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Abstract

We study the causal effects of global supply chain disruptions by constructing a new
index of real-time port congestion using Automatic Identification System data from
container ships and a spatial clustering algorithm. We develop a model with search
frictions between producers and retailers that links upstream production slack to
downstream supply shortages and captures output and price responses to supply chain
shocks. The co-movements of output, prices, spare capacity, and market tightness
provide novel identification restrictions. We find that demand and supply shocks
drove U.S. disinflation in 2020, while the inflation surge in 2021 was driven mainly
by supply chain shocks.
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1. Introduction

The world economy is organized around an intricate global supply chain. Any sudden and
large shock to this supply chain, such as those triggered by war, the COVID-19 pandemic, or the
Red Sea crisis, can have significant consequences for output, inflation, and economic slack.

Measuring the causal effects of a global supply chain shock is challenging for two reasons.
First, researchers need an accurate gauge of supply chain conditions, yet existing indices often
rely on shipping prices or survey data from the Purchasing Managers’ Index (PMI). Although
informative, these measures may be skewed by irrelevant factors and large measurement errors.
Ideal measurement requires precise, real-time data tracking of global flows of tradable goods.

Second, researchers need a theoretical framework that can deliver credible identification as-
sumptions for causal analysis. Global supply chain conditions respond to aggregate demand,
aggregate supply, and supply chain shocks, which can only be disentangled through theoretically
derived identification restrictions. However, no standard model captures the joint presence of
upstream economic slack and downstream supply scarcity, a combination that, as we argue later,
is crucial for distinguishing supply chain disturbances from other macroeconomic shocks.

Our paper tackles these challenges by developing (i) a new index that measures real-time
container ship congestion at major ports worldwide using high-frequency satellite data, providing
a timely and accurate indicator of the state of the global supply chain, and (ii) a novel theoretical
framework that captures the coexistence of upstream slack and downstream shortages and exam-
ines their implications for output, prices, market tightness, and spare productive capacity during
supply chain disruptions. Using identification assumptions grounded in this theory, together with
a Bayesian structural vector autoregression (SVAR), we disentangle the shocks driving our index
and quantify the dynamic causal impact of supply chain shocks on aggregate outcomes.

The importance of addressing points (i) and (ii) lies in the likelihood that the world economy
may again face major supply chain disruptions —whether from wars, geostrategic shifts, block-
ades, sanctions, or another pandemic. Far from being a postmortem of the COVID-19 pandemic,
our analysis distills important lessons for the future.

Measuring the state of the global supply chain. We assess the health of the global
supply chain by examining congestion at container ports worldwide, a well-recognized metric in

maritime economics. As early as 2006, the Transportation Research Board Executive Committee



identified congestion as a key issue for transportation and logistics, a view later reinforced by
Fan et al. (2012) and Brancaccio et al. (2024), who documented its impact on the efficiency and
reliability of global supply chains.

Container shipments are central to global trade, with roughly 60% of the total value of
seaborne trade passing through container ports (UNCTAD, 2019). This heavy reliance on con-
tainerized transport implies that even small increases in port congestion can disrupt the supply—
demand balance for tradable goods and strain the global supply chain.

Our port congestion analysis relies on real-time, high-frequency satellite data from the Auto-
matic Identification System (AIS), mandated by the International Maritime Organization (IMO).
These data allow us to track container ships with virtually no measurement error between 2016
and 2025. We measure congestion in individual ports using a machine-learning-based spatial
clustering algorithm that leverages ship positions, speeds, and headings, and we aggregate these
port-level measures to construct the first high-frequency Average Congestion Rate (ACR) index.

Our index shows that COVID-19-related port congestion began rising in the second half of
2020 and remained elevated until mid-2022. The share of delayed container ships increased from
28% to 37%, while average delay durations rose from 6 to 14 hours. Given that almost 80% of
global trade is shipped indirectly, with an average of five port stops (Ganapati et al., 2024), these
seemingly small delays imply substantial disruptions in container flows.

A model of the global supply chain. Next, we develop a model to capture imbalances
between goods supply and demand during supply chain disturbances. The model centers on
search and matching frictions between geographically separated producers and retailers, with
producers incurring transportation costs to ship goods.

