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Abstract

Economic theory predicts that transformative technologies may influence interest

rates by changing growth expectations, increasing uncertainty about growth, or

raising concerns about existential risk. Examining US bond yields around major

AI model releases in 2023-4, we find economically large and statistically significant

movements concentrated at longer maturities. The median and mean yield responses

across releases in our sample are negative: long-term Treasury, TIPS, and corporate

yields fall and remain lower for weeks. Viewed through the lens of a simple, rep-

resentative agent consumption-based asset pricing model, these declines correspond

to downward revisions in expected consumption growth and/or a reduction in the

perceived probability of extreme outcomes such as existential risk or arrival of a

post-scarcity economy. By contrast, changes in consumption growth uncertainty do

not appear to drive our results.

1 Introduction

Since the debut of ChatGPT in November 2022, generative AI models have attracted intense

interest from policymakers, researchers, and businesses. Some discussions of these models

have raised the possibility AI could lead to an increase, perhaps even a dramatic acceleration,

in the rate of economic growth (Brynjolfsson et al., 2019; Trammell and Korinek, 2023; Ace-

moglu and Lensman, 2024; Jones, 2024; Korinek and Suh, 2024). Other discussions have sug-

gested the possible gains from AI may be overstated, and argued that widespread AI adop-

tion could potentially slow economic growth (Acemoglu and Restrepo, 2020). Many authors
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have even raised the possibility that poorly understood- and controlled-AI could pose an exis-

tential risk to humanity (Acemoglu and Lensman, 2024; Jones, 2024; Kokotajlo et al., 2025).

It can be unclear to what extent the enthusiasm around AI reflects a genuine belief in its

transformative potential, as opposed to belief in profit opportunities that may not translate

into widespread or persistent growth. While the future impacts of AI are inherently

unknown, understanding the beliefs of market participants is a potentially valuable input

to both policy and research discussions. Financial market data has been used to infer

market beliefs in other settings (Jackwerth and Rubinstein, 1996; Wolfers and Zitzewitz,

2004; Gürkaynak et al., 2010; Binsbergen et al., 2012; Van Binsbergen et al., 2013), but

empirical evidence about market beliefs on transformative AI is limited. In this paper, our

goal is to use financial market data to provide systematic evidence regarding the beliefs of

market participants about the possibility of transformative AI, by which we will mean AI

technologies with a large and sustained impact on living standards, particularly through

impacts on consumption growth or existential risk. The premise of our analysis is that if

economic actors take seriously the possibility of transformative AI, this should be reflected

in a wide range of forward-looking behaviors and, consequently, in long-term asset prices,

including assets such as US Treasury bonds which are not directly connected to AI.

That beliefs about transformative AI should affect agents’ optimal choices is pointed

out by e.g. Jones (2024). Chow et al. (2024) combine this observation with classic insights

from consumption-based asset pricing to relate risk-free interest rates to market beliefs

about transformative AI. The intuition is simple: if agents think AI will dramatically

increase the rate of economic growth, then (on average across the economy) agents must

expect to be richer in the future than they are today. This should decrease the marginal

value of future consumption relative to present consumption, so real interest rates must

rise in equilibrium. On the other hand, if agents think AI poses an existential risk, and so

doubt that they will be alive in the future, this should also drive up interest rates. Thus,

both higher growth expectations and more concern for existential risk should increase

real interest rates. Beyond expectations, uncertainty also matters: if AI increases agents’

uncertainty about future consumption, this will fuel precautionary saving and so decrease

real interest rates (see, e.g., Gil, 2024).

Motivated by these predictions, we study the behavior of US Treasury yields around

major model release dates for five major AI labs (OpenAI, Anthropic, Google DeepMind,

xAI, and DeepSeek) in calendar years 2023 and 2024. As shown in Figure 1, we find

that US Treasury yields substantially decline around model release dates, with a median
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Figure 1: Median change in yields relative to fifteen (trading) days before event for
constant-maturity US Treasury Bonds. Median taken across 15 major AI release events
for which a ±15 trading day window is contained in calendar years 2023-4.

decline across model release dates exceeding 10 basis points, or 0.1 percentage points, for

most series. These declines are economically large and persist through 15 (trading) days

after the model release. We find similar results for Treasury Inflation Protected Securities

(TIPS) and corporate bond yields. Yield movements appear to begin before the release

of the model, which may not be surprising given that for at least some releases, we know

that models were made available to outside experts prior to the release date.

Under the assumption that AI model release dates are as good as random, and in par-

ticular that they are unrelated to other factors which may influence bond yields, the yield

changes shown in Figure 1 reflect causal effects of AI releases and associated information.

Under the same assumption, we further show these impacts are statistically significant,

particularly for longer-maturity bonds. To probe the causal interpretation of our results we

conduct a range of robustness checks, including dropping subsets of model releases, compar-

ing to alternative date series, controlling for other information that might have influenced

bond yields, and repeating our analysis on sub-samples of the data. Throughout we find

evidence of negative, and often statistically significant, yield responses to AI model releases.
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If bond yields drop in response to AI model releases, what does this imply for investor

beliefs? To answer this question, we interpret our estimates through a simple equilibrium

model of asset prices. We first show that “doom” (i.e. existential risk) and “bliss” (i.e.

extremely fast growth which eliminates material scarcity, and which e.g. Jones 2024 discusses

as a singularity) have equivalent asset pricing implications, since both drive the marginal

utility of consumption to zero. Thus, we cannot hope to disentangle beliefs about“bliss”and

“doom”via asset prices. We then use a restrictive version of this model (assuming, inter alia,

a representative agent with CRRA utility) to quantitatively interpret our empirical results.

We show that, under these additional assumptions, changes in both growth expectations

and the perceived probability of extreme “bliss” or “doom” outcomes lead to a level shift in

a forward yield curve. By contrast, since the consumption growth impacts of AI compound

over time, changes in uncertainty about AI growth effects imply changes in the forward

curve slope. Applied to our data, this model suggests that the average AI model release in

our sample led investors to think that (i) expected consumption growth is lower, (ii) extreme

“doom”or “bliss” outcomes are less likely, or both. In particular, the model implies that the

average model release led to an approximately 0.208 percentage point drop in the annual

probability of“bliss”or“doom,”or a 0.208/γ percentage point decline in the expected annual

rate of consumption growth for γ the CRRA coefficient of the representative agent. By

contrast, we find that model releases have little to no effect on the slope of the forward curve,

suggesting that changes in consumption growth uncertainty do not explain our results.

Taken together, these results suggest that investors, in aggregate, do take seriously the

possibility of transformative AI, since new information about AI models has an economically

and statistically significant impact on non-AI-related asset prices. A simple model suggests,

however, that the primary direction of updating across the model release dates we study

was towards lower consumption growth or a lower probability of “bliss” and “doom,” rather

than towards greater consumption growth uncertainty.1

To the extent investors lowered their growth expectations around the model releases in

our sample this raises a natural question. Did investors think AI advances would be good

for consumption growth, but find the rate of technological progress disappointing? Or were

they positively surprised by the rate of progress but pessimistic about the consumption

growth implications? While we do not have direct evidence on investor beliefs, using

1This is not necessarily incompatible with rising stock prices for AI-related firms, since one could think
these firms will be highly profitable for reasons which need not imply sustained growth effects. See Section
6 of Chow et al. (2024) for further discussion of why the relationship between AI expectations and equity
prices may be ambiguous.
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complementary data from the online forecasting platform Metaculus we show that certain

AI capability forecast timelines shifted earlier around model releases in our sample, though

others show no effect. This suggests that this group of observers, at least, was positively

surprised by some aspects of AI progress.

