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Abstract

We study the causal effects of global supply chain disruptions by constructing a new
index of real-time port congestion using Automatic Identification System data from
container ships and a spatial clustering algorithm. We develop a model with search
frictions between producers and retailers that links upstream production slack to
downstream supply shortages and captures output and price responses to supply chain
shocks. The co-movements of output, prices, spare capacity, and market tightness
provide novel identification restrictions. We find that demand and supply shocks
drove U.S. disinflation in 2020, while the inflation surge in 2021 was driven mainly
by supply chain shocks.
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1. Introduction
The world economy is organized around an intricate global supply chain. Any sudden and

large shock to this supply chain, such as those triggered by war, the COVID-19 pandemic, or the

Red Sea crisis, can have significant consequences for output, inflation, and economic slack.

Measuring the causal effects of a global supply chain shock is challenging for two reasons.

First, researchers need an accurate gauge of supply chain conditions, yet existing indices often

rely on shipping prices or survey data from the Purchasing Managers’ Index (PMI). Although

informative, these measures may be skewed by irrelevant factors and large measurement errors.

Ideal measurement requires precise, real-time data tracking of global flows of tradable goods.

Second, researchers need a theoretical framework that can deliver credible identification as-

sumptions for causal analysis. Global supply chain conditions respond to aggregate demand,

aggregate supply, and supply chain shocks, which can only be disentangled through theoretically

derived identification restrictions. However, no standard model captures the joint presence of

upstream economic slack and downstream supply scarcity, a combination that, as we argue later,

is crucial for distinguishing supply chain disturbances from other macroeconomic shocks.

Our paper tackles these challenges by developing (i) a new index that measures real-time

container ship congestion at major ports worldwide using high-frequency satellite data, providing

a timely and accurate indicator of the state of the global supply chain, and (ii) a novel theoretical

framework that captures the coexistence of upstream slack and downstream shortages and exam-

ines their implications for output, prices, market tightness, and spare productive capacity during

supply chain disruptions. Using identification assumptions grounded in this theory, together with

a Bayesian structural vector autoregression (SVAR), we disentangle the shocks driving our index

and quantify the dynamic causal impact of supply chain shocks on aggregate outcomes.

The importance of addressing points (i) and (ii) lies in the likelihood that the world economy

may again face major supply chain disruptions —whether from wars, geostrategic shifts, block-

ades, sanctions, or another pandemic. Far from being a postmortem of the COVID-19 pandemic,

our analysis distills important lessons for the future.

Measuring the state of the global supply chain. We assess the health of the global

supply chain by examining congestion at container ports worldwide, a well-recognized metric in

maritime economics. As early as 2006, the Transportation Research Board Executive Committee
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identified congestion as a key issue for transportation and logistics, a view later reinforced by

Fan et al. (2012) and Brancaccio et al. (2024), who documented its impact on the efficiency and

reliability of global supply chains.

Container shipments are central to global trade, with roughly 60% of the total value of

seaborne trade passing through container ports (UNCTAD, 2019). This heavy reliance on con-

tainerized transport implies that even small increases in port congestion can disrupt the supply–

demand balance for tradable goods and strain the global supply chain.

Our port congestion analysis relies on real-time, high-frequency satellite data from the Auto-

matic Identification System (AIS), mandated by the International Maritime Organization (IMO).

These data allow us to track container ships with virtually no measurement error between 2016

and 2025. We measure congestion in individual ports using a machine-learning-based spatial

clustering algorithm that leverages ship positions, speeds, and headings, and we aggregate these

port-level measures to construct the first high-frequency Average Congestion Rate (ACR) index.

Our index shows that COVID-19-related port congestion began rising in the second half of

2020 and remained elevated until mid-2022. The share of delayed container ships increased from

28% to 37%, while average delay durations rose from 6 to 14 hours. Given that almost 80% of

global trade is shipped indirectly, with an average of five port stops (Ganapati et al., 2024), these

seemingly small delays imply substantial disruptions in container flows.

A model of the global supply chain. Next, we develop a model to capture imbalances

between goods supply and demand during supply chain disturbances. The model centers on

search and matching frictions between geographically separated producers and retailers, with

producers incurring transportation costs to ship goods.

Our framework is inspired by the disequilibrium literature of the 1970s (e.g., Barro and Gross-

man 1971) but is recast within the microfounded approach of Michaillat and Saez (2015, 2022)

and Ghassibe and Zanetti (2022). By distinguishing between producers and retailers and incor-

porating transportation costs, the model generates spare productive capacity in the upstream

producer–retailer market and supply shortages in the downstream retailer–household market.

Search frictions introduce trading externalities that constrain the allocative role of prices. In

this setting, trading depends on the relative numbers of retailers and producers, in addition to

standard price adjustments, a crucial mechanism during supply chain disruptions.

We model a supply chain disturbance as an unexpected increase in transportation costs.
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Such cost spikes —driven by port congestion surcharges, shipping shortages, or pandemic-era

price increases (Alessandria et al., 2023; Dunn and Leibovici, 2023)— reduce the expected total

surplus from potential producer–retailer matches. Because the maximum transportation cost that

a match can bear adjusts sluggishly under fixed service contracts, the upstream producer–retailer

market slackens, generating spare productive capacity while lowering the supply of goods and

raising prices in the downstream retailer–household market.

Identification. Identification in our estimation below relies on two sources: the restrictions

derived from our model and our domain knowledge of the containerized shipping industry.

The restrictions implied by our model highlight that aggregate responses to supply chain

shocks differ clearly from those to conventional demand or supply shocks. Specifically, supply

chain shocks generate negative co-movements between output and prices, similar to traditional

supply shocks. However, unlike standard supply shocks, supply chain disturbances also lead to

both an increase in global spare capacity (as reduced shipments constrain goods flows to retailers

without affecting productive capacity) and a decrease in upstream market tightness (as retailers

are discouraged from trade while spare productive capacity rises). This combination of higher

spare capacity, lower market tightness, rising prices, and declining output enables us to uniquely

identify supply chain disturbances.

Domain knowledge tells us that port congestion is unaffected by aggregate demand or pro-

ductive capacity shocks within the first month after such shocks occur. This is due to two main

factors: (i) container ship schedules and arrivals are determined ex-ante and adjust to changes

in demand or capacity only after significant delays, driven by penalties and high switching costs,

and (ii) travel times between ports often exceed a month, making it impossible for container ships

already en route to respond to demand or capacity changes in under 30 days.1

We exploit this delayed response by imposing that the condition that the ACR index remains

unresponsive to aggregate demand or productive capacity shocks during the first month post-

impact, while allowing it to respond freely thereafter. Importantly, as we elaborate below, our

ACR index, combined with this domain knowledge identification, delivers substantial gains in

separating supply chain disturbances from other shocks. These gains arise both in the magnitude

of price responses to supply chain disturbances and in the precision of the posterior estimates,
1Shipping contracts typically span over a year, with route and schedule adjustments occurring every three to

six months (Stopford, 2008; Meng et al., 2014).
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especially when compared with alternative indices of global supply chain conditions.

The causal effects of supply chain disruptions. Using our identification strategy, we

estimate a Bayesian SVAR with the ACR index under zero restrictions, yielding two key findings.

First, a supply chain shock leads to a surge in spare capacity, proxied by the import-weighted

average spare capacity rate of the top five U.S. trading partners (Mexico, Canada, China, Ger-

many, and Japan), which together account for more than half of U.S. goods imports. At the

same time, product market tightness falls sharply, proxied by the imbalance between U.S. manu-

facturers’ new orders and the U.S. dollar value of the import-weighted average spare capacity of

the same trading partners. This shock also triggers a pronounced decline in U.S. real PCE and

a persistent increase in the PCE price index, consistent with recent empirical evidence (Khalil

and Weber, 2022; Alessandria et al., 2023). As predicted, productive capacity and supply chain

shocks differ sharply in their effects on spare capacity and product market tightness: spare ca-

pacity (tightness) falls (rises) after a capacity shock but rises (falls) after a supply chain shock.

Second, the historical decomposition reveals four phases of U.S. headline PCE inflation since

2020. In the first phase (2020), the sharp disinflation was driven primarily by a contraction

in aggregate demand and by a loosening of productive capacity constraints at the onset of the

pandemic. In the second phase (2021 to mid-2022), inflation surged largely due to global supply

chain disruptions. In the third phase (late 2022 to 2023), inflation eased as demand weakened,

capacity improved, and supply chains recovered. In the final phase (2024 onward), inflation reac-

celerated mildly, primarily reflecting supply chain factors, with demand and capacity continuing

to exert a modest drag. A comprehensive set of sensitivity checks confirms that our results are ro-

bust across multiple dimensions, including the choice of proxy for global supply chain conditions,

identification restrictions, model specification, and estimation method.

Related literature. Our study is related to several realms of research. As mentioned

above, our model builds on Barro and Grossman (1971), Michaillat and Saez (2015, 2022), and

Ghassibe and Zanetti (2022). It is also related to studies that focus on the effects of supply

chain disturbances on output and inflation, using measures such as spare labor capacity (Benigno

and Eggertsson, 2023), goods shortages (Bernanke and Blanchard, 2025), a quasi-kinked demand

curve for produced goods (Harding et al., 2023), and capacity constraints (Comín et al., 2023;

Merendino and Monacelli, 2025).

Furthermore, our paper is related to work showing that transportation costs are important
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for international trade and economic activity (Allen and Arkolakis, 2014; Brancaccio et al., 2020;

Dunn and Leibovici, 2023), infrastructure investment (Fuchs and Wong, 2022; Brancaccio et al.,

2024), asset prices (Smirnyagin and Tsyvinski, 2022), working capital (Antràs, 2023; Kim and

Shin, 2023), inflation expectations (Acharya et al., 2023; Binetti et al., 2024), the design of new

taxes and pricing rules to offset distortionary effects on the transportation network (Brancaccio

et al., 2023), the interlinks between oil shocks and trading externalities in the supply chain (Bai

and Li, 2022; Li et al., 2022), and the economic effects of supply chain disruptions during the

COVID-19 pandemic (Finck and Tillmann, 2022; Ascari et al., 2024; Finck et al., 2024).

The remainder of the paper is organized as follows. Section 2 constructs the ACR index

measuring the state of the global supply chain. Section 3 develops our theoretical model and the

identification restrictions for structural shocks. Section 4 presents the estimation results from a

Bayesian SVAR. Section 5 concludes. An appendix provides further details, and our data are

available on our website: https://globalportcongestion.github.io/blog/intro.html.

2. Measuring the State of the Global Supply Chain
This section constructs an index of global supply chain conditions by measuring congestion

at major ports using satellite data on container-ship positions, speeds, and headings. We begin

by explaining why we focus on containerized trade and by outlining key features of the industry.

We then describe our satellite data, motivate the use of port congestion as a measure of global

supply chain conditions, and present the algorithm that implements our approach. We conclude

by reporting our results and comparing them with alternative indices in the literature.

2.1. Containerized Seaborne Trade: Some Basic Facts

Containerized seaborne trade plays a central role in the global supply chain, accounting for

about 46% of all international trade.2 In the U.S., container shipping carries more tonnage

(nearly one billion short tons) and value (more than 0.7 trillion dollars) than any other transport

mode, representing over 50% of U.S. trade by weight and roughly 30% by value (Bureau of

Transportation Statistics, 2021). Although some high-value items, such as computer chips, are

shipped by air, these products depend on other components, such as motherboards or hard drives,

that move by container ship.
2See Notteboom et al. (2022). Most of the remainder consists of bulk cargo (e.g., oil, grain, ore, and coal) or

specialized vessels (e.g., roll-on/roll-off ships for wheeled cargo).
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As Brancaccio et al. (2020, p.2) explain, “The transportation sector … can be split into two

categories: those that operate on fixed itineraries, much like buses, and those that operate on

flexible routes, much like taxis. Container ships … belong to the first group.” These fixed itineraries

center on seaports that act as hubs for freight collection and distribution. Even mild congestion at

these ports can disrupt the tight schedules of supply chains and trade flows, leading to significant

delay costs.

Before 2020, waiting times at ports were typically only a few hours. Disruptions linked to the

COVID-19 pandemic, however, produced long delays, with waiting times of 2–3 days at several

major ports and heavy financial losses.3 Since nearly 80% of world trade is shipped indirectly

and the average shipment stops at five intermediate ports before reaching its final destination

(Ganapati et al., 2024), the interconnected nature of global trade greatly amplifies delays from

port congestion.4

The industry is also surprisingly concentrated. In 2022, there were only 5,589 container ships

worldwide, of which roughly 500 belonged to the larger size classes.5 Hence, delays affecting even

a single large ship can have significant consequences for global trade. For instance, the MSC

Loreto, a new ultra-large container vessel, carries about 24,346 TEUs (twenty-foot equivalent

units), each with a maximum cargo of 21,600 kilograms. At full capacity, it can load up to 240

thousand tons of cargo. A historical comparison highlights the scale: perhaps the most famous

convoy of the Battle of the Atlantic during World War II, ONS 5, sailed from Liverpool to Halifax

from April 29 to May 6, 1943, and became the center of an epic battle against 43 German U-boats.

ONS 5 involved 49 merchant ships with a combined cargo capacity of roughly 219 thousand tons,

about 10% less than that of the Loreto. Any delay in the Loreto’s loading or unloading has

ramifications for tens of thousands of firms worldwide.

The escalation of port congestion during the COVID-19 pandemic was driven by multiple

shocks. Delays arose from both upstream and downstream disruptions, including mobility re-
3Buyers and sellers of goods faced lower transport efficiency, higher operating costs, demurrage and detention

charges, and difficulty meeting contractual obligations and market demand. For shippers and freight forwarders,
delays were compounded by surcharges such as the port congestion surcharge (PCS), with fees climbing up to
$1,250 per container. Given that the average value of goods in a 40-foot container —the most common type— in
2020 was about $109,000, the PCS alone represented a significant cost.

4For perspective on shipments to the U.S., it takes about 28 days to move a container from Shanghai to Los
Angeles along the Trans-Pacific route (Freightos, 2024). A typical shipment stops at the Port of Ningbo-Zhoushan
in China, Kaohsiung in Taiwan, Busan in South Korea, and Tokyo in Japan before arriving in Los Angeles.
Assuming waiting times of 2–3 days at each intermediate port, the total delay amounts to 8–12 days, even before
accounting for congestion at the origin and destination ports.

5See https://unctad.org/rmt2022 (accessed December 29, 2023).
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strictions from stay-at-home orders, port quarantine measures that reduced handling efficiency,

late truck arrivals due to highway controls, and unopened containers at inland factories where

workers were unavailable. A surge in demand for tradable goods in 2021 intensified congestion, as

shipping companies deployed additional capacity on major routes (e.g., the Trans-Pacific corridor

between East Asia and North America) and increased ship calls to meet demand (see Appendix

A and Bai et al., 2025a for further details).

In short, the state of the global supply chain reflects the effects of multiple shocks. Our

theoretical model, developed later in the paper, provides the identification assumptions needed

to separate demand shocks from supply chain shocks that affect this system. Before turning to

that model, however, we describe how our index of port congestion is constructed.

2.2. AIS Data

We use satellite data from the AIS, a real-time tracking system mandated by the IMO. In-

ternational vessels exceeding 300 gross tons must carry an AIS transceiver that broadcasts ship

information (Heiland et al., 2025). Each record includes the IMO number, timestamp, draft,

speed, heading, and geographical coordinates.6 The AIS processes over 2,000 reports per minute

and updates as often as every two seconds, providing comprehensive coverage of vessel movements

worldwide from January 2016 to March 2025.7 Data on ship positions, speeds, and headings allow

us to track movements within and across port zones.

2.3. A Density-Based Spatial Clustering Algorithm

The literature on maritime economics identifies port congestion as a key indicator of global

supply chain conditions (Cerdeiro and Komaromi, 2020; Karimi-Mamaghan et al., 2020; Bai

et al., 2023; Brancaccio et al., 2024). A common approach measures congestion by estimating

the probability that a vessel first moors in an anchorage area before docking at a berth (Talley,

2009; Talley and Ng, 2016; Komaromi et al., 2022). An anchorage is a location within a port

where ships lower their anchors, while a berth is a designated site where vessels moor to load and

unload cargo. In the absence of congestion, ships would proceed directly to a berth upon arrival.
6The draft measures the vertical distance from the bottom of a vessel’s keel to the water surface, indicating

how deeply the ship is submerged.
7More than 99% of international container shipments are carried by vessels above 500 gross tons. Even smaller

vessels (below 300 gross tons) usually carry AIS transceivers because of their substantial safety benefits at a
relatively low cost (about $1,000 for a basic unit). Our coverage is therefore nearly universal.
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Measuring congestion, therefore, requires identifying berth and anchorage areas, a task that

previous studies have typically undertaken using nautical charts of individual ports. This ap-

proach is labor-intensive and difficult to generalize across heterogeneous global port layouts.8 To

overcome these limitations, we develop a spatial clustering algorithm that accurately distinguishes

areas within ports and applies to ports with diverse morphologies.

Our algorithm identifies distinct port areas by analyzing the density of container ships’ moor-

ing points in the AIS data through two layers of clustering. The first layer detects high-density

regions (locations with many AIS observations) and treats them as potential berths or anchor-

ages. The second layer distinguishes between them using domain knowledge of vessel behavior

in port. When vessel headings are orderly and closely aligned, the area is classified as a berth;

when headings are more dispersed or irregular, it is classified as an anchorage.

(a) Headings at a Berth (b) Headings at an Anchorage

Figure 1: Information on Headings: Two Examples

Figure 1 illustrates this distinction. The left panel shows two clusters, one in orange and one in

green. Both contain many AIS observations, with bows (the thin tips of the white signs) closely

aligned —pointing left in the orange cluster and right in the green cluster— representing two

different mooring headings. Superimposing these clusters on a satellite image confirms that they

correspond to a berth. The right panel, by contrast, shows several clusters where vessel headings
8Nautical charts have three main drawbacks: (i) they are static and rarely updated, so new berths may be

missing; (ii) the vast number of ports makes manual delineation of boundaries nearly impossible; and (iii) they
do not capture with precision the heterogeneity of areas within ports. Thus, studies relying on nautical charts
usually focus on one or a few ports (Chen et al., 2016; Feng et al., 2020). Inspecting satellite images can help
identify berths with fixed locations and boundaries —for example, Appendix C.2 validates our estimates for the
geographically complex Port of Ningbo-Zhoushan, south of Shanghai. However, satellite images generally cannot
identify anchorages, whose locations and boundaries vary with weather and port conditions.
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are random, with some forming a ring shape, consistent with anchorage behavior. Appendix C

provides further details on the algorithm, including pseudocode and a case study of the Port of

Ningbo-Zhoushan.

Our algorithm addresses two key challenges faced by existing clustering methods. First, it

adapts to variability in ship mooring densities across ports —arising from differences in trade

volume, vessel frequency, and geographical features— by iteratively refining clustering param-

eters for each port. Second, through its two-layer design, the algorithm distinguishes between

berths and anchorage areas even in dense mooring environments. It is also adaptable to other

applications, such as analyzing port efficiency, canal traffic, and stress at maritime choke points.

More broadly, its core mechanism, transforming domain knowledge into non-spatial attributes for

iterative clustering, provides a versatile tool for classifying clusters with specific labels in diverse

contexts (e.g., disease hotspots, urban planning, environmental monitoring).

Figure 2 shows that our algorithm accurately identifies anchorage and berth areas across

ports with diverse geographical and operational conditions. In each panel, we superimpose the

identified anchorage areas (colored red, yellow, blue, purple, pink, cyan, and orange) and berth

areas (markers of other colors) on satellite images of four major container ports: Ningbo-Zhoushan

(Panel a), Los Angeles and Long Beach (Panel b), Rotterdam (Panel c), and Singapore (Panel

d). Separate figures for anchorages and berths in each port are provided in Appendix C.2.

2.4. The ACR Index

Port congestion arises when ships cannot immediately load or unload cargo upon arrival at

ports and must wait in an anchorage area until a berth becomes available. For the top 50 container

ports worldwide, denoted as P, we count the number of delayed ship visits to each port p where

a ship first moors in an anchorage before docking at a berth.9 These top 50 ports represent 75.6%

of total containerized trade worldwide.10 We then calculate the congestion rate for each port p

by dividing the number of delayed ship visits by the total number of ship visits:

Congestionp,t ≡
Delayedp,t

Delayedp,t +Undelayedp,t

, ∀p ∈ P, (1)

9A ship visit is classified as delayed if at least one AIS observation shows zero speed and coordinates within
the anchorage area —as mapped by the geographical boundaries identified by our clustering algorithm— before
the ship docks at a berth.

10Extending the index to more ports is straightforward but computationally costly.
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(a) Ningbo-Zhoushan, China (b) Los Angeles and Long Beach, U.S.

(c) Rotterdam, Netherlands (d) Singapore

Figure 2: Identification of Anchorage and Berth Areas of a Port Using Machine Learning

Note. Each panel is based on the first 50,000 AIS observations of container ships entering each of the four major
ports since January 1, 2020.

where Delayedp,t and Undelayedp,t denote the number of delayed and undelayed ship visits at

port p in month t, respectively.11

We choose a rate measure of port congestion over the commonly used time measure (Fuchs

and Wong, 2022; Brancaccio et al., 2024) because it is unaffected by large differences in vessel

wait times across ports. For example, in June 2022, the average anchorage wait time in Savannah,

U.S., was 186 hours, while in Shanghai, China, it was virtually zero. Moreover, the rate measure
11A vessel’s draft generally reflects its cargo load, suggesting that we could weight delays by the volume of cargo

affected. However, unlike bulk carriers or oil tankers —whose drafts fluctuate sharply between voyages as they
load only after discharging previous cargoes— container ships load and unload simultaneously, generating minimal
draft variation. As a result, weight-augmented indices would closely mirror our original congestion indices.
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enables more reliable cross-port comparisons, as local anchorage times may reflect port size and

infrastructure conditions rather than supply chain disruptions.12
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Figure 3: Congestion Rates for the Major Container Ports Worldwide

Notes. Heatmap of monthly congestion rates for the top ten global container ports plus the Ports of Los Angeles,
Long Beach, New York–New Jersey, and Savannah, from January 2016 to March 2025. The congestion rate for
each port is normalized and expressed as a percentage of its peak value within the sample period. Darker shades
indicate higher congestion levels, as defined in Equation (1), for the respective port in a given month.

Figure 3 shows monthly congestion rates for the top ten ports worldwide, along with the Ports

of Los Angeles, Long Beach, New York–New Jersey, and Savannah (which together handle more

than 60% of U.S. containerized imports), from January 2016 to March 2025. While we rely on

data from the top 50 ports worldwide in the analysis below, the ports in Figure 3 account for

more than 30% of global containerized seaborne trade and, thus, summarize our main findings.

Our data indicate that the onset of the COVID-19 pandemic in March 2020 had limited

immediate effects. The situation changed in the fall of 2020, when congestion rates rose across

most major ports, as reflected in the deepening shades in Figure 3 after August 2020. The

intensification continued through 2021 and early 2022, with some ports experiencing historically

high congestion levels. For example, nearly 80% of inbound ships at the Port of Los Angeles were
12Nevertheless, Appendix H.3 also constructs an index of Average Congestion Time (ACT). Consistent with

Brancaccio et al. (2024), the ACT index measures the average number of hours a container ship waits in a port’s
anchorage before docking at a berth, weighted by the relative number of ship visits to each port. Using the ACT
index in the causality assessment yields results that are quantitatively similar to those obtained with our original
ACR index.
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unable to dock immediately upon arrival in late 2020.13

From late 2022 onward, congestion pressures gradually eased across most ports. By 2023,

chromatic intensity in the heatmap diminished sharply, indicating a normalization of shipping.

Some residual congestion persisted, however, in ports such as Shenzhen, Rotterdam, and Savan-

nah, where elevated rates continued into 2023. By early 2025, congestion levels had stabilized at

much lower levels than during the pandemic peak, though not uniformly across all ports.

Subsequently, we define the Average Congestion Rate (ACR) as the weighted average of con-

gestion rates across the top 50 container ports, where the weights correspond to the relative

number of ship visits to each port:

ACRt ≡
∑
p∈P

[
Delayedp,t +Undelayedp,t∑

p∈P
(
Delayedp,t +Undelayedp,t

) · Congestionp,t

]
,

with Congestionp,t defined in Equation (1).14
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Figure 4: ACR Index

Note. The ACR index is computed as the weighted average of congestion rates across the top 50 container ports
worldwide (as of June 15, 2022), using the relative number of ship visits as weights. The index is expressed in
percentage terms and has been seasonally adjusted.

Figure 4 plots the ACR index. Before 2018, the index declined steadily and then stabilized
13This estimate aligns with official statistics. According to the Pacific Merchant Shipping Association, the share

of container ships in Los Angeles waiting five or more days for unloading rose from 10% in August to 26% in
December 2020.

14We use the relative number of ship visits to each port as weights in the ACR index, as they capture each
port’s importance in the global supply chain. For example, a slight increase in the congestion rate at the Port of
Hong Kong may signal a larger disruption than a large increase at the Port of Manila.
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around 28%, reaching a minimum of 25% from early 2019 to mid-2020. This pattern reflects the

substantial investments made worldwide in earlier years to expand port capacity and strengthen

supply chain resilience. Conditions shifted sharply thereafter: the index climbed throughout

2020 and 2021, peaking at 37% in June 2021, a clear sign of the severe strains the COVID-19

pandemic imposed on global supply chains. At that point, nearly one in every three container

ships entering one of the top 50 ports encountered delays due to congestion. Although the index

stayed elevated until mid-2022, it began to fall later that year and returned to the sample median

(30%) by mid-2023. By then, port congestion had largely normalized, and global supply chains

were operating more smoothly, even if levels remained slightly above the pre-COVID average.

