments. A key contingency is age, with young firms faring better
than older incumbents—particularly startups with growth-oriented business strategies. Management
practices and production-process design also shape the uptake and effects of industrial AI use, as do
cross-establishment spillovers inside large, multi-unit firms. Overall, our detailed findings provide novel
evidence regarding AI-related J-curve effects, unveiling key mechanisms and extending our understand-
ing of emerging General Purpose Technologies.
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1 Introduction

Advances in artificial intelligence (AI) are poised to reshape firm performance, labor demand, and

competitive dynamics. Productivity gains from AI have been causally identified in narrow settings

such as software development (e.g., Cui et al., 2024), drug and materials discovery (e.g., Lou and

Wu, 2021; Strieth-Kalthoff et al., 2024), and customer support (Brynjolfsson et al., 2025). However,

evidence outside of modular, data-rich, and already prediction-focused applications (Bresnahan,

2024) remains scarce—particularly beyond the level of a specific task.

Yet a firm- or establishment-level view is essential, given the importance of the organizational

context in shaping the returns to technology use (e.g., Bresnahan et al., 2002; Bloom et al., 2012) and

recent theory emphasizing the need for a “system-wide” approach to leveraging AI (Agrawal et al.,

2024). However, representative data on firm-level AI adoption has been in short supply (Seamans

and Raj, 2018), while adoption has also lagged expectations (Bonney et al., 2024) and varied

significantly across industry and organizational contexts (Calvino and Fontanelli, 2023; McElheran

et al., 2024). This has made it difficult to establish broad-based facts about AI’s prevalence and

average productivity effects—–let alone pin down the organizational complements and constraints

that have been central to the history of technological change (e.g., David, 1990; Bresnahan and

Trajtenberg, 1995; Brynjolfsson and Hitt, 2000; Feigenbaum and Gross, 2024).

We address this gap with new large-scale evidence on the use of AI1 among U.S. manufacturers

and performance data across nearly a decade, drawing on two surveys conducted for this purpose

in collaboration with the Census Bureau. In addition to providing representative statistics on both

early AI use and barriers to adoption in physical-goods production, we leverage a novel instrumental

variable (IV) strategy and visibility to within-firm changes to triangulate on the varied impacts of

AI on business performance. Our findings are consistent with a J-curve pattern at the micro-level:

the average effects of AI deployment are initially quite negative, followed by growth along multiple

dimensions over time. These early losses, however, do not unfold uniformly; they vary substantially

by age, business strategy, and other organizational characteristics and practices.

Even when voluntary, technology adoption does not guarantee productivity gains, particularly

1Defined as “a machine-based system that can perceive and learn about its environment and then make rel-
evant predictions, recommendations or decisions.” See https://www.census.gov/programs-surveys/mops/technical-
documentation/questionnaires.html
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in the short run (Tambe and Hitt, 2012). With respect to AI, we find the initial relationship

between adoption and performance to be negative, despite selection into AI use. Specifically, a

one-standard deviation increase in our AI index is associated with a 1.33% lower total-factor pro-

ductivity (TFP), controlling for a large number of time-varying (and usually unobserved) establish-

ment characteristics. Moreover, when we employ quasi-experimental techniques commonly used to

address endogeneity and measurement error, losses grow considerably in magnitude. IV estimates

yield productivity losses of roughly 44%, which we interpret as a local average treatment effect

(LATE) experienced by marginal businesses whose AI adoption is sensitive to our instrument.2

It is unlikely to represent the experience of infra-marginal “always adopters,” such as digitally-

advanced businesses poised to reap early returns from AI use in compatible applications. This

striking result, while requiring care in interpretation, reinforces the short-term cost of AI adoption.

It further underscores the heterogeneity endemic to this phenomenon and reflects the much greater

prevalence in our sample of smaller firms and establishments that lack the advantages of larger,

publicly-traded firms (e.g., Babina et al., 2024).

Critically, these initial losses do not imply that AI adoption is systematically a “mistake.” With

time for adjustment to unfold, we find growth to be significantly higher among early AI adopters,

on average. This is particularly true among younger firms and establishments. For example, a

one standard-deviation increase in AI use is associated with roughly 2% higher labor productivity

growth among younger plants from 2017 to 2021. Among firms of all ages, greater AI use is

associated with 0.8% employment growth over a period that saw a 1.5% decline, overall, in this

sector.

Data limitations prevent us from tracing out the precise inflection point where net returns

become positive or characterizing true long-term implications.3 Yet, our results provide empirical

micro-foundations for J-curve patterns previously observed at the macro level (Brynjolfsson et al.,

2021b). In particular, our findings include direct evidence of costly adjustment within firms. Not

only do productivity and profits initially suffer; inventory buffers also increase due to AI use,

as does investment in industrial robots. And (potentially linked to this complementary physical

automation), we further observe significant labor shedding in the short term, indicating that workers

2The ”compliers” in the Angrist et al. (1996) framework. In this case, it reflects businesses whose adoption of AI
was not impeded by the level of AI-specific expertise or skills at the plant.

3We do not observe the exact year of AI adoption and the panel of performance data ends in 2022.

3



also are exposed to this initial adjustment process when firms adopt AI.4

Perhaps most importantly, we also gain insight into specific mechanisms shaping AI’s impacts.

We can disentangle, for instance, how certain business strategies help mitigate the J-curve “dip”.

We also find that much of the productivity losses are driven by older manufacturing establishments

and show that productivity losses among older businesses are closely tied to a loss of structured

management practices (Bloom et al., 2019)—consistent with an important role for specific organi-

zational intangibles (Levitt et al., 2013). Specifically, our quantitative analysis shows that roughly

half of the TFP losses at older establishments can be explained by de-adoption of structured man-

agement practices. We also find significant spillovers to non-AI using establishments in multi-unit

firms. IV estimates point to 40% higher labor productivity among non-adopting units in AI-using

firms. These details reveal specific channels through which losses and gains are transmitted, point-

ing out potentially valuable ways to improve overall returns to AI use, in practice, and helping to

explain conflicting estimates across differently-composed samples and empirical settings.

Our empirical context of manufacturing is a particularly interesting one for understanding AI’s

nuanced impacts. It encompasses a highly innovative set of industries, accounting for 60% of all

patents (National Science Foundation, 2021) and 7 % of all corporate patents (Autor et al., 2020a).

Some estimates (e.g. Deloitte, 2020) suggest that manufacturing generates twice as much digi-

tal information as other data-intensive industries such as media and finance/banking. High levels

of physical automation also provide potential complements to AI-related technologies (McElheran

et al., 2024) and may reinforce labor-displacing effects (Acemoglu and Restrepo, 2018). Yet, man-

ufacturing production processes are often not modular (Bresnahan, 2024), but instead depend on

complex interactions of physical and virtual environments, requiring coordination of machinery,

material flows, management practices, differently-skilled employees, business strategy, information,

and technology (e.g., Ichniowski et al., 1995; Milgrom and Roberts, 1990, 1995; McElheran and Jin,

2020). Heterogeneity in how to accomplish this—much less adjust it all to align with new technolog-

ical possibilities—abounds. Thus understanding how organizational precursors and more-mutable

managerial decisions determine returns to AI use is critical to gauging its broader implications for

firms, workers, and the economy.

4We do not observe worker-level outcomes, making it impossible to infer either individual-level or aggregate
labor-market impacts.
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Our findings contribute to several streams of research. First, they contribute to longstand-

ing questions on the economic impacts of general-purpose technologies, or GPTs (Bresnahan and

Trajtenberg, 1995), which AI-related technologies are increasingly argued to be (e.g., Brynjolfsson

et al., 2021b; Goldfarb et al., 2023). This literature emphasizes the implementation lags and comple-

mentary organizational adaptations typically required for GPTs to achieve measurable gains (e.g.,

David, 1990; Bresnahan and Greenstein, 1996; Brynjolfsson and Hitt, 2000; Feigenbaum and Gross,

2024). We extend this line of work by documentingmicro-level J-curve patterns (Brynjolfsson et al.,

2021b) in which short-run losses reflect production-process and organizational disruptions (rather

than primarily mismeasurement of intangible investments) during early Industrial AI adoption,

followed by medium-term performance improvements for most firms.

Within this broader literature, we contribute to a growing subfield pinpointing specific orga-

nizational complements to modern technology use. Previous studies have revealed aspects of how

earlier digital technologies interacted with organizational characteristics (e.g., Bartel et al., 2007;

Bresnahan et al., 2002; Tambe et al., 2012; Aral et al., 2012; Bloom et al., 2012; Brynjolfsson et al.,

2021a). Extending arguments that that production systems consist of mutually reinforcing clusters

of technologies, processes, and practices (e.g., Ichniowski et al., 1995; Milgrom and Roberts, 1990,

1995; Brynjolfsson and Milgrom, 2013), we provide the first large-scale evidence of technological,

process-design, and organizational contingencies affecting AI uptake and outcomes.

Third, we add to the nascent empirical evidence on AI adoption and its performance con-

sequences. A burgeoning approach relies on field studies of specific applications of AI in spe-

cific activities—e.g., computer programming (e.g., Peng et al., 2023; Hoffmann et al., 2024; Cui

et al., 2024), customer support (Brynjolfsson et al., 2025), consulting (Dell’Acqua et al., 2023),

entrepreneurship coaching (Otis et al., 2024), or scientific discovery (Lou and Wu, 2021; Aspuru-

Guzik, 2023)—that may be considered “deep but narrow” (Bresnahan, 2024), and thus difficult

to generalize. Contrasting with this approach, other recent studies have inferred less-specified AI

use from job postings, finding mixed performance effects among more-diverse yet relatively large

publicly-traded firms (e.g., Alekseeva et al., 2020; Babina et al., 2024). A complementary stream of

work relies on direct survey measurement by administrative agencies, yielding more-representative

statistics on adoption (Hoffreumon et al., 2023; Fontanelli et al., 2024; Bonney et al., 2024) along

with contradictory findings regarding short-term productivity effects (Czarnitzki et al., 2023; Ace-
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moglu et al., 2022; Calvino and Fontanelli, 2023; McElheran et al., 2024). By combining two Census

Bureau surveys conducted four years apart, along with administrative data covering tens of thou-

sands of manufacturing businesses across nearly a decade, we bridge these literatures to generate

insights that are unusually representative yet detailed, and reflecting the passage of time. Our

panel data reveal how AI’s negative and positive effects evolve over different horizons, while the

survey modules allow us to trace heterogeneity by production system, age, strategy, and within-firm

spillovers, offering a richly contextualized view of industrial AI use and its impacts.

Taken together, our findings highlight AI’s dual role as a transformative technology and catalyst

for initial organizational disruption, echoing patterns familiar to scholars of technological change.

They further underscore the importance of complementary practices, structures, and strategies that

mitigate adjustment costs and enhance longer-term returns, providing practical guidance to man-

agers and policy-makers on how to flatten the J-curve dip and realize AI’s longer-term productivity

potential at scale.

2 Literature and Motivation

Rising digitization and the diffusion of advanced tools to extract value from data have had profound

impacts on firm organization, management, competitive strategy, and performance (e.g., Bresnahan

et al., 2002; Bloom et al., 2012; Goldfarb and Tucker, 2019; Adner et al., 2019; Tambe et al., 2020).

In this section, we extend insights from digitization research in economics and management to

motivate our analyses of both the adoption and impact of AI use in industrial (i.e., physical goods)

production.