Our empirical findings admit alternative interpretations. While we think a causal

interpretation of our results is plausible, we cannot rule out that there is some other force

behind yield changes around model release dates. Even granting a causal interpretation,

there are many ways that reality deviates from our simple model, and these deviations

may suggest alternative explanations for the effects we document. For instance we assume

markets are complete, while in reality a number of forces such as labor market frictions or

non-competitive behavior could impede risk-sharing among agents and potentially explain

our findings. Any alternative explanation for the patterns in Figure 1 must, however,

account for large, sustained yield declines in one of the most liquid markets in the world

around AI model release dates, and so may be of interest in its own right.

Literature Review While there is little prior evidence about the aggregate impact of AI

on the economy, or on market perceptions of that impact, there is a small but growing

literature that uses data on job postings or asset prices to study the impact of AI on labor

outcomes and compensation, as well as on firm growth (Webb, 2019; Acemoglu et al.,

2022; Babina et al., 2023, 2024; Eisfeldt et al., 2024; Hampole et al., 2025).

The influence of growth prospects on financial markets is a widely discussed topic in

the consumption-based asset pricing literature (see Mehra 2012 for a summary and Duffie

2010 for a textbook treatment). An important observation in this literature is that agents’

discount factors, expected growth, and perceived growth uncertainty all influence prevailing

interest rates. Chow et al. (2024) abstract away from consumption growth uncertainty

and show that discounting (e.g. due to existential risk) and growth expectations impact

interest rates the same way in the context of transformative AI. They further show that,

consistent with their theoretical analysis, real interest rates are positively correlated with

both growth expectations and realized growth in a cross-country analysis. Other recent

work, by contrast, finds a modest or negative relationship between growth and real interest

rates (Hamilton et al., 2015; Bruce and Hansen, 2013; Borio et al., 2017; Lunsford and

West, 2019; Rogoff et al., 2024). Our main contribution is to document how news about

AI progress impacts interest rates. We then interpret these impacts through the lens of

a consumption-based asset pricing model.
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Our analysis also relates to the literature studying the impact of macroeconomic

announcements on financial returns. In the context of Treasury yields and using FOMC

announcements, Lucca and Moench (2015) document no statistically significant pre-FOMC

announcement drift for Treasury bonds in the 1994-2011 period, while Savor and Wilson

(2013) provide evidence of small announcement premiums for Treasury bonds, averaging

about 3 basis points on announcement days, using data from 1961-2009.

The rest of the paper is organized as follows. Section 2 introduces a simple equilibrium

asset pricing model and uses it to predict the effects of transformative AI on bond yields.

Section 3 describes our data and empirical strategy, including the permutation tests we use

to assess statistical significance. Section 4 reports our main empirical results, while Section

5 quantitatively interprets these results in a simplified version of our model and provides

evidence on AI forecast timelines. Finally, Section 6 provides additional discussion.

2 Transformative AI in a Dynamic Economy

This section lays out a simple model of a dynamic stochastic economy, and shows that this

model makes stark predictions about how investor beliefs about the possibility of trans-

formative AI translate to asset prices. As we discuss in the introduction, by transformative

AI we mean AI technology that substantially changes the future trajectory of the economy.

Specifically, following Jones (2024) and Chow et al. (2024) we consider the possibility that

AI may (i) substantially change the rate of economic growth or even (ii) lead to a more

radical shift, such as the extinction of humanity (“doom”) or the arrival of a post-scarcity

economy (“bliss”).

To model these possible impacts from AI, following e.g. Chapter 2 of Duffie (2010), we

consider a discrete-time economy over periods t=0,1,...,T̄ , with uncertainty described by

a probability space (Ω,F,P) where the Ft⊆F denotes the set of events which are known

at period t. For simplicity we assume a finite number of states ω∈Ω and agents i. To

capture the possibility of “doom” and “bliss,” similar to Jones (2024) we assume each agent

i has time-separable utility

E0

[
T̄∑
t=1

βt
(
1{t≤T}ui(Ci,t)+1{t>T}U∗

i,t

)]
,

where Et denotes the conditional expectation given Ft, and T≤ T̄ denotes the (random)
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date after which “doom” or “bliss” occurs. We assume that ui is increasing and concave for

all i with limc→∞u′i(c)=0, while flow-utilities U∗
i,t after T are independent of asset holdings.

We henceforth normalize these post-T flow utilities to zero and write agent i’s utility as

E0

[∑T
t=1β

tui(Ci,t)
]
.

We assume complete markets and absence of arbitrage. By standard arguments (Duffie,

2010), this implies that there exists a stochastic discount factor (SDF) that prices all assets.

In particular if we consider an asset that pays Yt+h units of consumption in period t+h

and nothing at any other time, its period t price is given by

Vt(Yt+h)=Et[Mt,t+hYt+h], (1)

where Mt,t+h is the SDF t to t+h, for simplicity we write Mt+1≡Mt,t+1, and Mt,t+h=∏h
s=1Mt+s cumulates the one-step-ahead SDFs. More generally, let Y ={Yt,h}T̄h=0 denote

a general stream of payoffs Yt,h for periods h=0,···,T̄−t. The asset with this stream of

payoffs has time-t price Vt(Y )=
∑T̄−t

h=0Vt(Yt+h).

Standard arguments further imply that in equilibrium the SDF coincides with the

marginal rate of substitution for a representative agent with utility E0

[∑T
t=1β

tu(Ct)
]
,

where Ct=
∑

iCi,t is aggregate consumption and u(Ct)=
∑

iλiui(Ci,t) for λi≥0, where u

is increasing and concave by construction. That is, we can write the SDF as

Mt,t+h=βhu
′(Ct+h)

u′(Ct)
1{t+h≤T}, (2)

so there is a direct relationship between aggregate consumption Ct, the “doom” or “bliss”

date T, and the SDF.2

Equation (2) has two important implications. First, note that the extreme possibilities

of “doom” and “bliss” both enter only through the date T after which asset holdings are

irrelevant. Consequently, beliefs about “doom” and “bliss” have identical asset pricing

implications. Hence, under this model we have no hope of telling the two apart based on

asset prices. Second, note that since the representative agent’s flow utility u is increasing

and concave, increases in future aggregate consumption Ct+h lead to a decrease in the SDF.

2Indeed, this follows from the fact that each agent’s marginal utility obeys the same equality,

Mt,t+h=βhu
′
i(Ci,t+h)

u′i(Ci,t)
1{t+h≤T}.
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Hence, if agents expect AI to lead to an acceleration in the rate of aggregate consumption

growth this will, ceteris paribus, lead to a drop in the SDF and additional discounting of

future payoffs. Since u is concave, however, even news which increases expected future

consumption Et[Ct+h] could lead to an increase in the mean of the SDF and thus a decrease

in discounting if it implies a sufficiently large increase in uncertainty.

Bond Pricing Implications While the analysis above applies to general payoff streams Y,

our empirical analysis will focus on bond prices. To study the implications of AI beliefs for

bond prices, let 1t+h denote a risk-free, h-period-ahead zero-coupon bond (i.e. the risk-free

bond which pays one unit of consumption h periods in the future and nothing at any other

time). By Equation (1) this bond’s time-t price is given by

Vt(1t+h)=Et[Mt,t+h]=Et

[
βhu

′(Ct+h)

u′(Ct)
1{t+h≤T}

]
,

and so is simply the expected h-period-ahead SDF. Since it is more common to work with

bond yields than with prices, note that the period-t yield on the risk-free bond 1t+h can

be written as yt,t+h≡Vt(1t+h)
− 1

h =Et[Mt,t+h]
− 1

h , which can be further re-written as

yt,t+h=
1

βP(t+h≤T)
1
hEt

[
u′(Ct+h)

u′(Ct)
|t+h≤T

] 1
h

.

Thus, zero-coupon bond yields are decreasing in the discount factor β, increasing in

the probability that T arrives before the bond pays off P(t+h>T) , and decreasing

in expected marginal utility in period t+ h conditional on T not yet having arrived,

Et

[
u′(Ct+h)

u′(Ct)
|t+h≤T

]
. Since u is concave, yields are thus increasing in consumption growth.