Our framework is inspired by the disequilibrium literature of the 1970s (e.g., Barro and Gross-
man 1971) but is recast within the microfounded approach of Michaillat and Saez (2015, 2022)
and Ghassibe and Zanetti (2022). By distinguishing between producers and retailers and incor-
porating transportation costs, the model generates spare productive capacity in the upstream
producer-retailer market and supply shortages in the downstream retailer—household market.
Search frictions introduce trading externalities that constrain the allocative role of prices. In
this setting, trading depends on the relative numbers of retailers and producers, in addition to
standard price adjustments, a crucial mechanism during supply chain disruptions.

We model a supply chain disturbance as an unexpected increase in transportation costs.



Such cost spikes —driven by port congestion surcharges, shipping shortages, or pandemic-era
price increases (Alessandria et al., 2023; Dunn and Leibovici, 2023)— reduce the expected total
surplus from potential producer-retailer matches. Because the maximum transportation cost that
a match can bear adjusts sluggishly under fixed service contracts, the upstream producer—retailer
market slackens, generating spare productive capacity while lowering the supply of goods and
raising prices in the downstream retailer-household market.

Identification. Identification in our estimation below relies on two sources: the restrictions
derived from our model and our domain knowledge of the containerized shipping industry.

The restrictions implied by our model highlight that aggregate responses to supply chain
shocks differ clearly from those to conventional demand or supply shocks. Specifically, supply
chain shocks generate negative co-movements between output and prices, similar to traditional
supply shocks. However, unlike standard supply shocks, supply chain disturbances also lead to
both an increase in global spare capacity (as reduced shipments constrain goods flows to retailers
without affecting productive capacity) and a decrease in upstream market tightness (as retailers
are discouraged from trade while spare productive capacity rises). This combination of higher
spare capacity, lower market tightness, rising prices, and declining output enables us to uniquely
identify supply chain disturbances.

Domain knowledge tells us that port congestion is unaffected by aggregate demand or pro-
ductive capacity shocks within the first month after such shocks occur. This is due to two main
factors: (i) container ship schedules and arrivals are determined ex-ante and adjust to changes
in demand or capacity only after significant delays, driven by penalties and high switching costs,
and (ii) travel times between ports often exceed a month, making it impossible for container ships
already en route to respond to demand or capacity changes in under 30 days.!

We exploit this delayed response by imposing that the condition that the ACR index remains
unresponsive to aggregate demand or productive capacity shocks during the first month post-
impact, while allowing it to respond freely thereafter. Importantly, as we elaborate below, our
ACR index, combined with this domain knowledge identification, delivers substantial gains in
separating supply chain disturbances from other shocks. These gains arise both in the magnitude

of price responses to supply chain disturbances and in the precision of the posterior estimates,

IShipping contracts typically span over a year, with route and schedule adjustments occurring every three to
six months (Stopford, 2008; Meng et al., 2014).



especially when compared with alternative indices of global supply chain conditions.

The causal effects of supply chain disruptions. Using our identification strategy, we
estimate a Bayesian SVAR with the ACR index under zero restrictions, yielding two key findings.

First, a supply chain shock leads to a surge in spare capacity, proxied by the import-weighted
average spare capacity rate of the top five U.S. trading partners (Mexico, Canada, China, Ger-
many, and Japan), which together account for more than half of U.S. goods imports. At the
same time, product market tightness falls sharply, proxied by the imbalance between U.S. manu-
facturers’ new orders and the U.S. dollar value of the import-weighted average spare capacity of
the same trading partners. This shock also triggers a pronounced decline in U.S. real PCE and
a persistent increase in the PCE price index, consistent with recent empirical evidence (Khalil
and Weber, 2022; Alessandria et al., 2023). As predicted, productive capacity and supply chain
shocks differ sharply in their effects on spare capacity and product market tightness: spare ca-
pacity (tightness) falls (rises) after a capacity shock but rises (falls) after a supply chain shock.