This period of relative stabilization, however, proved short-lived. Geopolitical disruptions

to global shipping routes in 2024 pushed the index back above 32%. Attacks on vessels in the

Red Sea and drought-related restrictions on Panama Canal transits forced widespread rerouting,

caused schedule disruptions, and led to bunching at alternative ports (Bai et al., 2025a). By

early 2025, however, the index dropped sharply below 25%. This decline reflects the gradual

normalization of shipping routes, the easing of Panama Canal restrictions, and softer global

trade volumes following newly imposed U.S. tariffs that reduced import demand. In sum, the

ACR index traces the sharp swings in global port congestion —from its COVID-19 peak, to post-

pandemic normalization, to renewed geopolitical pressures in 2024, and finally the marked easing

in early 2025.

2.5. Discussion

Several aspects of our index merit further discussion, as they underpin the modeling assump-

tions in Section 3, the identification restrictions in Section 4, and the sharper identification they

yield in causality analyses of supply chain disruptions relative to alternative indices.

Short-run rigidities in containerized shipping. Containerized shipping entails two short-

run frictions: an economic margin and an operational margin. On the economic side, service

contracts fix invoiced freight rates for at least a one-month horizon, so the maximum transporta-

tion cost a match can bear without separation —the “reservation” transportation cost— remains

rigid in the short run when profitability does not change. On the operational side, fixed rota-

tions, berth windows, and alliance commitments make schedules and arrivals similarly rigid, as

decisions by shipping companies are typically revised only every three to six months (Stopford,
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2008; Meng et al., 2014).15

Supply chain disturbances (e.g., mobility restrictions, quarantines, and related disruptions

discussed in Subsection 2.1) reduce effective service rates at ports on impact, lengthening queues

and raising delays while leaving both contracts and schedules unchanged within a month. These

delays increase transportation costs through congestion surcharges and premiums on expedited

services, while the reservation transportation cost remains rigid because trade volumes and prof-

itability do not adjust immediately.16 In the model developed in the next section, we represent

a supply chain disturbance as an unexpected, broad increase in transportation costs, with the

reservation threshold remaining rigid in the short run.

By contrast, demand or capacity shocks operate primarily through quantities and profitability

within a month. They alter firms’ willingness to pay and thus shift the reservation transportation

cost, even though invoiced rates remain on contract. However, because schedules and arrivals are

still fixed over this horizon, these shocks do not change congestion on impact. This distinction

yields two short-run implications that we exploit empirically and theoretically: (i) under supply

chain disturbances, the ACR rises and realized schedules lengthen (through queues and bunching)

while the contractual price cap continues to bind the reservation threshold, whereas (ii) under

demand or capacity shocks, the ACR and realized schedules show no immediate response even as

willingness to pay and the reservation threshold adjust.

In Section 4, we leverage the distinct timing of the ACR response, together with restrictions

on macroeconomic aggregates, to isolate operational supply chain disturbances from demand

or capacity shocks. We validate the short-run operational rigidity of containerized shipping by

showing (i) no statistically significant on-impact response of the ACR index to a Bauer–Swanson

monetary policy shock (Bauer and Swanson, 2023) —reflecting demand changes— using local

projections (LPs) in Appendix B, and (ii) no statistical correlation between port congestion and

oil price movements —reflecting capacity changes— in Appendix A, despite the fact that higher

oil prices directly incentivize slower steaming.

Alternative indices. Subsection 4.4 compares our ACR index with other popular measures
15The same operational rigidity is evident in the industry’s “hurry up and wait” practice: even with forewarn-

ings of downstream delays, vessels rarely alter routes or speeds on short notice because berth windows, feeder
connections, alliance slot commitments, and contractual terms jointly constrain flexibility. See Appendix A for
details.

16Shipping prices are also highly sensitive to physical congestion due to the small number of container ships:
even a few delays drive up freight rates.

15



of global supply chain conditions, including the Harper Peterson Time Charter Rates Index

(HARPEX), the New York Fed’s Global Supply Chain Pressure Index (GSCPI), and the Supply

Disruptions Index (SDI) from Smirnyagin and Tsyvinski (2022) and Liu et al. (2024).17 Relative

to these alternatives, supply chain shocks identified with the ACR produce impulse responses of

the U.S. PCE price index that are larger in magnitude, more precisely estimated, and in line

with theoretical predictions. Moreover, variance decompositions indicate that when the ACR is

used, supply chain shocks explain a larger share of the forecast error variance of prices at medium

horizons, whereas demand shocks dominate under alternative proxies. Together, this evidence

indicates that the ACR index provides a more accurate proxy for global supply chain conditions.

Appendix H.4 also develops a targeted ACR index for major ports along the Trans-Pacific

route, the key shipping lane between East Asia (mainly China) and the U.S. Using this index

yields causality results nearly identical to those obtained with the global ACR index.

Finally, integrating high-frequency AIS data with our spatial clustering algorithm allows us

to construct congestion indices at frequencies higher than the monthly level. Appendix C.3

reconstructs the ACR and ACT indices using weekly AIS data and shows that although volatility

increases, the weekly series exhibit patterns consistent with their monthly counterparts.

3. A Model of the Global Supply Chain
Next, we develop a theoretical model of the global supply chain to establish the identifica-

tion restrictions for our causality analysis. Our economy consists of producers, retailers, and

households. Producers manufacture goods using a fixed-factor endowment and incur transporta-

tion costs when selling goods to retailers. Retailers purchase goods from producers but face

search frictions that make it difficult to meet with them. Retailers then sell goods to households.

Households own both producers and retailers, accruing all profits generated through these trades.

We separate producers and retailers by location to capture the need for firms to trade within a

global supply chain, where search frictions make such trade non-trivial. In addition, transporta-

tion costs and search frictions limit the allocative role of prices in clearing the quantity of goods

sold from producers to retailers. Finally, the model is not designed to study port congestion per

se, but rather supply chain disturbances, of which rising port congestion is a manifestation.18

17Appendix H details this comparison and shows that differences across indices significantly affect how supply
chain disruptions and their macroeconomic consequences are interpreted.

18Appendix D discusses the evidence of search frictions in the goods market and the relevance of transportation
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Our model allows us to analyze three shocks that influence the ACR index: an aggregate

demand shock (e.g., changes in household money holdings driven by monetary policy or shifts in

preferences for consumption), a productive capacity shock (e.g., changes in producers’ fixed-factor

endowment), and a supply chain shock (e.g., a broad increase in transportation costs). It delivers

distinct predictions for how spare productive capacity and product market tightness co-move with

prices and consumption in response to each shock, thereby enabling the unique identification of

the causal effects of supply chain disruptions.

3.1. Producers and Retailers

There is an exogenous unit mass of producers and an endogenous measure of retailers. When

matched with a retailer, a producer manufactures y = l final goods using its fixed-factor endow-

ment.19 Producers sell goods to retailers in a frictional product market that prevents the sale

of full capacity. Each unmatched retailer (identified by the subscript U) makes one visit per

period to an unmatched producer, with each visit entailing a fixed cost per unit of the final good

ρ > 0. When a producer and a retailer meet and trade (as discussed below), the retailer resells

the purchased good to the household at a price p.

Matching process. In each period, the number of meetings (M) between unmatched pro-

ducers, xU , and retailers, iU , is governed by a constant-returns-to-scale matching function:

M = (x−ξ
U + i−ξ

U )−
1
ξ ,

where ξ is the elasticity of substitution between xU and iU . We assume ξ > 0 such that M ≤

min {xU , iU}, which is a necessary property of a matching function.

Product market tightness θ ≡ iU/xU is the ratio between the number of visits by unmatched

retailers and the number of unmatched producers. Individual firms take product market tightness

as given. The probability that a producer meets a retailer is:

f(θ) =
M

xU

= (1 + θ−ξ)−
1
ξ , (2)

costs for the severance of commercial trade.
19We abstract from modeling producers’ endogenous production decisions, as this would require a multi-country,

multi-sector production network model to study the transmission of sectoral supply disruptions across countries
(di Giovanni et al., 2022, 2023).
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and the probability that a retailer meets a producer is

q(θ) =
M

iU
= (1 + θξ)−

1
ξ .

The function f(θ) satisfies f(0) = 0, limθ→+∞ f(θ) = 1, and fθ(θ) > 0, while q(θ) satisfies

q(0) = 1, limθ→+∞ q(θ) = 0, and qθ(θ) < 0. Three additional properties that will be useful later

are f(θ)/q(θ) = θ, fθ(θ) = q(θ)1+ξ, and f(θ)ξ + q(θ)ξ = 1.

Transportation cost. Producers pay a per-unit idiosyncratic transportation cost to ship

their goods to retailers.20 In each period, producers draw a per-unit transportation cost z from

the log-normal distribution G(z) with scale parameter γ and shape parameter σ, that is, G(z) ≡

Φ [(ln z − γ)/σ], where Φ(·) is the standard normal c.d.f.21 As discussed later, there exists a

reservation transportation cost z̄ above which matches are unprofitable and severed (z > z̄),

while they continue otherwise (z ≤ z̄).

Value functions. At the beginning of each period, matched producers sell the manufactured

goods to retailers and pay the transportation costs. Matched retailers sell their purchased goods

to households and pay the wholesale price of goods to producers. Unmatched producers and

retailers search to form a match with each other. At the beginning of the next period, each

producer draws a new transportation cost, and the match continues if the new cost is sufficiently

low to generate a positive surplus from trade.

Four value functions characterize the returns associated with the different statuses of producers

and retailers. The value for a matched producer (denoted by the subscript M), XM(z), is

XM(z) = (r(z)− z) l + βEz′ [max (XM(z′), XU)] , (3)

where r(z) is the endogenous wholesale price per unit of the final good, β is the discount fac-

tor, and z′ is the transportation cost drawn at the beginning of the next period. Equation (3)
20Our results hold if the transportation cost is borne by retailers instead because the match separation condition

(11) is invariant to this modeling choice. For simplicity, we also assume that the household receives this shipping
cost as payment for its work in moving the goods.

21The assumption that transportation costs follow a log-normal distribution aligns with Kasahara and Lapham
(2013). A random distribution captures heterogeneity of transportation costs and generates an extensive margin of
trade: only matches with z ≤ z̄ are viable, while those with z > z̄ are severed. This feature would be absent under
a fixed cost, where all matches survive, and comparative statics would operate only through intensive adjustments
(i.e., changes in quantities within existing matches rather than changes in the fraction of surviving matches). The
stochastic specification also provides a tractable way to study shocks to the cost distribution (through the scale
parameter γ). Alternatively, one could model a full transportation sector where interactions among producers,
shipping companies, and retailers determine costs, as in Brancaccio et al. (2020), Bai and Li (2022), Dunn and
Leibovici (2023), and Bai et al. (2025a), but we keep the current setting for tractability.
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shows that the present value of being a matched producer consists of the current profit mar-

gin, (r(z)− z) l, plus a continuation value that depends on whether the producer separates from

the match. Separation is determined by the next period’s transportation cost z′, with the max

operator selecting the optimal continuation or separation decision.

The value for an unmatched producer, XU , is

XU = βf(θ)Ez′ [max (XM(z′), XU)] + β (1− f(θ))XU . (4)

With probability f(θ), an unmatched producer meets a retailer and then decides whether to

separate if the new transportation cost makes the match unprofitable. With probability 1−f(θ),

the producer fails to meet a retailer and remains unmatched at the start of the next period.

The value for a matched retailer, IM(z), is

IM(z) = (p− r(z)) l + βEz′ [max (IM(z′), IU)] . (5)

The retailer earns the resale price p from households for each unit of the good and pays the

wholesale price r(z) to the producer. As before, the max operator selects the optimal continuation

or separation decision, conditional on z′.

If the realized transportation cost makes the match unprofitable, the retailer separates and

begins the next period with value:

IU = −ρl + βq(θ)Ez′ [max (IM(z′), IU)] + β (1− q(θ)) IU , (6)

where ρ is the fixed cost per unit of the final good that the retailer incurs with each visit to a

producer. Free entry into the product market drives the value for an unmatched retailer to zero;

that is, IU = 0.

Nash bargaining. The total surplus from matching is equal to:

S(z) = XM(z)−XU + IM(z)− IU , (7)

and it is split through Nash bargaining. The producer receives a constant share η of the total

surplus, while the retailer receives the remaining share 1− η, implying:

η (IM(z)− IU) = (1− η) (XM(z)−XU) . (8)
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Given the Nash bargaining rule (8), the value functions (3), (4), (5), and the free-entry

condition IU = 0, the wholesale price that splits the surplus is

r(z) = η(p+ ρθ) + (1− η)z. (9)

The wholesale price is a weighted average of the retail price (adjusted for the search cost ρθ) and

the transportation cost z, with the weights determined by bargaining power. When producer

bargaining power is low (η → 0), the wholesale price approaches the transportation cost z.

In addition, higher tightness, which worsens retailers’ bargaining positions by lowering their

matching probability, increases the wholesale prices they pay to producers.

Match separation. Since the total value for a matched producer and a matched retailer,

that is, XM(z) + IM(z), strictly decreases with the transportation cost z, there exists a cut-off

transportation cost z̄ above which matches become unprofitable and are therefore severed. This

cut-off makes the total surplus in Equation (7) equal to zero:

S(z̄) = 0. (10)

Substituting the value functions (3), (4), (5) and the free-entry condition IU = 0 into Equation

(10) yields the match separation condition, expressed as a function of p, z̄, and θ:

F(p, z̄, θ) = (p− z̄)l + (1− ηf(θ)) βEz′S(z
′) = 0, (11)

where Ez′S(z
′) =

∫ z̄

0
S(z′) dG(z′) is the expected surplus.

Match creation. Using the value function for an unmatched retailer in Equation (6), to-

gether with the free-entry condition IU = 0, the match creation condition can be written as a

function of z̄ and θ:

H(z̄, θ) =
ρl

q(θ)
− (1− η)βEz′S(z

′) = 0. (12)

Aggregate supply. Aggregate supply in the economy is the quantity of goods traded by

retailers and producers that survive separation for a given productive capacity, equal to the

producers’ total factor endowment l. To determine this supply, we consider the law of motion for

the number of matched producers at the beginning of the next period, x′
M :

x′
M = G(z̄)xM + f(θ)G(z̄)xU ,
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and for the number of unmatched producers:

x′
U = [1− f(θ) + f(θ) (1−G(z̄))] xU + (1−G(z̄)) xM .

Using the identity xM + xU = 1, the law of motion for matched producers can be rewritten as:

x′
M = f(θ)G(z̄) + (G(z̄)− f(θ)G(z̄)) xM . (13)

Aggregate supply is, thus, the quantity of goods provided by matched producers for a given

productive capacity:

cs(z̄, θ) = xM(z̄, θ)l. (14)

3.2. The Representative Household

The representative household derives utility from consuming goods and holding real money

balances:

u

(
c,
m

p

)
=

χ

1 + χ
c

ε−1
ε +

1

1 + χ

(
m

p

) ε−1
ε

,

where c denotes consumption, m nominal money balances, p the price level, χ > 0 the relative

preference for consumption over money, and ε > 1 the elasticity of substitution between consump-

tion and real money balances. Following Michaillat and Saez (2015), we adopt this specification

to ensure that aggregate demand drives fluctuations in macroeconomic aggregates.

The household owns both producers and retailers, receiving lump-sum rebates from their

profits as well as compensation for transportation costs incurred in moving goods. Taking prices

as given, the household chooses consumption and nominal money balances to maximize utility,

subject to the budget constraint:

pc+m ≤ µ+ pcs(z̄, θ)− ρl iU −
∫ z̄

0

z′cs(z̄, θ)dG(z′)︸ ︷︷ ︸
Profits of Producers & Retailers

+

∫ z̄

0

z′cs(z̄, θ)dG(z′),︸ ︷︷ ︸
Transportation Costs

where µ > 0 is the household’s endowment of nominal money, cs(z̄, θ) is the aggregate supply as

defined in Equation (14), and ρl iU represents the aggregate search outlay borne by unmatched

retailers. Solving the household’s optimization problem yields the optimality condition:

χ

1 + χ
c−

1
ε =

1

1 + χ

(
m

p

)− 1
ε

. (15)
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Aggregate demand. Aggregate demand is the level of consumption that maximizes utility at

a given price when the money market clears, a condition that holds both in and out of equilibrium.

Substituting m with µ in Equation (15) and rearranging yields:

cd(p) = χεµ

p
, (16)

which is strictly decreasing and convex in p on (0,+∞). Because a higher price reduces real

money balances, aggregate demand declines with the price.

3.3. Equilibrium and Steady State

We are now ready to define a period equilibrium (i.e., an equilibrium for a given period) and

a steady state.22

Definition 1. A (period) equilibrium for this economy is a price p, a reservation transportation

cost z̄, and a product market tightness θ such that the match separation condition (11) and the

match creation condition (12) hold simultaneously:

F(p, z̄, θ) = H(z̄, θ) = 0,

and the retailer–household market clears:

cs(z̄, θ) = cd(p),

where aggregate supply cs(z̄, θ) evolves according to the law of motion for matched producers in

Equation (13).

Rather than analyzing the full transition dynamics of the equilibrium after a shock (this

analysis is relegated to Appendix E.5), we focus on the steady state. As shown in Section 3.4,

comparative statics suffice to derive the identification restrictions for each shock of interest in our

causality analysis.

Setting x′
M = xM in Equation (13) gives the steady-state number of matched producers:

xss
M(z̄, θ) =

f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
.

Steady-state aggregate supply is the quantity of goods provided by the steady-state number of
22We define a period equilibrium rather than a full sequential equilibrium to simplify notation. It can be viewed

as the prices and allocation at time t given the history of past shocks.
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matched producers, given productive capacity l:

csss (z̄, θ) = xss
M(z̄, θ)l =

f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
l. (17)

The steady state is defined in Definition 2, and its unique existence is established in Propo-

sition 1.

Definition 2. The steady state of this economy is a price p∗, a reservation transportation cost z̄∗,

and a product market tightness θ∗ that jointly satisfy the match separation condition F(p, z̄, θ) = 0,

the match creation condition H(z̄, θ) = 0, and the retailer–household market clearing condition

csss (z̄, θ) = cd(p), that is:
f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
l = χεµ

p
. (18)

Proposition 1. A unique steady state (p∗, z̄∗, θ∗) exists in which the match separation condi-

tion, the match creation condition, and the retailer–household market clearing condition all hold

simultaneously.

Proof. See Appendix E.1. ■

Having established the existence and uniqueness of the steady state, we now define the steady-

state aggregate supply schedule p 7→ csss (p) implied by the partial equilibrium in the producer–

retailer market —i.e., when the match separation and creation conditions jointly hold, F(z̄, θ; p) =

H(z̄, θ) = 0 for a given p— and examine its properties in the following proposition.

Proposition 2. For any z̄ ≥ z̄min, where z̄min satisfies:∫ z̄min

0

G(z′) dz′ =
ρ

(1− η)β
, (19)

the steady-state aggregate supply schedule p 7→ csss (p), arising from the partial equilibrium in the

producer–retailer market, has the following properties:

1. The mapping

z̄ 7→ p(z̄) ≡ z̄ − (1− ηf(z̄)) β

∫ z̄

0

G(z′) dz′,

is continuously differentiable and strictly increasing, where:

f(z̄) =
(
1− q(z̄)ξ

) 1
ξ , q(z̄) =

ρ

(1− η)β
∫ z̄

0
G(z′) dz′

.
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Consequently, there exists a unique, continuously differentiable steady-state aggregate supply

schedule p 7→ csss (p), represented by the parametric curve (p(z̄), csss (z̄)) on z̄ ∈ [z̄min,+∞);

2. limp→pmin
csss (p) = 0 and limp→+∞ csss (p) = l, where pmin is defined as:

pmin ≡ z̄min − β

∫ z̄min

0

G(z′) dz′ = z̄min −
ρ

1− η
; (20)

3. csss (p) is strictly increasing in p on [pmin,+∞), and converges to a constant as p→ +∞;

4. csss (p) is locally convex near pmin if ξ ∈ (0, 1), linear if ξ ≥ 1, and strictly concave for

sufficiently large p.

Proof. See Appendix E.2. ■

Proposition 2 shows that aggregate supply rises with price through two reinforcing mech-

anisms. First, a higher price raises the surplus from producer–retailer matches, strengthening

retailers’ incentives to search and thereby increasing product market tightness and the proba-

bility of successful matches. As more matches are formed, aggregate supply expands. Second,

a higher price raises the reservation transportation cost, allowing matches that would otherwise

have been abandoned to continue, further boosting supply. Although search frictions and trans-

portation costs constrain the flow of goods and generate spare capacity, the model preserves the

standard positive relationship between price and aggregate supply.

Panel 5a in Figure 5 plots aggregate demand, aggregate supply, and the steady state in the

downstream retailer–household market, identified by their intersection in the (c, p)-plane. The

steady-state aggregate supply schedule csss (blue line) is upward-sloping, as in standard models.

Spare capacity —measured as the difference between productive capacity and actual output,

l − csss — captures the combined effects of search frictions and transportation costs.

Panel 5b in Figure 5 complements this by depicting the match separation condition (11), the

match creation condition (12), and the steady state in the upstream producer–retailer market,

identified by their intersection in the (z̄, θ)-plane.23

23For reference, Appendix E.3 derives the slope and curvature of the match separation and creation schedules.
Under mild conditions, the match separation condition F(z̄, θ; p) = 0 generates a strictly decreasing and strictly
convex relationship between θ and z̄, whereas the match creation condition H(z̄, θ) = 0 yields a strictly increasing
and strictly convex relationship.
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Figure 5: Graphical Representation of the Steady State

Notes. In Panel 5a, cd(p), csss (p), and l represent the aggregate demand schedule, the steady-state aggregate supply
schedule, and productive capacity, respectively. The threshold pmin is defined in Equation (20). Panel 5b shows
the partial equilibrium in the producer–retailer market at the steady-state price p∗. The conditions F(z̄, θ; p∗) = 0
and H(z̄, θ) = 0 represent match separation and match creation, respectively. The threshold z̄min solves Equation
(19). Finally, c∗, p∗, z̄∗, and θ∗ denote the steady-state levels of consumption, price, reservation transportation
cost, and product market tightness, respectively.

3.4. Comparative Statics

We use comparative statics to examine how the aggregates in our model respond to unantic-

ipated adverse shocks to aggregate demand, productive capacity, and the supply chain when the

economy is at the steady state. These responses provide the identification restrictions for study-

ing the causal effects of supply chain disturbances in the SVAR model in the next section. To

address the indeterminacy that arises under a supply chain shock, we assume that the reservation

transportation cost is rigid in the short run (fixed by freight contracts), an assumption previewed

in Section 2.5 and justified in greater detail later in this section. Appendix E.5 complements the

analysis by presenting the full transition dynamics of the model after each shock and showing

that they are numerically consistent with the comparative statics discussed below.

An adverse aggregate demand shock arises from either a reduction in the nominal money

supply, µ, or a decline in households’ preference for consumption, χ. An adverse productive

capacity shock corresponds to a negative disturbance to producers’ fixed-factor endowment, l. An

adverse supply chain shock is modeled as a general increase in transportation costs, represented
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by a rise in γ, the scale parameter of the log-normal distribution of transportation costs G(·).

Table 1 summarizes the signs of the responses of macroeconomic aggregates to each shock of

interest.24 Figure 6 illustrates the comparative statics of aggregate demand, productive capac-

ity, and supply chain shocks in the downstream retailer–household market (left panels) and the

upstream producer–retailer market (right panels).

Table 1: Comparative Statics for Adverse Shocks to Aggregate Demand, Productive Capacity,
and the Supply Chain

Effects On:

Adverse Shock To:

Consumption Price Reservation Product Wholesale Spare
(or Output) Transportation Market Price Capacity

Cost Tightness
c p z̄ θ r l − c

Aggregate Demand (µ ↓ or χ ↓) − − − − − +

Productive Capacity (l ↓) − + + + + −

Assuming sticky z̄ in short-run,
Supply Chain (γ ↑) − + 0 − ± +

Notes. “0” denotes unchanged, “+” an increase, “−” a decrease, and “±” an undetermined effect. See Appendix
E.4 for the derivations of the comparative statics for each shock of interest.

Aggregate demand shock. Panel 6a in Figure 6 illustrates the comparative statics of a

decline in aggregate demand, where the demand curve shifts inward from cd to c′d as households

either hold less money or choose to reduce their consumption of goods.25 The resulting adjustment

is a decline in the price required to clear the downstream retailer–household market.

As prices fall and retailers’ profits from household sales decline, retailers visit fewer produc-

ers, thereby reducing product market tightness. At the same time, the lower price reduces the

reservation transportation cost, since trading partners can only sustain lower costs for trades to

remain profitable. The joint decline in price and tightness also lowers the wholesale price: the

sale of goods becomes less profitable, and the likelihood of retailers establishing a match with

producers increases. Consequently, both reduced product market tightness and lower reservation

transportation costs induce producers to sell a smaller share of their productive capacity in the

upstream producer–retailer market. Downstream consumption (equivalently, output) falls, and
24Comparable identification restrictions for prices and output can also be derived from a New Keynesian model,

where nominal rigidities —rather than search frictions— constrain price adjustment.
25If a government were present, the same reasoning would apply to fiscal shocks. Hence, our demand shocks

capture fiscal and monetary policy shocks, as well as preference shocks.

26



0
c

pc′d cd csss

pmin

c∗

p∗

c′

p′

l 0
z̄

θ

F = 0
F′ = 0

H = 0

z̄min z̄∗

θ∗

z̄′

θ′

(a) An Adverse Shock to Aggregate Demand (µ ↓ or χ ↓)

0
c

p cd cssscss
′

s

pmin

c∗

p∗

c′

p′

ll′ 0
z̄

θ

F = 0

F′ = 0

H = 0

z̄min z̄∗

θ∗

z̄′

θ′

(b) An Adverse Shock to Productive Capacity (l ↓)

0
c

p cd cssscss
′

s

pmin

p′min

c∗

p∗

c′

p′

l 0
z̄

θ

F = 0
F′ = 0

H = 0
H′ = 0

z̄min z̄′minz̄
∗(= z̄′)

θ∗

θ′

(c) An Adverse Shock to the Supply Chain (γ ↑)
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spare productive capacity rises.