2.1 Understanding AI as a Specific Type of Production Input

2.1.1 Scale-Biased

Information and knowledge are well-understood to be non-rival goods whose consumption does not

reduce availability to others and whose reproduction occurs at near-zero marginal cost (Arrow,

1962; Romer, 1990; Goldfarb and Tucker, 2019). A recent return to these ideas focuses attention

on the organizational and strategic implications of “digital resources, such as data, software and
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AI that are essentially scale free” (Giustiziero et al., 2023).5 AI algorithms, once trained, share

these features. As a result, they are prone to significant economies of scale, creating more value

at larger production volumes. These scale economies will be further reinforced by large up-front

training costs (Svanberg et al. 2024).6

These characteristics work in favor one of the few robust “stylized AI facts” across countries

and industries: early AI adoption rates are systematically higher among larger firms (e.g., Calvino

and Fontanelli 2023; McElheran et al. 2024; Bonney et al. 2024; Hoffreumon et al. 2024). Note,

however that properly identifying size-related effects is challenging due to the high correlation

between size and other potential drivers of digital technology adoption and performance such as

age (Kueng et al., 2014), organizational structure (e.g., multi-unit status, per Atalay et al., 2014),

and production-process design (Brynjolfsson et al., 2021a; McElheran et al., 2019). We control for

size in all of our specifications and lean on the richness of our plant- and firm-level data to tease

apart these often-confounded relationships.

2.1.2 Dependent on Prior Digital Transformation

Beyond firm size, another critical determinant of AI adoption is the availability of appropriate

digital infrastructure and data inputs (e.g., Tambe et al., 2020; Goldfarb et al., 2023; Babina et al.,

2024). To date, AI adopters have tended to report significant levels of digitization and reliance

on cloud-based IT infrastructure (McElheran et al., 2024), implying that AI adoption is embedded

in a broader, complementary process of digital transformation that may easily be confounded

with AI-specific effects. Omitting key features of the technological context may obscure drivers of

adoption and also bias estimates of AI’s marginal contribution to firm performance (e.g., Calvino

and Fontanelli, 2023). We thus control for both cloud-based and on-premises IT infrastructure

in all of our analyses to help address these concerns. We further disentangle prior investments

associated with “big data” initiatives focused on digitizing information and applying descriptive

5See Helfat et al. (2023) for a review of related work.
6Consider the benefits of machine vision technology to analyze digital pictures of finished products to diagnose

any quality defects that might often be too subtle to quickly notice for human quality control employees. The initial
training of this technology with training data will be expensive but once a sufficient number of training instances is
used, the supervised learning algorithm will eventually outperform human vision. In terms of the unit cost economics,
training the machine vision algorithm is a large fixed cost, which will be spread out across many units, leading to
a decline in marginal cost. Additionally, ongoing training of the machine vision technology will increase accuracy,
thereby increasing value created from the technology by continued quality improvements of products
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and predictive analytics to increasingly-important data resources.

2.1.3 Prediction-Biased

The need to account for prior technology investments and their complementary organizational ad-

justments (e.g., Bresnahan et al., 2002; Bresnahan and Greenstein, 1996) goes deeper than poten-

tially misattributing the effects of digitization too-narrowly to AI use. Specifically, factors driving

both the use of AI—usefully conceptualized as a dramatic advance in “prediction technology”

(Agrawal et al., 2018)—and adoption of pre-AI digital tools may have their origins in fundamental

differences in production system design.

Certain aspects of production design reflect the resolution of deep economic and organizational

tradeoffs and are essentially fixed once a production facility is established (McElheran et al., 2019).

At least two distinct approaches, based on differing solutions to essential uncertainty (Galbraith,

1973) have emerged in U.S. manufacturing: “make-to-order” versus “make-to-stock.” Milgrom and

Roberts (1988) demonstrate mathematically that profits are convex in the market share supplied

from inventory, driving firms to specialize in one of these production modes or the other. They

further argue that each approach tends to be complementary to different organizational and tech-

nological solutions (Milgrom and Roberts, 1990, 1995), leading firms to adopt clusters of practices,

rather than individual innovations in isolation.7.

“Make-to-order” production, exemplified by Lean Manufacturing (Womack et al., 2007; Holweg,

2007) and related structured management practices (Bloom and Van Reenen, 2007; Bloom et al.,

2019), prioritizes responsiveness to realized demand over prediction. This approach to addressing

uncertainty depends heavily on visibility, minimal inventory buffers, and empowering workers to

manage exceptions in real time. It has successfully diffused throughout U.S. manufacturing based

on “low-tech” elements drawn from the Toyota Production System such as kanban cards and andon

techniques (Ohno, 1988) that support information-sharing with relatively little IT.

At the other extreme, traditional “make-to-stock” manufacturing has evolved in U.S. manufac-

turing via substantial investments in both physical and IT capital—and relies heavily on prediction.

More-common in settings where lead times are long and/or production flexibility is limited, this

approach relies heavily on forecasting and inventory buffers to address uncertainty in supply and

7See also Ichniowski et al. (1995); Brynjolfsson and Milgrom (2013); Aral et al. (2012); Tambe et al. (2012).
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demand conditions (Galbraith, 1973; Toktay and Wein, 2001).

More recently, as data availability has grown and IT costs have fallen, manufacturers of all types

have adopted increasingly sophisticated predictive analytics (Brynjolfsson et al., 2021a). This has

not been universally productivity-enhancing, however. In particular, these systems appear to be

complementary to an organizational focus on external information from customers and supply

chains (Tambe et al., 2012), as well as being contingent on a low-product-mix, high-volume pro-

duction system design (Brynjolfsson et al., 2021a).

Such path dependencies and contingencies pose challenges for sharp predictions about interd-

pendencies among AI and certain other technologies. Take basic digital tools such as descriptive

analytics (Berman and Israeli, 2022; Galdon-Sanchez et al., 2022). On the one hand, if we consider

digital capability development to be an evolving and cumulative process, the presence of descrip-

tive analytics tools and techniques may represent greater readiness to adopt advanced tools like AI.

Yet, given the organizational and technological interdependencies at work, they could also proxy for

deep organizational misalignment with prediction-focused management. This could work against

successful deployment of AI. Thus, the relationship between older digital technologies and AI is

ultimately an empirical question.

Regarding more-advanced digital tools such as predictive analytics, there is less ambiguity.

Production systems already-organized to leverage forecasting, exemplified by prior reliance on pre-

dictive analytics (Brynjolfsson et al., 2021a), should more easily adapt to AI use.

2.2 Industrial Production, Adjustment, & the J-Curve

As our study takes place in the manufacturing sector, it is useful to take a moment to bridge

insights from the study of “digital firms” in the information sector with longstanding intuitions

about industrial production, which has become increasingly automated and digitized in the United

States (. The strategic implications of economies of scale in physical-goods production have been

understood since at least the early 1960s (Arrow, 1962; Henderson, 1968).8 One is early-mover

advantage. Economies of scale can be an important isolating mechanism, protecting early movers

8Indeed, Kiechel (2010) documents that the first popular tool sold by the Boston Consulting Group (BCG) in the
1960s was the “experience curve” or the empirical claim of a “consistent” decline of 20-30 percent of costs for each
doubling of output (Henderson, 1968). In turn, this tool was used in turn by companies such as Black & Decker to
undercut its competitors in terms of price, anticipating lower future unit costs.
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(Rumelt, 2005). First-movers are by definition able to accumulate production experience earlier.

Under economies of scale, this increases value creation (by reducing unit costs, increasing quality, or

both), and feeds back into yet more demand and higher production volumes (Cabral and Riordan,

1994). While industrial firms do not have the same demand-side economies as firms whose products

and services are also digital (Giustiziero et al., 2023), we anticipate that “traditional” economies of

scale combined with the non-rival attributes of AI technologies will mutually reinforce early-mover

benefits from AI adoption.

A key limiting factor, however, arises from the general-purpose nature of the technologies in

question. General-purpose technologies (GPTs), such as the steam engine, electricity or digital

computers, are a class of economically and socially transformative technologies that share char-

acteristics of being widely used, constantly improving, and innovation-spawning (Bresnahan and

Trajtenberg, 1995). When we look at the family of technologies increasingly referred to as “AI”

(e.g., machine learning, machine vision, speech recognition, etc.) they are already observed in ev-

ery sector of the economy, in far-ranging use cases, advancing at unprecedented rates, and closely

linked to innovation (Cockburn et al., 2018; Iansiti and Lakhani, 2020; Felten et al., 2021; Miric

et al., 2023; McElheran et al., 2024). While there is some debate at the moment as to whether

AI-related technologies will definitively emerge as the next influential GPT (Goldfarb et al., 2023;

Eloundou et al., 2023; Bresnahan, 2024) or remain an important “enabling technology” (Teece,

2018; Rathje and Katila, 2021; Gambardella et al., 2021), the GPT lens is nevertheless useful for

focusing attention on early deployment challenges.

According to work in this vein, technologies with such broad potential, ongoing improvement,

and often-uncertain trajectories typically require significant investments in co-invention (Bresna-

han and Greenstein, 1996) or co-specialization (Teece, 1986) to align technological capabilities with

core business activities, processes, products, and resources—and vice versa. The pervasiveness

and magnitude of this adjustment challenge is credited with widespread and lengthy delays in the

early diffusion and productivity impacts of important technologies (e.g. David, 1990; Brynjolfsson

and Hitt, 1996). Recent GPT research examines this process among public U.S. firms, predicting

and finding evidence for a “productivity J-curve” of initially declining measured productivity fol-

lowed by a sharp rise in returns for investments such as software and R&D that arguably require

significant—often intangible—complementary investment (Brynjolfsson et al., 2021b).
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The implications of costly co-invention for scale-free AI-related technologies is that short-term

returns from deploying AI may be minimal (or even negative) on average, and any early-mover

advantages will emerge with a delay. Yet firms that can weather initial performance losses stand to

enjoy significant returns to AI use, as observed in early narrow applications among digital giants

like Amazon, Netflix, Google, and Facebook (Bresnahan, 2024).

How might this play out in our manufacturing context? Consider that a new AI-enabled produc-

tion line might use a reinforcement-learning algorithm to optimally adapt production parameters,

starting with a set of initial parameter values that are locally but not globally optimal.9 However,

this exploration might prove costly in the short run, if trial parameter values lead to foregone output

that would otherwise have been produced if the AI system had stayed at the initial, locally optimal

parameter values. At the same time, however, exploration of new parameter values as production

volume increases enables reinforcement learning algorithms to try out new parameter values for

each newly produced unit, ultimately leading to rapidly improving performance at higher volumes

of production.

This example describes a J-curve at the level of a given algorithm. However, similar mecha-

nisms will arguably be at work beyond any individual AI deployment. Increasingly, the system-wide

challenges of deploying AI beyond a “point solution” are receiving attention (Agrawal et al., 2024).

Reconfiguring production processes can lead to short term coordination failures and operational ef-

ficiencies that require additional buffers in the system (e.g., WIP). If responsiveness is improved at

one point in the production process, increased automation (e.g., robots or additional AI technolo-

gies) may be required elsewhere. Factor inputs may shift, particularly if this increased automation

substitutes for human labor (Acemoglu and Restrepo, 2018). Working through these adjustments

requires time and investment, with associated initial losses before returns fully materialize. As

this plays out at the producer level, we anticipate that returns to AI use will exhibit a “J-curve”

pattern, with performance declining upon initial adoption and eventually improving over time.

Furthermore, we should observe organizational adjustments along other dimensions (WIP, phys-

ical automation, and labor demand). We test these additional implications, empirically, recognizing

that many margins of adjustment will remain intangible (Brynjolfsson et al., 2021b).

9An example for a similar technology from practice can be found here: https://www.pwc.de/en/digitale-
transformation/the-perfect-match-digital-twins-and-reinforcement-learning.html.
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2.3 Strategic Responses

Thus, far, our predictions have concerned average tendencies and are of intense interest in eco-

nomics, management, and public policy. Yet the managerially-relevant question quickly becomes

how strategic decisions might help “flatten” the adjustment dip for a given producer.

Traditional learning-by-doing in manufacturing is well known to eventually run into diminishing

returns, based in physical or cognitive limits of workers (e.g., Thompson, 2012; Levitt et al., 2013).

In contrast, scale economies of digital resources such as AI are unlikely to face similar limits.10

As a result, acceleration of benefits (the upward part of the “J-curve) from AI will tend to be

supported by business strategies that emphasize growth. That said, we argue that the nature of a

given growth-oriented strategy will matter.