Second, the historical decomposition reveals four phases of U.S. headline PCE inflation since
2020. In the first phase (2020), the sharp disinflation was driven primarily by a contraction
in aggregate demand and by a loosening of productive capacity constraints at the onset of the
pandemic. In the second phase (2021 to mid-2022), inflation surged largely due to global supply
chain disruptions. In the third phase (late 2022 to 2023), inflation eased as demand weakened,
capacity improved, and supply chains recovered. In the final phase (2024 onward), inflation reac-
celerated mildly, primarily reflecting supply chain factors, with demand and capacity continuing
to exert a modest drag. A comprehensive set of sensitivity checks confirms that our results are ro-
bust across multiple dimensions, including the choice of proxy for global supply chain conditions,
identification restrictions, model specification, and estimation method.

Related literature. Our study is related to several realms of research. As mentioned
above, our model builds on Barro and Grossman (1971), Michaillat and Saez (2015, 2022), and
Ghassibe and Zanetti (2022). It is also related to studies that focus on the effects of supply
chain disturbances on output and inflation, using measures such as spare labor capacity (Benigno
and Eggertsson, 2023), goods shortages (Bernanke and Blanchard, 2025), a quasi-kinked demand
curve for produced goods (Harding et al., 2023), and capacity constraints (Comin et al., 2023;
Merendino and Monacelli, 2025).

Furthermore, our paper is related to work showing that transportation costs are important



for international trade and economic activity (Allen and Arkolakis, 2014; Brancaccio et al., 2020;
Dunn and Leibovici, 2023), infrastructure investment (Fuchs and Wong, 2022; Brancaccio et al.,
2024), asset prices (Smirnyagin and Tsyvinski, 2022), working capital (Antras, 2023; Kim and
Shin, 2023), inflation expectations (Acharya et al., 2023; Binetti et al., 2024), the design of new
taxes and pricing rules to offset distortionary effects on the transportation network (Brancaccio
et al., 2023), the interlinks between oil shocks and trading externalities in the supply chain (Bai
and Li, 2022; Li et al., 2022), and the economic effects of supply chain disruptions during the
COVID-19 pandemic (Finck and Tillmann, 2022; Ascari et al., 2024; Finck et al., 2024).

The remainder of the paper is organized as follows. Section 2 constructs the ACR index
measuring the state of the global supply chain. Section 3 develops our theoretical model and the
identification restrictions for structural shocks. Section 4 presents the estimation results from a
Bayesian SVAR. Section 5 concludes. An appendix provides further details, and our data are

available on our website: https://globalportcongestion.github.io/blog/intro.html.

2. Measuring the State of the Global Supply Chain

This section constructs an index of global supply chain conditions by measuring congestion
at major ports using satellite data on container-ship positions, speeds, and headings. We begin
by explaining why we focus on containerized trade and by outlining key features of the industry.
We then describe our satellite data, motivate the use of port congestion as a measure of global
supply chain conditions, and present the algorithm that implements our approach. We conclude

by reporting our results and comparing them with alternative indices in the literature.

2.1. Containerized Seaborne Trade: Some Basic Facts

Containerized seaborne trade plays a central role in the global supply chain, accounting for
about 46% of all international trade.? In the U.S., container shipping carries more tonnage
(nearly one billion short tons) and value (more than 0.7 trillion dollars) than any other transport
mode, representing over 50% of U.S. trade by weight and roughly 30% by value (Bureau of
Transportation Statistics, 2021). Although some high-value items, such as computer chips, are
shipped by air, these products depend on other components, such as motherboards or hard drives,

that move by container ship.

2See Notteboom et al. (2022). Most of the remainder consists of bulk cargo (e.g., oil, grain, ore, and coal) or
specialized vessels (e.g., roll-on/roll-off ships for wheeled cargo).
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As Brancaccio et al. (2020, p.2) explain, “The transportation sector .. can be split into two
categories: those that operate on fixed itineraries, much like buses, and those that operate on
flexible routes, much like taxis. Container ships ... belong to the first group.” These fixed itineraries
center on seaports that act as hubs for freight collection and distribution. Even mild congestion at
these ports can disrupt the tight schedules of supply chains and trade flows, leading to significant
delay costs.