Productive capacity shock. Panel 6b in Figure 6 shows the effects of a negative supply

shock that reduces productive capacity from l to l′. This shock rotates the aggregate supply curve

inward while leaving pmin unchanged, since the distribution of transportation costs —and thus

the minimum reservation transportation cost z̄min and the price required for profitable trades—

remains unaffected. To clear the retailer–household market, the price must rise.

The higher price attracts more retailers, increasing product market tightness, and simulta-

neously raises the reservation transportation cost, allowing matches that would otherwise have

been forgone to proceed. However, neither the tighter producer–retailer market nor the higher

reservation transportation cost is sufficient to offset the direct loss of productive capacity, so

aggregate supply falls and consumption declines. At the same time, the joint increase in prices

and product market tightness pushes up wholesale prices, while spare capacity contracts.

Supply chain shock. Panel 6c in Figure 6 shows the comparative statics of an increase in the

scale parameter of the log-normal distribution of transportation costs, interpreted as an adverse

supply chain shock. A higher γ shifts the transportation-cost distribution to the right, increasing

the likelihood that producers draw a transportation cost above the reservation threshold. On

the one hand, this lowers the expected total surplus from potential producer–retailer matches,

dampening retailers’ incentives to search and leading to a less tight market; graphically, the match

creation schedule shifts down from H = 0 to H′ = 0. On the other hand, the lower expected

surplus also discourages producers from engaging in trade, further slackening the producer–retailer

market; graphically, the match separation schedule shifts down from F = 0 to F′ = 0.

Consequently, the partial equilibrium in the upstream producer–retailer market features lower

product market tightness and an ex ante ambiguous effect on the reservation transportation cost.

Because the response of this reservation cost is undetermined, Equation (17) implies that the

resulting impact on aggregate supply —and therefore on the steady-state price in the downstream

retailer-household market— remains unclear.

To resolve this analytical indeterminacy, we rely on sectoral evidence of short-run rigidity in

containerized shipping, discussed in Section 2.5, and assume that the reservation transportation

cost is fixed by freight contracts in the short run. Short-run rigidities in containerized shipping are

critical for the on-impact effects of supply chain shocks, since such disturbances operate directly

through transportation costs that are typically governed by contractual arrangements, while trade
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volumes and profitability do not adjust immediately. By contrast, demand and capacity shocks

primarily affect trade volumes or productive potential, which influence firms’ willingness to pay

for transportation and thereby allow reservation costs to adjust more flexibly.26

With upstream production slack and a sluggish reservation transportation cost, the fraction

of goods shipped from producers falls, reducing the supply of goods available in the downstream

retailer–household market and pushing up the market-clearing price. Thus, prices rise while

consumption falls. Graphically, the aggregate supply curve shifts inward from csss to css
′

s , ac-

companied by an increase in pmin (the price threshold needed to “turn on” supply). Since the

economy’s productive capacity is unchanged while the number of successful trades declines, spare

capacity rises.27

Finally, the higher downstream retail price feeds back into the upstream production market by

increasing the profitability of trades and thereby tightening the market, given that the reservation

transportation cost cannot adjust to absorb the additional pressure of the higher price on match

separation. To prevent the increase in prices from being strong enough to overturn the immediate

slackening in the upstream market caused by the supply chain disturbance (graphically repre-

sented by an upward shift of the match separation schedule in Panel 6c), we impose the following

bound on the derivative of product market tightness θ with respect to the cost parameter γ:

θγ ∈
[
−Fγ

Fθ

, 0

)
,

where Fγ and Fθ denote the partial derivatives of the match separation condition F(p, z̄, θ; γ) = 0

with respect to γ and θ, respectively. Appendix E.4 provides a detailed derivation of this boundary

condition. In words, it limits the extent of upstream slack so that the price-feedback effect on

match separation does not outweigh the direct effect of the supply chain shock, ensuring the

coexistence of a fall in upstream market tightness and a rise in the downstream retail price.

4. The Causal Effects of Supply Chain Disruptions
We now turn to the causal effects of supply chain disruptions using an SVAR model that in-

corporates our ACR index and imposes restrictions on the responses of macroeconomic aggregates
26Appendix E.5 shows that, even without imposing rigidity, the dynamic responses of all variables —except the

reservation transportation cost itself— remain consistent with their analytical counterparts.
27From Equation (9), as prices increase and product market tightness falls in response to a supply chain shock,

the effect on the wholesale price is indeterminate.
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to three distinct shocks, in line with the theoretical predictions in Table 1.28

4.1. Empirical Framework

Our empirical specification of the SVAR model follows Rubio-Ramírez et al. (2010) and Arias

et al. (2018):

y′
tA0 =

L∑
l=1

y′
t−lAl + ω′

tC + ϵ′t, 1 ≤ t ≤ T, (21)

where yt is an n × 1 vector of endogenous variables, ωt = [1, t]′ is a 2 × 1 vector containing a

constant and a linear trend, and ϵt is an n× 1 vector of structural shocks. The matrices Al are

n× n structural parameter matrices for 0 ≤ l ≤ L, with A0 assumed invertible, and C is a 2× n

parameter matrix. The lag length is denoted by L, and T is the sample size. Conditional on past

information and the initial conditions y0, . . . ,y1−L, the vector ϵt is Gaussian with mean zero and

variance–covariance matrix In, the n× n identity matrix.

Equation (21) can be written more compactly as:

y′
tA0 = x′

tA+ + ϵ′t, 1 ≤ t ≤ T, (22)

where A′
+ = [A′

1 . . . A′
L C ′] and x′

t = [y′
t−1 . . . y′

t−L ω′
t]. The dimension of A+ is m× n, where

m = nL+ 2. The reduced-form representation implied by Equation (22) is:

y′
t = x′

tB + u′
t, 1 ≤ t ≤ T,

where B = A+A
−1
0 ,u′

t = ϵ′tA
−1
0 , and E(utu

′
t) = Σ = (A0A

′
0)

−1.

Motivated by the variables in our theoretical model, we estimate the baseline SVAR using

monthly U.S. data on real personal consumption expenditures (PCE), the PCE chain-type price

index, and the import price index for all commodities. We also include two empirical mea-

sures constructed from Equations (23) and (24) —spare productive capacity and product market

tightness— together with our ACR index. The sample spans January 2016 to March 2025, and

all series are seasonally adjusted. Appendix F provides a detailed overview of the external data

and their sources.
28We could also pursue a full structural estimation of our model. However, this would require numerous ancillary

assumptions (e.g., parametric forms, shock persistence) that may be unreliable given current knowledge of global
supply chain models. Although we rely on some of these assumptions for our identification restrictions, we
are cautiously optimistic that these restrictions hold for more general specifications, even if demonstrable only
numerically. Hence, the added flexibility of SVARs appears most suitable here.
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As mentioned above, we first construct an empirical measure of spare productive capacity

(SpareCapacityRatet) by computing the import-weighted average spare capacity rate of the top

five U.S. trading partners (Mexico, Canada, China, Germany, and Japan), which together account

for more than half of U.S. goods imports.29 The weights are based on U.S. goods imports from

each country in 2016. Formally,

SpareCapacityRatet =
∑
i∈C

[
Importi,2016∑
i∈C Importi,2016

·
(
1− CapacityUtilizationi,t

)]
, (23)

where C ≡ {Mexico, Canada, China, Germany, Japan}, Importi,2016 denotes U.S. goods imports

(customs basis) from country i in 2016, and CapacityUtilizationi,t is the capacity utilization rate

for country i in month t.

Next, we construct an empirical measure of product market tightness (Tightnesst). Following

the definition θ ≡ iU/xU , we proxy the number of unmatched retailers (iU) with total U.S. man-

ufacturers’ new orders and the number of unmatched producers (xU) with the import-weighted

average spare capacity of the specified U.S. trading partners. Specifically,

Tightnesst =
ManufactureNewOrdert
SpareCapacityDollart

. (24)

The time series for U.S. manufacturers’ new orders (ManufactureNewOrdert) is from the Federal

Reserve Economic Data (FRED). We construct the U.S. dollar value of the import-weighted

average spare capacity (SpareCapacityDollart) as follows:

SpareCapacityDollart =
∑
i∈C

[
Importi,2016∑
i∈C Importi,2016

·
(

IPi,t

CapacityUtilizationi,t

− IPi,t

)]
, (25)

where IPi,t denotes total industrial production of country i in month t, measured in millions of

constant 2005 U.S. dollars. Finally, we use the import price as a proxy for the wholesale price to

capture U.S. manufacturers’ and retailers’ international sourcing strategies, particularly during

the COVID-19 pandemic.

Real PCE, the PCE price index, product market tightness, and the import price index enter

the SVAR in log points, while spare capacity and the ACR index enter in percentages. In the

baseline specification, we set the lag length to two, although we check that the results are robust

to longer lags.
29See https://wits.worldbank.org/CountrySnapshot/en/USA (accessed October 15, 2024).
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We estimate the SVAR model using the Bayesian approach of Arias et al. (2018, 2019, 2023),

imposing restrictions only on the first period of impulse responses (horizon k = 1), thereby

following the minimal-structure strategy of Mumtaz and Zanetti (2012, 2015).30 As shown in

Appendix E.5, the dynamic version of our theoretical model converges quickly —within one

month— and monotonically from one steady state to another following each shock of interest.

This provides additional support for imposing identification restrictions only at horizon k = 1.

Our identification scheme applies the sign restrictions derived from our theoretical model,

summarized in Table 1, together with zero restrictions on the response of the ACR index to

adverse shocks to aggregate demand and productive capacity at k = 1:

Restriction 1. An adverse shock to aggregate demand leads to a negative response of real

PCE, the PCE price index, product market tightness, and the import price index, as well as a

positive response of spare capacity at k = 1. The ACR index does not respond at k = 1.

Restriction 2. An adverse shock to productive capacity leads to a negative response of

real PCE and spare capacity, and a positive response of the PCE price index, product market

tightness, and the import price index at k = 1. The ACR index does not respond at k = 1.

Restriction 3. An adverse shock to the supply chain leads to a negative response of real

PCE and product market tightness, and a positive response of the PCE price index, spare capacity,

and the ACR index at k = 1.

The zero restrictions on the ACR index in Restrictions 1 and 2 are motivated by the short-run

operational rigidity of the containerized shipping industry, as discussed in Section 2.5. Container

ships typically require several weeks’ notice to alter schedules and arrivals in response to demand

or capacity shocks. As a result, our ACR index should not react within the first month. This is a

conservative assumption, but, as shown later in this section, it enables sharper identification (i.e.,

narrower posterior probability bands) of the inflationary nature of supply chain shocks compared

with cases where such zero restrictions cannot be imposed.
30We adopt a Normal-Generalized-Normal (NGN) prior distribution over A0 and A+. The NGN prior is a

conjugate prior characterized by four parameters (ν,Φ,Ψ,Ω). Parameters ν and Φ govern the marginal prior
distribution of vec(A0), while Ψ and Ω govern the prior distribution of vec(A+) conditional on A0. We set ν = 0,
Φ = 0n×n, Ψ = 0m×n, and Ω−1 = 0m×m. This parameterization yields prior densities equivalent to those in
Uhlig (2005). Appendix G.1 further shows that our results are robust to the prior-robust approach of Giacomini
and Kitagawa (2021).
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By contrast, Restriction 3 allows the ACR index to respond to a supply chain disturbance at

k = 1, though it does not require such a response —we assess whether the corresponding posterior

probability bands exclude zero.

4.2. Baseline Results

Figures 7, 8, and 9 present the responses of the endogenous variables to adverse shocks to

aggregate demand, productive capacity, and the supply chain, respectively. The solid lines depict

the point-wise posterior median impulse response functions (IRFs), and the shaded areas show

the 68% and 90% posterior probability bands. Unless otherwise noted, all results are based on

ten million orthogonal reduced-form draws (B,Σ,Q), where Q is an n× n orthogonal matrix.31
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Figure 7: IRFs to an Adverse Shock to Aggregate Demand

Notes. The IRFs to a one-standard-deviation adverse aggregate demand shock are identified using the Bayesian
SVAR in Equation (21), with the ACR index included and the sign/zero restrictions at horizon k = 1 imposed as
specified in Restrictions 1-3.

We begin with the IRFs to an adverse aggregate demand shock, as shown in Figure 7. On

impact, real PCE declines by about 0.5%, while spare capacity increases by slightly less than

0.5 percentage point (p.p.). Both responses are precisely estimated, with posterior probability

bands excluding zero for roughly three months. Product market tightness exhibits a sharp drop

of more than 1%, and the lower bound of the 90% probability band suggests the effect could be
31Two representations (A0,A+) and (Ã0, Ã+) are observationally equivalent if and only if A0 = Ã0Q and

A+ = Ã+Q for some orthogonal Q (Arias et al., 2018).
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as large as 3–4%; tightness then gradually converges back toward zero within two years. The

PCE price index decreases modestly by about 0.1% on impact, remaining negative with high

posterior probability for more than a year before fading. The import price index displays a

similar deflationary pattern, initially falling by 0.2% and remaining significantly below baseline

through the first year. Lastly, the ACR index shows a short-lived negative response, but the wide

probability bands indicate high uncertainty, with much of the posterior mass centered near zero.
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Figure 8: IRFs to an Adverse Shock to Productive Capacity

Notes. The IRFs to a one-standard-deviation adverse productive capacity shock are identified using the Bayesian
SVAR in Equation (21), with the ACR index included and the sign/zero restrictions at horizon k = 1 imposed as
specified in Restrictions 1-3.

Figure 8 reports the IRFs to an adverse productive capacity shock. On impact, real PCE

dips slightly and spare capacity falls, while the PCE price, the import price, and product market

tightness rise, in line with Restriction 2. Tightness peaks on impact (around 2–3%), dips briefly,

and then rises again at roughly the three-month mark before gradually trending back toward

zero over the following year (an impulse pattern that, when interpreted through our theoretical

model, reflects a sudden contraction in productive capacity that raises tightness immediately,

recall Panel 6b in Figure 6, with slower price pass-through subsequently drawing additional

unmatched retailers and producing a secondary hump).

Import prices increase by about 0.5% within one quarter and remain above baseline for six

quarters, whereas PCE prices rise more modestly (peaking near 0.1%) and fade more slowly. Real
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PCE reverses quickly from its initial dip, rising by about 0.5-0.6% within the first quarter before

mean-reverting; by contrast, spare capacity troughs just above −0.5 p.p. around the one-quarter

mark and then recovers gradually toward zero. The ACR index is muted on impact, climbs to

roughly 0.1 p.p. at about three months, and then drifts below zero around the three-quarter

horizon, stabilizing near −0.1 p.p., suggesting complementarities between production constraints

and transportation frictions in the transmission of capacity shocks.

Months
0 6 12 18 24

%

-0.5

0

0.5
Real PCE: Aggregate

Months
0 6 12 18 24

%

0

0.2

0.4

0.6
PCE Price: Aggregate

Months
0 6 12 18 24

p
.p
.

-0.5

0

0.5

1
Spare Capacity

Posterior Medians
68% Posterior
Probability Bands
90% Posterior
Probability Bands

Months
0 6 12 18 24

%

-4

-2

0

2
Product Market Tightness

Months
0 6 12 18 24

%

-0.5

0

0.5

1
Import Price

Months
0 6 12 18 24

p
.p
.

-0.5

0

0.5

1
ACR

Figure 9: IRFs to an Adverse Shock to the Supply Chain

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are identified using the Bayesian SVAR
in Equation (21), with the ACR index included and the sign/zero restrictions at horizon k = 1 imposed as specified
in Restrictions 1-3.

Figure 9 shows the IRFs to an adverse supply chain shock. On impact, real PCE and product

market tightness fall, while spare capacity and the ACR index rise, in line with our identification

scheme. The PCE price response is sizable: the median increases steadily, peaking near 0.2%

around one year, and the lower bound of the 90% probability band stays above zero throughout,

indicating a robust inflationary effect.

Import prices, which are unrestricted in our specification, also rise persistently. The 68%

probability band remains above zero across most horizons, and the median peaks above 0.3% at

roughly the three-quarter mark. In the decomposition implied by Equation (9), this persistence

reflects that the direct price component outweighs the slackening (i.e., lower tightness) component,

yielding a net positive effect on import prices.
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The real-side variables display a distinct dynamic pattern. Real PCE dips modestly on impact

(about −0.2%), turns positive within 4-6 months (peaking near 0.2%), and then gradually mean-

reverts. Spare capacity rises initially (0.3 p.p.) but only briefly: it crosses below zero after a few

months and remains slightly negative for about a year before returning toward baseline. The ACR

index jumps on impact (0.5 p.p.) and then decays gradually, crossing zero around the 18-month

horizon, consistent with congestion easing as logistics adjust.
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Figure 10: Forecast Error Variance Decompositions (FEVDs) from the SVAR

Notes. Each line shows the posterior median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
identified Bayesian SVAR in Equation (21), with the ACR index included and the sign/zero restrictions imposed
at horizon k = 1 (Restrictions 1-3).

Figure 10 shows the share of forecast error variance explained by each of the three structural

shocks. Two broad patterns emerge. First, price variables are mainly driven by supply chain

disturbances at medium horizons. For the PCE price index, the supply chain share rises from

roughly 10% at short horizons to about 20-25% by 6-12 months and remains the largest contribu-

tor thereafter, while the contributions of demand and capacity shocks decline toward 5-10%. For

import prices, productive capacity shocks lead early (peaking near 25% around six months), but

the supply chain share increases steadily and eventually overtakes the capacity share, reaching

roughly 15% by two years; demand remains comparatively small throughout.

Second, real activity and product market tightness are driven primarily by productive capacity
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shocks. For real PCE, capacity shocks account for roughly 30% at 3-6 months and remain the

largest contributor even at two years, while the demand share is front-loaded —high on impact

but falling toward 10%— and the supply chain share rises gradually into the high single digits.

For spare capacity and product market tightness, capacity shocks again dominate (around 30-

35% at their peaks), with demand contributing mainly near impact and the supply chain share

remaining modest, though drifting upward over time.

As a validation check, the ACR is explained primarily by supply chain shocks —about 15-21%

across horizons— while demand and capacity shocks contribute little, especially within the first

six months. This aligns with the view that port congestion is largely insulated from short-run

fluctuations in demand and productive capacity, as discussed in Section 2.5.32
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Figure 11: Historical Decomposition (HD) of U.S. HoH Headline PCE Inflation

Notes. The solid line plots U.S. headline PCE inflation, measured as HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars plot the corresponding cumulative historical contributions
of aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The historical
decomposition is computed from the identified Bayesian SVAR in Equation (21), using first-differenced endogenous
variables, and we report posterior medians. Sign/zero restrictions are imposed at horizon k = 1 as specified in
Restrictions 1-3.

Figure 11 presents the key empirical result of our analysis: the cumulative historical con-

tributions of the three identified shocks to U.S. half-on-half (HoH) headline PCE inflation over

the period September 2016 to March 2025.33 The main findings from the decomposition can be
32Shares sum to less than 100% because only the three identified shocks are plotted, with the residual variance

attributed to unidentified shocks.
33Historical contributions are accumulated beginning in September 2016, reflecting two lags in the VAR and

the use of first-differenced variables to compute HoH growth rates. For clarity, the figure excludes contributions
from lag terms, exogenous variables (the constant and the linear trend), and unidentified shocks; consequently,
the stacked bars for the identified shocks do not exactly sum to the black line (U.S. HoH headline PCE inflation).
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summarized in five points.

1. Before the pandemic (2016-2019), contributions from all three shocks were modest and often

offsetting, with the supply chain component generally slightly negative.34

2. The sharp disinflation at the onset of COVID-19 (early 2020) was driven primarily by a large

negative aggregate demand contribution, plausibly reflecting mobility restrictions that sup-

pressed consumption and heightened uncertainty, and reinforced by a concurrent negative con-

tribution from productive capacity, likely dominated by the sharp plunge in global oil prices.

3. The inflation surge from 2021 through mid-2022 was dominated by supply chain shocks, whose

cumulative contribution rose rapidly and surpassed that of the other shocks. Aggregate demand

also turned positive, and productive capacity shocks became increasingly inflationary due to

the gradual increase in global oil prices, China’s Omicron-related mobility restrictions, and

labor-market frictions in major U.S. trading partners that constrained effective capacity.

4. From the second half of 2022 through 2023, disinflation reflected the unwinding of supply

chain pressures and improving capacity. Demand faded as aggressive interest rate hikes and

quantitative tightening by major central banks worked to counter the high inflation inherited

from 2022.

5. From early 2024 to the end of the sample, inflation reaccelerated mildly, largely because of

renewed supply chain pressures (e.g., the escalation of the Red Sea crisis; see Bai et al., 2025a

for details), while demand and capacity continued to exert a modest drag.35

4.3. Robustness Checks and Extensions

We conduct a range of robustness checks on our baseline results beyond those previously

discussed. First, Appendix G.2 re-estimates the SVAR using monthly inflation instead of price

levels for PCE and import prices. The conclusions are unchanged: cumulated inflation IRFs

closely mirror the price-level IRFs, and FEVD rankings remain stable. In addition, the shape
34This finding highlights the importance of strategic supply chain improvements to mitigate inflationary pres-

sures. For instance, U.S. ports, such as the Port of Los Angeles, undertook infrastructure upgrades between 2017
and 2019 to enhance capacity, efficiency, and resilience against systemic disruptions.

35Two additional observations are worth noting: (i) the peak inflation period aligns with the largest positive
supply chain contribution, consistent with the strong price effects in Figure 9; and (ii) during the subsequent
disinflation, capacity plays the leading role on the downside, in line with FEVD patterns that assign more real-
side variation to capacity shocks.
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and magnitude of the inflation IRFs to demand and capacity shocks align with classic evidence

on inflation responses to demand- and supply-side disturbances (e.g., Smets and Wouters, 2007).

Second, Appendix G.3 examines invertibility by augmenting the information set in the SVAR.

Adding services activity and prices, oil prices, the federal funds rate, and wages leaves demand-

and capacity-driven IRFs essentially unchanged, but attenuates the supply chain price effects, as

one would expect from having more endogenous variables.

Third, Appendix G.4 tests for nonlinear transmission by shock size. Using LPs that interact

the identified shock series with indicators for small versus large realizations, and integrating over

the full posterior distribution of shocks from the Bayesian SVAR, we find divergent posterior

median IRFs but overlapping credible bands. This pattern suggests possible nonlinearities —

particularly for large shocks (e.g., Baqaee and Farhi, 2019, 2020), yet our main conclusions are

robust: the transmission mechanism is qualitatively similar across shock sizes, and the macroe-

conomic effects of the three identified shocks shown in Figures 7-9 are not sensitive to moderate

nonlinear amplification.

Fourth, Appendix G.5 shows that re-estimating the monthly SVAR with four and six lags —

holding priors, identification, and sample fixed— leaves the median IRFs and qualitative dynamics

essentially unchanged across all three shocks, with only modest widening of posterior probability

bands at short horizons. Finally, Appendices G.6 and G.7 provide further checks by dropping the

linear trend and by using alternative proxies for activity and prices.

We also explore two extensions. In a companion paper (Bai et al., 2025b), we analyze the

effectiveness of monetary policy during global supply chain disruptions. Guided by the theoret-

ical predictions of our model in Section 3 and supported by evidence from a threshold vector

autoregression (TVAR) and LPs, we find that supply chain disruptions increase the sensitivity of

prices while reducing the sensitivity of output to contractionary monetary policy shocks, thereby

introducing state dependence into the stabilization trade-off for monetary policy.

Furthermore, we re-estimate the U.S. SVAR with goods and services inflation and three shocks

(demand reallocation, oil, and supply chain). The pandemic-era surge in goods inflation is driven

mainly by demand reallocation (e.g., Guerrieri et al., 2022; Ferrante et al., 2023) and supply

chain shocks, with oil playing a visible but secondary role. By contrast, services inflation moves

little, shows limited pass-through from goods, and reflects only modest contributions from the

identified shocks, consistent with stickier prices and sector-specific dynamics. For the Euro Area,
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an analogous SVAR points to a dominant and persistent role for oil price shocks in 2021-22,

reflecting Europe’s heightened energy dependence. Full results are available upon request.

4.4. Identification Gains From Congestion Indices

Finally, we directly compare the estimated price responses across alternative proxies for global

supply chain conditions, illustrating the identification gains from using our port congestion indices

to isolate supply chain disturbances.
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Figure 12: Price Responses to an Adverse Supply Chain Shock Across Alternative Proxies

Notes. IRFs of the U.S. PCE chain-type price index to a one-standard-deviation adverse supply chain shock,
identified using the Bayesian SVAR in Equation (21) across eight specifications: (i) no supply chain proxy; (ii)
ACR; (iii) ACR with zero restrictions at horizon k = 1 on the responses of ACR to aggregate demand and
productive capacity shocks; (iv) ACT with the same zero restrictions; (v) Trans-Pacific ACR with the same zero
restrictions; (vi) HARPEX; (vii) the New York Fed’s GSCPI (Benigno et al., 2022); and (viii) the SDI from
Smirnyagin and Tsyvinski (2022) and Liu et al. (2024). The sign restrictions in Restrictions 1-3 are imposed to
identify the adverse supply chain shock in all specifications except (i), where the positive restriction on the ACR
response to such a shock is omitted.