Thus, as noted by Chow et al. (2024) both an increase in anticipated consumption growth

and a closer expected arrival for T lead to higher risk-free yields.3

While the Treasuries which are the focus of our analysis below are multi-period rather

than zero-coupon bonds, the comparative statics are much the same. In particular, if we

consider a h-period risk-free bond with coupon c and face value d, this corresponds to

3We note, however, that beliefs about consumption growth and about T have distinct implications
for the prices of risky assets. In particular, if we consider the ratio of risky and risk-free asset prices for a

given future period, Vt(Yt+h)/Vt(1t+h)=Et

[
Yt+h

u′(Ct+h)
u′(Ct)

|t+h≤T
]
, this ratio depends only on behavior

conditional on T not yet having arrived. This fact may be useful for distinguishing changes in beliefs
about consumption from changes in beliefs about T .
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payoff stream B={c1t+1,c1t+2,...,c1t+h−1,(c+d)1t+h} and so has price

Vt(B)=dEt[Mt,t+h]+c

h∑
s=1

Et[Mt,t+s]=
d

yht,t+h

+c
h∑

s=1

1

yst,t+s

.

Empirical Strategy The model above suggests an empirical strategy for learning about

changes in AI beliefs from asset prices: if we have a date t at which we believe information

arrived about the future course of AI, then changes in long-dated asset prices around this

date should incorporate the impact of the new information about AI.

To fix ideas, again consider the price for an asset that pays Yt+h units in period t+h.

If we think new information about AI arrived at t, we may compare prices at t− and t+

for t−<t<t+≪h, and use the fact that Vt−(Yt+h)=Et−[Mt−,t+Vt+(Yt+h)] to write

Vt+(Yt+h)−Vt−(Yt+h)=Vt+(Yt+h)−Et−

[
Vt+(Yt+h)

]
−Et−

[(
Mt−:t+−1

)
Vt+(Yt+h)

]
.

If the time difference t+−t− is reasonably small we expect the final term to be negligible.4

Hence, by (1) and the law of iterated expectations we can approximate

Vt+(Yt+h)−Vt−(Yt+h)≈Et+

[
Mt+:t+hYt+h

]
−Et−

[
Mt+:t+hYt+h

]
.

Thus the change in prices between t− and t+ gives us, approximately, the difference in

conditional expectations for the discounted payoff Mt+:t+hYt+h at information sets Ft− and

Ft+. In particular, if we consider the risk-free asset Yt+h=1t+h, changes in prices reveal

the change in the conditional mean of the SDF Mt+:t+h.

For a given pair t− and t+ the difference Vt+(Yt+h)−Vt−(Yt+h) reflects all information

that arrives between those dates, not just information about AI. Hence, in our empirical

analysis we will aggregate across a series of AI news dates. So long as there is not other price-

relevant information which systematically arrived at the same time as AI news, comparing

behavior at AI dates to that at other dates will isolate the effect of AI news, though it will be

important to account for the possibility of other news when assessing statistical uncertainty.

As already noted, we will also use data on multi-period bonds rather than zeros. Since our

primary focus will be on long-maturity bonds, however, most bond payoffs will be in the

future and the intuition provided above for zeros will again translate to the bonds we study.

4By Cauchy-Schwarz, Et−

[(
Mt−:t+−1

)
Vt+(Yt+h)

]
≤
√
Et−

[(
Mt−:t+−1

)2]√Et−

[
Vt+(Yt+h)

2
]
.
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3 Data and Methods

As the theory above suggests, if market participants think that AI may have large growth

effects then new information about the trajectory of AI should impact long-term asset

prices, including for assets that are not directly related to AI such as long-term risk-free

bonds. We examine this prediction empirically, describing the data and methods we employ

in this section and our empirical results in the next.

3.1 AI News Events

To look for asset prices changes around the arrival of AI news, we need to know a set of

dates at which AI information arrived. While there are a variety of reasonable approaches

one might take to this problem, we focus on release dates for new generative AI models from

five major AI laboratories: OpenAI, Google DeepMind, Anthropic, xAI, and DeepSeek.5

For each lab, we focus on major updates to the lab’s flagship model series (e.g. ChatGPT

in the case of OpenAI), and use the release date from the lab’s website.6 We limit attention

to releases in calendar years 2023 and 2024, a period that (i) follows the November 2022

release of ChatGPT, which saw a significant increase in public attention to AI capabilities,

and (ii) precedes the tariff announcements and other US macroeconomic policy changes

that began in 2025. For OpenAI we include the “reasoning model” o1, since other labs

included such models as part of their flagship series rather than numbering them separately

(e.g. Gemini 2.5 from Google and Claude 3.7 from Anthropic, both released after our main

analysis window). Table 1 collects the resulting release dates.

We use AI model releases as our event dates in order to capture new, forward-looking

information about AI capabilities, rather than other aspects of technology or financial

performance of firms. Put differently, our hypothesis is that major model releases provide

information not only about the current state of AI capabilities but also about the rate of

technological progress, potentially causing market participants to update their beliefs about

future AI development. These events are also less directly linked to financial outcomes than

some other plausible event dates, such as earnings announcements. At the same time, it is

clear that information about AI system capabilities arrives outside of new model releases

for these particular AI labs. There are many other AI researchers and firms, and even the

5These are the laboratories appearing in the top 10 style-adjusted rankings on the Chatbot Arena
leaderboard as of June 29, 2025 (Chiang et al., 2024).

6For DeepSeek V2, we were unable to find an announcement on the lab’s website, and so instead
use an announcement date from DeepSeek’s X account.
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Table 1: AI Model Release Dates
Date AI Laboratory Model
2023 Releases
02/06/2023 Google Bard
03/14/2023 OpenAI ChatGPT 4
03/14/2023 Anthropic Claude 1
07/11/2023 Anthropic Claude 2
11/03/2023 xAI Grok 1
11/21/2023 Anthropic Claude 2.1
12/06/2023 Google Gemini Pro 1.0
2024 Releases
02/15/2024 Google Gemini Pro 1.5
03/04/2024 Anthropic Claude 3
03/28/2024 xAI Grok 1.5
05/06/2024 DeepSeek DeepSeek V2
05/13/2024 OpenAI ChatGPT 4-o
06/20/2024 Anthropic Claude 3.5 Sonnet
08/13/2024 xAI Grok 2
09/05/2024 DeepSeek DeepSeek 2.5
12/05/2024 OpenAI o1
12/11/2024 Google Gemini 2.0
12/26/2024 DeepSeek DeepSeek V3

Notes: This table presents the major AI model releases used in our event study analysis.

firms we study make numerous announcements and incremental model releases outside

the set of major releases we consider. So long as some information is arriving around the

dates we study, such alternative information sources do not pose a threat to the validity

of our estimates, though as we discuss in Section 6 below it may matter for interpretation.

More directly relevant for us, for at least some model releases we know that certain

experts were given early access to the model prior to the official release.7 To partially

capture such information “leakage” our empirical specifications will include a window of

dates prior to the model release (15 sample days, or approximately 3 weeks, for our preferred

specifications). While this extended window is still unlikely to capture all information

leakage, uncaptured leakage should reduce the amount of information arriving in our event

windows. We expect this will bias us against finding yield responses.

7See for instance Mollick (2024).
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3.2 Financial Market Data

Motivated by the theory in Section 2, to look for effects of AI information on long-run

consumption expectations we examine the behavior of bond yields of different maturities

around major model release dates. We consider three bond series.

1. Nominal Treasury Yields: We use constant-maturity Treasury yields from the

Federal Reserve Economic Data (FRED) database for maturities of 1, 5, 10, 20, and

30 years (Board of Governors of the Federal Reserve System, US, 2025b).

2. TIPS Yields: We use constant-maturity Treasury Inflation Protected Securities

(TIPS) yields from FRED for maturities of 5, 10, 20, and 30 years (Board of

Governors of the Federal Reserve System, US, 2025c).