Before 2020, waiting times at ports were typically only a few hours. Disruptions linked to the
COVID-19 pandemic, however, produced long delays, with waiting times of 2-3 days at several
major ports and heavy financial losses.> Since nearly 80% of world trade is shipped indirectly
and the average shipment stops at five intermediate ports before reaching its final destination
(Ganapati et al., 2024), the interconnected nature of global trade greatly amplifies delays from
port congestion.*

The industry is also surprisingly concentrated. In 2022, there were only 5,589 container ships
worldwide, of which roughly 500 belonged to the larger size classes.” Hence, delays affecting even
a single large ship can have significant consequences for global trade. For instance, the MSC
Loreto, a new ultra-large container vessel, carries about 24,346 TEUs (twenty-foot equivalent
units), each with a maximum cargo of 21,600 kilograms. At full capacity, it can load up to 240
thousand tons of cargo. A historical comparison highlights the scale: perhaps the most famous
convoy of the Battle of the Atlantic during World War II, ONS 5, sailed from Liverpool to Halifax
from April 29 to May 6, 1943, and became the center of an epic battle against 43 German U-boats.
ONS 5 involved 49 merchant ships with a combined cargo capacity of roughly 219 thousand tons,
about 10% less than that of the Loreto. Any delay in the Loreto’s loading or unloading has
ramifications for tens of thousands of firms worldwide.

The escalation of port congestion during the COVID-19 pandemic was driven by multiple

shocks. Delays arose from both upstream and downstream disruptions, including mobility re-

3Buyers and sellers of goods faced lower transport efficiency, higher operating costs, demurrage and detention
charges, and difficulty meeting contractual obligations and market demand. For shippers and freight forwarders,
delays were compounded by surcharges such as the port congestion surcharge (PCS), with fees climbing up to
$1,250 per container. Given that the average value of goods in a 40-foot container —the most common type— in
2020 was about $109,000, the PCS alone represented a significant cost.

4For perspective on shipments to the U.S., it takes about 28 days to move a container from Shanghai to Los
Angeles along the Trans-Pacific route (Freightos, 2024). A typical shipment stops at the Port of Ningbo-Zhoushan
in China, Kaohsiung in Taiwan, Busan in South Korea, and Tokyo in Japan before arriving in Los Angeles.
Assuming waiting times of 2-3 days at each intermediate port, the total delay amounts to 8-12 days, even before
accounting for congestion at the origin and destination ports.

5See https://unctad.org/rmt2022 (accessed December 29, 2023).
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strictions from stay-at-home orders, port quarantine measures that reduced handling efficiency,
late truck arrivals due to highway controls, and unopened containers at inland factories where
workers were unavailable. A surge in demand for tradable goods in 2021 intensified congestion, as
shipping companies deployed additional capacity on major routes (e.g., the Trans-Pacific corridor
between East Asia and North America) and increased ship calls to meet demand (see Appendix
A and Bai et al., 2025a for further details).

In short, the state of the global supply chain reflects the effects of multiple shocks. Our
theoretical model, developed later in the paper, provides the identification assumptions needed
to separate demand shocks from supply chain shocks that affect this system. Before turning to

that model, however, we describe how our index of port congestion is constructed.

2.2. AIS Data

We use satellite data from the AIS, a real-time tracking system mandated by the IMO. In-
ternational vessels exceeding 300 gross tons must carry an AIS transceiver that broadcasts ship
information (Heiland et al., 2025). Each record includes the IMO number, timestamp, draft,
speed, heading, and geographical coordinates.® The AIS processes over 2,000 reports per minute
and updates as often as every two seconds, providing comprehensive coverage of vessel movements
worldwide from January 2016 to March 2025.” Data on ship positions, speeds, and headings allow

us to track movements within and across port zones.

2.3. A Density-Based Spatial Clustering Algorithm

The literature on maritime economics identifies port congestion as a key indicator of global
supply chain conditions (Cerdeiro and Komaromi, 2020; Karimi-Mamaghan et al., 2020; Bai
et al., 2023; Brancaccio et al., 2024). A common approach measures congestion by estimating
the probability that a vessel first moors in an anchorage area before docking at a berth (Talley,
2009; Talley and Ng, 2016; Komaromi et al., 2022). An anchorage is a location within a port
where ships lower their anchors, while a berth is a designated site where vessels moor to load and

unload cargo. In the absence of congestion, ships would proceed directly to a berth upon arrival.