Figure 12 shows that, when the SVAR is augmented with the ACR index, the IRF of the

PCE chain-type price index to an adverse supply chain shock is larger in magnitude and more

precisely estimated than when no proxy is included. Imposing zero restrictions on the responses

of the ACR (ACT, or the Trans-Pacific ACR, i.e., a targeted ACR index for major ports along

the Trans-Pacific route) to demand and capacity shocks at horizon k = 1 —motivated by our

domain knowledge of short-run operational rigidity in the containerized shipping industry, as
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discussed in Section 2.5— further sharpens identification. The resulting price responses exhibit

higher peaks, and the lower bound of the 90% probability band diverges from the zero-response

line as the median response approaches its peak, thereby underscoring the inflationary effects

of supply chain disturbances in line with our theoretical predictions. By contrast, when using

HARPEX, GSCPI, or SDI, the median responses are smaller and the credible bands straddle zero

at all horizons, indicating weaker and less precisely estimated price effects.
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Figure 13: FEVD of the U.S. PCE Price Index Across Alternative Proxies

Notes. The figure plots the posterior-median shares of the forecast error variance of the U.S. PCE chain-type
price index attributable to aggregate demand, productive capacity, and supply chain shocks across horizons, for
each of the eight specifications discussed above.

Consistent with these IRFs, the FEVD results in Figure 13 show that using our congestion

indices —especially under the above zero restrictions— attributes a larger share of the forecast

error variance of PCE prices to supply chain shocks at medium horizons. By contrast, when

alternative proxies are employed, the variance attribution shifts toward aggregate demand, with

supply chain shocks playing only a minimal role throughout. We report the full IRF and FEVD

comparisons, along with a robustness check that replaces the PCE chain-type price index with

the PCE goods price index (which yields analogous conclusions), in Appendix H.
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5. Conclusion
Our findings suggest several promising avenues for future research. First, the ACR index

reveals substantial heterogeneity in global port congestion, raising questions about whether

spillovers across ports stem from geographical proximity or production synergies (Fernández-

Villaverde et al., 2021, 2024a,b). Second, our results highlight the importance of spare capacity

in assessing the severity of supply chain disruptions, suggesting the need to endogenize its ad-

justment and examine its persistence and interaction with inventories. Third, incorporating

input–output networks to analyze how spare capacity transmits supply chain shocks across firms

could yield valuable insights, as production structures may amplify or dampen disturbances and

trigger endogenous changes (Ghassibe, 2024; Xu et al., 2025). We plan to explore some of these

extensions in future work.
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A. Background on the Containerized Shipping Industry
This appendix provides additional background on the containerized shipping industry, high-

lighting the institutional frictions and operating practices that shape its short-run dynamics.

Scheduling rigidities and port congestion. As noted in the main text, the shipping

industry commonly follows a “hurry up and wait” practice in port calls (Du et al., 2015). For

example, a vessel may depart the loading port at full speed to meet the originally requested time

of arrival at the pilot boarding place (RTA PBP) on day 14. If severe congestion arises three days

into the voyage and the RTA PBP is postponed to day 17, the vessel may not receive this update

in time to adjust its speed. Even when such forewarnings are received, ships often maintain their

speed because altering it could violate contractual obligations. As a result, vessels frequently

“hurry” to arrive, only to “wait” at anchorage. This phenomenon is widespread in container

shipping, where operational inefficiencies arise from mismatches between scheduled port calls and

real-time port conditions.

Oil price, vessel speed, and port congestion. Fuel costs account for 50–60% of a liner

shipping company’s operating expenses (Notteboom, 2006), and vessel fuel consumption increases

roughly with the cube of sailing speed (Li et al., 2016). As a result, container ship operators adjust

sailing speeds in response to fluctuations in bunker oil prices. We estimate a strong negative

relationship between oil prices and average vessel speed: a 1% increase in the Brent crude price

reduces sailing speed by about 0.022%, a highly significant effect (p = 0.004). In contrast,

when we regress congestion rates at the top 50 container ports worldwide on Brent crude prices

(controlling for year and month fixed effects), we find no statistically significant relationship: the

estimated coefficient is positive but small relative to its standard error, with a p-value of 0.313

and an R2 of only 0.021.1

This divergence reflects industry-wide institutional frictions. Higher oil prices encourage

slower sailing to save fuel, but port congestion is shaped by scheduling rigidities and the “hurry up

and wait” practice of port calls, which break the link between congestion dynamics and fuel prices.

Thus, oil prices matter for cost-driven adjustments but not for congestion, which is governed by

coordination failures and port inefficiencies.
1Data on the Brent crude oil price are retrieved from the FRED database (mnemonic: POILBREUSDM). Data

on average container ship speed, measured in knots, are retrieved from Clarksons. The statistically insignificant
result for port congestion also holds when using the natural logarithm of average congestion time at the top 50
container ports.
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Idle ships. According to the Clarksons Shipping Intelligence Network, idle ships are defined

as vessels that (i) are not recorded with an average speed greater than one knot for seven days

or more, (ii) are not identified as being under another status (such as laid-up, under repair, or in

storage), and (iii) are either not subsequently recorded with an average speed greater than one

knot for two or more consecutive days or have not moved more than 20 km.

Figure A.1 plots the share of idle container ships as a percentage of the global fleet. This

proportion declined from about 6% to 3% at the end of 2017, hovered around 4–5% through 2018–

2019, and then spiked to roughly 8.5% at the onset of the COVID-19 pandemic in early 2020.

It subsequently fell sharply and stabilized at about 4%. The pandemic-driven surge in idle ships

reflected active capacity management by shipping companies, which withheld capacity in response

to the collapse in consumer and business demand (Li et al., 2025). To minimize the impact of

this abrupt change on port-congestion estimates, we exclude idle ships when constructing the

congestion indices (see Appendix C.1.1).
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Figure A.1: Share of Idle Container Ships in the Global Fleet
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B. Testing Short-Run Rigidity in Containerized Shipping
This appendix tests the short-run rigidity assumption in the containerized shipping industry.

Specifically, we examine whether the ACR index responds on impact to a monetary policy shock

using local projections (LPs). LPs offer a flexible model specification and are robust to the curse

of dimensionality, making them well suited for capturing dynamic responses.

Our assessment involves estimating

ACRt+k = αk + βk MPt + uk,t+k, (B.1)

where 0 ≤ k ≤ K indexes the forecast horizon, ACRt+k is the k-period-ahead value of the ACR

index, MPt is the monthly orthogonalized Bauer–Swanson monetary policy surprise published by

the Federal Reserve Bank of San Francisco (Bauer and Swanson, 2023), αk is a horizon-specific

constant, and uk,t+k is the k-step-ahead forecast error.2 The coefficients {βk}Kk=0 trace the response

of ACR over K months to a one-standard-deviation policy shock, where the standard deviation

is computed within our estimation sample.

We estimate Equation (B.1) via least squares (Jordà, 2005), using Newey–West standard errors

(Newey and West, 1987) for βk. As the forecast horizon k increases, the βk estimates may become

noisier, particularly in a small sample. To address this, we apply the smooth local projections

(SLP) method (Barnichon and Brownlees, 2019), approximating βk with a linear B-spline basis

expansion:

βk ≈
M∑

m=1

bmBm(k), (B.2)

where Bm(k) are B-spline basis functions and bm are parameters estimated using a penalized

procedure that shrinks Equation (B.2) toward a quadratic polynomial in k.

We estimate the LPs beginning at horizon k = 0. Panel B.1a reports the impulse responses

of the ACR index to a one-standard-deviation Bauer–Swanson monetary policy shock. The solid

line denotes the median estimates, and the shaded areas show the 68% and 90% confidence bands.

The on-impact response of the ACR index is close to zero and statistically insignificant, consistent
2We use the Bauer–Swanson series because it delivers precise estimates in recent samples. We rely on the

monthly orthogonalized surprises from the “Monetary Policy Surprises” webpage maintained by the Federal Re-
serve Bank of San Francisco. As of our download, the monthly series runs through December 2023; accordingly,
we estimate over January 2016–December 2023. This window still spans the key period of global supply chain
disruptions in 2020–2022 and does not change our main conclusions.
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with our assumption of short-run rigidity in the containerized shipping industry.

Beyond the immediate horizon, however, the ACR index exhibits a gradual decline over the

medium run, with median responses turning more negative after six months and remaining below

zero for up to two years. Although these medium-run effects are only marginally significant given

the wide confidence bands, they suggest that monetary tightening may eventually dampen port

congestion, likely through its effects on trade flows and shipping demand.

Months
0 6 12 18 24

p
.p

.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Median Estimates
68% Con-dence Bands
90% Con-dence Bands

(a) ACR
Months

0 6 12 18 24

%

-0.6

-0.4

-0.2

0

0.2

0.4

(b) ACT

Figure B.1: Impulse Responses of Port Congestion Indices to a Monetary Policy Shock

Notes. The IRFs of the ACR and ACT indices to a one-standard-deviation Bauer–Swanson monetary policy shock,
obtained from the LP model (B.1) estimated with the SLP method (Barnichon and Brownlees, 2019). Estimates
are based on the sample period January 2016–December 2023.

Panel B.1b reports results using the Average Congestion Time (ACT) index, which serves

as an alternative robustness check by measuring the average number of hours ships spend in

anchorage before berthing. The ACT index exhibits a broadly similar pattern: no significant on-

impact effect, followed by a modest but persistent decline over the medium run. This confirms

that our findings are not an artifact of using a rate-based measure of congestion.

Taken together, these results support the assumption of short-run operational rigidity in the

containerized shipping industry: neither the ACR nor the ACT index reacts contemporaneously

to monetary policy shocks. At the same time, the medium-run declines observed in both indices

are consistent with the view that monetary policy transmits to global shipping activity gradually,

through its effects on demand for traded goods and shipping services.
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C. A Density-Based Spatial Clustering Algorithm
This appendix provides details of our density-based spatial clustering algorithm —the itera-

tive, multi-attribute, density-based spatial clustering of applications with noise (IMA-DBSCAN).

The same details can be found in the companion paper (Bai et al., 2023).

We use this algorithm to estimate port congestion for the top 50 container ports worldwide.3

We first describe the methodology underlying the algorithm. We then present an illustrative case

study for the Port of Ningbo-Zhoushan in China, showing its ability to identify both anchorage

and berth locations —where other methods fall short. Finally, we construct weekly congestion

indices —the ACR and ACT indices— to demonstrate that our measurement of port congestion

is robust across time frequencies.

For completeness, the appendix also includes the pseudocode of IMA-DBSCAN to facilitate

replication. The parameter values and ranges used in our estimation appear in Table C.1, and

the AIS data inputs are publicly available. The algorithm can be adapted to compute conges-

tion measures for ports beyond the top 50 container ports, and individual port-level congestion

statistics are available upon request.

C.1. Methodology

As depicted in Figure C.1, the proposed IMA-DBSCAN algorithm has several distinctive

features. Foremost among these is its two-tiered iterative structure. At the first level, we extract

each container ship’s trajectory at each of the top 50 ports from the AIS data and apply traditional

DBSCAN to filter out noise and cluster the ship’s mooring points (Ester et al., 1996). While this

step identifies mooring areas, it does not sufficiently differentiate between the anchorage and

berth areas of a port.

The second level addresses this limitation by applying a spatial-temporal DBSCAN (ST-

DBSCAN; see Birant and Kut, 2007) to the resulting clusters. In this phase, we use an iterative

procedure to determine a generalized and optimal parameter setting for the clustering algorithm.

Another hallmark of IMA-DBSCAN is its integration of multiple attributes at the second level:

beyond spatial data (e.g., coordinates), we incorporate non-spatial information (e.g., headings

and timestamps) to enhance clustering accuracy. In what follows, we elaborate on the specifics

of each level of IMA-DBSCAN.
3See https://www.worldshipping.org/top-50-ports (accessed June 15, 2022) for the full list of ports.
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Figure C.1: Methodology Framework of IMA-DBSCAN

C.1.1. First Level: Data Preprocessing

While AIS data provide detailed information on ship positions, directly clustering these records

to determine a port’s anchorage and berth areas is challenging. First, even when restricted to

a specific port area and timeframe, the sheer volume of records means that running DBSCAN

on the raw data leads to extended processing times. Second, the high incidence of incorrect

AIS signal assignments can produce inaccurate clustering results, such as clusters that are not

actual berths or that cover implausibly large areas. Third, if a ship remains in a port area for

an extended period, the density of AIS records may cause DBSCAN to misclassify that stay as a

cluster. Given these issues, preprocessing the AIS data is essential.

At the first level of IMA-DBSCAN, we filter the AIS records for each ship in the port area,

focusing on observations with speeds below 1 knot. Such positions suggest that a ship is berthed,

anchored, or in an unusual status (e.g., idle, laid-up, under repair, or in storage). We then tally

these positions; if the count falls outside an acceptable range (e.g., fewer than 100 or more than

100,000), we classify the ship’s data as abnormal and exclude it from further analysis. Because a

ship may dock at a port multiple times, we define a cutoff period ∆t (e.g., 12 hours) to separate

consecutive arrivals: if the gap between two stays exceeds ∆t, we treat them as distinct port
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calls. To streamline the dataset while maintaining consistency, we retain only the first data point

for each hour.

For every port call, the refined positions are clustered using the traditional DBSCAN with

parameters Eps and MinPts. We select an Eps value small enough to capture a ship’s mooring

area and a MinPts value sufficient to classify transient stops as noise. At this stage, AIS prepro-

cessing is complete. The resulting samples are then passed to the second level of IMA-DBSCAN

to identify a port’s anchorage and berth areas. For reference, the pseudocode for the first level

of IMA-DBSCAN is provided in Algorithm 1.

C.1.2. Second Level: Multiple Attributes and Iteration

Information on headings. AIS data contain both spatial (geographical coordinates) and non-

spatial (headings) information. Figure 1 in the main text illustrates the positions of a ship in a

port alongside its headings. At a berth, headings are either aligned in the same direction or exactly

opposite, whereas in an anchorage area they appear random with no discernible pattern. This

observation matches real-world behavior: ships in anchorage often fail to maintain a consistent

heading due to wind and wave variations.

Consequently, in the second level of IMA-DBSCAN, we incorporate heading information to

improve estimation accuracy.4 Specifically, IMA-DBSCAN relies on three parameters: Eps1,

Eps2, and MinPts. Here, Eps1 is the maximum geographical (spatial) distance between two

points, Eps2 is the maximum non-spatial distance between two headings, and MinPts is the

minimum number of points within the thresholds defined by Eps1 and Eps2.

The geographical distance D is computed using the Haversine formula:

D [(x1, x2), (y1, y2)] = 2 ·R · arcsin

[√
sin2

(
x1 − y1

2

)
+ cos x1 · cos y1 · sin2

(
x2 − y2

2

)]
, (C.1)

where the coordinates are in radians and R = 6,371 km is the Earth’s mean radius. The non-
4Non-spatial information is also useful for distinguishing between berths (see Algorithm 2). In our initial

experiments, coordinates alone identified only the approximate locations of anchorage and berth areas, not the
exact number of berths.
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spatial distance ∆h between two headings is defined as:

∆h(h1, h2) =

|h1 − h2| , if |h1 − h2| ≤ 180◦;

360◦ − |h1 − h2| , otherwise.
(C.2)

Using these distance measures, the neighbors of a point are those with a geographical distance

less than Eps1 and a heading distance less than Eps2. A core point is defined as one with at

least MinPts neighbors, and clusters in IMA-DBSCAN consist only of these core points.

Iteration process. Since the geographical shapes of anchorage and berth areas vary widely

across ports, and the boundaries of anchorage areas shift continuously with waves and winds, the

parameters in IMA-DBSCAN must ideally vary across ports to achieve optimal results. To this

end, we propose an iterative method for determining parameter values. Specifically, while Eps2

is fixed at 1◦, Eps1 and MinPts vary by port.

During the iteration, we define four intermediate variables: Dist, m, m′, and NumC. Here,

Dist is the average distance between a point in a cluster and the cluster’s center; m is the number

of points; m′ is the number of noisy points (initialized to zero); and NumC is the number of

clusters.5 Using these variables, we update Eps1 and MinPts as follows:

Eps1 = α ·Dist, MinPts = β · m−m′

NumC
.

Although α and β are not subject to explicit constraints, they must fall within a reasonable

range to ensure both convergence and meaningful results. After evaluating performance under

various parameter settings, we find α ∈ [0.4, 0.6] and β ∈ [0.06, 0.1] to be appropriate. We also

introduce Dist0, which records the value of Dist from the previous iteration (initialized to zero).

ST-DBSCAN is then executed iteratively. In each round, it operates with the current values

of Eps1 and MinPts and with Eps2 fixed at 1◦. Its outputs classify points either into clusters or

as noise. Based on these outputs, the intermediate variables, as well as Eps1 and MinPts, are

updated, and the procedure is repeated. The process terminates when the difference Dist−Dist0

is less than or equal to ∆Dist (e.g., 100 m).6

At convergence, each point is either assigned to a cluster or labeled as noise. We interpret
5At initialization, when no clusters exist, we treat all points as belonging to a single cluster. If all points are

classified as noise, we set NumC = 1.
6The two-tiered structure and use of non-spatial information do not undermine the efficiency of IMA-DBSCAN.

In practice, the values of Eps1 and MinPts stabilize after only about five iterations, with further iterations yielding
negligible changes.
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the resulting cluster areas as berths and the areas with noisy points as anchorages.

Information on timestamps. After running ST-DBSCAN, we find that many clusters

should be merged, as they often represent the same berth in reality. To improve the accuracy

of berth identification, we merge clusters by using the timestamp information in the AIS data.

Specifically, we first calculate the start and end times of each port call in each cluster. Since

only one ship can dock at a berth at any given time, we then identify, for each cluster under

consideration, its closest cluster and check for any overlap in docking times. If there is at least

one overlap, the two clusters are treated as distinct berths. If there is no overlap, they are merged

to represent a single berth (see Figure C.2 for an illustration).

Case 1
ta1 d1 a2 d2

A Port Call in Cluster 1

A Port Call in Cluster 2

Case 2
ta1 d1a2 d2

A Port Call in Cluster 1

A Port Call in Cluster 2

Figure C.2: Merging Clusters

Notes. Two scenarios that guide the criteria for merging clusters after executing ST-DBSCAN at the second level.
Let a1 and d1 denote the arrival and departure times of a ship during a port call assigned to cluster 1. Similarly,
let a2 and d2 represent the arrival and departure times for a port call assigned to cluster 2, the geographically
closest cluster to cluster 1. In the first scenario, the docking intervals do not overlap, so clusters 1 and 2 are
merged. In the second scenario, the docking intervals overlap, and the clusters are kept separate, since two ships
cannot occupy the same berth simultaneously.

To distinguish between anchorage areas, we apply DBSCAN again to the points previously

classified as noise. Here, the parameters Eps′ and MinPts′ are chosen based on domain knowl-

edge. We also remove clusters with fewer than N port calls, where N is set to align with official

statistics (if any) on the minimum number of port calls recorded at the top 50 ports worldwide

during the sample period. For reference, the pseudocode for the second level of IMA-DBSCAN

is provided in Algorithms 2, 3, and 4.

Finally, the parameter values used in estimating port congestion are reported in Table C.1.
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Table C.1: Parameter Values for IMA-DBSCAN

Parameter
First Level ∆t Eps MinPts

Value 12 hours 50 m 10
Second Level α β ∆Dist Eps′ MinPts′ N

Value 0.5 0.08 100 m 1,000 m 50 5

Algorithm 1 Level 1 IMA-DBSCAN
Inputs:

Al = {a1,l, . . . , an,l}: the set of coordinates recorded in the AIS data for a ship l
Sl = {s1,l, . . . , sn,l}: the set of speeds recorded in the AIS data for a ship l
Tl = {t1,l, . . . , tn,l}: the set of timestamps recorded in the AIS data for a ship l

Outputs:
Dl = {d1,l, . . . , dm,l}: the coordinates of the first observation for each hour in Bl

Hl = {h1,l, . . . , hm,l}: the heading of the first observation for each hour in Bl

1: /* Data Preprocessing */
2: Bl = {b1,l . . . bk,l} ← the set of coordinates in Al that indicate a speed less than 1 knot
3: /* Exception Identification */
4: if |Bl| < 100 or |Bl| > 100, 000 then
5: Remove the data and stop ▷ The ship has an abnormal port call
6: else
7: Continue
8: end if
9: /* DBSCAN Clustering */

10: X ← b1,l
11: for i← 2 : k do
12: if ti − ti−1 ≤ ∆t then
13: Append bi,l to X
14: else
15: DBSCAN(X,Eps,MinPts)
16: X ← ∅
17: Append bi,l to X
18: end if
19: end for
20: Remove the observations labeled as noise from Bl

21: Keep only the first observation for each hour in Bl ▷ Note that only m observations remain
in Bl at this stage

22: Dl = {d1,l, . . . , dm,l} ← the coordinates of the first observation for each hour in Bl

23: Hl = {h1,l, . . . , hm,l} ← the heading of the first observation for each hour in Bl
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Algorithm 2 Level 2 IMA-DBSCAN
Inputs:

D = {D1, . . . , DL}: the set of coordinates for all ships after Level 1 IMA-DBSCAN
H = {H1, . . . , HL}: the set of headings for all ships after Level 1 IMA-DBSCAN
O = {D,H} = {o1, . . . , oM}: the combined set of coordinates and headings

Outputs:
Cberth: the set of clusters marked as berths
Canchorage: the set of clusters marked as anchorages

1: /* Parameter Initialization */
2: Dist← the average distance between a point in D and the center of the mass of D
3: m← |D|
4: Eps1← α ·Dist
5: MinPts← β ·m
6: /* Iteration Process */
7: Dist0 ← 0
8: while Dist−Dist0 > ∆Dist km do
9: ST−DBSCAN(O, Eps1, Eps2 = 1◦,MinPts) ▷ See function ST-DBSCAN

10: Dist0 ← Dist
11: Dist← the average distance between a non-noisy point in D and the center of the mass

of its assigned cluster
12: m′ ← |noisy points in O|
13: NumC ← |clusters in O|
14: Eps1← α ·Dist
15: MinPts← β · (m−m′) /NumC
16: end while
17: /* Merging Clusters */
18: Use the center of the mass of each cluster to calculate the distance in between
19: for all clusters c in O do
20: c′ ← the nearest cluster less than 500 m away from c
21: if the docking times of c′ and c do not overlap then
22: Replace the cluster label of c′ with that of c
23: end if
24: end for
25: /* Berth and Anchorage Detection */
26: Cberth ← clusters in O
27: Canchorage ← DBSCAN(noisy points in O, Eps′,MinPts′)
28: /* Exception Removal */
29: for all clusters c in Cberth and Canchorage do
30: NumP ← the number of port calls in cluster c
31: if NumP < N then
32: Remove c
33: end if
34: end for
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Algorithm 3 ST-DBSCAN
Inputs:

O = {o1, . . . , oM}: the combined set of coordinates and headings
Eps1: maximum geographical (spatial) distance
Eps2: maximum non-spatial distance
MinPts: minimum number of points within the distance of Eps1 and Eps2

Outputs:
C = {c1, . . . , cM}: the set of clusters in O

1: /* The codes are adapted from those in Birant and Kut (2007). */
2: function ST−DBSCAN(D,Eps1, Eps2,MinPts)
3: ClusterLabel = 0
4: for i← 1 : m do
5: if oi is not in a cluster then
6: Y ← RetrieveNeighbors(oi, Eps1, Eps2) ▷ See function RetrieveNeighbors
7: if |Y | < MinPts then
8: Mark oi as noise
9: else ▷ Construct a new cluster

10: ClusterLabel ← ClusterLabel + 1
11: for j ← 1 : |Y | do
12: Mark all objects in Y with current ClusterLabel
13: end for
14: Push(all objects in Y )
15: while not IsEmpty() do
16: CurrentObj = Pop()
17: Z ← RetrieveNeighbors(CurrentObj, Eps1, Eps2)
18: if |Z| ≥MinPts then
19: for all objects o in Z do
20: if o is not marked as noise or it is not in a cluster then
21: Mark o with current ClusterLabel
22: Push(o)
23: end if
24: end for
25: end if
26: end while
27: end if
28: end if
29: end for
30: C = {c1, . . . , cM} ← the set of clusters in O
31: end function
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Algorithm 4 RetrieveNeighbors
Inputs:

o: an observation in O
Eps1: maximum geographical (spatial) distance
Eps2: maximum non-spatial distance

Outputs:
Neighbors: the set of neighbors for o

1: function RetrieveNeighbors(o, Eps1, Eps2)
2: Neighbors← ∅
3: for all observations o′ in O do
4: Dist1← D(o, o′) ▷ See Equation (C.1)
5: Dist2← ∆h(o, o′) ▷ See Equation (C.2)
6: if Dist1 ≤ Eps1 and Dist2 ≤ Eps2 then
7: Append o′ to Neighbors
8: end if
9: end for

10: return Neighbors
11: end function

C.2. Illustrative Cases

To demonstrate the capability of IMA-DBSCAN to accurately identify the anchorage and

berth areas of a port —something other methods often fail to achieve— we apply the algorithm

to the Port of Ningbo-Zhoushan in China, chosen for its intricate layout. Figure C.3a displays

the first 50,000 AIS observations collected since January 1, 2020, within the port. The blue dots

indicate the positions of low-speed container ships. Before applying IMA-DBSCAN, we mark

approximate anchorage areas and berth locations using satellite images and nautical charts as

benchmarks: red polygons denote anchorage areas, and yellow rectangles denote berth locations.7

Figure C.3b presents the clustering results of IMA-DBSCAN for Ningbo–Zhoushan, mirroring

the layout in Figure C.3a for direct comparison. The clusters in Figure C.3b (colored red, yellow,

blue, purple, cyan, and orange) closely match the anchorage areas in Figure C.3a.8

In Figure C.3e, we further highlight the locations of four terminals —Beilun, Daxie, Pukou,

and Yuandong. Benchmarked against satellite maps, these identifications prove highly accurate:
7Our illustrative case of Ningbo-Zhoushan focuses on a one-month snapshot, as the first 50,000 AIS observations

fall within January 2020. This identification remains representative in subsequent months because anchorage and
berth areas do not change significantly in the short run. In practice, IMA-DBSCAN can be applied periodically
to monitor potential changes in port layouts.