To understand this, consider the BCG consultants that sold insights from the experience curve

to manufacturing firms in the 1960s. This typical “cost-leadership” strategy (Porter, 1980) was

designed to increase sales volume. Yet cost-leadership strategies quickly run into decreasing re-

turns to scale on the demand side (Giustiziero et al., 2023). In contrast, growth through market

expansion—via novel offerings and tapping new customer segments, including new domestic and

international markets (Yang et al., 2015, 2021)—avoids these demand-side diseconomies11. Indeed,

co-occurrence of growth-oriented strategies and AI use has recently been documented among U.S.

startups (McElheran et al., 2024); however, the performance implications in a broader popula-

tion remain unknown. We anticipate that business strategies focused on adding scale via market

expansion or innovation will attenuate any initial performance declines due to AI use, while cost-

leadership strategies will worsen initial performance declines.

2.4 AI vs. the Experience Curve

Our examination of J-curve effects at the micro level further has important implications for how

mature, more-experienced firms compete with young startups. This “creative destruction” debate

about whether larger incumbents or smaller startups are best equipped and/or incentivized to

10This does, of course, not mean that we believe that AI resources are literally scale-free. Indeed Bajari et al.
(2019) argue that dataset size runs into diminishing returns at a “square-root N” rate for forecasting tasks.

11One way to reduce such demand-side diseconomies is to use product-differentiation, as argued by Porter, 1980.
See Babina et al., 2024 for empirical evidence of predictive analytics leading to higher product differentiation
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undertake this adjustment dates back at least to Schumpeter (1934, 1950),12 and is too large to

summarize, here. Our contribution to this long-standing conversation, however, is to highlight

that, if J-curve effects are both strong and uniform across incumbents and entrants, incumbents

will naturally benefit from scale economies earlier, leading to entry barriers for startups (Cabral

and Riordan, 1994) and eventually higher industry concentration, as incumbents continue to benefit

disproportionately from AI use. This dynamic seems to be emerging with regard to “superstar”

firms in settings where intangible capital is very important (Autor et al., 2020b; Tambe et al., 2020).

Yet, if short-run performance losses are instead worse for mature incumbents, then AI adoption

might conversely lead to less industry concentration, in the long run.

Anchoring again in our industrial production settings, we argue that old firms or establishments

are more likely to derive productivity from accumulated experience (Thompson, 2012; Levitt et al.,

2013), the accumulation of firm-specific resources such as customized IT capital (Jin and McElheran,

2024), and an established set of operational capabilities (Helfat and Peteraf, 2003). Corresponding

management practices (Bloom et al., 2019), vintage-specific human capital (Chari and Hopenhayn,

1991; Barth et al., 2023), and other core competencies (Henderson, 1993) will also tend to sustain

incumbent performance derived from a familiar set of technologies. When old firms intensively

adopt a novel, AI-based technology, experience with prior technologies may not be transferable

to the new system, leading to relatively larger productivity losses for more-established firms. In

contrast, young startups by definition have none of this accumulation and will thus have lower

opportunity costs of innovating (Arrow, 1962 inter alia). Thus, we anticipate that older producers

will experience greater performance losses from AI adoption than younger ones.

2.5 Mechanisms Rooted in Organizational Routines and Practices

To better understand the specific channels by which older manufacturing firms might exhibit larger

initial performance losses in response to AI adoption, we build on recent work showing that certain

structured management practices—often drawing from the Lean tradition– work to capture, retain,

and exploit organizational knowledge and capabilities (Bloom et al., 2012; Scur et al., 2021; Scur

and Wolfolds, 2024).

12Schumpeter (1934) initially suggested that technological change and innovation would be led by small en-
trepreneurial firms yet subsequently (Schumpeter 1950) argued that large incumbents possessed superior incentives
and resources to innovate and appropriate the returns to innovation.
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By way of example, Levitt et al. (2013) analyze a single car manufacturing plant in the U.S.

and show the critical role of management practices in realizing learning-by-doing gains from pro-

duction. Specifically, they document the use of real-time reports and quality audits by engineers,

combined with whiteboard system that allowed frontline workers to report individually-experienced

production problems on an ongoing basis, thereby leading to generation and sharing of valuable

knowledge,13 which Levitt et al. (2013) argue can be understood as a form of “organizational capi-

tal.” Structured management practices as measured by Bloom et al. (2013; 2019) similarly scaffold

the generation and aggregation of employee knowledge by defining standard operating practices,

promoting proactive investigation of root causes of problems, routinizing the review of key per-

formance indicators (KPIs) by managers and employees, and enabling widespread awareness of

production targets among all factory workers to make production exceptions quickly salient and

less costly to address (Womack et al., 2007; Holweg, 2007). But such structured practices are fun-

damentally still ‘analog’ in that they do not rely on digitalized information or much technology at

all, but rather on the interaction of standardized operating procedures and employee training and

practices. Older factories will tend have more accumulated organizational capital of this type. The

implication, then, is that AI adoption could interfere with reliance on the old knowledge genera-

tion system, yielding observable declines in structured management practices and, potentially, the

employees in which they are embodied.

2.6 Spillovers within Multi-Unit Firms

The non-rival or scale-free nature of AI as a digital resource opens up additional considerations for

large multi-unit manufacturing firms. E.g., Pratt (2015) has argued that robotics or AI systems

that are remotely connected via cloud computing could lead to increased knowledge spillovers across

these systems, as newly valuable information of each system is immediately accessible and valuable

to all connected systems. A similar argument should apply to establishments or factories as unit of

13Levitt et al. (2013) describe the interaction of one structured practices, namely the use of whiteboard for prob-
lem tracking and frontline employees in knowledge creation as follows: “(...) large amounts of information about
production still originated from the workers on the line. (...) Aggregation and diffusion of this knowledge were the
purposes of the whiteboard system. Workers were encouraged to note problems on the boards, (...) The system
therefore quickly pulled information from individual line workers and allowed management to manipulate the pro-
duction process in ways that benefited any worker at a similar position (...). The system therefore acted as a conduit
that gathered worker knowledge and, through the complementary efforts of management, transformed it into plant
knowledge that became embodied in the plant’s physical and organizational capital.”
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analysis: AI systems in one factory will generate productivity spillovers in other connected factors,

even enabling “parallelization” of learning if production problems are modular across factories.

Thus AI adoption at other establishments within the same firm should tend to increase productivity

at non-adopting manufacturing establishments.

3 Data and Measurement

3.1 Two Datasets and Samples

To provide robust estimates and study dynamics, we use two datasets on AI use by U.S. manu-

facturers at different time periods. Our main dataset is the 2021 Management and Organizational

Practices Survey (MOPS), supplement to the Annual Survey of Manufactures (ASM). The ASM is

one of the oldest large-scale Census Bureau data collections, sampling 10% of the roughly 300,000

manufacturing establishments across the country. Stratified by size and industry to provide repre-

sentative statistics, the ASM nevertheless oversamples large establishments, covering over 70% of

the sector’s total value added in the certainty sample. A government-mandated survey, the MOPS

had a response rate of 68% in 2021.14 Panel A of Table 1 reports that the average establishment in

our main sample has roughly 170 employees, is 29 years old, ships more than 60% of its products

via e-commerce, and has approximately $11 million in profits.

Linking the MOPS to the broader ASM yields a useful breadth of organizational measures.

In addition to fine-grained data on the use of AI-related technologies, it provides information on

the use of other digital technologies (predictive analytics, descriptive analytics, cloud computing,

digitalization of information, IT capital) and structured management practices (Bloom et al., 2013,

2019). Dimensions of organizational and production design are captured in the ASM-MOPS linked

data, as well (see below).

Our second main dataset is a panel of approximately 55,000 manufacturing firms combining

data from the 2018 Annual Business Survey (ABS)15 with the Economic Census of Manufacturing

14For more details go to https://www.census.gov/programs-surveys/asm.html. We also link to the Longitudinal
Business Database (LBD), a dataset of tax records covering the entire non-farm employer economy of the United
States, to acquire data on establishment and firm age. Establishment age is measured as the number of years since
the establishment first reported having March 12 employment on their tax records. Firm age is determined by the
age of the oldest establishment.

15Note that 2017 is the reference year for the 2018 ABS. See Zolas et al. (2020) for details.

15



(CMF) from 2012 to 2017. This panel dataset allows us to estimate the effects of AI adoption on

performance while controlling for firm fixed effects. The ABS-CMF data are more representative of

the large population of single-unit firms in the U.S. economy (Zolas et al., 2020). This different size

coverage adds robustness to our findings, while also supporting an identification strategy focused

on within-firm changes over time.

Panel B of Table 1 describes manufacturing firms in the ABS–CMF sample. The average firm

in this sample is by no means small or young, with mean employment of 344 workers and age of

25. However, when comparing the MOPS–ASM data to the ABS-CMF sample, it is useful to keep

in mind that the latter is a firm-level dataset whereas the former is at the establishment level.

Moreover the majority of establishments in MOPS–ASM belong to larger, multi-unit firms (hence

our ability to identify within-firm spillovers).

3.2 Measurement

3.2.1 New Measures of AI Use in the MOPS

Members of the author team worked with the Census Bureau to create new, designed-for-purpose

measures of AI-related technologies and their applications for the 2021 MOPS. Measuring fast-

emerging technologies systematically and at scale is a perennial challenge. Given the recency and

some lack of consensus about what “AI” encompasses, our measurement approach is multifaceted.

First, we clearly define what we mean by “AI” in the survey, as well as “predictive analytics,” which

we separately measure to avoid confusion (and to distinguish from prior work, e.g., Brynjolfsson

et al., 2021a). These definitions underwent systematic cognitive testing involving members of the

research team and dedicated Census experts, as well as respondents pulled from the official ASM

sampling frame, to ensure validity and reliability of responses.16 According to the survey, “Artificial

Intelligence is a machine-based system that can perceive and learn about its environment and then

make relevant predictions, recommendations or decisions for an objective that is determined by

humans.” This definition is close to the legal definition of AI in the recent EU AI Act.17 Two

16MOPS respondents are typically plant managers (Bloom et al., 2013).
17Specifically, the EU definition is: “a machine-based system that is designed to operate with varying levels of

autonomy that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, from
the input it receives, how to generate outputs such as predictions, content, recommendations or decisions that can
influence physical or virtual environments.”
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points are worth emphasizing about this definition of AI. First, it shares with the EU AI Act

the emphasis on systems that learn from their environment and adapt. Second, the last part was

added because respondents were resistant to the idea that adaptive technologies might actually be

choosing the objectives (more in line with “artificial general intelligence”). Including this caveat

increased confidence and reduced cognitive burden for respondents, as required by the U.S. Office

of Management and Budget to approve the survey.

A second feature of our approach to measuring AI is that we rely on two question “blocks”

to triangulate AI use. In one, the survey asks about AI use in six business functions: production

scheduling/monitoring, quality control, environmental and safety compliance, equipment mainte-

nance, logistics, and sales forecasting. In the other, we ask about specific AI technologies, such as

machine vision, speech recognition, automated guided vehicles, and AI-enabled industrial robots.

This combined measurement allows us to capture two related but distinct ways in which respon-

dents tend to be aware of AI use in their establishments, mitigate concerns that respondents might

overlook AI technology “under the hood” of factory equipment or software. For instance, users

of tools with AI capabilities tend to recall “we do have AI in our sales forecasting module,” or

“our predictive maintenance software relies on AI.” At the same time, managers of establishments

that are training their own machine learning or machine vision algorithms readily respond to that

specific, more-technical terminology.

Contrary to a number of unofficial accounts, baseline adoption of “predictive” AI (i.e., not the

LLMs introduced after 2021) in the U.S. has been low for some time, including in manufacturing

(see McElheran et al. 2024; Bonney et al. 2024). Combining all of our AI-related questions to

capture a measure of at least some use of AI, we estimate only about 23 percent of plants used any

form of AI by 2021. Intensity of use is even lower, at around 8 percent (Panel C of Table 1).