6The draft measures the vertical distance from the bottom of a vessel’s keel to the water surface, indicating
how deeply the ship is submerged.

"More than 99% of international container shipments are carried by vessels above 500 gross tons. Even smaller
vessels (below 300 gross tons) usually carry AIS transceivers because of their substantial safety benefits at a
relatively low cost (about $1,000 for a basic unit). Our coverage is therefore nearly universal.



Measuring congestion, therefore, requires identifying berth and anchorage areas, a task that
previous studies have typically undertaken using nautical charts of individual ports. This ap-
proach is labor-intensive and difficult to generalize across heterogeneous global port layouts.® To
overcome these limitations, we develop a spatial clustering algorithm that accurately distinguishes
areas within ports and applies to ports with diverse morphologies.

Our algorithm identifies distinct port areas by analyzing the density of container ships’ moor-
ing points in the AIS data through two layers of clustering. The first layer detects high-density
regions (locations with many AIS observations) and treats them as potential berths or anchor-
ages. The second layer distinguishes between them using domain knowledge of vessel behavior
in port. When vessel headings are orderly and closely aligned, the area is classified as a berth;

when headings are more dispersed or irregular, it is classified as an anchorage.

(a) Headings at a Berth (b) Headings at an Anchorage

Figure 1: Information on Headings: Two Examples

Figure 1 illustrates this distinction. The left panel shows two clusters, one in orange and one in
green. Both contain many AIS observations, with bows (the thin tips of the white signs) closely
aligned —pointing left in the orange cluster and right in the green cluster— representing two
different mooring headings. Superimposing these clusters on a satellite image confirms that they

correspond to a berth. The right panel, by contrast, shows several clusters where vessel headings

8Nautical charts have three main drawbacks: (i) they are static and rarely updated, so new berths may be
missing; (ii) the vast number of ports makes manual delineation of boundaries nearly impossible; and (iii) they
do not capture with precision the heterogeneity of areas within ports. Thus, studies relying on nautical charts
usually focus on one or a few ports (Chen et al., 2016; Feng et al., 2020). Inspecting satellite images can help
identify berths with fixed locations and boundaries —for example, Appendix C.2 validates our estimates for the
geographically complex Port of Ningbo-Zhoushan, south of Shanghai. However, satellite images generally cannot
identify anchorages, whose locations and boundaries vary with weather and port conditions.



are random, with some forming a ring shape, consistent with anchorage behavior. Appendix C
provides further details on the algorithm, including pseudocode and a case study of the Port of
Ningbo-Zhoushan.

Our algorithm addresses two key challenges faced by existing clustering methods. First, it
adapts to variability in ship mooring densities across ports —arising from differences in trade
volume, vessel frequency, and geographical features— by iteratively refining clustering param-
eters for each port. Second, through its two-layer design, the algorithm distinguishes between
berths and anchorage areas even in dense mooring environments. It is also adaptable to other
applications, such as analyzing port efficiency, canal traffic, and stress at maritime choke points.
More broadly, its core mechanism, transforming domain knowledge into non-spatial attributes for
iterative clustering, provides a versatile tool for classifying clusters with specific labels in diverse
contexts (e.g., disease hotspots, urban planning, environmental monitoring).

Figure 2 shows that our algorithm accurately identifies anchorage and berth areas across
ports with diverse geographical and operational conditions. In each panel, we superimpose the
identified anchorage areas (colored red, yellow, blue, purple, pink, cyan, and orange) and berth
areas (markers of other colors) on satellite images of four major container ports: Ningbo-Zhoushan
(Panel a), Los Angeles and Long Beach (Panel b), Rotterdam (Panel ¢), and Singapore (Panel
d). Separate figures for anchorages and berths in each port are provided in Appendix C.2.