3. Corporate Bond Indices: We use ICE BofA corporate bond effective yield indices

broken out by maturity (1-3 year, 3-5 year, 5-7 year, 7-10 year, 10-15 year, and 15+

year indices – Ice Data Indices, LLC 2025a).

All yield data are measured in percentage points and recorded at daily frequency. Since

the available dates vary slightly, when analyzing each series we use all dates for that series

in the analysis window.

3.3 Event Study Methodology

We use an event study approach to look for changes in yields around our event dates. For

each AI event date t∈T and each yield series, we calculate the change in yields relative

to a pre-event baseline, defined as b days before the event. Thus, the change from the

baseline date to relative date s is:

∆yt,s=yt+s−yt−b. (3)

This gives us a yield change for each event date t∈T . We next aggregate these changes

across event dates to obtain a single summary statistic, considering both the median change

MedianChanges=Median(∆yt,s,t∈T )
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and the median absolute change

MedianAbsChanges=Median(|∆yt,s|,t∈T )

The median measures whether there were systematic patterns in the direction of yield

changes around our event dates, while the median absolute change measures whether there

were systematic patterns in the magnitude of yield changes. We focus on medians, rather

than means, because medians are more robust to outliers, which we view as especially

important given our small sample size. Appendix B.5 provides results for mean and mean

absolute changes, which prove to be qualitatively similar to our main results.

3.4 Permutation Inference

To gauge whether markets are responding to AI model releases, we need a way to judge

whether the yield movements we observe around model releases are larger than one would

expect due to chance. Given our very limited sample size, it is important to use a method

that is valid in small samples. To this end, we assess statistical significance via permutation

inference, under the assumption that our AI release dates are as good as randomly assigned

and, in particular, can be treated as a uniform random draw from the dates in our analysis

window.

Our procedure works as follows:

1. We define the set of potential “placebo”event dates as all days in our sample (subject

to the full event window from t−=t−b to t+=t+s being within the sample).

2. For each m∈{1,...,5000} we randomly sample (without replacement) K placebo

dates from this set, where K equals the number of actual AI events in our sample

(again restricted to events where the full event window is within the sample), and

compute our test statistics using these placebo dates.

3. We compare the test statistics computed using the actual model release dates to the

empirical distribution across placebo samples. If markets did not react to AI events,

the event dates were selected as good as randomly, and yields were continuously

distributed, then the probability that our observed test statistics would exceed the

p-th percentile of the placebo distribution would equal p up to simulation error. In

reality our yield data are only measured up to the level of basis points, so in cases

of ties we round away from statistical significance.
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Table 2: Two-sided p-values based on constant-maturity US Treasury yields

Median Change Median Absolute Change

Maturity ±5 days ±15 days ±5 days ±15 days

1 Year 0.369 0.231 0.729 0.682
5 Year 0.189 0.231 1.000 0.798
10 Year 0.120 0.150 0.994 0.958
20 Year 0.097∗ 0.054∗ 0.867 0.563
30 Year 0.064∗ 0.038∗∗ 0.806 0.764

Notes: The “Median Change” columns consider the median change in yields across event
dates, while the “Median Absolute Change” columns consider median absolute changes. For
each statistic, we compare yields 5 or 15 days before and after each model release (in ±5
the ±15 columns, respectively). P-values are computed based on drawing placebo event
dates 5000 times (uniformly at random from days in the sample with sufficient window on
either side) and comparing resulting placebo distributions to observed changes around AI
model releases. ∗∗ (∗) denotes statistical significance at the 5% (10%) level.

This approach gives a test for the “sharp” null hypothesis of no impact on yields from

any release, which is valid in finite samples under the auxiliary assumption that the AI

model release dates can be treated as a random draw. While this is a strong assumption, it

may be justified if model releases are driven by technical development timelines rather than

financial market conditions. Examining the release dates in Table 1 we do not observe very

strong calendar patterns, though e.g. Fridays appear somewhat underrepresented (with

only 1 of the 17 unique dates in the sample), and there are more dates in 2024 than 2023

(with 11 of the 17 unique dates). If one wanted to replace our assumption that release

dates are drawn uniformly at random with some other specific assumption about their

distribution, our approach generalizes directly. To explore sensitivity to our assumptions,

we discuss several robustness checks following our empirical results.

4 Empirical Results

We next report our empirical results. We begin by examining whether there are statistically

significant changes in yields around our event dates, evaluating statistical significance

relative to the placebo distribution as described in the previous section.

Recall that p-values measure the probability of observing a more extreme outcome

were the null hypothesis true. Hence, small p-values correspond to outcomes which are
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unlikely to arise under the null (in our case, if AI model releases have no effect on yields,

and release dates are as good as random). Consequently, a 10% test of the null rejects

when the p-value is less than 0.1, and a 5% test rejects when the p-value is less than

0.05. Tables 2-4 report two-sided p-values for the fixed-income yield series we consider

(US Treasuries, TIPS, and corporate bond indices), reporting results for both median and

median absolute changes, and comparing yields either five or fifteen days before and after

each model release (that is, setting b=s=5 or b=s=15 in the notation of Equation 3).

Table 3: Two-sided p-values based on constant-maturity TIPS yields

Median Change Median Absolute Change

Maturity ±5 days ±15 days ±5 days ±15 days

5 Year 0.341 0.128 0.549 0.576
10 Year 0.182 0.107 0.262 0.601
20 Year 0.114 0.096∗ 0.350 0.756
30 Year 0.112 0.038∗∗ 0.257 0.783

Notes: The “Median Change” columns consider the median change in yields across event
dates, while the “Median Absolute Change” columns consider median absolute changes. For
each statistic, we compare yields 5 or 15 days before and after each model release (in ±5
the ±15 columns, respectively). P-values are computed based on drawing placebo event
dates 5000 times (uniformly at random from days in the sample with sufficient window on
either side) and comparing resulting placebo distributions to observed changes around AI
model releases. ∗∗ (∗) denotes statistical significance at the 5% (10%) level.

The results in Tables 2-4 paint a consistent picture. First considering median changes

in bond yields, we see evidence of changes in yields for longer maturity bonds for the ±5

day specifications, though the p-values sometimes fall short of significance at conventional

levels. For the ±15 day specifications, we see statistically significant changes in yields for

longer-maturity bonds. This holds true whether we consider Treasuries, TIPS, or corporate

bonds. By contrast, when we consider median absolute changes we do not find statistically

significant effects at conventional significance levels for any of the maturities studied. These

patterns again hold across Treasuries, TIPS, and corporate bonds.

This pattern is different than we, at least, anticipated before analyzing the data: if

market participants took seriously the possibility of transformative AI, and learned more

than usual about AI’s future trajectory around model release dates, we would expect larger-

than-average yield changes around model release dates (and hence, potentially, statistical

significance for median absolute changes) but not necessarily a consistent direction of change
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Table 4: Two-sided p-values based on ICE corporate bond index yields

Median Change Median Absolute Change

Maturity ±5 days ±15 days ±5 days ±15 days

1-3 Year 0.531 0.086∗ 0.722 0.827
3-5 Year 0.029∗∗ 0.037∗∗ 0.831 0.905
5-7 Year 0.036∗∗ 0.036∗∗ 0.654 0.963
7-10 Year 0.055∗ 0.040∗∗ 0.443 0.853
10-15 Year 0.049∗∗ 0.046∗∗ 0.472 1.000
15+ Year 0.100∗ 0.051∗ 0.864 0.993

Notes: The “Median Change” columns consider the mean change in yields across event dates,
while the “Median Absolute Change” columns consider median absolute changes. For each
statistic, we compare yields 5 or 15 days before and after each model release (in ±5 the
±15 columns, respectively). P-values are computed based on drawing placebo event dates
5000 times (uniformly at random from days in the sample with sufficient window on either
side) and comparing resulting placebo distributions to observed changes around AI model
releases. ∗∗ (∗) denotes statistical significance at the 5% (10%) level.