For our regression analysis, we construct a continuous measure of AI use. First, we construct

dummy indicators of whether the establishment reports using AI in specific business functions 18

or in terms of adopting specific AI technologies, across the two question blocks.19 We normalize

these, i.e. subtract the sample mean and divide by the sample standard deviation, and then sum

18Each dummy for business functions is one if AI is relied upon “Up to 50%”, “More than 50% but not all” and
“All or nearly all” the time. The dummies are otherwise zero.

19Each dummy for AI technologies is one if AI is reported to cover “Up to 50% of direct production”, “More than
50% of direct production but not all” and “All direct production”. It is otherwise zero, including if the AI technology
is reported to be used in “Testing or piloting only”.
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them into an overall index, which in turn is normalized again. This facilitates interpretation in

terms of a standard-deviation change and is a longstanding practice in the related literature (e.g.,

Bloom and Van Reenen, 2007).

3.2.2 AI Measurement in the ABS

Our AI measure in the MOPS is even more expansive than that captured in the ABS, which focuses

on a range of AI-related technologies such as machine vision, voice recognition etc. (McElheran

et al., 2024), but not applications. Replicating this narrower measure in the MOPS data, we

estimate AI use in 2021 at only 13% with intensity even lower at 2.3% as shown in Panel C of

Table 1. Since our assessment of AI use between 2012 and 2017 relies on the ABS, we follow the

narrower McElheran et al. (2024) definition for that analysis.

3.2.3 Other Variables in the MOPS

Barriers to AI use. A critical set of variables for our identification strategy includes questions

on what respondents report to be the main barriers to AI use. Additionally, AI adoption barriers

help us understand why AI adoption is low despite rising interest and attention.

As Panel D of Table 1 shows, the leading consideration preventing or delaying AI use was

cost, which approximately 43% of plant managers consider prohibitive. In descending order of

prevalence, other barriers include difficulty of identifying business use cases for AI (28%), the level

of AI expertise at the establishment (12%), and employee attitudes towards AI (9%). Only about

1% of respondents see uncertainty about government regulations or industry standards as a barrier,

while nearly 6% of plant managers reported no barriers to AI use and stated that AI is widely used

in the establishment.

Non-AI Digitization. We directly measure other digital technologies in order to empirically sep-

arate them from AI. Closest to AI is predictive analytics (PA), defined as “statistical or algorithm-

based models that analyze historical and current data to make predictions about future or unknown

events.” Cognitive testing indicated that respondents found this description helped them separate

out algorithms that can learn on their own from predictions based on statistical models (e.g., mul-

tivariate regression) or older rule-based algorithms. Our question on PA ask respondents to report

its use across the same six business functions discussed above for AI usage. In contrast to AI, PA
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use is high at nearly 65% of respondents reporting at least some use, with 30% reliance on this

technology. This high adoption rate of PA reinforces the notion that respondents are unlikely to

overlook ”AI under the hood”, as a majority of plant managers clearly recognizes PA technologies

and is likely to similarly be able to recognize AI technologies.

Another potentially related technology is the use of descriptive analytics and statistics (DS)

which is defined as “descriptive analyses of data . . . typically used to support making key decisions,”

such as summary statistics, time trends, and real-time dashboards. Panel E of Table 1 shows

that DS adoption is also very high, with 73% of establishments using at least one DS technology.

Intensity is also high at 52 % of production relying on DS.

Underlying these data-intensive technologies is the background digitalization of information,

defined on the survey as “information stored in digital format” and measured across the previously-

described six business functions. The vast majority of plants report some level of data availability:

91% report at least some information being digitized, along with high intensities at 64%. The MOPS

and ASM also allow us to measure IT infrastructure, either measured by IT capital—cumulative

computer equipment expenses over the last 3 years—or cloud computing expenses.

Management Practices. In addition to digital technologies, the MOPS also includes a compre-

hensive list of variables to measure structured management practices. These measures have been

extensively discussed by Bloom et al. (2013; 2019) in the Census data and more-generally by Scur

et al. (2021; 2024), so we refer the interested reader to this work.

3.2.4 Business Strategy Measures in the ABS

A particularly useful set of variables from the 2018 ABS are questions about the business strategies

that firms pursue. Prior work has shown systematic relationships between business strategies and

AI adoption (McElheran et al., 2024), technology use (Wu et al., 2020) firm organization and

innovation outcomes (Yang et al., 2015), and firm performance responses to competitive shocks

(Yang et al., 2021). The ABS asks respondents about the importance of 14 different business

strategies, from a focus on “introducing new products or services” and “expand into new markets”

(domestic and international) to “low price” and “reduction costs.” We use principal component

analysis to extract three factors. The first factor captures the intensity of pursuing growth through

new markets, including expansions into new (domestic or international) existing markets or creation
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of new markets through innovation, and we call it “new markets strategy.” The second factor is

about pursuit of growth via cost leadership, close in spirit to Porter’s cost leadership strategy

(Porter, 1980). The third factor captures the intensity of pursuing satisfaction of current main

customers via excellent product and service quality. We call this “quality strategy,” and it is close

in spirit to Porter’s “differentiation strategy.” These three generic business strategies are similar to

ones found by Yang et al. (2015) in the Workplace and Employee Survey (WES) in Canada.

3.2.5 The Implications of “Shadow AI”

Although the timing of our survey precedes the introduction of generative AI tools in late 2022,

the issue of “shadow AI” is an increasing concern when it comes to measuring AI diffusion and its

impacts. The worry is that there could be AI use taking place in the firm, either undetected in

machinery or software— or, as seems to be common with the rise of LLLMs, in use by individual

employees— without managerial knowledge. We think the risk of this is lower with the Industrial AI

applications studied here (compared to newer generative AI technologies). That said, it is worth

considering the implications for our analyses. Ultimately, widespread “shadow AI” might bias

downwards our adoption statistics. However, if AI use is prevalent and undetected in our sample,

this should work against finding any significant productivity differences between firms based on

observed AI usage.

4 Endogeneity and Identification Strategies

We are interested in regressions of the form

yi = βAIi + Ciγ + ϵi (1)

where i indexes different establishments, and the dependent variable yi is typically (log) value

added or profits, defined as value of shipments minus salaries/wages, employee benefits, cost of

work-in-progress, raw materials, intermediate inputs, fuels, purchased energy, services, and resales.

Ci denotes a matrix of control variables typical in productivity regressions, including input controls

such as number of employees and non-IT capital capital stock, as well as other controls described
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below. The key endogeneity problem for regressions such as (1) is selection bias (e.g. Angrist and

Pischke, 2009), where better performing or better managed businesses will tend to use AI more

intensively. This will bias upwards any effects estimated via ordinary least squares (OLS). We

pursue three identification strategies to address this selection bias.

Our first identification strategy is the use of an unusually rich set of proxy variables to control

for typically-unobservable organizational factors (e.g., managerial skill or digital capabilities) and

can therefore be understood as a matching, or “selection-on-observables,” identification strategy.

As mentioned, the particular strength of the MOPS–ASM data is the availability of four sets

of variables that are rarely available at scale. The first set includes controls for data-intensive

technologies that are not AI. Similar to the AI index, we construct continuous indices for PA and

DS, which we use as controls throughout. The second set captures IT infrastructure, both on-

premises IT capital and cloud computing expenses, both of which have been closely linked to the

use of prediction technologies and AI (Brynjolfsson et al., 2021a; McElheran et al., 2024). Our third

set includes indices for structured management as in Bloom et al. (2019), as well as controls for the

percent of college-educated employees and union membership. These directly proxy for the quality

of management as well as for worker skill and organization. The fourth set includes indicators for

the establishment being part of a multi-unit firm (MU), being co-located with the firm headquarters

(HQ), or having one of three different production-process designs: job shops, batch production, or

continuous flow manufacturing. These quasi-fixed organizational design characteristics have been

associated with business performance and technology adoption in prior work (e.g., Atalay et al.,

2014; Bloom et al., 2013; McElheran et al., 2019; Brynjolfsson et al., 2021a).

A shortcoming of the selection-on-observables approach is that it cannot account for unobserved

factors that are correlated with performance but uncorrelated with our controls. We therefore lever-

age a natural experiment available in the MOPS–ASM data to address unobservable confounders.

Specifically, we use the reported perception of “no lack of AI expertise” as an instrument for more

intensive AI use. This IV is relevant for AI adoption and plausibly exogenous: lack of AI expertise

does not necessarily imply lack of manufacturing operations expertise. The logic underpinning our

approach proceeds in steps.

First, we build on recent work on AI use by firms that has argued extensively that AI-related

skills are distinct, technology-specific, and sought by firms that seek to adopt AI (Acemoglu et al.,
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2018; Babina et al., 2024). A specific question on the 2021 MOPS asks about the relationship

between AI adoption and AI-specific skills. We document the strong correlation between lack of a

reported AI skills gap and AI adoption, below.

The exclusion restriction, however, will be violated if AI-specific skills are correlated with other

human capital at the plant that also affects productivity. Thus, a few nuances of our setting and

our approach are worth keeping in mind. First, the relative recency of AI applications (as opposed

to inventions) suggests that many competently-run organizations will not have recruited plant-

managers for AI skills, specifically—particularly if other barriers (such as lack of obvious use cases)

are predominant. In this context, the vast majority of our respondents are plant managers with

tenure exceeding 5 years (Bloom et al., 2019), which makes it very unlikely that AI skills important

consideration when they were hired. For example, managers hired in 2016 (5 years prior to the

sample year of 2021), we unlikely to be hired for their AI expertise as machine vision had just

begun to outperform human vision in 201520.

Second, lack of AI skills by plant managers may be offset by access to AI skills by other

employees, such as engineers. We address this concern to a large extent by directly controlling for

the percent of workers at the plant with a formal Bachelor’s degree. Use of structured management

practices is also controlled for (Bloom et al., 2019). For these reasons, we assume that an in-house,

AI-specific skills gap will increase the costs of AI adoption while being conditionally uncorrelated

with the overall performance of the plant. In addition, we follow Angrist and Pischke (2009) and

evaluate the plausibility of the exclusion restriction by showing, for a subset of establishments with

“zero first-stage” effects, that reduced-form estimates exhibit zero effects as expected.

Since exclusion restrictions in IV estimation can never be directly tested, we leverage a third

identification strategy based on the ABS–CMF panel data. Specifically, as documented by McEl-

heran et al. (2024), AI adoption by U.S. firms by 2017 was very low. Maintaining the assumption

that AI adoption as of 2012 (the closest year for the full Census of Manufactures, which maximizes

our balanced panel sample) was essentially nonexistent21 allows us to estimate regressions of the

form

yf,t = β ·AIf,t + Cf,tγ +Df + ϵf,t (2)

20With ImageNet achieving an error rate of 5% narrowly beating the average human error rate of 5.1%
21This identifying assumption is similar in spirit to that used by Forman et al. (2012) and Forman and McElheran

(2025) to study the impact of the commercial internet in the 1990s.
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where f is a manufacturing firm, t indicates different years (2012 and 2017), and Df denotes

a full set of firm fixed effects. We thus use within-firm changes to control for permanent or slowly

changing unobservable confounders. As before, we use firm productivity (labor productivity and

TFP) to measure value creation and profits to measure value captured.

It is useful to remember that first difference approaches like (2) will exacerbate attenuation bias

of coefficients towards zero as a result of “over-differencing” (Angrist and Pischke, 2009), so, setting

aside potential upward bias due to selection (which is unaddressed in this approach), we expect

the estimates for this specification to be smaller in magnitude compared to the IV estimates, as IV

automatically corrects for classical measurement error.

5 Results

5.1 Correlates of AI Use

In this section we examine the variables that help predict AI adoption in our MOPS-ASM sample.

Controlling for size, which is a well-established correlate of AI uptake (McElheran et al., 2024;

Calvino and Fontanelli, 2023), industry (at the 3-digit NAICS level), multi-unit and headquarters

status of the plant, production-process design, and the prevalence of bachelor’s degrees among

employees, there remains a great deal of heterogeneity in AI adoption among U.S. manufacturers.