2.4. The ACR Index

Port congestion arises when ships cannot immediately load or unload cargo upon arrival at
ports and must wait in an anchorage area until a berth becomes available. For the top 50 container
ports worldwide, denoted as &, we count the number of delayed ship visits to each port p where
a ship first moors in an anchorage before docking at a berth.? These top 50 ports represent 75.6%
of total containerized trade worldwide.' We then calculate the congestion rate for each port p

by dividing the number of delayed ship visits by the total number of ship visits:

Delayed,, ,
Delayed,, ; + Undelayed,,,’

Congestion,,; = Vp € P, (1)

9A ship visit is classified as delayed if at least one AIS observation shows zero speed and coordinates within
the anchorage area —as mapped by the geographical boundaries identified by our clustering algorithm— before
the ship docks at a berth.

10Extending the index to more ports is straightforward but computationally costly.
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(a) Ningbo-Zhoushan, China (b) Los Angeles and Long Beach, U.S.

(c) Rotterdam, Netherlands (d) Singapore

Figure 2: Identification of Anchorage and Berth Areas of a Port Using Machine Learning

Note. Each panel is based on the first 50,000 AIS observations of container ships entering each of the four major
ports since January 1, 2020.

where Delayed,, and Undelayed,,; denote the number of delayed and undelayed ship visits at
port p in month ¢, respectively.!!

We choose a rate measure of port congestion over the commonly used time measure (Fuchs
and Wong, 2022; Brancaccio et al., 2024) because it is unaffected by large differences in vessel
wait times across ports. For example, in June 2022, the average anchorage wait time in Savannah,

U.S., was 186 hours, while in Shanghai, China, it was virtually zero. Moreover, the rate measure

LA vessel’s draft generally reflects its cargo load, suggesting that we could weight delays by the volume of cargo
affected. However, unlike bulk carriers or oil tankers —whose drafts fluctuate sharply between voyages as they
load only after discharging previous cargoes— container ships load and unload simultaneously, generating minimal
draft variation. As a result, weight-augmented indices would closely mirror our original congestion indices.

11



enables more reliable cross-port comparisons, as local anchorage times may reflect port size and

infrastructure conditions rather than supply chain disruptions.!?
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Figure 3: Congestion Rates for the Major Container Ports Worldwide

Notes. Heatmap of monthly congestion rates for the top ten global container ports plus the Ports of Los Angeles,
Long Beach, New York—New Jersey, and Savannah, from January 2016 to March 2025. The congestion rate for
each port is normalized and expressed as a percentage of its peak value within the sample period. Darker shades
indicate higher congestion levels, as defined in Equation (1), for the respective port in a given month.

Figure 3 shows monthly congestion rates for the top ten ports worldwide, along with the Ports
of Los Angeles, Long Beach, New York—New Jersey, and Savannah (which together handle more
than 60% of U.S. containerized imports), from January 2016 to March 2025. While we rely on
data from the top 50 ports worldwide in the analysis below, the ports in Figure 3 account for
more than 30% of global containerized seaborne trade and, thus, summarize our main findings.

Our data indicate that the onset of the COVID-19 pandemic in March 2020 had limited
immediate effects. The situation changed in the fall of 2020, when congestion rates rose across
most major ports, as reflected in the deepening shades in Figure 3 after August 2020. The
intensification continued through 2021 and early 2022, with some ports experiencing historically

high congestion levels. For example, nearly 80% of inbound ships at the Port of Los Angeles were

12Nevertheless, Appendix H.3 also constructs an index of Average Congestion Time (ACT). Consistent with
Brancaccio et al. (2024), the ACT index measures the average number of hours a container ship waits in a port’s
anchorage before docking at a berth, weighted by the relative number of ship visits to each port. Using the ACT
index in the causality assessment yields results that are quantitatively similar to those obtained with our original

ACR index.

12



unable to dock immediately upon arrival in late 2020.3

From late 2022 onward, congestion pressures gradually eased across most ports. By 2023,
chromatic intensity in the heatmap diminished sharply, indicating a normalization of shipping.
Some residual congestion persisted, however, in ports such as Shenzhen, Rotterdam, and Savan-
nah, where elevated rates continued into 2023. By early 2025, congestion levels had stabilized at
much lower levels than during the pandemic peak, though not uniformly across all ports.