(and hence, potentially, no statistical significance for median changes). Our results show

the opposite: there do not appear to be yield changes of statistically different magnitude

around AI model release dates (since we do not see statistical significance for median

absolute changes). However, there are statistically significant patterns in the direction of

yield changes, especially at longer maturities, as revealed by our results on median changes.

Event Study Plots To further explore what is happening around our AI events, Figures

2-4 plot, for each yield series and each horizon s∈{−14,...,15}, the median and median

absolute change in yields (relative to b=15 days before the event) across the observed

AI model releases.8 For comparison, at each horizon we also plot the mean of the placebo

distribution and bands which contain, 90%, 95%, and 99% of the placebo draws pointwise

at each horizon (with equal mass assigned to the two tails). These bands are another way

to express our placebo tests. For instance, our placebo test rejects the null of no effect

at the 10% level at a given horizon if and only if the median change at that horizon lies

outside the 90% placebo band.

Examining these plots, we see that for both median and median absolute changes there

8To hold the set of events constant across different horizons, we limit attention to those model releases
where the full window [t−14,t+15] falls in calendar years 2023-4. This corresponds to the first 15 releases
in Table 1, dropping Gemini 2.0 and DeepSeek V3.
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Figure 2: Median and median absolute change in yields (relative to fifteen days before
event) for constant-maturity US Treasury Bonds. Median taken across AI release events
in the 2023 and 2024 calendar years. Placebo distribution recomputes statistics on dates
drawn uniformly at random from sample period.
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Figure 3: Median and median absolute change in yields (relative to fifteen days before
event) for constant-maturity inflation-protected US Treasury Bonds (TIPS). Median
taken across AI release events in the 2023 and 2024 calendar years. Placebo distribution
recomputes statistics on dates drawn uniformly at random from sample period.
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Figure 4: Median and median absolute change in yields (relative to fifteen days before
event) for corporate bond indices. Median taken across AI release events in the 2023 and
2024 calendar years. Placebo distribution recomputes statistics on dates drawn uniformly
at random from sample period.
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is limited (and largely statistically insignificant) departure from the placebo distribution

between t−15 and t−5. Bond yields, especially for longer-maturity bonds, show declines

starting between t−5 and t−2. These declines continue through at least t=0, and lower

yields persist through t+15. The apparent anticipatory effects (i.e. effects before the model

release date t) are consistent with the fact, discussed above, that some information about

new models may become available to market participants prior to the official model release.

The overall fall in yields around model releases is quantitatively large, exceeding 10 basis

points by the end of the window for most series. Moreover, consistent with our previous

findings these changes are statistically significant relative to the placebo distribution at

conventional significance levels. Thus, we find economically and statistically significant

declines in long-maturity bond yields around AI model releases, where these declines persist

for at least three weeks after the release date.

Corporate Bond Spreads Figures 2 and 4 show a significant decline in both Treasury

and corporate yields around AI model release dates, especially at the long end of the yield

curve. These observations raise an immediate question: is there any change in corporate

yields above and beyond the change in Treasury yields? Put differently, is the impact on

the corporate yield curve fully explained by the change in Treasury yields, or does AI news

have an additional impact on corporate bond yields?

To answer this question, Figure 5 plots the event study for the ICE BofA Option-

Adjusted Spread index, where spreads are measured relative to US Treasuries (Ice Data

Indices, LLC, 2025b). Comparing the observed changes in spreads to placebo bands we

find no statistically significant changes in spreads.9

Exchange Rates Given our findings on bond yields, one might wonder whether AI model

releases are leading to international capital flows. To provide some evidence on this point, in

Appendix A we plot the event study for a broad trade-weighted US dollar exchange rate in-

dex around our model release dates (Board of Governors of the Federal Reserve System, US,

2025d). We find that AI model releases are associated with a statistically significant depre-

ciation of the dollar, which starts a few days before the model release and persists through

15 days after. These declines are more gradual than the bond yield changes we find above,

but appear consistent with e.g. a depreciation of the dollar following a drop in interest rates.

9We also find no significant effects on spreads when we look at corporate bond indices broken out
by credit rating, though for the sake of brevity we do not report those results.
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Figure 5: Median change in option-adjusted spreads (relative to fifteen days before event)
for corporate bond indices. Median taken across AI release events in the 2023 and 2024
calendar years. Placebo distribution recomputes statistics on dates drawn uniformly at
random from sample period.

4.1 Robustness Checks

We conduct a variety of analyses to explore the robustness of our result. Here we briefly

discuss these robustness checks, presenting all results, along with additional details, in

Appendix B. For brevity, in these robustness checks we primarily focus on results for US

Treasuries.

Robustness to Dropping Events Since we examine yield changes around a relatively small

number of model releases, one might worry that our findings could be driven by one or a few

extreme events. For instance, theMarch 14, 2023model releases in our data occurred soon af-

ter the March 10 collapse of Silicon Valley Bank. Our focus on medians rather than means is

intended tomitigate this and similar concerns involving a small number of dates. To verify ro-

bustness of our results, Appendix B.1 reports versions of our results when we drop all subsets
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of one, two, and three dates from our AI model release date series.10 We find that our results

are quantitatively similar, and retain statistical significance at many horizons, when drop-

ping any one date from our sample. Even when dropping two or three dates our results re-

main directionally similar, and are robustly significant (at the 10% level) at certain horizons.

Alternative “Placebo”Dates Our hypothesis tests and p-values are based on the assump-

tion that AI model release dates are as good as random and, consequently, that systematic

moves in bond yields around AI model releases may be attributed to beliefs about AI. Our

inference results would thus be invalid if the timing of AI model releases were systematically

related to yield movements for other reasons, for instance because AI labs attempt to

time their releases around market movements directly, or because they time model releases

around other, non-AI events which systematically move markets. While our results above

show that our findings are robust to dropping any small set of “suspect”model releases,

they do not address the possibility of more pervasive timing correlation.

For any alternative date series, an extreme form of timing correlation would be for AI

model releases to be drawn solely from that series. If the subset of dates selected were

as good as random from within that series, we could repeat our placebo calculation to

derive thresholds for statistical significance. Motivated by this observations, Appendix

B.2 reports versions of the median change plots in Figure 2 which use one of (i) FOMC

meetings (ii) major tech-firm annual events (iii) major tech firm earnings releases, (iv) CPI

release dates, (v) jobs report release dates (vi) retail sales release dates, and (vii) Treasury

auction dates for 10, 20, and 30 year bonds as the source of our placebo dates, though in

fact none of these series nests our AI model release series. Our findings remain statistically

significant relative to these alternative “placebo” distributions.

Controlling for Other News As a further robustness check, we directly control for proxies

for certain non-AI news that arrived during our analysis period. Specifically, we consider

three series intended to capture other information that might have impacted bond yields

(i) the Citigroup US Economic Surprise Index (Citigroup Global Markets 2025, which

summarizes the deviation of economic data releases from forecasts) (ii) the Cboe’s VIX

volatility index (Cboe 2025, which is an option-implied measure of stock market volatility),

and (iii) the Federal Reserve Bank of San Francisco Daily News Sentiment Index (Shapiro

10We drop event dates, rather than model releases, so dropping the two model releases on March 14,
2023 “counts” as dropping a single date.
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et al. 2022; Federal Reserve Bank of San Francisco 2023, which summarizes the economic

sentiment of news articles from a variety of sources). In each case, and for each of the US

Treasury series we consider, we residualize daily changes in yields against the current level

and 15 daily lags of the “control” series, then repeat our analysis with the re-cumulated

series (now testing the null of no effect on the residualized yield series). Appendix B.3

shows that our results are directionally similar, and statistically significant at some horizons,

whether controlling for any of the individual series or all three at once, though the level

of significance varies across specifications.

Results for Alternative Analysis Samples Appendix B.4 reports versions of our Treasury

results for alternative analysis samples, first plotting results for calendar years 2023 and 2024

separately, and then plotting results for an extended sample period running from October

2022 through May 2025. We find directionally similar results in all cases, though the results

for 2023 are quantitatively larger than our main results, while those for 2024 are only

marginally statistically significant at intermediate horizons, and lose statistical significance at

longer horizons. The results for the extended sample period are similar to our main results.