5.1.1 Other Technologies

The first two rows in Table 2 demonstrate that AI is distinct from and co-varies with the presence

of other digital technologies. The descriptive analytics index, DS, is negatively correlated with AI

use, consistent with substitution between AI and less-sophisticated uses of digital information such

as summary statistics and descriptive dashboards. In contrast, the index of predictive analytics,

PA, is positive and significantly related to AI use. However, the overlap between AI and PA is

far from perfect. Quantitatively, a standard-deviation increase in the PA index is only associated

with a 0.39 standard deviation increase in the AI index. These results underscore the importance

of disentangling different digital technologies from each other and taking a nuanced approach to

understanding their interactions with each other and the broader organizational context.

The next two rows in Table 2 document the correlation between IT infrastructure and AI use.

23



The data allow us to separate IT infrastructure into on-premises IT equipment, such as computers

and servers, and cloud computing, which have been shown to differently affect the surviavl and

productivity of firms of different ages (Jin and McElheran, 2024). The results across specifications

indicate that AI use is systematically correlated with cloud computing but not with on-premises

IT capital, consistent with potential benefits of cloud-connected AI systems hypothesized by Pratt

(2015) and the technological interdependencies conjectured in McElheran et al. (2024).

5.2 Organizational Complements

A key test for complementarity between technology and organizational characteristics (Milgrom

and Roberts, 1990) is the “correlation test” for co-adoption of technology and key organizational

features (Brynjolfsson and Milgrom, 2013; Brynjolfsson et al., 2021a). The next rows in Table 2

provide insights along these lines.

Rows 5 and 6 provide nuanced insight into how structured management practices may affect AI

adoption. We find a positive relationship only with process-focused Lean management practices.

Plants with greater managerial attention to key performance indicators, production targets, and

other practices related to monitoring and managing production activities report a higher AI index.

In contrast, structured people-focused management practices are negatively associated with AI use.

Tying compensation to production targets, promoting employees primarily based on performance

(rather than tenure) and quickly firing or re-assigning under-performing workers is associated with

less AI uptake. This is controlling for unionization, which correlates positively with AI use (see

row 7 of Table 2).

Other organizational interactions are less surprising (and thus exact estimates are not dis-

closed as of this writing). Age is negatively correlated with AI use, although the coefficient is

only statistically significant in the richer specification in column 3 (row 8). AI use is also more

prevalent alongside greater (non-IT) capital investment (column 3, row 9). This is worth noting

as capital stocks are often missing or mismeasured in standard data sets (e.g., Bryzgalova et al.,

2025). Statistically, this will cause unobserved returns to capital equipment to load onto correlated

observables—which we show here includes AI—potentially biasing upward the estimated returns

to AI use (more on this, below).
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5.3 Potential for Reverse Causality

While examining potential drivers of AI use, we can probe how earlier plant performance is condi-

tionally associated with 2021 AI usage. Columns 4 and 5 of Table 2 document that prior growth

(change in value-added from 2019 to 2021) and 2019 labor productivity are either insignificantly or

negatively correlated with AI use. This runs counter to standard concerns in productivity studies

(i.e., that reverse causality would lead to a positive correlation between AI use and performance;

see, e.g., Brynjolfsson and Hitt, 2000).

5.4 IV Relevance

A key question for this analysis is the relevance of the instrumental variable. Based on the im-

portance of “lack AI expertise” as a reported barrier to AI adoption in panel D of Table 1, we

reverse-code this question to construct an indicator equal to one if “lack of AI expertise” is not

reported to be a barrier. As the final row of Table 2 shows, this proposed instrument significantly

and robustly predicts more intensive AI adoption. Plants where a lack of AI expertise at their

establishments is not flagged have slightly over 8% higher AI usage, on average, conditioning on a

wide range of other factors.

5.5 AI Use is Associated with Initial Performance Losses

5.5.1 OLS Estimates in the 2021 MOPS

We turn next to systematically exploring the relationship between AI use and performance. Panel

A of Table 3 provides a cumulative regression build of OLS regressions of value added on AI and

increasingly rich sets of controls to examine near-term plant performance in the 2021 MOPS data.

The first column indicates that, absent other controls, AI adoption appears significantly correlated

with (log) value added, even controlling for the presence of other data-intensive analytics tools (DS

and PA). This continues to be true when we control for IT infrastructure in column (2). However,

once we control for size and industry in column (3), along with multi-unit status and energy ex-

penditure, the precision of the estimate improves while its magnitude falls to point of statistical

insignificance. Columns (4) and (5) add controls for structured management practices and other

organizational characteristics including plant age, resulting in a negative yet statistically insignif-
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icant correlation between AI use and labor productivity. Finally, adding capital stock controls in

column (5) allows us to analyze whether more AI-intensive plants tend to have higher or lower total

factor productivity (TFP). Here, the negative coefficient is much larger and statistically significant

at the five-percent level., indicating that plants with a standard-deviation higher AI index tend

to be 1.33% less productive. The conditional correlation between AI use and profits is small and

noisy in a similar specification (column 7).

A common concern regarding OLS performance estimates is the potential for bias due to se-

lection bias or plant-level unobservables. Typically, the concern is that larger, better-managed

firms with richer organizational complements will be both more likely to adopt a new technology

and more likely to gain from its use. This is often referred to as “selection on gains” in related

technology and economics studies (e.g.,(Bloom and Van Reenen, 2007)). It should be noted that

in our context this concern will bias the results against finding a negative effect of Industrial AI

adoption. One might therefore expect that well-identified causal effects may exhibit much more

negative productivity effects of AI adoption.

5.6 IV Results

Next we employ quasi-experimental methods to address common endogeneity concerns regarding

OLS estimation. Before turning to these results, it is important to underscore that a hypothetical

natural experiment “treating” firms randomly with AI technologies would not necessarily yield a

realistic estimate of the average treatment effect (ATE) of AI on performance, due to the importance

of adjustment and co-invention in realizing gains from transformative technologies (Bresnahan and

Greenstein, 1996; Bresnahan et al., 2002), leading to large treatment effect heterogeneity (Angrist

et al., 1996).

Our aim in developing a novel IV strategy is not to derive definitive “causal” estimates, but

rather to add to a collage of evidence depicting the heterogeneous impacts of early AI use in indus-

trial production. These results are best interpreted as the local average treatment effect (LATE) of

AI use among firms that had a greater propensity to adopt AI early for reason conditionally unre-

lated to anticipated gains. This section discusses these estimates along with a number of tests of the

identifying assumptions underlying the approach and exploration of key drivers of heterogeneity.

The first column of Panel B in Table 3 reprises findings in Table 2 that the instrument of “no
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lack of AI expertise” is indeed relevant. Columns (2) and (3) report second-stage IV results, with

column (2) estimating the impact of a one standard deviation higher AI index on labor productivity

while column (3) estimates the impact on TFP (i.e., revenues controlling for production inputs

including capital stock). The estimated effects are quantitatively very large. Focusing on TFP,

column (3) indicates that a one standard deviation increase in AI reduces TFP by roughly 44%

(−0.44 = exp{−0.587}−1). Although these effects are substantially larger than the OLS coefficient

reported in column (6) of Panel A, these effects should be interpreted with a few things in mind.

First, selection on gains would predict that firms with a high correlation between productivity

and AI adoption will not be sensitive to the instrument (”Always Takers” in the treatment effects

terminology, e.g., Angrist et al., 1996; Angrist and Pischke, 2009), so this approach plausibly

strips out the firms with the highest returns to AI use. Second, OLS is well known to suffer

from attenuation bias when classical measurement error is sizable, which is both likely in the

context of fast-changing AI technologies (i.e., they are inherently hard to define and measure) and

addressed by IV estimation. Third, the quantitative implications of our IV results on TFP may be

usefully situated in prior research on productivity drivers in firms. One reference for well-estimated

causal effects on productivity concerns the adoption of structured management on establishment

TFP from a field experiment in Indian manufacturing from Bloom et al. (2013). They suggest

that a one standard deviation higher structured management score increases plant TFP by 60%

(0.59 = exp{0.49} − 1). These productivity effects are of the same order of magnitude as the

negative TFP effects estimated here. This sheds important light on the experience of an important

subset of firms that were early adopters of AI for conditionally uncorrelated reasons.

Column (7) of Panel A and column (4) of Panel B in Table 1 report the relationship of AI

adoption and profits. Although positive and quantitatively small in OLS, our IV estimates suggest

that a one standard deviation more AI use causes a loss of about $11 million for the average

manufacturing establishment in our sample. Given very similar average profits in the estimation

sample (see Table 1, Panel A), this is a quantitatively important magnitude and underscores the

short-term risks of industrial AI adoption.
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5.6.1 IV Robustness

All econometric identification strategies embed tradeoffs, and the central concern of any IV analysis

is whether failure of the exclusion restriction could bias the estimates. For example, the early timing

of adoption notwithstanding, one could worry that lack of AI expertise within the plant leading

up to adoption by 2021 could indicate of a broader lack of operational capability (again, despite

our direct controls for management practices and employee education), which could directly reduce

establishment productivity. In this case, establishments with no lack of AI expertise should directly

demonstrate higher productivity than those reporting such a barrier. However, as the first column

of Panel A in Table 4 shows, the opposite appears (and is statistically significant) when we regress

labor productivity directly on the instrument.

A related selection-based bias could arise if the response of “no lack of AI expertise” were

indicative of plant managers who expect disproportionate gains from AI. If true, this would imply

that respondents that instead reported “AI is widely used” in the same question block should

exhibit systematically higher AI-related productivity. We therefore use the response “AI is widely

used” as a placebo instrument, for which we report the first stage in the second column of Panel A

in Table 4. As expected, this response is strongly positively correlated with AI use in the first stage.

However, as column (3) shows, the second stage effect is statistically indistinguishable from zero,

albeit positive. This is consistent with plants led by managers who expect higher returns to AI being

more likely to adopt in the first place. However, they cannot rule out that the realized costs exceed

anticipated gains, at least in the short term. Stories of big AI and automation implementations

needing to be reversed due to unanticipated performance problems are an increasing feature of

recent news cycles22. Note, further, that the sign and significance of the placebo effects differ from

our main IV results, ruling out a mechanical relationship driven by this “barriers” question block.

To further probe the plausibility of the exclusion restriction, we follow Angrist and Pischke

(2009) in using a “zero first stage” approach. For this, we require a subsample of plants for

which no lack of AI expertise nevertheless fails to lead to more AI adoption. In other words,

22Swedish firm Klarna made headlines for replacing large numbers of employees with AI chatbots, only to have
to hire them back because of low quality results (https://www.techradar.com/pro/over-half-of-uk-businesses-who-
replaced-workers-with-ai-regret-their-decision). Tesla also famously confirmed that challenges associated with au-
tomation hindered vital Model 3 production, echoing earlier challenges with automation in car manufacturing
(https://www.iqsdirectory.com/resources/teslas-big-problem-excessive-automation.html).
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in such a subsample, the instrument is irrelevant to being treated. If the exclusion restriction

holds, one should then observe no correlation between the eventual performance outcome and the

instrument, since the exclusion restriction requires that the instrument only impact performance

via the treatment (in our case, AI use). There are good theoretical reasons to believe that the IV

is irrelevant for at least two particular subsamples of manufacturing establishments.

The first is “job shops,” which flexibly make a variety of made-to-order products in small batches

or even one-off prototypes. Products and production parameters will typically vary widely from

order to order. In this high-mix, low-volume context (Hayes and Wheelwright, 1979), uncertainty

is high by design. An AI technology such as machine vision will typically not have enough data or

repeated use cases to train and leverage prediction algorithms. Previous work on the use of predic-

tive analytics found a similar constraint on prediction’s benefits in these production environments

(Brynjolfsson et al., 2021a).