8For clarity, we also show the convex hulls of these clusters in Figure C.3d.
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as shown in the top row of Figure C.4, each berth within the terminals is precisely delineated,

with boundaries that align closely with reality.9

To benchmark IMA-DBSCAN against existing methods, we compare it with ST-DBSCAN.10

ST-DBSCAN is widely recognized in the literature as a leading spatial clustering algorithm ca-

pable of handling spatio-temporal data. Figure C.3c reports its results, which are less precise

than those of IMA-DBSCAN. Although ST-DBSCAN generally identifies anchorage points, it

misclassifies several high-density regions as berths, even when they are not. For instance, in

the blue rectangle of Figure C.3f, ships that remained in an area for extended periods (possi-

bly undergoing maintenance) are mistakenly treated as berths. Likewise, in the black rectangle,

ST-DBSCAN labels points as berths that should instead be classified as mooring areas. As a

result, ST-DBSCAN provides only a rough outline of anchorage areas and fails to identify berth

locations with precision.

Figure C.4 offers a more granular comparison for the four Ningbo-Zhoushan terminals. ST-

DBSCAN produces ambiguous results, with overlapping clusters that are spatially close but have

divergent headings. Terminal boundaries can be discerned, yet individual berths are barely dis-

tinguishable. By contrast, IMA-DBSCAN delivers clusters that align cleanly with each berth.

While tuning MinPts or lowering Eps1 can improve ST-DBSCAN’s accuracy, this requires con-

tinuous manual adjustment, which is difficult to apply consistently across ports. In contrast,

the iterative design of IMA-DBSCAN automatically determines parameters, enabling accurate

identification of both berths and anchorage areas.

Finally, we apply both algorithms to the Ports of Los Angeles and Long Beach (U.S.), Rot-

terdam (Netherlands), and Singapore. As shown in Figures C.5 through C.7, IMA-DBSCAN

consistently outperforms ST-DBSCAN, delivering more accurate identification across all major

container ports examined.

9Some blue dots in Figure C.3a do not correspond to any anchorage or berth in Figure C.3b, reflecting ships
that anchored only briefly.

10For this comparison, the ST-DBSCAN parameters are set to Eps1 = 2,500 m, Eps2 = 1◦, and MinPts = 100,
following Ester et al. (1996).
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(a) Sample AIS Data (b) Result of IMA-DBSCAN (c) Result of ST-DBSCAN

(d) Anchorages (IMA-DBSCAN) (e) Berths (IMA-DBSCAN) (f) Berths (ST-DBSCAN)

Figure C.3: Identification of Anchorage and Berth Areas in the Port of Ningbo-Zhoushan

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Port of Ningbo-Zhoushan in
China. These are shown as blue dots, covering coordinates from 121.60◦E to 123.00◦E and from 29.50◦N to 30.35◦N. As benchmarks, satellite maps and
nautical charts are used to mark anchorage areas (red polygons) and berth locations (yellow rectangles). Panels (b) and (c) present the clustering results
using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b), the blue dots denote identified anchorage areas, whereas in Panel (c) they are classified
as noise, outlining the general distribution of anchorages but without distinguishing individual ones. Panel (d) displays the anchorages from Panel (b)
separately in red polygons, while Panel (e) shows the berths from Panel (b) separately in yellow, identifying the four terminals of Pukou, Daxie, Beilun, and
Yuandong. Finally, Panel (f) depicts the approximate berth locations identified by ST-DBSCAN in yellow, with the blue and black rectangles indicating,
respectively, noise misclassified as berths and anchorages mistaken for berths.
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(a) Terminal Beilun (b) Terminal Daxie (c) Terminal Pukou (d) Terminal Yuandong

Figure C.4: Detailed Results of Berth Identification: IMA-DBSCAN (Top Row) vs. ST-DBSCAN (Bottom Row)

Notes. Detailed berth identification for the four terminals —Beilun, Daxie, Pukou, and Yuandong— within the Port of Ningbo-Zhoushan. Berths identified
by IMA-DBSCAN appear in yellow (top row), and those identified by ST-DBSCAN appear in brown (bottom row).
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(a) Sample AIS Data (b) Result of IMA-DBSCAN (c) Result of ST-DBSCAN

(d) Anchorages (IMA-DBSCAN) (e) Berths (IMA-DBSCAN) (f) Berths (ST-DBSCAN)

Figure C.5: Identification of Anchorage and Berth Areas in the Ports of Los Angeles and Long Beach

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Ports of Los Angeles and Long
Beach in the U.S., shown as blue dots. Panels (b) and (c) present the clustering results using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b),
the blue dots denote identified anchorage areas, whereas in Panel (c) they are classified as noise, outlining the general distribution of anchorages without
distinguishing individual ones. Panel (d) displays the anchorages from Panel (b) separately in red polygons, and Panel (e) shows the berths from Panel (b)
separately in yellow. Finally, Panel (f) depicts the approximate berth positions identified by ST-DBSCAN in yellow.
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(a) Sample AIS Data (b) Result of IMA-DBSCAN (c) Result of ST-DBSCAN

(d) Anchorages (IMA-DBSCAN) (e) Berths (IMA-DBSCAN) (f) Berths (ST-DBSCAN)

Figure C.6: Identification of Anchorage and Berth Areas in the Port of Rotterdam

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Port of Rotterdam in the
Netherlands, shown as blue dots. Panels (b) and (c) present the clustering results using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b),
the blue dots denote identified anchorage areas, whereas in Panel (c) they are classified as noise, outlining the general distribution of anchorages without
distinguishing individual ones. Panel (d) displays the anchorages from Panel (b) separately in red polygons, and Panel (e) shows the berths from Panel (b)
separately in yellow. Finally, Panel (f) depicts the approximate berth positions identified by ST-DBSCAN in yellow.
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(a) Sample AIS Data (b) Result of IMA-DBSCAN (c) Result of ST-DBSCAN

(d) Anchorages (IMA-DBSCAN) (e) Berths (IMA-DBSCAN) (f) Berths (ST-DBSCAN)

Figure C.7: Identification of Anchorage and Berth Areas in the Port of Singapore

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Port of Singapore, shown as blue
dots. Panels (b) and (c) present the clustering results using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b), the blue dots denote identified
anchorage areas, whereas in Panel (c) they are classified as noise, outlining the general distribution of anchorages without distinguishing individual ones.
Panel (d) displays the anchorages from Panel (b) separately in red polygons, and Panel (e) shows the berths from Panel (b) separately in yellow. Finally,
Panel (f) depicts the approximate berth positions identified by ST-DBSCAN in yellow.
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C.3. Weekly Indices of Port Congestion

The integration of high-frequency AIS data with our IMA-DBSCAN algorithm enables the

construction of port congestion indices at frequencies higher than monthly updates. The AIS

system processes over 2,000 reports per minute and can update information as often as every two

seconds. Moreover, unlike traditional algorithms that require data sampled at fixed intervals,

IMA-DBSCAN is uniquely flexible. Its streamlined design allows it to operate without predefined

frequencies, making it especially well-suited to the highly variable and high-frequency nature of

AIS data.

Figure C.8 shows the ACR index at a weekly frequency. Compared to the monthly ACR index

in Figure 4 in the main text, the two series exhibit similar trends. However, the weekly series is

substantially more volatile, since the number of ship visits to each port may vary considerably

from week to week.11
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Figure C.8: Weekly ACR Index

In addition to the ACR index, we also introduce an alternative high-frequency congestion

measure, the ACT index. Unlike the ACR index, which is rate-based, the ACT index measures

the average number of hours a container ship spends waiting in a port’s anchorage before docking

at a berth, weighted by the relative number of ship visits to each of the top 50 container ports
11The ACR index could also be constructed at daily or even hourly frequencies. However, because only a few

ship visits occur at a given port each day or hour, the resulting series would be too volatile, with values of 0%
and 100% occurring frequently.
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worldwide:

ACTt ≡
∑
p∈P

[
Delayedp,t +Undelayedp,t∑

p∈P
(
Delayedp,t +Undelayedp,t

) · DelayHoursp,t
Delayedp,t +Undelayedp,t

]
,

where Delayedp,t, Undelayedp,t, and DelayHoursp,t denote the number of delayed and undelayed

ship visits, and the total hours ships spend in the anchorage areas of port p in week t, respectively.

Figure C.9 plots the weekly ACT index, which closely co-moves with the weekly ACR index

over the sample period. In Appendix H.3, we also aggregate the ACT index to the monthly

frequency and use it in our causality analysis. The results confirm that our identification strategy

is robust to using ACT instead of ACR as the measure of global supply chain conditions.
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Figure C.9: Weekly ACT Index

Notes. The ACT index is a weighted average of the number of hours ships wait in a port’s anchorage before
docking at a berth, with the weights given by the relative number of ship visits to each port.
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D. Discussion of Model Assumptions
This appendix discusses two critical assumptions in our model: search and matching frictions

in the product market and endogenous separation of producer-retailer matches due to transporta-

tion costs. First, to represent the search and matching frictions in a tractable manner, we assume

that a matching function governs the number of trades between producers and retailers. Second,

to succinctly capture the decision-making process between a producer and a retailer when their

trade is subject to a transportation cost, we assume that upon meeting, both parties endogenously

separate once the idiosyncratic transportation cost exceeds a reservation threshold. We discuss

each of these two assumptions in turn.

The matching function. There is ample literature on the sources of matching frictions in the

product market, including the difficulty of locating and connecting with buyers across locations

(Benguria, 2021; Krolikowski and McCallum, 2021; Lenoir et al., 2022), the costly acquisition of

information about market conditions (Allen, 2014; Chaney, 2014), and informal trade barriers

such as common language (Melitz and Toubal, 2014) and geography (Eaton and Kortum, 2002).

Common across all these theories is the presence of barriers to trade between producers and

retailers, implying that not all unmatched producers engage in trade, and that not all retailers’

sourcing visits succeed. We assume a simple constant-returns-to-scale matching function that

summarizes how unmatched producers and retailers’ visits are transformed into trades. This

allows us to abstract from the complex matching process while preserving its key implication:

unmatched producers trade only with probability f(θ)G(z̄) < 1, and retailers’ visits are successful

only with probability q(θ)G(z̄) < 1.

Endogenous separation on transportation cost. The separation margin in the product

market can be modeled in the same way as in the labor market when workers face negative

productivity shocks to their employment matches (Bils et al., 2011; Menzio and Shi, 2011; Fujita

and Ramey, 2012). More concretely, producers face idiosyncratic transportation costs in their

trading relationships with retailers, and sufficiently adverse draws lead to the termination of

those relationships. This assumption is plausible only if there is convincing evidence that (i)

transportation costs matter for the decision to trade, and (ii) there exists a threshold above

which trading partners choose to sever their relationship.

The prediction that transportation cost affects the probability of trade has been extensively
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corroborated by the trade literature. For example, evidence in Rodrigue (2020) shows that

across all transport modes, a 10% increase in transportation costs reduces trade volumes by

more than 20%. In maritime transportation specifically, Brancaccio et al. (2020) exploit tariff

changes across the trade network to find that a 1% change in shipping costs generates roughly a

1% change in world trade value. Likewise, Wong (2022) estimates the elasticity of containerized

trade with respect to freight rates using the round-trip effect as an instrument. For route i, j, she

constructs a Bartik-style instrument to proxy for predicted trade on route j, i, and reports that a

1% increase in per-unit container freight rates decreases containerized trade value by 2.8% when

dyad-by-product controls are included.

Both theory and observation point to the existence of a reservation transportation cost that

trading partners consider when assessing whether a match is profitable. In practice, this thresh-

old reflects the highest cost a firm can absorb when deciding to begin exporting or to maintain

an existing trading relationship, covering expenses such as fuel, labor, and insurance. Evidence

from plant-level data reinforces this idea. To account for the wide dispersion in export and im-

port intensities across plants, Kasahara and Lapham (2013) extend the model of Melitz (2003)

by allowing for heterogeneity in transportation costs. This modification delivers a natural self-

selection mechanism: only plants with sufficiently low costs find it worthwhile to trade. These

insights together support the notion of a reservation transportation cost below which trade be-

comes profitable.

A related threshold logic arises in the literature on transport infrastructure and exporting. For

instance, Naudé and Matthee (2011) argue that firms require a minimum level of infrastructure

in order to enter export markets, whereas further improvements have limited effects on export

volumes. Because infrastructure affects transportation costs, this argument is consistent with the

presence of a reservation transportation cost that firms weigh when making export decisions.
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E. Proofs and Discussions Omitted from the Main Text
The following appendices include all long proofs that are omitted from the main text, as well

as several important discussions on model dynamics.

E.1. Proof of Proposition 1

We first rewrite Ez′S(z
′). Using the definition of S(z) in Equation (7), we derive the following

expression for the total surplus:

S(z) = (p− z)l + (1− ηf(θ)) βEz′S(z
′).

Subtracting Equation (11) from this expression yields S(z) = (z̄− z)l. Substituting back into the

expectation,

Ez′S(z
′) = l

∫ z̄

0

(z̄ − z′) dG(z′)

= l

[
(z̄ − z′)G(z′)

∣∣∣z̄
0
+

∫ z̄

0

G(z′) dz′
]

= l

∫ z̄

0

G(z′) dz′,

where the second line follows by integration by parts.

Replacing Ez′S(z
′) in Equations (11) and (12) gives the following rearranged match separation

condition:

F(p, z̄, θ) = 0 ⇒ p− z̄ + (1− ηf(θ)) β

∫ z̄

0

G(z′) dz′ = 0, (E.1)

and the rearranged match creation condition:

H(z̄, θ) = 0 ⇒ ρ

q(θ)
− (1− η) β

∫ z̄

0

G(z′) dz′ = 0, (E.2)

where G(·) is the log-normal cumulative distribution function with density g(·).

Subsequently, we study the three-equation system given by the rearranged match separation

condition (E.1), the match creation condition (E.2), and the retailer-household market clearing

condition (18), i.e.,

L(p, z̄, θ) =
f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
l − χεµ

p
= 0.
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Assume F,H, and L are C1 and, at a solution (p∗, z̄∗, θ∗), the partial derivatives satisfy:

Fp = 1 > 0, Fz̄ = −1 + (1− ηf(θ)) β G(z̄) < 0, Fθ = −η q(θ)1+ξ β

∫ z̄

0

G(z′) dz′ < 0;

Hz̄ = −(1− η) β G(z̄) < 0, Hθ =
ρ θξ−1

q(θ) (1 + θξ)
> 0;

Lp =
χεµ

p2
> 0, Lz̄ =

ϕ [(ln z̄ − γ) /σ] f(θ) l

z̄ σ (1−G(z̄) + f(θ)G(z̄))2
> 0, Lθ =

(1−G(z̄))G(z̄) q(θ)1+ξ l

(1−G(z̄) + f(θ)G(z̄))2
> 0,

and take l > 0, µ > 0, χ > 0, p > 0.

Consider the Jacobian with respect to (p, z̄, θ),

J =
∂(F,H,L)
∂(p, z̄, θ)

=


Fp Fz̄ Fθ

0 Hz̄ Hθ

Lp Lz̄ Lθ

 .

At any solution (p∗, z̄∗, θ∗),

det J = Fp︸︷︷︸
>0

(Hz̄Lθ −HθLz̄)︸ ︷︷ ︸
<0

+ Lp︸︷︷︸
>0

(Fz̄Hθ − FθHz̄)︸ ︷︷ ︸
<0

< 0,

because Hz̄ < 0 < Hθ and Lz̄,Lθ > 0 give the first bracket < 0, while Fz̄ < 0 and Fθ < 0 with

Hz̄ < 0 < Hθ give the second bracket < 0. Thus J is invertible and, by the Implicit Function

Theorem, a solution is locally unique.

To obtain existence and global uniqueness, we reduce the system to a single equation in z̄.

Since Fp > 0, for every (z̄, θ) there is a unique p = λ(z̄, θ) solving F = 0, with:

λz̄ = −
Fz̄

Fp

> 0, λθ = −
Fθ

Fp

> 0.

Likewise, since Hz̄ < 0 < Hθ, there is a unique θ = h(z̄) solving H = 0 locally, with h′(z̄) =

−Hz̄/Hθ > 0. Define the scalar function:

Λ(z̄) := L (λ(z̄, h(z̄)), z̄, h(z̄)) .

By the chain rule and the signs above,

Λ′(z̄) = Lp︸︷︷︸
>0

 λz̄︸︷︷︸
>0

+ λθ︸︷︷︸
>0

h′(z̄)︸︷︷︸
>0

+ Lz̄︸︷︷︸
>0

+ Lθ︸︷︷︸
>0

h′(z̄)︸︷︷︸
>0

> 0,
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so Λ is strictly increasing on any interval where λ and h are defined.

Now, we bracket a root. As z̄ → 0+, G(z̄)→ 0 and L→ −χεµ/p < 0, so Λ(z̄) < 0 for small z̄.

As z̄ → +∞, G(z̄) → 1, so the first term of L, i.e., [f(θ)G(z̄)/ (1−G(z̄) + f(θ)G(z̄))] l, tends

to l. Moreover,

λz̄ = −Fz̄ = 1− (1− ηf(θ)) β G(z̄) ≥ 1− β > 0,

because G(z̄) ≤ 1 and 1 − ηf(θ) ≤ 1. Hence λ(z̄, h(z̄)) grows at least linearly in z̄, so p =

λ(z̄, h(z̄)) → +∞ and the second term χεµ/p → 0. Therefore Λ(z̄) → l > 0 as z̄ → +∞.

By continuity and strict monotonicity of Λ, there exists a unique z̄∗ with Λ(z̄∗) = 0. Setting

θ∗ = h(z̄∗) and p∗ = λ(z̄∗, θ∗) then solves the original system.

Consequently, a steady state (p∗, z̄∗, θ∗) exists and is globally unique over the relevant domain,

and at that point the Jacobian is non-singular.

E.2. Proof of Proposition 2

Recall from Appendix E.1 that the rearranged match separation condition is:

F(z̄, θ; p) : p = z̄ − (1− ηf(θ)) β I(z̄),

and the rearranged match creation condition is:

H(z̄, θ) :
ρ

q(θ)
= (1− η) β I(z̄),

where

I(z̄) ≡
∫ z̄

0

G(z′) dz′,

and G(·) denotes the log-normal cumulative distribution function with density g(·).

Property 1. From H, we obtain:

q(z̄) = q(θ(z̄)) =
ρ

(1− η)β I(z̄)
∈ (0, 1], (E.3)

which uniquely determines θ(z̄) because q is continuous and strictly decreasing in θ. Given that

f(θ) = θ q(θ) and f(θ)ξ + q(θ)ξ = 1, this yields:

f(z̄) =
(
1− q(z̄)ξ

) 1
ξ , (E.4)
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with f(z̄) ∈ [0, 1). Substituting into F defines:

p(z̄) = z̄ − (1− ηf(z̄)) β I(z̄). (E.5)

Using Iz̄(z̄) = G(z̄), qz̄(z̄) = − (q(z̄)/I(z̄))G(z̄), and the identity f(θ)ξ+q(θ)ξ = 1, differentiating

Equation (E.4) leads to:

fz̄(z̄) =
(
1− f(z̄)ξ

)
f(z̄)1−ξ G(z̄)

I(z̄)
.

Subsequently, differentiating Equation (E.5) and performing a short algebraic rearrangement —

rewriting p(z̄) = z̄ − βI(z̄) + ηβf(z̄)I(z̄) and collecting terms in f(z̄) and fz̄(z̄)— yields:

dp

dz̄
= 1− βG(z̄) + ηβ G(z̄) f(z̄)1−ξ. (E.6)

Since G(z̄) ∈ (0, 1) and f(z̄)1−ξ ≥ 0, it follows that dp/dz̄ > 1 − β > 0. Hence p(z̄) is strictly

increasing, continuously differentiable, and therefore invertible. This establishes the existence,

uniqueness, and C1 regularity of the mapping p 7→ z̄(p), and thus of p 7→ csss (p) = csss (z̄(p)). The

minimal admissible z̄ is determined by I(z̄min) = ρ/[(1 − η)β], at which point q(z̄min) = 1 and

f(z̄min) = 0.

Property 2. At z̄min, Equation (E.5) yields pmin = z̄min − ρ/(1 − η), while Equation (17)

gives csss (z̄min) = 0. As z̄ → +∞, we have I(z̄) → +∞, implying q(z̄) → 0 and f(z̄) → 1 by

Equations (E.3) and (E.4), and G(z̄) → 1. Consequently, csss (z̄) → l. From Equation (E.6),

dp/dz̄ → 1− β + ηβ > 0, and thus p→ +∞.

Property 3. Differentiating Equation (17) with respect to z̄ and defining D(z̄) ≡ 1−G(z̄)+

f(z̄)G(z̄) yields:
dcsss
dz̄

=
f(z̄)g(z̄) +G(z̄) (1−G(z̄)) fz̄(z̄)

D(z̄)2
l.

Combining this expression with dp/dz̄ from Equation (E.6) gives:

dcsss
dp

=
f(z̄)g(z̄) +G(z̄) (1−G(z̄)) fz̄(z̄)

D(z̄)2 (1− βG(z̄) + ηβ G(z̄) f(z̄)1−ξ)
l > 0.

Moreover, as z̄ → +∞, we have f(z̄)→ 1, fz̄(z̄)→ 0, D(z̄)→ 1, and dp/dz̄ → 1−β+ηβ. Hence,

dcsss
dp
∼ g(z̄)

1− β + ηβ
l → 0, (E.7)

since g(z̄)→ 0.

Property 4. Let Gm ≡ G(z̄min) and C ≡ ρ/[(1 − η)β]. A first-order expansion of H around
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z̄min yields:

I(z̄) = C +Gm(z̄ − z̄min) + o(z̄ − z̄min),

and hence

q(z̄) =
C

I(z̄)
= 1− Gm

C
(z̄ − z̄min) + o(z̄ − z̄min).

Since f(z̄)ξ = 1− q(z̄)ξ = ξ (Gm/C) (z̄ − z̄min) + o(z̄ − z̄min), we obtain the local approximation:

f(z̄) ∼
(
ξGm

C

) 1
ξ

(z̄ − z̄min)
1
ξ . (E.8)

Combining this with Equation (E.5) and noting that I ≈ C gives:

p− pmin ∼ (1− βGm) (z̄ − z̄min) + ηβ C f(z̄). (E.9)

If ξ ∈ (0, 1), the first term in Equation (E.9) dominates. Using Equations (E.8) and (E.9)

together with the first-order approximation of csss ,

csss ≈ l
Gm

1−Gm

f(z̄),

we obtain:

csss (p) ∼
l Gm (ξGm/C)

1
ξ

(1−Gm) (1− βGm)
1
ξ

(p− pmin)
1
ξ ,

which is locally convex.

If ξ ≥ 1, the second term in Equation (E.9) dominates (or ties when ξ = 1), yielding a locally

linear aggregate supply. In particular, if ξ > 1,

csss (p) ∼
l Gm

(1−Gm) ηβ C
(p− pmin);

if ξ = 1,

csss (p) ∼
l G2

m

(1−Gm)C [1− βGm(1− η)]
(p− pmin).

Lastly, from Equation (E.7), as z̄ → +∞, we have:

dcsss
dp
≈ κ g(z̄),

where κ = l/(1−β+ ηβ) > 0. Since the log-normal density g is unimodal and strictly decreasing

in the upper tail, it follows that for sufficiently large z̄ (equivalently, large p), dcsss /dp is strictly

decreasing. Hence, d2csss /dp2 < 0.
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E.3. Slope and Curvature of Match Separation and Creation Schedules

Define:

I(z̄) ≡
∫ z̄

0

G(z′) dz′,

where G(·) is the log-normal cumulative distribution function with strictly positive, continuous

density g(·). Its derivatives are given by:

Iz̄(z̄) = G(z̄) ∈ (0, 1), Iz̄z̄(z̄) = g(z̄) > 0.

It is also useful to record the following first and second derivatives of f(θ) and q(θ) with

respect to θ, which will be invoked repeatedly throughout the Appendix:

fθ(θ) = θ−ξ−1
(
1 + θ−ξ

)− 1
ξ
−1

> 0, fθθ(θ) = −(1 + ξ) θ−ξ−2
(
1 + θ−ξ

)− 1
ξ
−2

< 0,

qθ(θ) = −θξ−1
(
1 + θξ

)− 1
ξ
−1

< 0, qθθ(θ) =
(
1 + θξ

)− 1
ξ
−1

θξ−21− ξ + 2θξ

1 + θξ
.

In particular, q(θ) is strictly convex for all θ > 0 whenever ξ ∈ (0, 1].

Match separation schedule. Using the rearranged match separation condition (E.1), by

the Implicit Function Theorem, we have:

dθ

dz̄
= −Fz̄

Fθ

=
β (1− ηf(θ))G(z̄)− 1

β η fθ(θ) I(z̄)
.

Since β ∈ (0, 1), f(θ) ∈ [0, 1), and G(z̄) < 1,

β(1− ηf(θ))G(z̄) < 1,

so the numerator of dθ/dz̄ is strictly negative while the denominator is strictly positive. Hence,

dθ/dz̄ < 0.

Differentiating once more gives:

d2θ

dz̄2
= −

[
Fz̄z̄ + 2Fz̄θ

dθ

dz̄
+ Fθθ

(
dθ

dz̄

)2
]
/Fθ,

where the partial derivatives are:

Fz̄z̄ = β(1− ηf(θ))g(z̄) > 0, Fz̄θ = −βηfθ(θ)G(z̄) < 0,

Fθθ = −βηfθθ(θ)I(z̄) > 0, Fθ = −βηfθ(θ)I(z̄) < 0.
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Since dθ/dz̄ < 0, each term inside the bracketed sum in the numerator is strictly positive, while

the denominator is negative. Thus, d2θ/dz̄2 > 0, and the match separation schedule is strictly

decreasing and strictly convex in (z̄, θ).