Means vs. Medians Finally, Appendix B.5 reports versions of our main results instead

considering mean and mean absolute changes. Our findings there are similar to those

reported above.

5 Interpretation

Our empirical analysis shows that major AI model releases were accompanied by reductions

in long-term bond yields. As discussed in Section 2, viewed through the lens of the

complete-market, representative agent model, falling yields on the risk-free asset imply

that the expected future marginal utility of consumption is rising, because expected future

consumption is falling, uncertainty is increasing, or the date T after which asset holdings are

irrelevant is believed to be shifting further into the future (or is less likely to arrive at all).

One natural question, in light of our findings, is how much investors must have updated

their beliefs about growth in order to rationalize observed changes in yields. Providing a

quantitative answer to this question requires imposing additional assumptions beyond those

in Section 2. Since this interpretive exercise nevertheless appears worthwhile, in Section

5.1 we consider a more restrictive version of our model which we use to quantitatively
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interpret our findings.

A second natural question is how to interpret investors’ updated beliefs. In particular,

to the extent investors lowered their consumption growth expectations around the model

releases in our sample, does this reflect that they were positively surprised by the rate of

AI progress and thought AI would be bad for consumption growth? Or did they think AI

would be good for consumption growth but that the rate of AI progress was disappointing?

Section 5.2 provides suggestive evidence on this point, using data from an online prediction

platform to show that platform participants were, on median across the model releases

in our sample, positively surprised by the rate of AI progress on at least some dimensions.

5.1 A Simplified Model

As discussed in Section 2, the assumption of complete markets implies the existence

of a representative agent, so in this section we focus on that agent’s consumption and

utility. We assume that the representative agent has CRRA flow utility from consumption,

u(Ct)=
C1−γ
t

1−γ
, similar to Jones (2024).11 Under this assumption, the SDF simplifies to

Mt,t+h=βh

(
Ct+h

Ct

)−γ

1{t+h≤T}.

Unfortunately this restriction does not, on its own, suffice to let us interpret our em-

pirical findings, since the consumption process Ct may have quite rich dynamics, reflecting

many factors other than AI. To isolate the impact of AI beliefs, we thus impose further

assumptions which restrict the evolution of Ct, and beliefs about Ct, over time. As a

starting point, we assume there exists a horizon k≥ 0 such that at each date t in our

sample the representative agent thinks that for all horizons h≥k≥0 periods in the future,

aggregate consumption evolves according to

Ct+h+1=(1+g)Xt+h+1Ct+h

where g captures the consumption growth impact of AI and {Xs}T̄s=t+k+1 is a stochastic

process capturing the non-AI determinants of consumption growth. We make this assump-

tion starting k periods in the future, rather than immediately, to allow the possibility of

richer dynamics in short-term consumption, e.g. because the growth impacts of AI could

11Jones (2024) includes an additional location term in the utility, but this term will be irrelevant for
our purposes so we drop it.
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take some time to “kick in.” Together with CRRA utility, this implies that for h≥k the

h-period ahead SDF is

Mt,t+h=

(
Ct+k

Ct

)−γ

βh(1+g)−(h−k)γ

(
h∏

s=k+1

Xt+s

)−γ

1{t+h≤T}.

We further assume that conditional on information available at t and the event t+k≤T ,

(i)

(
{Xs}t+h

s=t+k+1,
(

Ct+k

Ct

)−γ
)
, T , and g are believed to be mutually independent (ii) T is

thought to arrive with probability δt in each period following t+k,

Pt(t+h≤T |t+k≤T)=
h∏

s=k+1

Pt(t+s≤T |t+s−1≤T)=(1−δt)
h−k,

and (iii) 1+g is believed to be log-normally distributed, log(1+g)|Ft,t+k≤T∼N(µt,σ
2
t ).

12

These assumptions, taken together, imply tractable expressions for log forward rates

which may in turn be used to interpret our empirical results. Consider the the period t

forward yield from t+k to t+h, i.e. the per-period yield earned by, in period t, selling

a period t+k zero-coupon risk-free bond while buying a period t+h zero,

ft+k,t+h=

(
yht,t+h

ykt,t+k

) 1
h−k

.

Appendix C.1 shows that under our assumptions (i)-(iii) above, the log forward yield is

log(ft+k,t+h)=
1

h−k
log

(
Et[Mt,t+k|t+k≤T ]

Et[Mt,t+h|t+k≤T ]

)
=

h

h−k
log
(
yt,t+h

)
− k

h−k
log(yt,t+k)=

−log(β)−log(1−δt)+γµt−
γ2

2
(h−k)σ2

t −
1

h−k
log

Et


(

Ct+k

Ct

)−γ

Et

[(
Ct+k

Ct

)−γ
]( h∏

s=k+1

Xt+s

)−γ


.

12These assumptions are restrictive, and appear unlikely to hold exactly. For instance, one might expect
that more effective AI (i.e. AI yielding a higher g) would be associated with a closer arrival date for T .
Similarly, if the growth effects of AI may“kick in” strictly before period t+k then a higher g should lead to
a higher Ct+k. Nevertheless, additional assumptions are needed to quantitatively interpret our results, and
those above are the least objectionable assumptions we have thus far found that suffice to yield tractability.
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Consequently, if we difference the log forward yields at two dates t−<t<t+ we have

log
(
ft++k,t++h

)
−log

(
ft−+k,t−+h

)
=

−log

(
1−δt+
1−δt−

)
+γ
(
µt+−µt−

)
−γ2

2
(h−k)

(
σ2
t+
−σ2

t−

)
−ηt−,t+,k,h

where

ηt−,t+,k,h=log

Et+

[(
Ct++k

Ct+

)−γ(∏h
s=k+1Xt++s

)−γ
]

Et−

[(
Ct−+k

Ct−

)−γ(∏h
s=k+1Xt−+s

)−γ
] ·Et

[(
Ct−+k

Ct−

)−γ
]

Et

[(
Ct++k

Ct+

)−γ
]
.

To connect this expression to our empirical results, let us again consider our set of

event dates t∈T , and for each t consider t+=t+s and t−=t−b.13 Let A denote the set

of all dates t such that t+ and t− are both in the sample. We assume that for all h≥k the

residuals ηt−,t+,k,h have approximately the same mean across our event dates T as across A,

1

|T |
∑
t∈T

ηt−,t+,k,h≈
1

|A|
∑
t∈A

ηt−,t+,k,h. (4)

For instance, if we assumed that ηt−,t+,k,h were stationary across time conditional on our

event dates T and regularity conditions held, this would follow from the law of large num-

bers as |T |→∞.14 Motivated by this assumption, we consider the difference in differences

of log forward rates log(ft+k,t+h) across times t∈T and t∈A:

DID(log(ft+k,t+h);T ,A)≡ 1

|T |
∑
t∈T

log

(
ft++k,t++h

ft−+k,t−+h

)
− 1

|A|
∑
t∈A

log

(
ft++k,t++h

ft−+k,t−+h

)
≈ (5)

1

|T |
∑
t∈T

(
−log

(
1−δt+
1−δt−

)
+γ
(
µt+−µt−

)
−γ2

2
(h−k)

(
σ2
t+
−σ2

t−

))
−

1

|A|
∑
t∈A

(
−log

(
1−δt+
1−δt−

)
+γ
(
µt+−µt−

)
−γ2

2
(h−k)

(
σ2
t+
−σ2

t−

))
13Thus, t+ and t− are implicitly functions of t, though we suppress this dependence for readability.
14We work with means across event dates, rather than medians as in Section 4, because means recover

a simple aggregation of heterogeneous effects across events, while we are not aware of a similarly tractable
expression for medians.
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Thus, if we consider the slope of DID(log(ft+k,t+h)) with respect to the horizon h, this

approximately recovers the difference in differences for the variance σ2
t , scaled by −γ2

2
.