The second subsample is single-unit (SU) establishments. Systmatically smaller than multi-unit

plants, they will be less likely to adopt AI systems due to lack of scale (Svanberg et al., 2024).

For both of these subsamples, we find that the instrument fails as predicted in the first stage,

as documented in columns (1) and (3) of panel B of Table 4. Importantly, not only are the IV first

stages for the subsamples statistically insignificant, they exhibit opposite signs compared to the first

stage in column (1) of Panel B in Table 3. Further, in each of these cases, the reduced-form labor

productivity regressions (columns (2) and (4) of panel B) show a quantitatively small, statistically

insignificant, and negative relationship between AI use and. This is exactly the result one would

expect if the IV exclusion restriction holds.

5.6.2 Understanding LATE

Given the large magnitude of the IV estimate, we are interested in better understanding treatment

heterogeneity and how broadly we should extrapolate from the local average treatment effect, or

LATE (Angrist and Pischke, 2009). First, we explore heterogeneity based on exogenous organi-

zational characteristics. Consistent with prior work linking IT performance to product mix and

volume (McElheran and Jin, 2020), we find that the IV estimates vary across production designs.

Specifically, AI-related productivity is higher in continuous-flow plants, where production mix fo-

cuses on few products in service of higher volume. Plants with this type of stable (i.e., predictable)
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production exhibit less of a J-curve dip (Column 2, Panel A of Table 5). This lends indirect support

to the exclusion restriction, as these plants tend to be relatively capital-intensive, more-intensively

managed, and relatively higher-productivity than other plant types (McElheran et al., 2019). It

further underscores the fit of AI for prediction-friendly production environments, as discussed in

section 2.1.3.

In contrast, older establishments show a more-pronounced negative LATE (Column 3, panel

A, Table 5), consistent with our discussion in section 2.4. We return to the challenges of older

businesses, below.

To understand what types of plants are sensitive to the instrument and therefore driving the

IV results (the “Compliers” if we had a binary treatment, per Angrist et al., 1996), in panel B of 5

we report the odds ratio for various firm characteristics among the population of plants for which

“no skills gap” is associated with being above the median AI-index. These plants, which represent

about 3% of the analysis sample (recalling the low average adoption rates) should be thought of

as the “marginal” adopters: they would not adopt Industrial AI, “but-for” plant managers’ view

of no AI-related skills gap. To better understand marginal AI adopters conceptually and interpret

our results, it is useful to contrast Compliers with two other groups of establishments, following the

logic of Angrist et al. (1996). On the one hand, ”Always Takers” are infra-marginal establishments

whose perceived net benefits of AI adoption are so high that they would adopt this technology,

irrespective of whether they happen to have sufficient AI expertise right now. In other words, they

are willing to incur the additional costs of acquiring the necessary skills if needed. In terms of

observable characteristics, we would expect Always Takers to have the digital inputs and cloud

computing infrastructure previously found to be associated with AI use (Goldfarb et al., 2023;

Calvino and Fontanelli, 2023; McElheran et al., 2024). We further would expect them to benefit

from the scale-effects of digital technologies (Giustiziero et al., 2023), exemplified by being part

of large multi-unit firms, by using e-commerce to ship their goods nation-wide, or by deploying

AI technologies at their headquarters (HQ) to coordinate other production units. The adjustment

costs might further be lower at HQ, all else equal, if proximity to firm leadership and managerial

capabilities is greater in these locations.

On the other hand, “Never Takers” are least likely to adopt Industrial AI—even if they happen

to have sufficient AI expertise—due to insufficient anticipated net benefits. Empirically, we would
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expect them to be the opposite of Always Takers: not digitalized, not reliant on cloud computing,

not using e-commerce, single-unit in structure or, if not, located away from HQ within multi-

establishment firms.

As a result of this characterization of Never Takers and Always Takers, Compliers should

be between these extremes: they will demonstrate some characteristics of Always Takers while

resembling Never Takers on other dimensions. Panel B of 5 shows exactly this. More like Always

Takers, Compliers are 33% more likely than the average plant to ship all their goods through e-

commerce, 23% more likely to exhibit above-median cloud use, and 42% more likely to be part of

a mult-unit firm. At the same time, Compliers are similar to Never Takers on the dimensions of

digitalization and headquarters status. They are 60% less likely to be highly digitalized than the

average plant and 48% less likely to be co-located with HQ.

Our empirical profiling of Complier plants can help to shed light on why the LATE from our

IV analysis is so negative. Specifically, despite these plants exhibiting characteristics that make

them likely to eventually benefit from Industrial AI adoption (such as multi-unit status), being

less-advanced in their digitization journey likely diminishes the quantity and/or quality of training

data to hand, leading to worse short-term performance. The lower likelihood of being co-located

with HQ may further represent uncertainty about the system-wide benefits or lack of organizational

support, again negatively impacting short-term returns to AI use above and beyond the average

adjustment costs observed in the broader population.

5.7 Within-Business Changes

Despite the plausibility of our IV exclusion restriction, exclusion restrictions can never be conclu-

sively tested unless the instrument is generated by an actual randomized controlled trial (RCT). We

therefore pursue yet another identification strategy to triangulate on the causal effects of AI use on

business performance. Leveraging the panel structure of the ABS-CMF data, we estimate equation

(2) with either plant or firm fixed effects to control for time-invariant organizational confounders.

The first three columns of Panel A in Table 6 show that more-intensive AI adoption between

2012 and 2017 is associated with declining sales, lower TFP, and lower profits. The magnitudes of

these effects are all an order of magnitude smaller than effects estimated via IV. This is unsurprising,

since any type of classical measurement error (discussed above) will be magnified in simple first-

31



difference estimators, attenuating their magnitude compared to the IV results. In addition, this

approach “over-controls” for slow-moving organizational characteristics such as those discussed in

the complier analysis, above. Finally, the effect reflects more time for adjustment among any plants

that adopted early in the five-year window. While we do not directly estimate how long it takes for

the J-curve to reverse direction or net out, overall, some improvement amongst survivors in this

more medium-term analysis is to be expected.

Those caveats aside, the sign of the effects is consistent with both the OLS estimates and the

IV estimates from the MOPS–ASM data. AI adoption is associated, again, with short-term within-

firm productivity declines. In these analyses, the magnitude of a one standard deviation higher AI

use comes with a performance loss of around 2% (−0.019 = exp{−0.02} − 1).

The panel data also allow us to investigate the dynamic patterns predicted by the J-curve theory,

expressed in section 2.2. Specifically, we can analyze the longer-term growth and performance

outcomes of manufacturing firms as a function of their AI use in 2017. For this, we track growth in

terms of employment, sales, and labor productivity in the Longitudinal Business Database (LBD)

from 2017 to 2021.

Columns (1) to (3) in Panel B of Table 6 show growth in employment, sales, and labor pro-

ductivity to be significantly higher for manufacturing firms that deployed AI in production (the

ABS definition of adoption) by 2017 and persisted in our sample through 2021. These positive

growth effects are consistent with section 2.2 (and J-curve arguments more generally), that ini-

tial performance losses should be considered investments in co-investment and intangible capital

accumulation that yield returns in the longer run.

Columns (5)–(7) of Panel B in Table 3 report additional IV estimates that reinforce this adjust-

ment explanation and deepen our understanding of the causal effect. Motivating the specification

in column (5) is recognition of how important “Lean” production has become in U.S. manufac-

turing (e.g., Womack at al. 2007), as discussed in Section 2. Key characteristics of Lean include

purposefully driving down inventory in the production process so as to make problems and de-

fects more visible, to force responsiveness to process exceptions, and to improve (shorten) the lead

times and inventory carrying costs of the entire system (e.g., Holweg 2007). It also tends to be a

very “pull-based” and often low-tech approach to operating a production process, focused more on

responsiveness to demand and preventing defects than buffering for them (Milgrom and Roberts,
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1988). As such it is arguably not a straightforward fit for more-digitized methods associated with

sophisticated prediction, make-to-forecast, and ultimately AI. Disrupting established “analog” pro-

cesses rooted in the Lean tradition should therefore become visible in other metrics such as inventory

levels and carrying costs. We find empirical evidence consistent with this in column (5) of Panel B

in Table 3, which shows that WIP systematically increases in response to AI adoption.

Another consideration is that AI systems might be replacing manual, human-led activities with

physical automation. If this is the case, then early adjustment should also manifest as increased

investment in production capital—especially industrial robots. Robot use and reliance on AI in

production have been correlated in prior work McElheran et al., 2024), but the timing of adoption

and causality remain poorly understood. Column (6) of Panel B in Table 3 shows that the number of

active and purchased industrial robots increases as a result of AI adoption. Again, this is consistent

with significant co-invention in production processes due to moving to reliance on AI.

Finally, AI use causes the number of workers to decline, as shown in column (7) of Panel B in

Table 3. While this is, at first glance, consistent with substitution of human labor with automation

(Autor and Salomons, 2018), it is a short-term result that must be interpreted in the context of

employment growth over time. We do not observe which workers are shed, nor which ones contribute

to employment growth over time. We note, however, that this pattern is consistent with a need to

shuffle labor inputs as businesses shed prior practices and reconfigure their operating systems.

5.8 The Role of Business Strategy

In this section we investigate what firm characteristics might impact how AI shapes competition.

We first begin with generic business strategies. Following section 2.3, we expect that the strategic

decisions of how firms pursue growth matter for the initial performance decline of their J-curve.

Column (4) of Panel A in Table 6 yields results consistent with this hypothesis. Specifically,

firms with more strategic emphasis on growth through market expansion and innovation (“new

markets strategy”) tend to exhibit significantly lower initial productivity losses as seen in the

positive and significant interaction term. This result is consistent with early benefits from scale

economies helping to reduce initial foregone output from adopting AI. At the same time, pursuing

scale through cost leadership does not work as well, as shown by corresponding interaction term

in column (4) of Panel A in Table 6. Although we do not find statistically significant results, the
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negative sign of this effect is consistent with the view that growth through cost leadership still

implies demand-side dis-economies of scale, which limit how much firms can avoid initial J-curve

losses from foregone output.

We now move to the tests of our predictions from section 2.2, which predicts that old firms will

exhibit greater performance losses from AI adoption because they disproportionately lose produc-

tivity benefits from prior accumulated experience.

Results in Panel A of Table 6 confirm this intuition. Column (5) of Panel A shows that after

controlling for the interaction of firm age and AI adoption, the main effect of AI adoption on

productivity is actually positive and statistically significant. The last two columns of Panel B

in Table 6 build on this analysis and estimate growth outcomes from 2017 to 2021 in the LBD

as a function of AI adoption and firm age. These estimates show that older firms systematically

benefit less in the wake of AI adoption and that once the interaction of AI adoption and firm

age is controlled for, other firms also gain substantially more in terms of sales growth and labor

productivity.

5.9 Mechanisms

In this section we dig into the specific channels underlying the age effects documented in the last

section as well as the implications of AI as a scale-free resource within large multi-unit firms.

5.9.1 What is Driving Age Effects of AI Adoption?

We begin by documenting that age effects documented for the ASM–CMF data are indeed also

present in the MOPS–ASM data. For purposes of this analysis, we define old establishments as

establishments that are at least 25 years old, with the average plant age being almost 29 as shown

in Table 1.

The first two columns of Panel A in Table 7 show that the negative effects of AI adoption

on labor productivity (in column 1) and TFP (in column 2) are either substantially larger in old

establishments, or even completely driven by old establishments.

We then move to exploit a key strength of the MOPS data to investigate whether AI adoption

causes a change of structured management practices. Column (1) of Panel B in Table 7 shows that

more intensive AI adoption causes a de-adoption of structured management practices, concentrated
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in old establishments. Quantitative magnitudes of the de-adoption of structured management are

large: estimates from column (1) of Panel B in Table 7 imply that a one standard deviation in AI

intensity reduces structured management by 0.83 standard deviations. This result is meaningful in

at least two ways. First, de-adoption of structured management practices is likely to have a direct

effect by reducing the quality of management. Second, de-adoption of structured management

practices is indicative of a broader loss of production experience/know-how and “organizational

capital” (Levitt et al. 2012) as argued in section 2.5.