Subsequently, we define the Average Congestion Rate (ACR) as the weighted average of con-
gestion rates across the top 50 container ports, where the weights correspond to the relative
number of ship visits to each port:

Delayed,, ; + Undelayed,, ,

- Congestion_, | ,
Y pea (Delayed,, , + Undelayed,, ) s Pt

ACR; = Z

pPEPR

with Congestion,,, defined in Equation (1)."
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Figure 4: ACR Index

Note. The ACR index is computed as the weighted average of congestion rates across the top 50 container ports
worldwide (as of June 15, 2022), using the relative number of ship visits as weights. The index is expressed in
percentage terms and has been seasonally adjusted.

Figure 4 plots the ACR index. Before 2018, the index declined steadily and then stabilized

13This estimate aligns with official statistics. According to the Pacific Merchant Shipping Association, the share
of container ships in Los Angeles waiting five or more days for unloading rose from 10% in August to 26% in
December 2020.

14We use the relative number of ship visits to each port as weights in the ACR index, as they capture each
port’s importance in the global supply chain. For example, a slight increase in the congestion rate at the Port of
Hong Kong may signal a larger disruption than a large increase at the Port of Manila.
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around 28%, reaching a minimum of 25% from early 2019 to mid-2020. This pattern reflects the
substantial investments made worldwide in earlier years to expand port capacity and strengthen
supply chain resilience. Conditions shifted sharply thereafter: the index climbed throughout
2020 and 2021, peaking at 37% in June 2021, a clear sign of the severe strains the COVID-19
pandemic imposed on global supply chains. At that point, nearly one in every three container
ships entering one of the top 50 ports encountered delays due to congestion. Although the index
stayed elevated until mid-2022, it began to fall later that year and returned to the sample median
(30%) by mid-2023. By then, port congestion had largely normalized, and global supply chains
were operating more smoothly, even if levels remained slightly above the pre-COVID average.
This period of relative stabilization, however, proved short-lived. Geopolitical disruptions
to global shipping routes in 2024 pushed the index back above 32%. Attacks on vessels in the
Red Sea and drought-related restrictions on Panama Canal transits forced widespread rerouting,
caused schedule disruptions, and led to bunching at alternative ports (Bai et al., 2025a). By
early 2025, however, the index dropped sharply below 25%. This decline reflects the gradual
normalization of shipping routes, the easing of Panama Canal restrictions, and softer global
trade volumes following newly imposed U.S. tariffs that reduced import demand. In sum, the
ACR index traces the sharp swings in global port congestion —from its COVID-19 peak, to post-
pandemic normalization, to renewed geopolitical pressures in 2024, and finally the marked easing

in early 2025.

2.5. Discussion

Several aspects of our index merit further discussion, as they underpin the modeling assump-
tions in Section 3, the identification restrictions in Section 4, and the sharper identification they
yield in causality analyses of supply chain disruptions relative to alternative indices.

Short-run rigidities in containerized shipping. Containerized shipping entails two short-
run frictions: an economic margin and an operational margin. On the economic side, service
contracts fix invoiced freight rates for at least a one-month horizon, so the maximum transporta-
tion cost a match can bear without separation —the “reservation” transportation cost— remains
rigid in the short run when profitability does not change. On the operational side, fixed rota-
tions, berth windows, and alliance commitments make schedules and arrivals similarly rigid, as

decisions by shipping companies are typically revised only every three to six months (Stopford,
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2008; Meng et al., 2014).15

Supply chain disturbances (e.g., mobility restrictions, quarantines, and related disruptions
discussed in Subsection 2.1) reduce effective service rates at ports on impact, lengthening queues
and raising delays while leaving both contracts and schedules unchanged within a month. These
delays increase transportation costs through congestion surcharges and premiums on expedited
services, while the reservation transportation cost remains rigid because trade volumes and prof-
itability do not adjust immediately.'® In the model developed in the next section, we represent
a supply chain disturbance as an unexpected, broad increase in transportation costs, with the
reservation threshold remaining rigid in the short run.