−γ2

2
DID(σ2

t ;T ,A)≡−γ2

2

(
1

|T |
∑
t∈T

(
σ2
t+
−σ2

t−

)
− 1

|A|
∑
t∈A

(
σ2
t+
−σ2

t−

))
. (6)

If we think that dates in A\T have little news relevant to the growth impacts of AI,

we might expect the second term to be small relative to the first. However, our event

dates are also included in the second term and we moreover do not want to rule out the

possibility that AI-relevant news arrives at dates outside of T . Hence, we focus on the

difference-in-differences interpretation.

Similarly, the intercept of DID(log(ft+k,t+h)) as h ↓ k measures the difference in dif-

ferences for expected log growth, scaled by γ, less the difference in differences in the log

probability that T does not arrive in a given year,

γDID(µt;T ,A)−DID(log(1−δt);T ,A) (7)

for

DID(µt;T ,A)≡ 1

|T |
∑
t∈T

(
µt+−µt−

)
− 1

|A|
∑
t∈A

(
µt+−µt−

)
DID(log(1−δt);T ,A)≡ 1

|T |
∑
t∈T

log

(
1−δt+
1−δt−

)
− 1

|A|
∑
t∈A

log

(
1−δt+
1−δt−

)
.

Taking the Model to the Data Our simplified model predicts the behavior of yields on

risk-free zero-coupon bonds, so to take these predictions to the data, we use daily Treasury

yield curves from FRED (Board of Governors of the Federal Reserve System, US, 2025a),

which are based on a three-factor term structure model due to Kim and Wright (2005).

These data cover maturities up to 10 years.

To apply the above results, we must choose a horizon k beyond which to consider

forward yields. To guide this choice, in Appendix C.2 we plot the difference in differences

in one period-ahead log forward yields, DID(log(ft+h,t+h+1);T ,A) for h∈{0,...,9}. Equation
(5) implies that for h≥k this curve should be approximately linear in h. This does not

appear to hold exactly in our data, but for h≥4 it seems a good approximation. Motivated

by this finding, for the remainder of our analysis we take k=4.

After selecting k = 4, we regress DID(log(ft+k,t+h);T ,A) for horizons h ∈ {5,...,10}
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on the difference h−k relative to the initial horizon. This yields a slope of 0.0015 log

points (corresponding to the 60.5th percentile of the placebo distribution) and an intercept

of approximately -0.208 log points (corresponding to the 1.5th percentile of the placebo

distribution).15 The finding that the slope of the yield curve is not substantially changing

around model release dates is consistent with our finding in Section 4 above that the yield

impacts of model releases are quite similar for the various bond maturities above 5 years.

Thus, it appears that the changes we observe around event dates are driven by shifts in

the level of the forward curve, rather than the slope.

To further interpret these results through the lens of the simplified model developed

above, we separately consider the interpretation of the slope and intercept.

Interpreting the Slope First considering the slope (6) of the forward curve difference in

differences (5) with respect to the maturity difference h−k, recall that the slope coefficient

estimates the scaled average variance change. Thus, we estimate that the average change

in the variance of log(1+gt) around model releases, less the variance change around the

average date in the sample, is

̂DID(σ2
t ;T ,A)=− 3

γ2
·10−5,

for γ the CRRA coefficient of the representative agent. Hence, the simplified model con-

sidered in this section suggests that consumption growth uncertainty actually fell slightly

on average around model release dates relative to the average day in our sample.

These estimates are small, and are not statistically different from zero according to

our placebo distribution even using generous thresholds for statistical significance.16 This

finding of little evidence for growth uncertainty changes around our event dates is consistent

with our finding in Section 4 that there does not appear to be a clear trend in yield changes

across 10, 20, and 30 year Treasuries. That said, given our limited sample size we do

not have much power to detect small slope changes (the 5th and 95th percentiles of our

placebo distribution correspond to slopes of approximately ±8.9·10−3, respectively).

Overall, our simplified model suggests that, if anything, consumption growth uncertainty

15A previous version of the paper mistakenly reported slope and intercept coefficients based on the
extended 2022-5 sample considered in Appendix B.4, rather than our main 2023-4 sample.

16To interpret the magnitude of our estimated variance reduction, note that it is equivalent to, on the
average event date, removing a noise component from log(1+gt) with standard deviation equal to 0.55/γ
percentage points. While this is not a negligible uncertainty reduction for e.g. γ∈ [1,5], it is delicate to
interpret given its statistical insignificance.
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may have slightly fallen around the model release dates we study, though our estimates

are imprecise. Nevertheless, we have sufficient evidence to conclude that, through the lens

of our simplified model, changes in consumption growth uncertainty do not explain the

yield decreases we observe around AI event dates.

Interpreting the Intercept We next turn to the intercept (7) in the forward curve dif-

ference in differences (5). Recall that under our simplified model this term captures two

forces: changes in the anticipated arrival rate δt of T (where a closer expected arrival for

T increases yields) and changes in the mean µt of the log growth rate log(1+gt) (where

a higher value of µt again increases yields).

If our estimated intercept were due entirely to a change in beliefs about T, the model

implies that the average model release in our sample led to a roughly 0.208 percentage

point increase in log
(

1−δt+
1−δt−

)
relative to the average in the sample

̂DID(log(1−δt);T ,A)≈0.208%.

If we assume δt is close to zero, it follows that ̂DID(δt;T ,A)≈−0.208%, so we estimate

that the average AI event in our sample is associated with a roughly 0.208 percentage

point larger reduction in δt than the average date in the sample. Cumulated over the 15

model releases in our analysis sample, this corresponds to a 3.12 percentage point decrease

in the annual arrival probability of T, which seems like a large effect.17

If observed changes in yields were instead due entirely to changes in consumption

growth expectations, the model implies that the average model release in our sample led

to an approximately 0.208/γ percentage point larger decrease in µt than the average date

in the sample,

̂DID(µt;T ,A)=−0.208%

γ
,

for γ the CRRA coefficient of the representative agent. If we assume that σ2
t =Vart(log(1+

g)) is small for all t, and further assume that µt is close to zero, this implies that

̂DID(Et[g];T ,A)≈−0.208%

γ
,

17Direct adding-up of effects is complicated by the fact that the event windows for some of our model
releases overlap. On the other hand, re-running our analysis on the extended sample considered in
Appendix B.4 again produces large per-event effects, now over a larger set of events.
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Figure 6: Values for DID(µt;T ,A) ≈ DID(Et[g];T ,A) and −DID(log(1− δt);T ,A) ≈
DID(δt;T ,A) compatible with an intercept value (7) equal to -0.208 percentage points
under the simplified model and different levels of CRRA parameter γ.

so the average model release in our sample implies a roughly 0.208/γ percentage point

reduction in expected consumption growth, relative to the average date in the sample.

Thus, under γ =1 (i.e. log utility) our results imply a 0.208 percentage point, or 20.8

basis point, drop in expected consumption growth (3.12 percentage points, cumulated),

while under γ = 2 they imply a 0.104 percentage point drop (1.56 percentage points,

cumulated), and under γ=5 they imply a 0.041 percentage point drop (0.62 percentage

points, cumulated). Even at the lower end, these again seem like substantial effects.

Of course, it could be that beliefs about both T and g update in response to AI model

releases. To explore this broader range of possible interpretations, Figure 6 depicts the

DID(µt;T ,A) and −DID(log(1−δt);T ,A)≈DID(δt;T ,A) combinations compatible with

an intercept (7) of -0.208 percentage points, for different levels of CRRA parameter γ.

There is downward-sloping relationship between the implied effects on the arrival rate of T

and g: the larger the decrease in the arrival rate of T, the more positive the growth effects

which rationalize observed yield changes, and vice versa.