To quantify the direct productivity effect of the de-adoption of structured management, we can

combine the estimate of column (3) with estimates of the causal effect of structured management

on TFP from Bloom et al. 2013. Doing so results in an estimated TFP loss of 32% (−0.32 =

exp{−0.83 × 0.477)} − 1) at old establishments. Alternatively, one can use the OLS regression

estimates of TFP on structured management by Bloom et al. (2019) of 0.209 in combination with

the finding in that paper that classical measurement error attenuates the OLS coefficient by 1/2

to obtain a measurement error corrected coefficient of 0.418(= 0.209 × 2), which then implies a

productivity loss of 29% (0.29 = exp{−0.83×0.418}−1). These TFP losses should be compared to

the TFP effects at old establishments shown in column (2) of Table 7, which indicate a 68% TFP loss

(0.68 = exp{−1.133}−1). In both cases, this mechanism alone can explain roughly half (32%/68%)

of the TFP loss from AI adoption in column (2) of Panel A in Table 7 for old establishments.

Another way to restate this result is that the residual loss of experience/organizational capital

could potentially explain up to half of the measured TFP loss due to AI adoption.

Additionally, the MOPS data allows us to more fully understand which of the structured man-

agement practices are affected in particular. Indeed, columns (2) –(4) of Panel B in Table 7 show

that the de-adoption is driven by production monitoring and targeting practices and especially by

de-adoption of “KPI reviews by non-managerial employees” and the degree of “Target awareness

across employees,” which is higher the more non-managerial employees are typically aware of pro-

duction targets. These results are consistent with old establishments removing operations practices

that previously helped them to utilize frontline employee knowledge (section 2.5). This is also

consistent with the results from the last two columns of Panel A in Table 7, which show that more

intensive AI adoption causes reduction in employee wages and overall workforce, consistent with

the replacement of frontline employees with industrial AI systems such as predictive maintenance
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and AI-enabled industrial robots.

5.9.2 Within-Firm Spillover Benefits of AI Adoption

Section 2.6 suggests large multi-unit establishments might mitigate some of the direct losses from

AI adoption by indirectly benefiting from positive spillovers across establishments within the same

firm. We investigate this mechanism by deriving a second instrument from our first for multi-unit

firms. Specifically, we construct an AI measure for AI adopted at other establishments of the same

firm and call it “elsewhere AI index” (EAI). This EAI index increases with the average AI index for

other establishments within the same firm, excluding the focal one. In other words, it is a “leave

out mean” AI index with the mean being calculated across all establishments belonging to the same

firm as the focal establishment but excluding the focal establishment. We then use the number of

plants outside the focal plant but inside the same firm which reported no lack of AI expertise as

instrument for EAI.

Columns (1) and (2) of Panel C in Table 7 shows that the system of equations of two IV first

stages confirm that both instruments are relevant. Column (3) of Panel C in Table 7 shows that

the causal effect of AI adoption at the focal plant is still negative, but that AI adoption at other

plants within the same firm has a positive and sizable causal effect.

6 Conclusion

This paper examined the performance impact of AI on U.S. manufacturing over different time

horizons and across diverse organizational settings. Using two distinct but related datasets on

tens of thousands of establishments and firms, we document three key findings. First, early indus-

trial AI adoption in U.S. manufacturing robustly causes statistically and economically significant

productivity losses in the short run. Second, however, we find evidence for recovery and growth

in the longer run. Together these findings are consistent with J-curve mechanisms that have not

heretofore been established at the micro-level.

Last but not least, we unpack heterogeneity in these effects and their implications for compet-

itive dynamics. Productivity losses are driven by old establishments and old firms. This suggests

that industrial AI adoption does not favor incumbents over entrants, at least not in our context
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of industrial AI in U.S. manufacturing. In addition, we find that growth-oriented startups benefit

disproportionately, suggesting that Industrial AI use may tend to promote “creative destruction”

in the sector, as AI diffuses. Further, we provide direct evidence on the quantitative importance

of a particular causal mechanism leading to the AI-related decline in establishment productivity:

the displacement of structured management practices (Bloom et al. 2012; Bloom et al. 2019) and

obliteration of knowledge management systems combining worker feedback and structured practices

(Grant, 1996; Levitt et al. 2012). The labor shedding we observe is likely linked to this adjustment

process, which also manifests in WIP and increased robot investment

Our empirical analysis has several limitations that constitute opportunities for future research.

The first is that industrial AI diffusion remains in its early stages. As AI matures as a technology

or co-invention know-how also diffuses, productivity losses from initial adoption might be better

balanced by productivity gains. Further, our estimates of dynamic effects are not as well-identified

as the baseline short-term losses and probably suffer from some remaining (upward) selection bias.

So, the long-term effects could be less rosy than portrayed in these estimates. It will be useful to

continue gathering empirical evidence on this question as AI-related technologies continue to evolve

and diffuse.

A second limitation of this study is the focus on (U.S.) manufacturing. This focus on a given

industry context allows us to better understand and interpret the results. But if AI is really a

GPT, then it will be widely adopted across many different industries and sectors of the economy.

Future work should therefore continue to explore other business contexts to better understand and

evaluate the effects of AI on productivity and workers across the economy.

Finally, more work is needed on the specific uses to which AI-related technologies are being

put by firms. The low baseline adoption, combined with Census’ disclosure avoidance rules pre-

vents us from providing more-granular breakdowns of AI use and potentially differing performance

implications. Yet a hallmark of GPTs is their broad applicability. Better understanding specific

applications of AI in specific contexts is needed to understand other dimensions of heterogeneity,

trace dynamics, and “flatten” the curve for more organizations and industries.
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Table 1: Summary Statistics

(1) (2)
Mean Std. Dev.

Panel A: Establishment Characteristics (MOPS–ASM)

Number of employees 171.5 263.4
Age of establishment 28.54 14.23
Percentage of shipments through e-commerce 62% 42%
Number of active and purchased industrial robots 1.73 6.96
Establishment-level profits (in thousands) 11,000 16,000
Change in work-in-progress inventory (in thousands) 445 6370

Panel B: Firm Characteristics (ABS–CMF)

Number of employees 344.3 7,678
Age of firm 24.85 12.59
Percentage of shipments through e-commerce 23.5% 37.7%
Establishment-level profits (in thousands) 19,500 42,000
Early adopters 7.5% 9.1%

Panel C: AI Adoption (MOPS–ASM)

Any AI 22.8% 41.9%
Any technical AI application 12.6% 33.2%
Production using AI 8.0% 20.4%
Production using technical AI applications 2.3% 9.1%

Panel D: Barriers to AI Adoption (MOPS–ASM)

No applications or business use cases 28.4% 45.1%
Regulation uncertainty 1.0% 10.1%
No expertise 12.3% 32.8%
Cost 43.2% 49.5%
Employee attitudes 9.4% 29.2%
No barriers 5.5% 22.9%

Panel E: Other Digital Technologies (MOPS–ASM)

Any predictive analytics 64.6% 47.8%
Any descriptive statistics 72.8% 44.5%
Any digitalized data 91.0% 28.6%
Expenditures on cloud computing (in thousands) 7.63 33.21

Notes: Panel A is using the MOPS–ASM sample and is comprised of roughly 28,500 manufacturing establishments.
Panel B is using the ABS–CMF data and consists of roughly 55,000 manufacturing firms. Panels C, D, and E
report weighted summary statistics based on data from the MOPS–ASM, combined with sample weights that make
estimates representative for roughly 300,000 manufacturing establishments in the U.S. The AI, descriptive statistics,
and predictive analytics indices are normalized, with zero mean and unit standard deviation, which is why we do not
report summary statistics for these indices here.
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Table 2: Correlates of AI Use by U.S. Manufacturers
MOPS—ASM: Establishment-level

(1) (2) (3) (4) (5)

DS Index -0.0504*** -0.0506*** -0.0526*** -0.0506***** -0.0502***
(0.0177) (0.0177) (0.0177) (0.0177) (0.0176)

PA Index 0.386*** 0.385*** 0.385*** 0.385*** 0.385***
(0.0119) (0.0119) (0.0118) (0.0119) (0.0119)

Log IT Capital -0.0007 -0.0006 -0.0047 -0.0006 -0.0002
(0.0032) (0.0032) (0.0033) (0.0032) (0.0032)

Log Cloud Expense 0.0116** 0.0117** 0.0117** 0.0117** 0.0119**
(0.0049) (0.0049) (0.0049) (0.0049) (0.0049)

Structured Mgmt - Process 0.0433*** 0.0434*** 0.0407*** 0.0434*** 0.0440***
(0.0092) (0.0092) (0.0091) (0.0092) (0.0093)

Structured Mgmt - HR -0.0283*** -0.0287*** -0.0281*** -0.0288*** -0.0294***
(0.0072) (0.0072) (0.0072) (0.0072) (0.0071)

Union 0.0771** 0.0813** 0.0755** 0.0812** 0.0826**
(0.0363) (0.0363) (0.0361) (0.0363) (0.0362)

Plant Age (-) (-)** (-) (-)

Log Capital (+)***

VA Growth 2019–2021 -0.0013 -0.0060
(0.0077) (0.0085)

Log Labor Prod. 2019 -1.521*
(0.894)

No lack of AI expertise (IV) 0.0827*** 0.0824*** 0.0840*** 0.0824*** 0.0818***
(0.0174) (0.0174) (0.0175) (0.0174) (0.0174)

Additional Controls: Size, Industry, Skill, Plant Type, MU, Energy, HQ

Notes: AI Index (the dependent variable) measures adoption of applications of AI in business functions or adoption
of specific AI technologies, with the index being normalized to have zero mean and unit standard deviation. DS index
measures use of descriptive statistics in decision making with the index being normalized to have zero mean and unit
standard deviation. PA index measures use of prediction algorithms across six business functions with index being
normalized to have zero mean and unit standard deviation. Other variables include log IT capital (accumulated IT
equipment expenses in the past 3 years), logged expenditure on cloud computing (from the MOPS), an indicator that
AI skills were not mentioned as a barrier to AI adoption; an index of “structured management-process” practices
focused on production monitoring and target setting (Bloom et al., 2019), an index of “structured management –
HR” related to incentives and promotion practices (Bloom et al., 2019; Cornwell et al., 2021), extent of unionization,
plant age (from the LBD), and logged capital stock calculated using the perpetual inventory method, value added
growth from 2019-2021 and log labor productivity in 2019. Unreported controls include Size (logged employment),
Industry (3-digit NAICS fixed effects), Skill (percentage of employees with BA degrees), Plant Type (production-
process design), MU (multi-unit status), Energy (logged energy expenditure), and HQ (indicator that headquarters
for the firm is co-located). Standard errors are clustered at the firm level and reported in parentheses.
Statistical significance: *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Performance Regressions of AI Adoption
MOPS—ASM: Establishment-level

Panel A: OLS
Log Value Added (VA) Profits

(1) (2) (3) (4) (5) (6) (7)

AI Index 0.097*** 0.078*** 0.006 -0.004 -0.003 -0.013** 81.63
(0.014) (0.013) (0.007) (0.007) (0.007) (0.007) (130.3)

DS Index 0.559*** 0.451*** 0.077*** 0.031*** 0.032*** 0.015* 7.42
(0.014) (0.014) (0.008) (0.009) (0.009) (0.009) (113.8)

PA Index 0.063*** 0.054*** 0.008 -0.002 -0.0009 -0.002 -39.46
(0.013) (0.012) (0.007) (0.007) (0.007) (0.007) (107.2)

Controls:
IT Capital and Cloud No Yes Yes Yes Yes Yes Yes
Size & Energy & MU Status No No Yes Yes Yes Yes Yes
Skill, Structured Mgmt,