Match creation schedule. Recall from Appendix E.2 that the rearranged match creation

condition is:

H(z̄, θ) =
ρ

q(θ)
− (1− η)β I(z̄) = 0.

From q(θ) = (1 + θξ)−1/ξ, we obtain the closed-form expression for θ(z̄):

θ(z̄) =

{[
(1− η)β

ρ
I(z̄)

]ξ
− 1

} 1
ξ

,

which is well-defined on the interior domain:

I(z̄) >
ρ

(1− η)β
,

or, equivalently, z̄ ∈ [z̄min,+∞), where z̄min is given by Equation (19) in the main text. Differ-

entiating the closed form yields:

dθ

dz̄
=

[
(1− η)β

ρ

]ξ
I(z̄)ξ−1

{[
(1− η)β

ρ

]ξ
I(z̄)ξ − 1

} 1
ξ
−1

G(z̄) > 0.

For curvature, write θ(z̄) = h (I(z̄)) with:

h(I) =

{[
(1− η)β

ρ

]ξ
Iξ − 1

} 1
ξ

.

Since Iz̄(z̄) = G(z̄) and Iz̄z̄(z̄) = g(z̄), we obtain:

d2θ

dz̄2
=

[
(1− η)β

ρ

]ξ
I(z̄)ξ−2 θ(z̄)1−2ξ

[
I(z̄) g(z̄) θ(z̄)ξ − (ξ − 1) G(z̄)2

]
.

The prefactor is strictly positive, so the sign of d2θ/dz̄2 is governed by the (second) bracketed

term. If ξ ∈ (0, 1], the bracketed term is strictly positive for all interior z̄, implying d2θ/dz̄2 > 0.

If ξ > 1, the curvature is positive whenever

I(z̄) g(z̄) θ(z̄)ξ ≥ (ξ − 1)G(z̄)2.

Note that as z̄ → +∞, we have g(z̄) → 0 and G(z̄) → 1. In the far upper tail, this causes the

left-hand side to eventually fall below the right-hand side, at which point the schedule becomes
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locally concave. By contrast, on ranges where g(z̄) remains sufficiently large and G(z̄) is bounded

away from 1, the inequality holds, implying convexity.

E.4. Proof of Comparative Statics in Table 1

We revisit the three-equation system defined in Appendix E.1. Let x := (p, z̄, θ)⊤ solve:

G(x;µ, l, γ) =


F(p, z̄, θ; γ)

H(z̄, θ; γ)

L(p, z̄, θ;µ, l, γ)

 = 0,

and assume F,H,L ∈ C1.12 Evaluating all partial derivatives at the steady state and adopting

the sign pattern outlined in Appendix E.1,

Fp > 0, Fz̄ < 0, Fθ < 0; Hz̄ < 0, Hθ > 0; Lp > 0, Lz̄ > 0, Lθ > 0,

the Jacobian with respect to x is given by:

J := Gx =


Fp Fz̄ Fθ

0 Hz̄ Hθ

Lp Lz̄ Lθ

 ,

hence J is non-singular by the Implicit Function Theorem.

Comparative statics with respect to µ and l. Since only L depends directly on µ and l,

Gµ = (0, 0,Lµ)
⊤, Lµ = −χε

p
< 0;

Gl = (0, 0,Ll)
⊤, Ll =

f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
> 0,

by the Implicit Function Theorem,

xκ = −J−1Gκ, κ ∈ {µ, l},

and Cramer’s rule yields:

pκ = −(Fz̄Hθ − FθHz̄) Lκ

det J
, z̄κ =

(FpHθ) Lκ

det J
, θκ = −(FpHz̄) Lκ

det J
.

12Since the household’s preference parameter for consuming goods, χ, enters the system in the same way as the
money supply parameter, µ (through the aggregate demand function (16)), the comparative statics with respect
to χ are identical to those for µ. We therefore omit the proof for brevity.
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Given that:

det J = Fp (Hz̄Lθ −HθLz̄)+Lp (Fz̄Hθ − FθHz̄) < 0, Fz̄Hθ−FθHz̄ < 0, FpHθ > 0, FpHz̄ < 0,

we obtain:

pµ > 0, z̄µ > 0, θµ > 0; pl < 0, z̄l < 0, θl < 0.

For the other variables of interest, it is straightforward to verify that their comparative statics

with respect to µ and l are as follows:

cµ = Lz̄ z̄µ + Lθ θµ > 0, rµ = η pµ + ηρ θµ > 0,
∂ (l − c)

∂µ
= −cµ < 0;

cl = −Lp pl > 0, rl = η pl + ηρ θl < 0,
∂ (l − c)

∂l
=

1−G(z̄)

1−G(z̄) + f(θ)G(z̄)
− Lz̄ z̄l − Lθ θl > 0.

Comparative statics with respect to γ, holding z̄ fixed. We focus on a short-run horizon

in which producers’ reservation transportation cost z̄ is fixed by long-term freight contracts, i.e.,

z̄γ = 0. Differentiating the three-equation system while treating z̄ as constant, we obtain:

Fγ = − (1− ηf(θ)) β
1

σ

∫ z̄

0

ϕ

(
ln z′ − γ

σ

)
dz′ < 0,

Hγ = (1− η) β
1

σ

∫ z̄

0

ϕ

(
ln z′ − γ

σ

)
dz′ > 0,

Lγ = − f(θ) l

(1−G(z̄) + f(θ)G(z̄))2
1

σ
ϕ

(
ln z̄ − γ

σ

)
< 0,

and recall Hθ > 0, Lp > 0, Lθ > 0. From H(z̄, θ; γ) = 0 with z̄γ = 0:

Hθ θγ +Hγ = 0 ⇒ θγ = −Hγ

Hθ

< 0.

From L(p, z̄, θ;µ, l, γ) = 0 with z̄γ = 0:

Lp pγ + Lθ θγ + Lγ = 0 ⇒ pγ = −Lθ θγ + Lγ

Lp

> 0,

because Lθ > 0, θγ < 0, Lγ < 0, so the numerator Lθ θγ + Lγ is negative, and Lp > 0.

Equivalently, we can solve the system (H,F) for (θγ, pγ). This yields the same θγ < 0 and,

pγ =
−Fθθγ − Fγ

Fp

.

To ensure consistency with the L-based expression at the steady state, as Fp > 0, a sufficient
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condition for the F-based numerator to be positive is:

−Fγ ≥ Fθθγ = −FθHγ

Hθ

.

For the other variables of interest, the comparative statics of consumption c and spare capacity

l − c with respect to γ can be verified directly:

cγ = −Lp pγ < 0,
∂ (l − c)

∂γ
= −cγ > 0.

As for the wholesale price r, differentiating Equation (9) yields:

rγ = η (pγ + ρ θγ) .

Using the rearranged match separation condition (E.1),

p = z̄ − (1− ηf(θ)) βI(z̄), I(z̄) =

∫ z̄

0

G(z′) dz′,

with z̄γ = 0 we get:

pγ = −β [(1− ηf(θ)) Iγ(z̄)− η I(z̄) fθ(θ) θγ] , Iγ(z̄) :=
∂I(z̄)

∂γ
< 0.

Next, from the rearranged match creation condition (E.2),

ρ

q(θ)
= (1− η)βI(z̄) ⇒ ρ = (1− η)βI(z̄) q(θ),

and differentiating H(z̄, θ; γ) = 0 with z̄γ = 0 gives:

Hθ θγ +Hγ = 0 ⇒ θγ = −Hγ

Hθ

=
(1− η)β Iγ(z̄)

ρ (−qθ(θ)/q(θ)2)
.

Given that f(θ) = θ q(θ), fθ(θ) = q(θ)1+ξ, and qθ(θ) = −θξ−1q(θ)1+ξ, we have:

θγ =
(1− η)β Iγ(z̄)

ρ θξ−1q(θ)ξ−1
< 0.

Combine the pieces:

pγ + ρ θγ = −β (1− ηf(θ)) Iγ(z̄) + θγ [βηI(z̄) fθ(θ) + ρ]

= −β (1− ηf(θ)) Iγ(z̄) + θγ βI(z̄) q(θ)
(
1− η + ηq(θ)ξ

)
= βIγ(z̄)

[
− (1− ηf(θ)) +

1− η + ηq(θ)ξ

θξ−1q(θ)ξ−1

]
,
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where in the second line we used ρ = (1 − η)βI(z̄)q(θ) and fθ(θ) = q(θ)1+ξ, and in the third

line we substituted the expression for θγ and canceled ρ. Using f(θ) = θq(θ) and the identity

f(θ)ξ + q(θ)ξ = 1, a short algebraic rearrangement of the bracketed term yields:

− (1− ηf(θ)) +
1− η + ηq(θ)ξ

θξ−1q(θ)ξ−1
=

1− f(θ)ξ−1

θξ−1q(θ)ξ−1
.

Therefore, the closed form of rγ is given by:

rγ = η (pγ + ρ θγ) = ηβ Iγ(z̄)
1− f(θ)ξ−1

θξ−1q(θ)ξ−1
.

With Iγ(z̄) < 0 and θξ−1q(θ)ξ−1 > 0 when θ ∈ (0,+∞) (i.e., at an interior solution), we have:

sign(rγ) =


+ if ξ ∈ (0, 1),

0 if ξ = 1,

− if ξ > 1.

E.5. Convergence Dynamics

Next, we explore the convergence dynamics of our model from the initial steady state to

the new steady state after unexpected and permanent shocks to aggregate demand, productive

capacity, and the supply chain.

The dynamics of our model involve the evolution of three key endogenous variables —the

number of matched producers (xM,t), reservation transportation cost (z̄t), and product market

tightness (θt)— following each exogenous shock.

Three equations govern these variables:

xM,t+1 =
(
1 + θ−ξ

t

)− 1
ξ
Φ

(
ln z̄t − γ

σ

)
+

[
1−

(
1 + θ−ξ

t

)− 1
ξ

]
Φ

(
ln z̄t − γ

σ

)
xM,t, (E.10)

χεµ

xM,t l
− z̄t +

[
1− η

(
1 + θ−ξ

t

)− 1
ξ

]
β

∫ z̄t

0

Φ

(
ln z′ − γ

σ

)
dz′ = 0, (E.11)

ρ
(
1 + θξt

) 1
ξ − (1− η) β

∫ z̄t

0

Φ

(
ln z′ − γ

σ

)
dz′ = 0, (E.12)

where Φ(·) is the standard normal cumulative distribution function. The other variables of

interest, as listed in Table 1, are essentially functions of xM,t, z̄t, and θt.

To analyze the convergence dynamics, we first compute the initial and new steady states of the
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model before and after a change in the respective parameter. This requires setting xM,t+1 = xM,t

and solving Equations (E.10), (E.11), and (E.12) simultaneously. We then assume the system

starts at the initial steady state and examine the rate of convergence to the new steady state

after each shock of interest. Lastly, we study whether the convergence is monotonic.

We calibrate the model at a weekly frequency using U.S. data, so that four periods in the

theoretical model correspond roughly to one lag in the monthly SVAR. The baseline parameter

values, which are standard in the literature, are reported in Table E.1. In particular, following

Fernández-Villaverde et al. (2024), we set the producer’s bargaining power, η, to 0.5, implying

an equal split of the total surplus from matching. We also set σ = 2 to yield a steady-state

spare capacity of 0.17. This value corresponds to the average spare capacity rate of 17% among

the top five U.S. trading partners —Mexico, Canada, China, Germany, and Japan— during the

pre-pandemic period 2016–2019, weighted by U.S. goods imports from each country in 2016. The

import-weighted average spare capacity rate is estimated using Equation (23) in the main text,

with data sources provided in Appendix F. Finally, the number of matched producers in the first

iteration (xM,1) is initialized at its steady-state value.

Table E.1: Baseline Calibration

Parameter Description Value
η Bargaining power of producers 0.5
ρ Fixed search cost 0.5
χ Taste for consuming goods 1
ε Elasticity of substitution between c and m/p 2
µ Nominal money supply 10
l Productive capacity 1
β Discount factor 0.999
γ Scale parameter of G(·) 1
σ Shape parameter of G(·) 2
ξ Elasticity of substitution between xU and iU 2

E.5.1. An Adverse Shock to Aggregate Demand

We first consider an adverse shock to aggregate demand, represented either by a 5% decrease in

the money supply µ (from 10 to 9.5) or by a 5% decrease in the preference for consuming goods
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χ (from 1 to 0.95). Tables E.2 and E.3 report the resulting convergence dynamics. Figures E.1

and E.2 illustrate the paths of consumption (equivalently, output) and price. In both scenarios,

convergence to the new steady state is rapid, requiring only three iterations, because the model

lacks a state variable, such as capital, that would generate persistence. The convergence dynamics

are monotonic.

Table E.2: Convergence Dynamics: An Adverse Shock to Aggregate Demand (µ = 10→ 9.5)

Iteration

# Matched Consumption Price Reservation Product Wholesale Spare
Producers (or Output) Transportation Market Price Capacity

Cost Tightness
xM c p z̄ θ r l − c

Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8206 0.8206 11.5773 17.1049 11.1775 17.1355 0.1794
2 0.8219 0.8219 11.5584 17.2839 11.3250 17.2524 0.1781
3 0.8217 0.8217 11.5617 17.2518 11.2986 17.2314 0.1783
New Steady State 0.8217 0.8217 11.5612 17.2567 11.3026 17.2346 0.1783

Notes. The values of the endogenous variables at the two steady states are obtained by setting xM,t+1 = xM,t and
solving Equations (E.10), (E.11), and (E.12) simultaneously. In this calculation, the parameter µ is set to 10 in
the initial steady state and reduced to 9.5 in the new steady state (a 5% decrease). For the first iteration, xM,1

is initialized at its steady-state value while µ is decreased to 9.5.
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Figure E.1: Convergence Dynamics of Consumption and Price: An Adverse Shock to Aggregate
Demand (µ = 10→ 9.5)

Notes. The iteration numbers are marked on the corresponding dots.
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Table E.3: Convergence Dynamics: An Adverse Shock to Aggregate Demand (χ = 1→ 0.95)

Iteration

# Matched Consumption Price Reservation Product Wholesale Spare
Producers (or Output) Transportation Market Price Capacity

Cost Tightness
xM c p z̄ θ r l − c

Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8128 0.8128 11.1038 16.1385 10.3850 16.2174 0.1872
2 0.8156 0.8156 11.0655 16.4846 10.6680 16.4420 0.1844
3 0.8151 0.8151 11.0726 16.4202 10.6153 16.4002 0.1849
New Steady State 0.8152 0.8152 11.0715 16.4301 10.6234 16.4067 0.1848

Notes. The values of the endogenous variables at the two steady states are obtained by setting xM,t+1 = xM,t

and solving Equations (E.10), (E.11), and (E.12) jointly. In this process, the parameter χ equals 1 in the initial
steady state and is reduced to 0.95 (a 5% decrease) in the new steady state. For the first iteration, xM,1 is set to
its steady-state value, while χ is lowered to 0.95.
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Figure E.2: Convergence Dynamics of Consumption and Price: An Adverse Shock to Aggregate
Demand (χ = 1→ 0.95)

Notes. The iteration numbers are marked on the corresponding dots.
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E.5.2. An Adverse Shock to Productive Capacity

Next, we examine a 5% reduction in the producers’ fixed-factor endowment l from 1 to 0.95. As

shown in Table E.4 and Figure E.3, convergence to the new steady state is rapid, requiring only

three iterations, and the adjustment remains monotonic.

Table E.4: Convergence Dynamics: An Adverse Shock to Productive Capacity (l = 1→ 0.95)

Iteration

# Matched Consumption Price Reservation Product Wholesale Spare
Producers (or Output) Transportation Market Price Capacity

Cost Tightness
xM c p z̄ θ r l − c

Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8355 0.7937 12.5989 19.2144 12.9300 19.1392 0.1645
2 0.8343 0.7925 12.6176 19.0229 12.7697 19.0126 0.1657
3 0.8345 0.7927 12.6144 19.0547 12.7964 19.0337 0.1655
New Steady State 0.8344 0.7927 12.6149 19.0502 12.7925 19.0307 0.1656

Notes. The values of the endogenous variables at the two steady states are obtained by setting xM,t+1 = xM,t and
solving Equations (E.10), (E.11), and (E.12) simultaneously. In this process, the parameter l is 1 in the initial
steady state and 0.95 in the new one (a 5% decrease). For the first iteration, xM,1 is set to its initial steady-state
value, and l is reduced to 0.95.
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Figure E.3: Convergence Dynamics of Consumption and Price: An Adverse Shock to Productive
Capacity (l = 1→ 0.95)

Notes. The iteration numbers are marked on the corresponding dots.
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E.5.3. An Adverse Shock to the Supply Chain

Lastly, we consider a 5% increase in the scale parameter of transportation costs, γ, from 1 to

1.05. As shown in Table E.5 and Figure E.4, the system converges to the new steady state within

three iterations, and, as with the demand and capacity shocks, the adjustment is monotonic.

Table E.5: Convergence Dynamics: An Adverse Shock to the Supply Chain (γ = 1→ 1.05)

Iteration

# Matched Consumption Price Reservation Product Wholesale Spare
Producers (or Output) Transportation Market Price Capacity

Cost Tightness
xM c p z̄ θ r l − c

Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8208 0.8208 12.1834 18.0045 11.7737 18.0374 0.1792
2 0.8221 0.8221 12.1640 18.1875 11.9245 18.1569 0.1779
3 0.8219 0.8219 12.1675 18.1547 11.8974 18.1354 0.1781
New Steady State 0.8219 0.8219 12.1669 18.1596 11.9015 18.1387 0.1781

Notes. The values of the endogenous variables at the two steady states are obtained by setting xM,t+1 = xM,t and
solving Equations (E.10), (E.11), and (E.12) simultaneously. In this process, the parameter γ is set to 1 in the
initial steady state and adjusted to 1.05 in the new steady state (i.e., a 5% increase). For the first iteration, xM,1

is set to its initial steady-state value, and γ is increased to 1.05.
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Figure E.4: Convergence Dynamics of Consumption and Price: An Adverse Shock to the Supply
Chain (γ = 1→ 1.05)

Notes. The iteration numbers are marked on the corresponding dots.
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F. External Data Sources for Baseline Estimation
Table F.1 lists the external data sources used in the baseline SVAR estimation in Section 4,

together with any adjustments applied. Below, we provide further details on the construction of

spare capacity and product market tightness. The data used for robustness checks are described

in subsequent appendices.

Spare capacity. In the main text, we define spare capacity as an import-weighted average of

capacity utilization shortfalls across the top five U.S. trading partners (Mexico, Canada, China,

Germany, and Japan). To implement this measure, we first construct monthly industrial produc-

tion (IP) indices from official month-over-month growth rates, chaining forward from January

2016 and normalizing the starting value to 100. For Mexico and Japan, monthly capacity uti-

lization rates are available and used as reported, except that Japan’s index is rescaled so that its

2020 average equals 100 percent. For Canada, China, and Germany, where capacity utilization is

reported only quarterly, we interpolate to monthly frequency using the Chow–Lin method (Chow

and Lin, 1971) with the chained monthly IP series as indicators. We then apply fixed weights

based on each country’s share of U.S. imports in 2016 to obtain the aggregate spare capacity se-

ries used in estimation. We seasonally adjust the resulting series using the X-13ARIMA-SEATS

algorithm provided by the U.S. Census Bureau.

Product market tightness. Tightness is defined as the ratio of U.S. manufacturers’ new

orders to the import-weighted value of spare capacity. To construct this variable empirically,

we deflate the nominal series on U.S. manufacturers’ new orders using the producer price index

(PPI) for total manufacturing (manually seasonally adjusted), thereby expressing it in millions

of constant 2005 U.S. dollars. The denominator, import-weighted spare capacity in U.S. dollar

terms, is derived from country-level IP (converted into constant 2005 U.S. dollars using World

Bank benchmarks) and capacity utilization rates, with the same interpolation procedures applied

where necessary. These country-level series are aggregated using 2016 U.S. import shares as

weights, and we seasonally adjust the final series. The resulting ratio provides the empirical

measure of product market tightness used in the baseline SVAR estimation.
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Table F.1: External Data Sources for Baseline Estimation

Variable Mnemonic Source Notes on Construction/Adjustment
U.S. Variables
Real PCE PCEC96 U.S. Bureau of Economic Analysis Raw series obtained directly from FRED.
PCE chain-type price index PCEPI U.S. Bureau of Economic Analysis Raw series obtained directly from FRED.
Imports of goods: Mexico IMPMX U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: Canada IMPCA U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: China IMPCH U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: Germany IMPGE U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: Japan IMPJP U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Total manufacturers’ new orders AMTMNO U.S. Census Bureau Raw series obtained directly from FRED.
PPI: total manufacturing PCUOMFGOMFG U.S. Bureau of Labor Statistics Seasonally adjusted by authors (X-13ARIMA-SEATS).
Import price index: all commodities IR U.S. Bureau of Labor Statistics Seasonally adjusted by authors (X-13ARIMA-SEATS).
Variables for Top U.S. Trading Partners
Capacity utilization rate: Mexico N/A National Institute of Statistics and Geography Official monthly series..
Capacity utilization rate: Canada N/A Statistics Canada Quarterly series interpolated to monthly frequency using IP.
Capacity utilization rate: China N/A National Bureau of Statistics of China Quarterly series interpolated to monthly frequency using IP.
Capacity utilization rate: Germany N/A European Commission Quarterly series interpolated to monthly frequency using IP.
Capacity utilization rate: Japan N/A Ministry of Economy, Trade and Industry Official monthly series.
IP MoM growth: Mexico N/A National Institute of Statistics and Geography Monthly series from official source.
IP MoM growth: Canada N/A Statistics Canada Monthly series from official source.
IP MoM growth: China N/A National Bureau of Statistics of China Monthly series from official source.
IP MoM growth: Germany N/A Federal Statistical Office Monthly series from official source.
IP MoM growth: Japan N/A Ministry of Economy, Trade and Industry Monthly series from official source.
IP: Mexico N/A World Bank Annual series from World Development Indicators.
IP: Canada N/A World Bank Annual series from World Development Indicators.
IP: China N/A World Bank Annual series from World Development Indicators.
IP: Germany N/A World Bank Annual series from World Development Indicators.
IP: Japan N/A World Bank Annual series from World Development Indicators.
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G. Robustness of Baseline Results

G.1. Prior Robustness

This appendix shows that the main conclusions from our baseline SVAR model remain robust

when we use the prior-robust SVAR approach of Giacomini and Kitagawa (2021). This approach

removes the need to specify a prior for the structural parameter based on the reduced-form

parameter, the source of the asymptotic disagreement between Bayesian and frequentist inference.

It does so by developing a class of priors that keeps a singular prior for the reduced-form parameter

while allowing arbitrary conditional priors for the structural parameters, given the reduced-form

parameter. This method strengthens the robustness of our SVAR analysis and ensures that our

conclusions do not hinge on specific prior choices.

In practice, we apply their Algorithm 1 to approximate the set of posterior means and the

associated robust credible regions for the IRFs of the selected endogenous variables in response

to each structural shock. We make two modifications to Algorithm 1. First, in Step 2, to draw

the orthonormal Q’s subject to Restrictions 1, 2, and 3, we use the QR decomposition method as

in Arias et al. (2018) rather than the original linear projection approach. Both methods deliver

comparable distributions of Q and similar computational costs. Second, we replace Step 3 of

Algorithm 1 with Step 3′ of Algorithm 2 to approximate the lower and upper bounds of the

prior robust posterior means and the corresponding robust credible regions. These adjustments

improve the precision and applicability of the procedure in our setting and yield more reliable

approximations of posterior means and credible regions for the IRFs.

In Figures G.1-G.3, the solid lines show the point-wise posterior medians, while the shaded

areas display the 68% equal-tailed point-wise posterior probability bands. These bands are based

on the baseline estimation sample from Section 4 in the main text. Dotted curves plot the set

of prior-robust posterior means, and dashed-dotted curves indicate the associated 68% robust

credible regions. All results are computed using 1,000 independent draws of the reduced-form

parameters and 100,000 orthogonal matrix draws for each reduced-form parameter.
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Figure G.1: IRFs to an Adverse Aggregate Demand Shock: Prior Robustness

Notes. IRFs to a one-standard-deviation adverse aggregate demand shock estimated using the prior-robust SVAR
method proposed by Giacomini and Kitagawa (2021).
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Figure G.2: IRFs to an Adverse Productive Capacity Shock: Prior Robustness

Notes. IRFs to a one-standard-deviation adverse productive capacity shock estimated using the prior-robust SVAR
method proposed by Giacomini and Kitagawa (2021).
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Figure G.3: IRFs to an Adverse Supply Chain Shock: Prior Robustness

Notes. IRFs to a one-standard-deviation adverse supply chain shock estimated using the prior-robust SVAR
method proposed by Giacomini and Kitagawa (2021).

G.2. Price Levels vs. Inflation Rates in the SVAR

Next, we examine whether our results depend on using price levels rather than inflation rates.13

Starting from the baseline SVAR, we replace the PCE chain-type price index and the import

price index with their monthly inflation rates using log differences, leaving the variables, priors,

identification (sign and zero restrictions), and lag length unchanged. Let πt denote inflation.

For any horizon k, the implied response of the log price level equals the cumulative sum of the

inflation IRFs, IRF∆ln p(k) =
∑k

j=0 IRFπ(j), so the inflation and level specifications are directly

comparable.