Overall, our simplified model implies that the changes in bond yields we observe around

AI model release dates are primarily driven by some combination of decreases in growth

expectations (i.e. µt) and decreases in the perceived arrival rate of T (i.e. δt) rather than

changes in growth uncertainty (i.e. σt).
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5.2 Suggestive Evidence on AI Belief Updating

To complement our results on bond yields, we next analyze AI-progress forecasts from

the online prediction platform Metaculus. Metaculus is a forecasting platform where

participants make probabilistic predictions about future events, with predictions aggregated

to produce community forecasts. We focus on a Metaculus question regarding the arrival

of “weakly general artificial intelligence,” or weak AGI, which asks users to predict the first

date at which a unified AI system will be publicly known to satisfy a number of criteria

(Metaculus, 2020b).18 A substantial number of participants contributed forecasts for this

question, growing from over 600, at the start of our analysis window, to over 1500 by the end.

Metaculus provides a forecast distribution, based on weighted aggregation of individual

participants’ forecast distributions, rather than simply a point forecast. We thus examine

how the forecast distribution changes around our event dates, focusing on the 25th percentile,

median, and 75th percentile of the forecast distribution, and taking the median change

across event dates as for our main results.19 The results, shown in the first panel of Figure 7,

show that the forecast distribution shifts down on median around model release dates in our

sample, corresponding to an earlier arrival date for weak AGI and thus faster AI progress.

The shifts in the 25th percentile and median are statistically significant at conventional

significance levels, while that for the 75th percentile is marginally significant. Interestingly,

as in our financial market results the downward shift in the 25th percentile of the forecast

distribution occurs substantially before the model release, though the others occur later.

While we find these results interesting, they are sensitive to the precise question we

consider. If we instead examine Metaculus’s question about the arrival of the first AGI

system, which sets more demanding criteria than for weak AGI (Metaculus, 2020a), we do

not see clear changes in the forecast distribution around model releases in our sample. If

anything the forecast distribution increases, though these increases are largely statistically

insignificant – see the second panel of Figure 7. One interpretation of these results could be

that Metaculus participants thought the model releases we study were informative about

18Specifically, the weak AGI criteria involve: (1) scoring 90% or more on a robust version of the Winograd
Schema Challenge, (2) scoring at the 75th percentile on the mathematics section of a circa-2015-2020
standard SAT exam, (3) passing a Turing test, and (4) learning to play the classic Atari game“Montezuma’s
Revenge” based on less than 100 hours of real-time play. The question explicitly requires these capabilities
be demonstrated by a unified system rather than separate specialized models cobbled together.

19Unlike our financial market data, Metaculus forecasts update every day, including on weekends, so our
±15 day analysis window here corresponds to a shorter “real” time period than that for our other results.
When computing the placebo distribution in this section, we restrict the placebo dates to be drawn from
dates covered by our Treasuries series, since no model was released e.g. on a weekend or holiday.
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the arrival of weak AGI, but that more fundamental progress is needed to attain AGI.20

Overall, these results suggest that Metaculus participants updated positively about

at least some aspects of AI progress around the AI model releases in our sample. While

there is no guarantee that the beliefs of Metaculus participants resemble those of investors,

to the extent the two are related these results suggest that the yield changes we observe

around AI model release dates may not be driven by disappointing AI progress.

6 Discussion

We have found evidence of economically and statistically large declines in long-term bond

yields around major AI model releases. Viewed through the lens of a simple asset pricing

model, these results suggest that investors are updating their beliefs towards some com-

bination of (i) lower expected consumption growth (ii) higher uncertainty about future

consumption or (iii) a lower probability of extreme “doom” or “bliss” scenarios. We can

roughly quantify the extent of belief updating under the additional assumptions laid out

in Section 5. Since we find substantial shifts in the level, but not the slope, for the forward

curve, the model implies that (i) and/or (iii) play a much more important role than (ii)

in explaining our results.

These conclusions are subject to important caveats. Perhaps most important, it could be

that the yield changes we observe around AI model releases do not reflect the causal effects of

AI news and are instead driven by other factors. Even granting that the effects we estimate

are causal, there are other possible interpretations. First, it may be that none of the bonds

we consider is a reasonable proxy for a risk-free asset. Second, updates to investor beliefs

around the model release dates we study could be non-representative of overall investor

beliefs about AI, and third, the simple complete-market, representative agent model might

imply a misleading interpretation of market responses. We discuss each possibility in turn.

On the first possibility, it is plausible that investors do not think US Treasuries are

approximately risk-free. Treasuries are subject to inflation risk, and potentially to default

risk given the large and growing budget deficits run by the US government. TIPS are

designed to reduce inflation risk, and so partially mitigate this concern, but remain subject

to default risk. If market participants think there is a non-trivial probability of a US

default in the coming decades it could be that news about AI raises expected future tax

20Consistent with this, the forecast median for AGI at the end of 2024 was August 2033, compared
to March 2027 for weak AGI.
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Figure 7: Median change in forecast distribution quantiles for weak AGI arrival date (top
panel) and AGI arrival date (bottom panel). Median taken across AI release events in
the 2023 and 2024 calendar years. Placebo distribution recomputes statistics on dates
drawn uniformly at random from dates in US Treasury data series.
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revenue, and thus lowers Treasury yields by lowering the embedded risk premium rather

than by changing growth expectations.

Our data can provide some limited evidence on this possibility. One would expect

that if the US government were to default this might increase the risk of many companies

defaulting as well, so the mere fact that corporate bond yields also fall around AI model

releases does not rule out this explanation. However, to the extent that not all highly

profitable US companies would necessarily default if the US government did, we would

expect a drop in US government default risk to increase the spread between corporate

bond yields and Treasury yields. To examine this possibility, recall that Figure 5 plots the

event study for the ICE BofA Option-Adjusted Spread index, and shows no statistically

or economically significant increase in spreads. While this does not fully rule out that the

effects we observe could be driven by changes in risk premia on US Treasuries, the risk

premia on corporate bonds would need to move essentially in tandem.

A second explanation for our results could be that, while we are obtaining valid

estimates for the impact of AI news at the dates we study, our event dates are in some

sense non-representative. That is, it could be that the net effect of investor beliefs about AI

has been to increase bond yields over the 2023-4 period, but that the particular event dates

we’ve selected saw updates in the opposite direction. While we cannot rule this out, it is

not clear to us why it would be the case: we include all dates from a well-defined universe

(all major model release dates from a set of prominent AI firms), and it is not clear to us

why the impact of information arriving at these dates should be directionally different, in

aggregate, than that of AI information arriving at other dates in the same two year window.

A third possibility is that while we are accurately capturing market responses to AI

news, the model in Section 5 implies a misleading interpretation of these results. There

are a wide variety of reasons why reality may deviate from the fully-optimizing, complete

market benchmark, including market incompleteness, a wide array of market frictions and

constraints, behavioral deviations from rationality and optimization, and many more.21 To

explain our results, an alternative story needs to explain economically large and apparently

persistent yield changes in one of the deepest financial markets in the world. This suggests

that alternative explanations could themselves be of considerable interest.

21For instance, perhaps asset managers face institutional risk-management constraints and expect
a heightened level of volatility in the equity markets following AI model releases, leading to a shift of
investments towards fixed-income instruments such as Treasury bonds. This explanation suggests a shift
towards more liquid, short-maturity Treasuries, however, rather than the longer-maturity bonds where
our effects are concentrated.
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Appendix

A Exchange Rate Responses

Figure 8 shows an event study for a broad trade-weighted US dollar index from FRED

(Board of Governors of the Federal Reserve System, US, 2025d). As this plot shows, on

median the model releases in our sample saw a weakening of the dollar, consistent with

lower demand for the dollar following the fall in interest rates estimated in the main text.

These declines are significant relative to the placebo distribution, and again persist through

15 days after the model release.
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Figure 8: Median change in trade-weighted US Dollar index (relative to fifteen days before
event). Median taken across AI release events in the 2023 and 2024 calendar years. Placebo
distribution recomputes statistics on dates drawn uniformly at random from sample period.
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