No No No Yes Yes Yes Yes
Plant Type, HQ, & Unionization
Plant Age No No No No Yes Yes Yes
Capital Stock No No No No No Yes No
Industry No No Yes Yes Yes Yes Yes

Panel B: IV
Change in WIP Log # of Log

AI Index Log Value Added Profits Inventory Robots Employment
(1) (2) LP (3) TFP (4) (5) (6) (7)

No lack of AI expertise 0.0827***
(0.0174)

AI Index -0.775*** -0.587** -11,300*** 2,900** 0.412** -0.555**
(0.271) (0.230) (4,110) (1,408) (0.184) (0.243)

DS Index -0.050*** -0.007 -0.015 -565** 111 0.039*** 0.087***
(0.018) (0.020) (0.017) (271) (103) (0.0125) (0.0166)

PA Index 0.386*** 0.297*** 0.219** 4339*** -1202** -0.155** 0.238**
(0.012) (0.104) (0.089) (1585) (545.8) (0.0710) (0.0943)

Additional Controls See table notes

Notes: AI Index (the dependent variable) measures adoption of applications of AI in business functions or adoption of specific
AI technologies, with the index being normalized to have zero mean and unit standard deviation. DS index measures use
of descriptive statistics in decision making with the index being normalized to have zero mean and unit standard deviation.
PA index measures use to prediction algorithms across six business functions with index being normalized to have zero mean
and unit standard deviation. Panel A: As indicated by the with control variable listings, control variables may include:
accumulated capitalized IT equipment expenditures over the prior 3 years; expenditures on Cloud computing; size in terms of
logged employment; log energy expenses; indicator of multi-unit status; worker skill in terms of the percentage of employee with
a BA degree; indexes of structured management practices, for both process and HR separately (see Bloom et al. 2019); a plant
type variable capturing production strategy (0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow
or cellular manufacturing); percentage of unionized employees; logged plant age from the LBD; logged capital stock; industry
at the 3-digit NAICS level. Column 6 includes an indicator for missing data on non-IT capital to stablize the sample size.
Panel B: All columns include all control variables from column 5 of Panel A. “No lack of AI expertise” is a dummy, reverse-
coded from respondents reporting lack of AI expertise as reason not to adopt or to delay AI use (see Table 1, Panel D). “WIP”
denotes the value of work-in-progress inventory reported on the ASM. Number of robots includes active and purchased industrial
robots from the ASM.
Standard errors for both panels are clustered at the firm level and reported in parentheses. Note that we do not report first
stage F-Stats, since according to Angrist and Pischke (2007), a significant first stage and significant second stage are sufficient
if the endogenous variable is just-identified (as many endogenous variables as instruments).
Statistical significance: *** p<0.01, ** p<0.05, * p<0.1
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Table 4: IV Robustness
MOPS—ASM: Establishment-level

Panel A: Ruling out sample-selected IV

log VA AI Index log VA
(1) (2) (3)

No lack of AI expertise -0.0639***
(0.0176)

AI is widely used 0.603***
(0.041)

AI Index 0.065
(0.044)

DS Index 0.0320*** -0.043** 0.035***
(0.00866) (0.018) (0.009)

PA Index -0.00175 0.373*** -0.027
(0.00673) (0.012) (0.019)

Log IT Capital (+)*** (-) (+)***

Log Cloud Expense (+)*** (+)*** (+)***

Additional Controls See table notes

Panel B: Plausibility of Exclusion Restriction

Job Shops SU Firms

AI Index Log VA AI Index Log VA
(1) (2) (3) (4)

No lack of AI expertise -0.0204 -0.0213 -0.0149 -0.011
(0.034) (0.0308) (0.0272) (0.0284)

Additional Controls See table notes

Panel A Notes: Placebo instrument is the affirmative response that “Artificial intelligence is widely or increasingly used
at this establishment.” Unreported controls include: size in terms of logged employment; log energy expenses; indicator of
multi-unit status; worker skill in terms of the percentage of employee with a BA degree; indexes of structured management
practices, for both process and HR separately (see Bloom et al. 2019); a plant type variable capturing production strategy
(0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow or cellular manufacturing); percentage of
unionized employees; logged plant age from the LBD; industry at the 3-digit NAICS level.

Panel B Notes: Instrumenting “no lack of AI expertise” for the AI Index. First stage is reported in columns 1 and 3.
Reduced forms are reported in columns 2 and 4. Job Shops are plants reporting high mix, low volume production in a job
shop or prototyping production strategy. SU firms are single-unit firms. Controls match the unreported controls of Panel A.
Unreported controls in both panels include all controls used in the second column of panel B in Table 3, which are controls
used in Panel A of this table, including the DS and PA indexes.
Standard errors for both panels are clustered at the firm level and reported in parentheses.Statistical significance: *** p<0.01,
** p<0.05, * p<0.1
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Table 5: Heterogeneity in Treatment Effects
MOPS—ASM: Establishment-level

Panel A: Treatment Effects

Full Sample Cont. Flow Prod. Old (25+ years)
(1) (2) (3)

First Stage 0.083*** 0.136*** 0.068***
(0.017) (0.031) (0.022)

Second Stage -0.775*** -0.394 -1.424**
(0.271) (0.257) (0.556)

Controls See table notes

Panel B: Complier Characteristics

Characteristic Value

Fraction of compliers in overall sample 0.03

(a) Complier characteristics resembling Always Takers

Odds Ratio for All Sales through E-Commerce 1.33
Odds Ratio for above-median Cloud Computing expenditure 1.23
Odds Ratio for Part of Multi-Unit Firm (MU) 1.42

(b) Complier characteristics resembling Never Takers

Odds Ratio for Highly Digitalized 0.40
Odds Ratio for HQ Plant 0.52

Controls See table notes

Notes: Panel A presents IV estimates for different subsamples. Standard errors in parentheses. Statistical significance:
*** p<0.01, ** p<0.05, * p<0.1.
Panel B displays complier characteristics, showing the fraction of compliers in the overall sample and odds ratios for
various firm characteristics.
Unreported controls in both panels include all controls used in the second column of panel B in Table 3, such as:
DS index measuring use of descriptive statistics in decision making with the index being normalized to have zero
mean and unit standard deviation; PA index on use of prediction algorithms across six business functions with index
being normalized to have zero mean and unit standard deviation; accumulated capitalized IT equipment expenditures
over the prior 3 years; expenditures on Cloud computing; size in terms of logged employment; log energy expenses;
indicator of multi-unit status; worker skill in terms of the percentage of employee with a BA degree; indexes of
structured management practices, for both process and HR separately (see Bloom et al. 2019); a plant type variable
capturing production strategy (0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow or
cellular manufacturing); percentage of unionized employees; logged plant age from the LBD; industry at the 3-digit
NAICS level.
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Table 6: Performance of Early AI Adopters
ABS—CMF: Firm-level

Panel A: First Difference 2012–2017

Log Sales Log Value Added Profits Log Value Added
(1) (2) (3) (4) (5)

AI Index -0.0262*** -0.0187*** -4073.1* -0.0247*** 0.0790**
(0.00467) (0.00473) (2241.5) (0.00561) (0.0352)

AI Index X Strategy: Quality -0.00189
(0.00667)

AI Index X Strategy: New Markets 0.0144***
(0.00491)

AI Index X Strategy: Cost Leadership -0.0014
(0.00547)

AI Index X log firm age -0.0307***
(0.0103)

Additional Controls See table notes
Number of firms ≈ 55,000
Number of obs ≈ 110,000

Panel B: Growth during 2017–2021

Growth: Growth: Growth: Labor Growth: Growth: Labor
Employment Revenue Productivity Revenue Productivity

(1) (2) (3) (4) (5)

AI Index 0.00843*** 0.00473*** 0.00336** 0.0330*** 0.0197**
(0.00225) (0.00178) (0.00160) (0.0108) (0.00910)

AI Index X Log Firm Age -0.00895*** -0.00514*
(0.00324) (0.00274)

Additional Controls See table notes
Number of firms ≈ 55,000
Number of obs ≈ 55,000

Notes: AI Index measures adoption of applications of AI in business functions or adoption of specific AI tech-
nologies, with the index being normalized to have zero mean and unit standard deviation. Strategy measures from
the 2018 Annual Business Survey. Firm age per the LBD. Panel A Notes: Unreported controls include logged
employment, logged capital stock, logged capitalized IT equipment expenses, logged IT outsourcing expenses, logged
energy expenses, logged software expenses. Standard errors are clustered at the firm level. Years included are 2012
and 2017 with year fixed effects. Number of firm observations is roughly 55,500. Panel B Notes: Growth rates are
calculated using Davis, Haltiwanger and Schuh (1996) symmetric growth rates between 2017 and 2021. Additional
controls include initial year (2017) logged employment (column 1), initial year logged sales (columns 2 & 4), initial
year logged sales per worker (columns 3 & 5). Robust standard errors are reported in parentheses. Panels A and B
also include a full set of 3-digit NAICS fixed effects.
Unreported controls in both panels include all controls used in the second column of panel B in Table 3, such as:
DS index measuring use of descriptive statistics in decision making with the index being normalized to have zero
mean and unit standard deviation; PA index on use of prediction algorithms across six business functions with index
being normalized to have zero mean and unit standard deviation; accumulated capitalized IT equipment expenditures
over the prior 3 years; expenditures on Cloud computing; size in terms of logged employment; log energy expenses;
indicator of multi-unit status; worker skill in terms of the percentage of employee with a BA degree; indexes of
structured management practices, for both process and HR separately (see Bloom et al. 2019); a plant type variable
capturing production strategy (0 for R&D plants or job shops, 1 for batch production and 2 for continuous flow or
cellular manufacturing); percentage of unionized employees; logged plant age from the LBD; industry at the 3-digit
NAICS level.
Statistical significance: *** p<0.01, ** p<0.05, * p<0.1

43



Table 7: Investigating the Causal Mechanism
MOPS—ASM: Establishment-level

Panel A: Causal Effects of AI at Old Establishments

Log Value Added (LP) Log Value Added (TFP) Log Wages Log Employment
(1) (2) (3) (4)

AI Index -0.1497 0.0835 -0.0534 -0.0952
(0.2643) (0.2456) (0.166) (0.2584)

AI Index X Old -1.224** -1.133** -0.6961** -0.9205*
(0.5766) (0.4678) (0.3265) (0.5199)

Additional Controls See table notes

Panel B: Causal Effects of AI on Structured Management at Old Establishments

Structured Structured KPI Review by Production Target
Management Management: Process Non-Managers Awareness

(1) (2) (3) (4)

AI Index 0.1189 0.1795 0.1734 0.2534
(0.2051) (0.2088) (0.0865) (0.1109)

AI Index X Old -0.8322** -0.8602** -0.286*** -0.2941**
(0.3991) (0.397) (0.1363) (0.1486)

Additional Controls See table notes

Panel C: Within-Firm Spillover Effects of AI

AI Index EAI Index Log Value Added (LP)
(1) (2) (3)

No lack of AI expertise 0.0810*** -0.000746 -0.822***
(0.0174) (0.0172) (0.278)

No lack of AI expertise elsewhere 0.0922*** 0.790*** 0.343***
(0.0348) (0.0847) (0.0632)

Additional Controls See table notes

Notes: Panel A: “Old” is any plant older than 25 years. Additional control variables include: DS index, PA
index, accumulated IT equipment expenses in the past 3 years, expenses on cloud computing, size in terms of logged
employment, energy expenditures, multi-unit indicator, skill in terms of number of employees with bachelors degrees,
a plant type indicatory capturing production strategy, and percentage of unionized employees. Columns (1), (2) and
(7) and (8) also include an index of structured management practicess (Bloom et al., 2019). Column (2) includes
logged capital stock, calculated via perpetual inventory method. Panel B includes controls from column 1 of Panel
A. Both Panels A and B include 3 digit NAICS industry fixed effects. Number of establishment observations is
roughly 28,500. Standard errors are clustered at the firm level and reported in parentheses.
Statistical significance: *** p<0.01, ** p<0.05, * p<0.1
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