Figures G.4-G.6 illustrate this comparison. For both PCE and import prices, the cumulated

inflation responses (orange) closely track the corresponding price-level IRFs from the levels SVAR

(gray) across horizons, with similar impact, hump shape, and reversion. Figures G.7-G.9 further

show that real-side responses (real PCE, spare capacity, product market tightness, and ACR)

remain qualitatively unchanged relative to the baseline: same signs, similar peak timing, and

comparable persistence. Thus, moving from price levels to inflation does not alter our results.
13We use the levels specification in the baseline because our theoretical framework in Section 3 delivers sign

predictions for the price level (a one-off increase rather than a permanent change in inflation).
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Next, we compare FEVDs across the two specifications. Figure G.10 reports those from the

inflation-based SVAR. Relative to the price-level specification in Figure 10, for PCE inflation the

supply chain disturbance accounts for the largest share of the forecast error variance at medium

to long horizons in both models, with demand and capacity shocks playing smaller roles. For

import price inflation, all three shocks contribute roughly equally, with demand shocks marginally

more important. For real PCE, spare capacity, and product market tightness, either demand or

capacity shocks dominate at short to medium horizons in both specifications, while the supply

chain contribution remains moderate but rises gradually with the horizon. For the ACR, the

supply chain shock is the primary driver throughout. Overall, the ordering and magnitudes of

contributions are robust to whether the model is estimated in levels or in inflation rates.

Finally, the inflation responses are consistent with canonical DSGE evidence. For instance,

Smets and Wouters (2007) show that a positive demand shock raises output and inflation simul-

taneously (Figure 2), while a positive productivity shock raises output and temporarily lowers

inflation (Figure 7). Our adverse demand and capacity shocks generate the mirror image, and

the short-run magnitude of the PCE inflation response in our data is comparable to theirs.
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Figure G.4: Price-Level vs. Cumulated-Inflation IRFs: Adverse Aggregate Demand Shock

Notes. Price-level (gray) and cumulated inflation (orange) IRFs for PCE and import prices after an adverse
aggregate demand shock.
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Figure G.5: Price-Level vs. Cumulated-Inflation IRFs: Adverse Productive Capacity Shock

Notes. Price-level (gray) and cumulated inflation (orange) IRFs for PCE and import prices after an adverse
productive capacity shock.
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Figure G.6: Price-Level vs. Cumulated-Inflation IRFs: Adverse Supply Chain Shock

Notes. Price-level (gray) and cumulated inflation (orange) IRFs for PCE and import prices after an adverse supply
chain shock.
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Figure G.7: IRFs to an Adverse Aggregate Demand Shock: PCE and Import Price Inflation

Notes. IRFs to a one-standard-deviation adverse aggregate demand shock using the baseline SVAR specification,
except that the PCE chain-type price index and the import price index are replaced with their monthly inflation
rates (log differences).
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Figure G.8: IRFs to an Adverse Productive Capacity Shock: PCE and Import Price Inflation

Notes. IRFs to a one-standard-deviation adverse productive capacity shock using the baseline SVAR specification,
except that the PCE chain-type price index and the import price index are replaced with their monthly inflation
rates (log differences).
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Figure G.9: IRFs to an Adverse Supply Chain Shock: PCE and Import Price Inflation

Notes. IRFs to a one-standard-deviation adverse supply chain shock using the baseline SVAR specification, except
that the PCE chain-type price index and the import price index are replaced with their monthly inflation rates
(log differences).
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Figure G.10: FEVDs from the SVAR: PCE and Import Price Inflation

Notes. Each line reports the posterior-median share of the forecast error variance of an endogenous variable that
is attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the PCE chain-type price index and the import price
index are replaced with their monthly inflation rates (log differences).
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G.3. Invertibility Under an Expanded Information Set

This appendix assesses whether the baseline six-variable SVAR omits forecast-relevant infor-

mation that could undermine invertibility.14 In the SVAR context, non-invertibility arises when

the model’s information set is too limited, so structural shocks cannot be expressed as linear

combinations of past reduced-form innovations, and the identified shocks may conflate omitted

disturbances (Fernández-Villaverde et al., 2007). To address this concern, we enlarge the infor-

mation set to include additional macroeconomic and cost-push indicators and re-estimate the

model, while maintaining the baseline identification on the original block.

The augmented specification adds five endogenous variables —real PCE of services, the PCE

services price index, the West Texas Intermediate (WTI) spot price, the effective federal funds

rate, and average hourly earnings— yielding an eleven-variable SVAR.15 Real services PCE and

the PCE services price index capture potential reallocation between goods and services that may

confound the aggregate demand block. The WTI spot price accounts for oil shocks that affect

import costs and domestic prices. The federal funds rate controls for endogenous monetary policy

responses. Average hourly earnings capture wage-driven cost-push pressures not fully reflected in

price indices. Together, these additions create a richer information set that addresses the most

likely sources of omitted forecast-relevant information.

We keep the sample, lag length, deterministic terms, and priors identical to the baseline and

re-identify the same three shocks —aggregate demand, productive capacity, and supply chain—

using the original sign and zero restrictions on the baseline block at horizon k = 1.16

Figures G.11–G.13 present the IRFs from the baseline and augmented SVARs. Three results

stand out. First, for demand and capacity shocks, the IRFs remain largely invariant across

specifications in both shape and magnitude, showing that the baseline six-variable system already

spans the forecast-relevant information for these two shock blocks. Second, for the supply chain

disturbance, the responses of the PCE and import price indices become smaller and less precisely

estimated once services activity and prices, oil prices, the policy rate, and wages are added. Third,
14We thank an anonymous referee for suggesting this check.
15All additional series used in this appendix are retrieved from FRED with the following mnemonics:

DGDSRX1 (real PCE of goods), PCESC96 (real PCE of services), DGDSRG3M086SBEA (PCE goods price index),
DSERRG3M086SBEA (PCE services price index), WTISPLC (WTI spot price), FEDFUNDS (federal funds rate), and
CES0500000003 (average hourly earnings). All series are seasonally adjusted except for the federal funds rate.

16All identification restrictions are imposed on the baseline variables; the added series are left unrestricted with
respect to the three identified shocks.
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the ACR behaves similarly across specifications for demand and capacity shocks, but its response

to a supply chain shock is attenuated in the augmented system.

The attenuation of supply chain price responses is a mechanical result of expanding the

information set: variation that the smaller system could allocate to the “supply chain” shock

is reassigned to explicit cost-push and policy channels once additional variables enter the SVAR.

Nonetheless, the augmented model supports the baseline six-variable SVAR results.
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Figure G.11: IRFs to an Adverse Aggregate Demand Shock: Baseline vs. Augmented
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Figure G.12: IRFs to an Adverse Productive Capacity Shock: Baseline vs. Augmented
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Figure G.13: IRFs to an Adverse Supply Chain Shock: Baseline vs. Augmented

Finally, as shown in Figures G.14–G.16, replacing real aggregate PCE and the PCE price

index with their goods components (while holding the other variables fixed) and comparing this

system to an augmented one that includes the services block, oil prices, the policy rate, and wages

leads to the same broad conclusion. The augmented specification supports the conclusion that

we have invertibility.

Months
0 6 12 18 24

%

-1

-0.5

0

0.5
Real PCE: Goods

Months
0 6 12 18 24

%

-0.4

-0.2

0

0.2
PCE Price: Goods

Months
0 6 12 18 24

p
.p
.

-0.2

0

0.2

0.4

0.6

0.8
Spare Capacity

Months
0 6 12 18 24

%

-3

-2

-1

0

1
Product Market Tightness

Months
0 6 12 18 24

%

-0.6

-0.4

-0.2

0

0.2

0.4
Import Price

Posterior Medians
(Baseline)
68% Posterior Prob.
Bands (Baseline)

Posterior Medians
(Augmented)
68% Posterior Prob.
Bands (Augmented)

Months
0 6 12 18 24

p
.p
.

-0.4

-0.2

0

0.2

0.4
ACR

Figure G.14: IRFs to an Adverse Goods Demand Shock: Goods-Focused vs. Augmented
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Figure G.15: IRFs to an Adverse Productive Capacity Shock: Goods-Focused vs. Augmented
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Figure G.16: IRFs to an Adverse Supply Chain Shock: Goods-Focused vs. Augmented

G.4. Nonlinear Transmission by Shock Size

Research on production networks (e.g., Baqaee and Farhi, 2019, 2022) shows that shock prop-

agation can be nonlinear, particularly for large disturbances. To assess whether the transmission

mechanisms of the three identified shocks —aggregate demand, productive capacity, and supply

chain— depend on shock magnitude, we develop a nonlinear LP framework. This test is especially

relevant here, given the intrinsic nonlinearities in aggregate demand and supply curves, as well
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as in the match creation and separation conditions studied in Proposition 2 and Appendix E.3.

Let st denote the identified aggregate demand, productive capacity, or supply chain shock at

time t. For each posterior draw i = 1, . . . , N from the baseline Bayesian SVAR, we compute a

draw-specific threshold c(i) = median(|s(i)t |) and define indicators:

Small
(i)
t = 1

(
|s(i)t | ≤ c(i)

)
, Large

(i)
t = 1− Small

(i)
t .

For each horizon k = 0, 1, . . . , K, we estimate:

yt+k = αk + λkt+ β
(i)
k

(
s
(i)
t Small

(i)
t

)
+ γ

(i)
k

(
s
(i)
t Large

(i)
t

)
+ u

(i)
k,t+k, (G.1)

where yt+k is the k-period-ahead value of an endogenous variable in the Baseline SVAR, αk is a

horizon-specific constant, t is a deterministic time trend, and u
(i)
k,t+k is the k-step-ahead forecast

error for draw i. To reduce noise at longer horizons, we estimate Equation (G.1) using the SLP

method (Barnichon and Brownlees, 2019), applying Newey–West standard errors (Newey and

West, 1987) to obtain inference for β
(i)
k and γ

(i)
k .17

To aid interpretation, we scale coefficients by the within-draw conditional standard deviations:

σ
(i)
small = sd

(
s
(i)
t

∣∣∣ Small
(i)
t = 1

)
, σ

(i)
large = sd

(
s
(i)
t

∣∣∣Large(i)t = 1
)
.

The shock-size-specific IRFs are:

IRF
(i)
small(k) = β

(i)
k σ

(i)
small, IRF

(i)
large(k) = γ

(i)
k σ

(i)
large.

We report pointwise posterior medians with 68% credible intervals across i for each k.

This procedure tests whether large shocks propagate differently from small ones, as expected

under nonlinear network amplification, while incorporating uncertainty in shock identification.

Because the sample includes the COVID-19 pandemic, which plausibly represents the largest

shock in the period, this analysis ensures that the documented dynamics are not driven by a

single exceptional episode.

Figures G.17-G.19 plot the IRFs to adverse aggregate demand, productive capacity, and supply

chain shocks, respectively, with each shock split into large and small categories. The median

responses to large shocks differ in both magnitude and profile from those to small shocks, but

the posterior probability bands overlap across most horizons. We read this as evidence that
17See Appendix B for details on SLP.
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nonlinearities may matter, especially for large shocks, while our main conclusions remain intact:

the transmission mechanism is qualitatively stable across shock sizes, and the macroeconomic

effects of the identified shocks are not driven by moderate nonlinear amplification.
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Figure G.17: Nonlinear Transmission of Aggregate Demand Shocks by Size

Notes. IRFs to small and large adverse aggregate demand shocks, with shock size classified by the median
magnitude of the identified shock series from the baseline SVAR.
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Figure G.18: Nonlinear Transmission of Productive Capacity Shocks by Size

Notes. IRFs to small and large adverse productive capacity shocks, with shock size classified by the median
magnitude of the identified shocks from the baseline SVAR.
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Figure G.19: Nonlinear Transmission of Supply Chain Shocks by Size

Notes. IRFs to small and large adverse supply chain shocks, with shock size classified by the median magnitude
of the identified shocks from the baseline SVAR.

G.5. Different Lag Structures

To examine whether our results depend on the number of lags, we re-estimate the baseline

SVAR with four and six lags, holding the sample, priors, identification, and other settings fixed.

Three findings stand out. First, median IRFs are highly similar across lag specifications: as

shown in Figures G.20–G.25, there are no sign reversals, shifts in peak timing, or changes in

overall dynamics. Second, uncertainty bands widen only modestly with more lags, mainly in

the first 6–8 months; at medium horizons they overlap substantially, and long-horizon differences

remain minor. Third, the key narratives discussed in Section 4 hold unchanged: an adverse

supply chain disturbance still dampens real activity and product market tightness, raises spare

capacity, and pushes prices upward.

We retain two lags in the baseline specification for parsimony and robustness. With monthly

data and a relatively small SVAR, additional lags quickly enlarge the parameter space and reduce

estimation efficiency without adding empirical content. Since IRFs and qualitative inference are

insensitive to lag length, L = 2 captures the essential dynamics while avoiding overfitting.
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Figure G.20: IRFs to an Adverse Aggregate Demand Shock: Four Lags
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Figure G.21: IRFs to an Adverse Productive Capacity Shock: Four Lags
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Figure G.22: IRFs to an Adverse Supply Chain Shock: Four Lags
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Figure G.23: IRFs to an Adverse Aggregate Demand Shock: Six Lags
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Figure G.24: IRFs to an Adverse Productive Capacity Shock: Six Lags
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Figure G.25: IRFs to an Adverse Supply Chain Shock: Six Lags
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G.6. Dropping the Linear Trend

We re-estimate the baseline SVAR with an intercept only, holding the sample, lag length,

priors, shock normalization, and identification (sign/zero restrictions) fixed. This checks whether

allowing for a linear drift in level variables affects impulse responses or variance shares.

Figures G.26–G.28 show the IRFs under the constant-only specification. For the demand

shock, the results closely track the baseline: real PCE falls on impact and mean reverts; spare

capacity rises and then fades; the price level dips slightly before returning toward zero; and the

responses of product market tightness, import prices, and ACR remain small and short lived.

Posterior probability bands coincide across the two specifications, and any level shifts are minor.
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Figure G.26: IRFs to an Adverse Aggregate Demand Shock: Constant Only

For the capacity shock, activity responses retain their familiar hump–shaped dynamics with

gradual reversion. The price–level response is nearly identical at short and medium horizons;

if anything, removing the trend induces a slightly more negative drift at long horizons, but the

change remains within posterior uncertainty.

For the supply chain shock, the qualitative pattern is unchanged across specifications: the

price level rises on impact and stays elevated at medium horizons; real activity eases, and spare

capacity increases; import prices and ACR jump contemporaneously and then recede. Relative to

the baseline, the constant–only specification delivers very similar peak timing and magnitudes for

real and nominal variables, with broadly overlapping uncertainty bands. If there is any detectable
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change, it is a mild increase in medium–horizon persistence of the price–level response, but its

shape and economic interpretation stay the same.
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Figure G.27: IRFs to an Adverse Productive Capacity Shock: Constant Only
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Figure G.28: IRFs to an Adverse Supply Chain Shock: Constant Only

As shown in Figure G.29, the FEVDs remain stable across specifications. Supply chain shocks

continue to be the dominant source of PCE price variation at medium horizons, while capacity

shocks still account for most of the variance in spare capacity and product market tightness.
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Dropping the trend shifts a modest share of variance toward supply chain shocks for real PCE

and import prices at longer horizons, but the ranking of contributions is unchanged.
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Figure G.29: FEVDs from the SVAR: Constant Only

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the linear time trend is replaced with an intercept only.

Taken together, allowing for a linear deterministic trend has limited influence on our conclu-

sions. Because prices are modeled in levels, we retain the baseline with a linear trend to absorb

secular drift and treat the constant-only specification as a robustness check that confirms the main

narratives (demand and capacity dynamics and the prominent role of supply chain disturbances

for inflation) are effectively unchanged.

G.7. Alternative Proxies for Activity and Prices

This appendix evaluates robustness to alternative measures of activity and prices. We con-

sider three alternatives: (i) real PCE of goods and the PCE goods price index (FRED mnemon-

ics DGDSRX1, DGDSRG3M086SBEA); (ii) IP and the PPI for final-demand finished goods (INDPRO,

WPSFD49207); and (iii) real GDP and the GDP price deflator (GDPC1, GDPDEF). For (iii), the

monthly real GDP series is constructed via Chow–Lin interpolation of the quarterly series using

IP as the monthly indicator, while the monthly GDP deflator is obtained via Chow–Lin interpo-

lation of the quarterly series using both CPI (CPIAUCSL) and PPI (WPSFD49207) as indicators,
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following Chow and Lin (1971). All series are seasonally adjusted.

Goods PCE and prices. Replacing aggregate PCE and its chain-type price index with

goods-only measures leaves the dynamics essentially unchanged. Goods demand shocks resemble

the baseline: activity falls on impact and prices dip slightly before returning toward zero (Figure

G.30). Production capacity and supply chain shocks are very similar to the baseline case (Figures

G.31-G.32).

The FEVDs likewise preserve the baseline ranking: supply chain shocks account for a material

share of price variance at medium horizons, while capacity shocks dominate activity variance after

the first few months (Figure G.33). The HD in Figure G.34 also highlights the drivers of PCE

goods inflation discussed in Section 4, with the exception that productive capacity shocks played

only a minimal role in pushing up inflation from late 2020 to mid 2021.
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Figure G.30: IRFs to an Adverse Goods Demand Shock: Goods PCE and Prices
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Figure G.31: IRFs to an Adverse Productive Capacity Shock: Goods PCE and Prices
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Figure G.32: IRFs to an Adverse Supply Chain Shock: Goods PCE and Prices
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Figure G.33: FEVDs from the SVAR: Goods PCE and Prices

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that real PCE and the PCE price index are replaced by goods
PCE and the PCE goods price index.
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Figure G.34: HD of U.S. HoH PCE Goods Inflation

Notes. The solid line plots U.S. PCE goods inflation, measured as the HoH growth rate of the PCE goods price
index, against the left axis (%). The shaded bars report the cumulative historical contributions of goods demand,
productive capacity, and supply chain shocks, plotted against the right axis (p.p.). The HD is computed from
an identified Bayesian SVAR with the baseline specification, except that real PCE and the PCE price index are
replaced with goods PCE and the PCE goods price index.
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IP and PPI. Using IP and the finished-goods PPI slightly amplifies the price pass-through

of a supply chain disturbance relative to the baseline: the PPI rises more and for longer (Figure

G.37). Responses to demand and capacity shocks otherwise align with the baseline. The demand

shock reduces activity on impact and induces, at most, a mild and short-lived disinflation. The

capacity shock lowers activity, reduces spare capacity, and triggers a price jump on impact; in

subsequent months, activity rebounds, spare capacity briefly retraces before declining again, and

inflationary pressures continue to build (Figures G.35 and G.36).

The FEVDs reveal a slightly different pattern: while supply chain shocks still explain a mate-

rial share of PPI variation across horizons, capacity shocks account for most of the medium-

horizon variation in both activity and prices (Figure G.38), with demand shocks remaining

concentrated at short horizons. Consistently, Figure G.39 shows that capacity shocks are the

predominant driver of producer price inflation in the post-pandemic period, while demand and

supply chain shocks play only minor roles.
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Figure G.35: IRFs to an Adverse Goods Demand Shock: IP and PPI
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Figure G.36: IRFs to an Adverse Productive Capacity Shock: IP and PPI
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Figure G.37: IRFs to an Adverse Supply Chain Shock: IP and PPI
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Figure G.38: FEVDs from the SVAR: IP and PPI

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that real PCE and the PCE price index are replaced by IP
and the PPI.
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Figure G.39: HD of U.S. HoH Producer Price Inflation

Notes. The solid line plots U.S. producer price inflation, measured as the HoH growth rate of the PPI for final-
demand finished goods, against the left axis (%). The shaded bars show the corresponding cumulative historical
contributions of goods demand, productive capacity, and supply chain shocks, plotted against the right axis (p.p.).
The HD is computed from an identified Bayesian SVAR with the same specification as the baseline, except that
real PCE and the PCE price index are replaced by IP and the PPI.
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Real GDP and GDP deflator. When we use the Chow–Lin–interpolated GDP and de-

flator, the median IRFs track the baseline closely but display wider posterior bands, reflecting

the extra measurement uncertainty introduced by temporal disaggregation (Figures G.40–G.42).

Demand shocks lower activity on impact, while the deflator response is attenuated and gradually

mean reverts at longer horizons. Capacity shocks reproduce the familiar real-side dynamics and

associated price responses, and supply chain shocks raise the deflator with hump-shaped pass

through. The FEVDs preserve the baseline ranking: capacity shocks dominate real activity at

medium horizons, supply chain shocks account for most price variance, and demand shocks re-

main concentrated at short horizons (Figure G.43). The HD in Figure G.44 likewise shows no

major differences from the attribution in Figure 11.
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Figure G.40: IRFs to an Adverse Aggregate Demand Shock: Real GDP and GDP Deflator

Taking stock. In sum, four observations stand out. First, the macroeconomic impacts of

demand and capacity shocks are robust across alternative measures of output and prices. Second,

supply chain price effects are at least as strong, and often stronger, when producer- or GDP-based

price indices are used, underscoring the role of logistics bottlenecks as an independent source

of price variation. Third, the FEVDs consistently show that (i) capacity shocks dominate real

activity at medium horizons, (ii) supply chain shocks account for a sizable share of price variance,

and (iii) demand shocks remain concentrated at short horizons. This pattern holds in both the

baseline FEVDs and all three alternatives. Finally, across different proxies for inflation, a large
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share of the post-pandemic surge in U.S. inflation can be attributed to supply-side disruptions,

with the relative importance of capacity versus supply chain shocks varying by measure.
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Figure G.41: IRFs to an Adverse Productive Capacity Shock: Real GDP and GDP Deflator
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Figure G.42: IRFs to an Adverse Supply Chain Shock: Real GDP and GDP Deflator
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Figure G.43: FEVDs from the SVAR: Real GDP and GDP Deflator

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that real PCE and the PCE price index are replaced by real
GDP and the GDP price deflator.
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Figure G.44: HD of U.S. HoH GDP Deflator Inflation

Notes. The solid line plots U.S. GDP deflator inflation, measured as the HoH growth rate of the GDP deflator,
against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of aggregate
demand, productive capacity, and supply chain shocks, plotted against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that real PCE and the PCE
price index are replaced with real GDP and the GDP deflator.
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H. Identification Gains From Supply Chain Proxies
This appendix documents the identification gains —both in the magnitude of price responses

to supply chain disturbances and in the precision of the posterior estimates— that arise when

our congestion indices are used as measures of global supply chain conditions in the SVAR.

As a starting point, Appendix H.1 estimates the causal effects of supply chain shocks when

no proxy is included, providing a natural lower bound against which to evaluate the gains from

adding proxies and imposing domain-knowledge-based identification restrictions. Appendix H.2

then includes the ACR index but removes the zero restrictions on its responses to aggregate

demand and productive capacity shocks at horizon k = 1, showing that much of the improvement

comes simply from incorporating our congestion indices.

Appendices H.3 and H.4 show that using the ACT index or a targeted ACR index for major

Trans-Pacific ports central to the U.S. goods supply chain delivers results that are quantitatively

similar to those from the ACR baseline. By contrast, Appendices H.5-H.7 examine HARPEX,

the New York Fed’s GSCPI (Benigno et al., 2022), and the SDI from Smirnyagin and Tsyvinski

(2022) and Liu et al. (2024) as alternative proxies, revealing sizable discrepancies that materially

alter the estimated macroeconomic effects of supply chain disturbances.

Finally, Appendix H.8 replaces the PCE chain-type price index with a goods-only measure,

confirming that the main conclusions remain intact.

H.1. No Proxy

We re-estimate the SVAR without a direct proxy for global supply chain conditions and com-

pare it with the baseline specification that includes ACR under zero restrictions on its responses

to aggregate demand and productive capacity shocks at horizon k = 1 (Restrictions 1-3). The

price IRFs in Figure H.1 clearly illustrate the loss of identification: without a proxy, the median

responses of the PCE chain-type price index and the import price index to an adverse supply

chain shock are smaller, and the 68% and 90% posterior bands overlap zero across most horizons.

By contrast, with ACR and zero restrictions (Figure 9 in the main text), the median responses are

larger, the bands are tighter, and they remain above zero for longer horizons, yielding a sharper

inflationary signal from supply chain disturbances.

The FEVDs in Figure H.2 convey the same pattern. In the no-proxy case, a larger share of

the forecast error variance of PCE prices is attributed to aggregate demand, with only a modest
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role for the supply chain shock. In the baseline with ACR and zero restrictions (Figure 10), the

supply chain contribution rises at medium horizons, which shows that ACR isolates the relevant

supply side component that would otherwise be absorbed by aggregate demand.

The HD of U.S. headline PCE inflation in Figure H.3 reinforces this point. Without a proxy,

the 2021-22 inflation surge is attributed mainly to demand and capacity shocks, and the supply

chain shock plays a limited role. In the baseline (Figure 11), the supply chain contribution grows

visibly larger over the same period, consistent with congestion in maritime logistics and showing

that ACR provides cleaner identification of supply-chain-driven price pressures.

Taken together, the no-proxy specification serves as a natural lower bound. Introducing

ACR and imposing the k = 1 zero restrictions, motivated by industrial practice, increases the

magnitude and precision of price responses and shifts the variance and historical contributions

toward the supply chain shock, in line with the mechanism emphasized in our framework.
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Figure H.1: IRFs to an Adverse Supply Chain Shock: No Proxy

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that the ACR index is omitted.
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Figure H.2: FEVDs from the SVAR: No Proxy

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the ACR index is omitted.
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Figure H.3: HD of U.S. HoH Headline PCE Inflation: No Proxy

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type
price index, against the left axis (%). The shaded bars show the cumulative historical contributions of aggregate
demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed from an
identified Bayesian SVAR identical to the baseline, except that the ACR index is omitted.
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H.2. ACR Without Zero Restrictions

Next, we include the ACR index in the SVAR but remove the zero restrictions on its responses

to aggregate demand and productive capacity shocks at horizon k = 1. Figure H.4 shows that,

relative to the no-proxy case, adding ACR raises the median response of the PCE chain-type

price index to an adverse supply chain shock, with narrower 68% and 90% posterior bands that

more often lie above zero. However, the responses remain less precisely estimated than in the

baseline with ACR and zero restrictions (Figure 9 in the main text), where the bands tighten

further and the inflationary signal is clearer.

Figures H.5 and H.6 point to the same conclusion. With the ACR index, the supply chain

shock explains a larger share of the forecast error variance of PCE prices and contributes more to

the 2021–22 inflation surge than in the no-proxy case. Yet, in both dimensions, its role remains

smaller than in the baseline (Figures 10 and 11), where the timing and magnitude more closely

align with observed congestion in maritime logistics.

In sum, including ACR alone accounts for most of the identification gains (both in the size

of price responses and the precision of estimates), while the zero restrictions provide additional

tightening that sharpens the inflationary signal from supply chain shocks.
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Figure H.4: IRFs to an Adverse Supply Chain Shock: ACR Without Zero Restrictions

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that the zero restrictions on the ACR index are omitted.
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Figure H.5: FEVDs from the SVAR: ACR Without Zero Restrictions

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the zero restrictions on the ACR index are omitted.
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Figure H.6: HD of U.S. HoH Headline PCE Inflation: ACR Without Zero Restrictions

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the zero restrictions on
the ACR index are omitted.
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H.3. ACT

As introduced in Appendix C.3, we define an alternative port congestion metric, the ACT

index. This index measures the average number of hours a container ship waits in a port’s

anchorage area before docking at a berth, weighted by each port’s share of ship visits. Figure H.7

plots the ACT index alongside the ACR index at a monthly frequency. The two series co-move

closely and display similar dynamics, except during 2016–2017, when infrastructure upgrades

worldwide appear to have focused on the extensive margin (reducing the share of delayed ships)

with limited progress on the intensive margin (reducing average delays).18

Given the high correlation between ACR and ACT, it is unsurprising that, as shown in Figures

H.8–H.10, using the ACT index in the causality assessment yields results that are quantitatively

similar to those in the ACR baseline.
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Figure H.7: ACR vs. ACT

Notes. The ACR and the ACT over the sample period January 2016-March 2025 (correlation ≈ 0.86). The ACR
is expressed in percentage terms and shown on the left axis, while the ACT is plotted on the right axis in hours.
Both indices are seasonally adjusted.

18In 2016–2017, capacity expansions (new berths, deeper channels, larger cranes) lowered the likelihood of delays
at the extensive margin. By contrast, operational reforms needed to shorten average waiting times at the intensive
margin were slower to materialize.
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Figure H.8: IRFs to an Adverse Supply Chain Shock: ACT

Notes. The IRFs to a one–standard–deviation adverse supply chain shock are estimated using the baseline SVAR
specification in Section 4, except that the ACT index replaces the ACR index as the proxy for global supply chain
conditions.
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Figure H.9: FEVDs from the SVAR: ACT

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the ACT index replaces the ACR index as the proxy for
global supply chain conditions.
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Figure H.10: HD of U.S. HoH Headline PCE Inflation: ACT

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the ACT index replaces
the ACR index as the proxy for global supply chain conditions.

H.4. Trans-Pacific ACR

In addition to the global ACR index, we construct a targeted ACR index for the major

container ports along the Trans-Pacific route, one of the busiest shipping corridors linking East

Asia (primarily China) and the U.S., handling nearly 30 million TEUs annually.19 We use this

index in the SVAR as a robustness check, since congestion along the Trans-Pacific route may exert

a disproportionately large influence on the U.S. economy. Shocks identified with this targeted

measure may thus reflect supply chain disturbances more specific to the U.S. than those captured

by the global ACR index.20

Figure H.11 plots the Trans-Pacific ACR index alongside the global ACR index at a monthly

frequency. While the two series track each other closely over the sample, the targeted index

displays larger short-term swings, particularly during the pandemic.

The estimated effects are similar to those in the ACR baseline. Figure H.12 shows that a

supply chain shock generates stagflationary pressures, raises spare capacity, and lowers product
19The Trans-Pacific ACR index aggregates congestion at the Port of Busan in South Korea; the Ports of Hanshin

and Keihin in Japan; the Ports of Los Angeles and Long Beach in the U.S.; and the Ports of Dalian, Dongguan,
Guangzhou Harbor, Hong Kong, Kaohsiung, Ningbo-Zhoushan, Qingdao, Shenzhen, Shanghai, Tianjin, Xiamen,
and Yang Shan in China.

20Relatedly, Kilian et al. (2023) develop a monthly index of container trade volumes to and from North America.
Although this measure helps identify shocks to domestic demand and to foreign demand for U.S. manufactured
goods, it is not suitable for our purpose of identifying supply chain disturbances.
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market tightness. The median inflation responses remain sizable and broadly comparable to the

baseline, with the lower bounds of the posterior bands staying above zero within a year of the

shock. As shown in Figure H.13, supply chain shocks continue to account for the largest share of

the forecast error variance of the PCE price index at medium and long horizons, while capacity

shocks remain the dominant driver of the other endogenous variables except for the Trans-Pacific

ACR. Finally, the HD in Figure H.14 is nearly indistinguishable from that obtained with the

global ACR, indicating that the narratives in Section 4 regarding the drivers of U.S. headline

PCE inflation are robust, even when focusing specifically on congestion at Trans-Pacific ports.
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Figure H.11: Global ACR vs. Trans-Pacific ACR

Notes. The global ACR and the targeted ACR for major ports along the Trans-Pacific route over January 2016–
March 2025 (correlation ≈ 0.90). Both indices are expressed in percentage terms and seasonally adjusted.
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Figure H.12: IRFs to an Adverse Supply Chain Shock: Trans-Pacific ACR

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
described in Section 4, except that the targeted ACR index for major Trans-Pacific ports is used as the proxy for
the U.S.-specific supply chain conditions.
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Figure H.13: FEVDs from the SVAR: Trans-Pacific ACR

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
explained by each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR with the same specification as the baseline, except that the targeted ACR index for major Trans-
Pacific ports is used as the proxy for the U.S.-specific supply chain conditions.
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Figure H.14: HD of U.S. HoH Headline PCE Inflation: Trans-Pacific ACR

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type
price index, against the left axis (%). The shaded bars show the cumulative historical contributions of aggregate
demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed from
an identified Bayesian SVAR with the same specification as the baseline, except that the targeted ACR index for
major Trans-Pacific ports is used as the proxy for the U.S.-specific supply chain conditions.

H.5. HARPEX

Shipping costs offer a near-real-time read on logistics conditions and are often used to proxy

the state of the global supply chain. Within this class, HARPEX (an aggregate of container time-

charter rates across vessel sizes) captures the price of shipping capacity rather than congestion

itself, and it also enters the New York Fed’s GSCPI (Benigno et al., 2022).21 Because charter rates

adjust quickly to shifts in demand, fuel costs, and market expectations, we do not impose the

zero restrictions on HARPEX’s responses to aggregate demand and productive capacity shocks at

horizon k = 1. For context, Figure H.15 compares ACR and HARPEX; although the two series

co-move, they differ in magnitude and timing, consistent with ACR tracking port congestion and

HARPEX reflecting the price of transport services.

Figure H.16 shows that replacing ACR with HARPEX yields a more muted response of the

PCE chain-type price index to an adverse supply chain shock: the median effect is small, and

the 90% posterior band largely includes zero across horizons. Consistently, the FEVDs in Figure

H.17 attribute a larger share of the forecast error variance of PCE prices to aggregate demand at
21Finck and Tillmann (2022) also incorporate HARPEX (together with the RWI/ISL container throughput index

and the GSCPI) as endogenous variables in SVARs to capture international container shipping and global supply
chain conditions. Their identification of a global supply chain shock combines conventional sign restrictions with
narrative information (e.g., the 2011 Tōhoku earthquake, the 2021 Suez Canal blockage, and the 2022 Shanghai
backlog).
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medium horizons, with only a modest portion explained by the supply chain shock, suggesting

that HARPEX blends congestion signals with movements driven by demand and other market

forces.

The HD in Figure H.18 reinforces this conclusion. During the 2021-22 inflation surge, the

contribution from the supply chain shock is present but materially smaller than under the ACR

baseline, while demand and capacity account for a greater share. Taken together, the evidence

from impulse responses, variance decompositions, and the historical decomposition of U.S. head-

line PCE inflation indicates that HARPEX primarily reflects broader shipping market dynamics

driven by demand and costs, whereas ACR more directly isolates congestion-related pressures.
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Figure H.15: ACR vs. HARPEX

Notes. The ACR and HARPEX over the sample period January 2016-March 2025 (correlation ≈ 0.70). The ACR
is expressed in percentage terms and shown on the left axis, while HARPEX is plotted on the right axis with a
baseline value of 1,000 on January 31, 2001. The HARPEX series is published by Harper Peterson and retrieved
from the Refinitiv data platform. Both series are seasonally adjusted.
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Figure H.16: IRFs to an Adverse Supply Chain Shock: HARPEX

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that HARPEX replaces the ACR index as the proxy for global supply
chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.17: FEVDs from the SVAR: HARPEX

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that HARPEX replaces the ACR index as the proxy for global
supply chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.18: HD of U.S. HoH Headline PCE Inflation: HARPEX

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that HARPEX replaces the
ACR index as the proxy for global supply chain conditions and its responses to demand and capacity shocks are
left unrestricted at horizon k = 1.

H.6. GSCPI

The GSCPI combines cross-border transportation costs and manufacturing PMI subcompo-

nents (e.g., suppliers’ delivery times) to infer global supply chain conditions (Benigno et al.,

2022). While widely used, these inputs introduce potential measurement errors: transportation

costs fluctuate with factors unrelated to supply chain disruptions (such as shifts in fuel prices or

shipping demand), PMI indicators reflect subjective managerial assessments that may embed ex-

pectations or misperceptions, and longer delivery times can arise from production-side bottlenecks

rather than congestion in the logistics network. By contrast, our ACR index is constructed from

satellite-based vessel data and directly tracks global port congestion (a first-order manifestation

of supply chain disruptions) (Transportation Research Board Executive Committee, 2006).

Figure H.19 compares ACR and the GSCPI over 2016–2025 and shows that, although posi-

tively correlated, the two indices diverge in amplitude and timing. During the early pandemic, di

Giovanni et al. (2022) interpret the sharp rise in the GSCPI as evidence of China’s lockdown and

its later decline as reflecting partial reopenings in 2020. The ACR, however, indicates that the

lockdown did not generate congestion of a magnitude consistent with severe global disruptions,

nor did the reopenings deliver immediate relief at major ports. This contrast foreshadows the
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weaker inflation signal obtained when the GSCPI substitutes for ACR.

Figure H.20 shows that the response of the PCE chain-type price index to an adverse supply

chain shock is muted: the median effect is small, and the 90% posterior band includes zero

throughout, in contrast to the clearer response under ACR with the zero restrictions. Likewise,

the FEVDs in Figure H.21 allocate more of the variance in real PCE and in PCE and import prices

to aggregate demand at medium horizons, while the supply chain share remains comparatively

modest.

The HD in Figure H.22 corroborates this view, showing that the contribution of the supply

chain shock to the 2021-22 inflation episode is visible but materially smaller than in the ACR

baseline, with demand and capacity accounting for a larger share. Together, these diagnostics

point to a diluted imprint of supply chain disturbances when the GSCPI is used in place of ACR.
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Figure H.19: ACR vs. GSCPI

Notes. The ACR and the New York Fed’s GSCPI over January 2016–March 2025 (correlation ≈ 0.49). The ACR
is expressed in percentage terms and shown on the left axis, while the GSCPI is plotted on the right axis in
standard deviations from its historical average. The GSCPI series is retrieved from the Federal Reserve Bank of
New York. Both series are seasonally adjusted.
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Figure H.20: IRFs to an Adverse Supply Chain Shock: GSCPI

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that the GSCPI replaces the ACR index as the proxy for global supply
chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.21: FEVDs from the SVAR: GSCPI

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the GSCPI replaces the ACR index as the proxy for
global supply chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon
k = 1.
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Figure H.22: HD of U.S. HoH Headline PCE Inflation: GSCPI

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the GSCPI replaces
the ACR index as the proxy for global supply chain conditions and its responses to demand and capacity shocks
are left unrestricted at horizon k = 1.

H.7. Supply Disruptions Index (SDI)

Smirnyagin and Tsyvinski (2022) and Liu et al. (2024) construct the SDI using the S&P

Global Panjiva dataset of U.S. seaborne import records. The index tracks regular consignee-

shipper relationships on a quarterly basis and records a disruption when an otherwise active pair

becomes inactive for one quarter before resuming. From 2016 to 2025, the SDI has remained

relatively stable before the pandemic, rose in early 2020, showed renewed elevation during the

2021-22 inflation episode, and then eased thereafter (Figure H.23).

Turning to the SVAR evidence, Figure H.24 shows that when SDI replaces ACR, the responses

of the PCE chain-type price index (and likewise the import price index) to an adverse supply

chain shock are less precisely estimated: median effects are small, and the 90% posterior band

often includes zero across horizons.

Consistently, the FEVDs in Figure H.25 assign only a small share of fluctuations in PCE and

import prices to supply chain shocks at medium horizons. The HD in Figure H.26 likewise shows

that supply chain shocks made only a limited contribution to the 2021-22 inflation episode, with

demand and capacity playing larger roles. Echoing the results with the GSCPI, substituting SDI

for ACR weakens the identification of the inflationary effects of supply chain disturbances.
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Figure H.23: ACR vs. SDI

Notes. The ACR and the SDI over the sample period January 2016-March 2025 (correlation ≈ 0.45). The ACR
is expressed as a percentage and shown on the left axis, while the SDI is plotted on the right axis in percentage
points. The SDI series is retrieved from https://www.disruptions.supply (accessed August 3, 2025). Both
series are seasonally adjusted.

Months
0 6 12 18 24

%

-0.6

-0.4

-0.2

0

0.2

0.4
Real PCE: Aggregate

Months
0 6 12 18 24

%

-0.1

0

0.1

0.2

0.3

0.4
PCE Price: Aggregate

Months
0 6 12 18 24

p
.p
.

-0.5

0

0.5

1

Spare Capacity

Posterior Medians
68% Posterior
Probability Bands
90% Posterior
Probability Bands

Months
0 6 12 18 24

%

-4

-2

0

2
Product Market Tightness

Months
0 6 12 18 24

%

-0.4

-0.2

0

0.2

0.4

0.6

Import Price

Months
0 6 12 18 24

p
.p
.

-0.1

0

0.1

0.2
SDI

Figure H.24: IRFs to an Adverse Supply Chain Shock: SDI

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification in Section 4, except that the SDI replaces the ACR index as the proxy for global supply chain
conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.25: FEVDs from the SVAR: SDI

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the SDI replaces the ACR index as the proxy for global
supply chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.26: HD of U.S. HoH Headline PCE Inflation: SDI

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the SDI replaces the
ACR index as the proxy for global supply chain conditions and its responses to demand and capacity shocks are
left unrestricted at horizon k = 1.
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H.8. Goods Price Responses Across Proxies

We replicate the cross-proxy exercise in Section 4.4 using the PCE goods price index instead

of the aggregate PCE price index. Figure H.27 reports impulse responses to a one-standard-

deviation adverse supply chain shock across eight specifications: no proxy; ACR; ACR with

zero restrictions on its responses to demand and capacity shocks at horizon k = 1; ACT with

the same restrictions; Trans-Pacific ACR with the same restrictions; HARPEX; GSCPI; and

SDI. When ACR, ACT, or the Trans-Pacific ACR is combined with these zero restrictions, the

median responses are larger and more precisely estimated —posterior bands are tighter, with

the 68% interval above zero at nearly all horizons and the 90% interval largely above zero—

clearly indicating the inflationary nature of supply chain disturbances and consistent with our

theoretical predictions. In contrast, omitting a proxy or using HARPEX, GSCPI, or SDI yields

smaller responses with wider bands that generally include zero.
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Figure H.27: Goods Price Responses to an Adverse Supply Chain Shock Across Proxies

Notes. Posterior-median impulse responses of the U.S. PCE goods price index, with 68% and 90% posterior
probability bands, to a one-standard-deviation adverse supply chain shock across eight SVAR specifications: (i)
no supply chain proxy; (ii) ACR; (iii) ACR with zero restrictions at horizon k = 1 on its responses to aggregate
demand and productive capacity shocks; (iv) ACT with the same zero restrictions; (v) Trans-Pacific ACR with
the same zero restrictions; (vi) HARPEX; (vii) GSCPI; and (viii) SDI. Aside from the choice of proxy, all eight
specifications follow the baseline model in Section 4, except that real PCE and the aggregate PCE price index are
replaced by goods PCE and the PCE goods price index. The sign restrictions in Restrictions 1-3 are imposed to
identify the adverse supply chain shock in all specifications except (i), where the positive restriction on the ACR
response is omitted.
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The FEVD results in Figure H.28 show that the congestion indices, together with the zero

restrictions motivated by our domain knowledge, assign a larger share of the forecast error vari-

ance of PCE goods prices to supply chain disturbances at medium horizons. In contrast, with

alternative proxies, the attribution shifts toward aggregate demand. These patterns mirror the

aggregate-price results and highlight the identification gains from combining congestion-based

proxies with zero restrictions.
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Figure H.28: FEVD of the U.S. PCE Goods Price Index Across Proxies

Notes. Posterior-median shares of the forecast error variance of the U.S. PCE goods price index attributable to
goods demand, productive capacity, and supply chain shocks across horizons for each of the eight specifications
discussed above.

References for Appendices
Allen, T. (2014). Information Frictions in Trade. Econometrica, 82:2041–2083.

Arias, J. E., Rubio-Ramírez, J. F., and Waggoner, D. F. (2018). Inference Based on Structural
Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications.
Econometrica, 86:685–720.

Bai, X., Ma, Z., Hou, Y., Li, Y., and Yang, D. (2023). A Data-Driven Iterative Multi-Attribute
Clustering Algorithm and Its Application in Port Congestion Estimation. IEEE Transactions
on Intelligent Transportation Systems, 24:12026–12037.

Baqaee, D. and Farhi, E. (2019). The Macroeconomic Impact of Microeconomic Shocks: Beyond
Hulten’s Theorem. Econometrica, 87(4):1155–1203.

A-93



Baqaee, D. and Farhi, E. (2022). Supply and Demand in Disaggregated Keynesian Economies
With an Application to the COVID-19 Crisis. American Economic Review, 112:1397–1436.

Barnichon, R. and Brownlees, C. (2019). Impulse Response Estimation by Smooth Local Projec-
tions. Review of Economics and Statistics, 101(3):522–530.

Bauer, M. D. and Swanson, E. T. (2023). A Reassessment of Monetary Policy Surprises and
High-Frequency Identification. NBER Macroeconomics Annual, 37:87–155.

Benguria, F. (2021). The Matching and Sorting of Exporting and Importing Firms: Theory and
Evidence. Journal of International Economics, 131:103430.

Benigno, G., di Giovanni, J., Groen, J. J., and Noble, A. I. (2022). The GSCPI: A New Barometer
of Global Supply Chain Pressures. Staff Report 1017, Federal Reserve Bank of New York.

Bils, M., Chang, Y., and Kim, S.-B. (2011). Worker Heterogeneity and Endogenous Separations
in a Matching Model of Unemployment Fluctuations. American Economic Journal: Macroe-
conomics, 3:128–154.

Birant, D. and Kut, A. (2007). ST-DBSCAN: An Algorithm for Clustering Spatial–Temporal
Data. Data & Knowledge Engineering, 60:208–221.

Brancaccio, G., Kalouptsidi, M., and Papageorgiou, T. (2020). Geography, Transportation, and
Endogenous Trade Costs. Econometrica, 88(2):657–691.

Chaney, T. (2014). The Network Structure of International Trade. American Economic Review,
104(11):3600–3634.

Chow, G. C. and Lin, A.-l. (1971). Best Linear Unbiased Interpolation, Distribution, and Ex-
trapolation of Time Series by Related Series. Review of Economics and Statistics, 53:372–375.

di Giovanni, J., Ṣebnem Kalemli-Özcan, Silva, A., and Yildirim, M. A. (2022). Global Supply
Chain Pressures, International Trade, and Inflation. Working Paper 30240, National Bureau
of Economic Research.

Du, Y., Chen, Q., Lam, J. S. L., Xu, Y., and Cao, J. X. (2015). Modeling the Impacts of Tides
and the Virtual Arrival Policy in Berth Allocation. Transportation Science, 49(4):939–956.

Eaton, J. and Kortum, S. (2002). Technology, Geography, and Trade. Econometrica, 70:1741–
1779.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining (KDD-96), pages 226–231. AAAI Press.

Fernández-Villaverde, J., Mandelman, F., Yu, Y., and Zanetti, F. (2024). Search Complementar-
ities, Aggregate Fluctuations, and Fiscal Policy. Review of Economic Studies, page rdae053.

Fernández-Villaverde, J., Rubio-Ramírez, J. F., Sargent, T. J., and Watson, M. W. (2007). ABCs
(and Ds) of Understanding VARs. American Economic Review, 97(3):1021–1026.

A-94



Finck, D. and Tillmann, P. (2022). The Macroeconomic Effects of Global Supply Chain Disrup-
tions. Discussion Paper 14/2022, Bank of Finland Institute for Emerging Economies.

Fujita, S. and Ramey, G. (2012). Exogenous Versus Endogenous Separation. American Economic
Journal: Macroeconomics, 4:68–93.

Giacomini, R. and Kitagawa, T. (2021). Robust Bayesian Inference for Set‐Identified Models.
Econometrica, 89:1519–1556.

Jordà, O. (2005). Estimation and Inference of Impulse Responses by Local Projections. American
Economic Review, 95(1):161–182.

Kasahara, H. and Lapham, B. (2013). Productivity and the Decision to Import and Export:
Theory and Evidence. Journal of International Economics, 89:297–316.

Kilian, L., Nomikos, N., and Zhou, X. (2023). Container Trade and the U.S. Recovery. Interna-
tional Journal of Central Banking, 19(1):417–450.

Krolikowski, P. M. and McCallum, A. H. (2021). Goods-Market Frictions and International Trade.
Journal of International Economics, 129:103411.

Lenoir, C., Martin, J., and Mejean, I. (2022). Search Frictions in International Goods Markets.
Journal of the European Economic Association, 21(1):326–366.

Li, C., Qi, X., and Song, D. (2016). Real-Time Schedule Recovery in Liner Shipping Service With
Regular Uncertainties and Disruption Events. Transportation Research Part B: Methodological,
93:762–788.

Li, Y., Xu, S., Xia, S., Ma, Z., and Bai, X. (2025). Effective Global Maritime Supply: Determi-
nants, Dynamics, and Economic Impacts. Working paper, Tsinghua University.

Liu, E., Smirnyagin, V., and Tsyvinski, A. (2024). Supply Chain Disruptions and Supplier Capital
in U.S. Firms. Working paper, SSRN.

Melitz, J. and Toubal, F. (2014). Native Language, Spoken Language, Translation and Trade.
Journal of International Economics, 93:351–363.

Melitz, M. J. (2003). The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry
Productivity. Econometrica, 71:1695–1725.

Menzio, G. and Shi, S. (2011). Efficient Search on the Job and the Business Cycle. Journal of
Political Economy, 119:468–510.

Naudé, W. and Matthee, M. (2011). The Impact of Transport Costs on New Venture Interna-
tionalisation. Journal of International Entrepreneurship, 9:62–89.

Newey, W. K. and West, K. D. (1987). A Simple, Positive Semi-definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3):703–708.

Notteboom, T. E. (2006). The Time Factor in Liner Shipping Services. Maritime Economics &
Logistics, 8:19–39.

A-95



Rodrigue, J.-P. (2020). The Geography of Transport Systems. Routledge, 5 edition.

Smets, F. and Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A Bayesian
DSGE Approach. American Economic Review, 97(3):586–606.

Smirnyagin, V. and Tsyvinski, A. (2022). Macroeconomic and Asset Pricing Effects of Supply
Chain Disasters. Working Paper 30503, National Bureau of Economic Research.

Transportation Research Board Executive Committee (2006). Critical Issues in Transportation.
The National Academies Press.

Wong, W. F. (2022). The Round Trip Effect: Endogenous Transport Costs and International
Trade. American Economic Journal: Applied Economics, 14:127–166.

A-96


	Introduction
	Measuring the State of the Global Supply Chain
	Containerized Seaborne Trade: Some Basic Facts
	AIS Data
	A Density-Based Spatial Clustering Algorithm
	The ACR Index
	Discussion

	A Model of the Global Supply Chain
	Producers and Retailers
	The Representative Household
	Equilibrium and Steady State
	Comparative Statics

	The Causal Effects of Supply Chain Disruptions
	Empirical Framework
	Baseline Results
	Robustness Checks and Extensions
	Identification Gains From Congestion Indices

	Conclusion
	Appendices
	Background on the Containerized Shipping Industry
	Testing Short-Run Rigidity in Containerized Shipping
	A Density-Based Spatial Clustering Algorithm
	Methodology
	Illustrative Cases
	Weekly Indices of Port Congestion

	Discussion of Model Assumptions
	Proofs and Discussions Omitted from the Main Text
	Proof of Proposition 1
	Proof of Proposition 2
	Slope and Curvature of Match Separation and Creation Schedules
	Proof of Comparative Statics in Table 1
	Convergence Dynamics

	External Data Sources for Baseline Estimation
	Robustness of Baseline Results
	Prior Robustness
	Price Levels vs. Inflation Rates in the SVAR
	Invertibility Under an Expanded Information Set
	Nonlinear Transmission by Shock Size
	Different Lag Structures
	Dropping the Linear Trend
	Alternative Proxies for Activity and Prices

	Identification Gains From Supply Chain Proxies
	No Proxy
	ACR Without Zero Restrictions
	ACT
	Trans-Pacific ACR
	HARPEX
	GSCPI
	Supply Disruptions Index (SDI)
	Goods Price Responses Across Proxies

	References for Appendices