By contrast, demand or capacity shocks operate primarily through quantities and profitability
within a month. They alter firms’ willingness to pay and thus shift the reservation transportation
cost, even though invoiced rates remain on contract. However, because schedules and arrivals are
still fixed over this horizon, these shocks do not change congestion on impact. This distinction
yields two short-run implications that we exploit empirically and theoretically: (i) under supply
chain disturbances, the ACR rises and realized schedules lengthen (through queues and bunching)
while the contractual price cap continues to bind the reservation threshold, whereas (ii) under
demand or capacity shocks, the ACR and realized schedules show no immediate response even as
willingness to pay and the reservation threshold adjust.

In Section 4, we leverage the distinct timing of the ACR response, together with restrictions
on macroeconomic aggregates, to isolate operational supply chain disturbances from demand
or capacity shocks. We validate the short-run operational rigidity of containerized shipping by
showing (i) no statistically significant on-impact response of the ACR index to a Bauer-Swanson
monetary policy shock (Bauer and Swanson, 2023) —reflecting demand changes— using local
projections (LPs) in Appendix B, and (ii) no statistical correlation between port congestion and
oil price movements —reflecting capacity changes— in Appendix A, despite the fact that higher
oil prices directly incentivize slower steaming.

Alternative indices. Subsection 4.4 compares our ACR index with other popular measures

15The same operational rigidity is evident in the industry’s “hurry up and wait” practice: even with forewarn-
ings of downstream delays, vessels rarely alter routes or speeds on short notice because berth windows, feeder
connections, alliance slot commitments, and contractual terms jointly constrain flexibility. See Appendix A for
details.

16Shipping prices are also highly sensitive to physical congestion due to the small number of container ships:
even a few delays drive up freight rates.
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of global supply chain conditions, including the Harper Peterson Time Charter Rates Index
(HARPEX), the New York Fed’s Global Supply Chain Pressure Index (GSCPI), and the Supply
Disruptions Index (SDI) from Smirnyagin and Tsyvinski (2022) and Liu et al. (2024).!7 Relative
to these alternatives, supply chain shocks identified with the ACR produce impulse responses of
the U.S. PCE price index that are larger in magnitude, more precisely estimated, and in line
with theoretical predictions. Moreover, variance decompositions indicate that when the ACR is
used, supply chain shocks explain a larger share of the forecast error variance of prices at medium
horizons, whereas demand shocks dominate under alternative proxies. Together, this evidence
indicates that the ACR index provides a more accurate proxy for global supply chain conditions.

Appendix H.4 also develops a targeted ACR index for major ports along the Trans-Pacific
route, the key shipping lane between East Asia (mainly China) and the U.S. Using this index
yields causality results nearly identical to those obtained with the global ACR index.

Finally, integrating high-frequency AIS data with our spatial clustering algorithm allows us
to construct congestion indices at frequencies higher than the monthly level. Appendix C.3
reconstructs the ACR and ACT indices using weekly AIS data and shows that although volatility

increases, the weekly series exhibit patterns consistent with their monthly counterparts.

3. A Model of the Global Supply Chain

Next, we develop a theoretical model of the global supply chain to establish the identifica-
tion restrictions for our causality analysis. Our economy consists of producers, retailers, and
households. Producers manufacture goods using a fixed-factor endowment and incur transporta-
tion costs when selling goods to retailers. Retailers purchase goods from producers but face
search frictions that make it difficult to meet with them. Retailers then sell goods to households.
Households own both producers and retailers, accruing all profits generated through these trades.

We separate producers and retailers by location to capture the need for firms to trade within a
global supply chain, where search frictions make such trade non-trivial. In addition, transporta-
tion costs and search frictions limit the allocative role of prices in clearing the quantity of goods
sold from producers to retailers. Finally, the model is not designed to study port congestion per

se, but rather supply chain disturbances, of which rising port congestion is a manifestation.'®

17 Appendix H details this comparison and shows that differences across indices significantly affect how supply
chain disruptions and their macroeconomic consequences are interpreted.
18 Appendix D discusses the evidence of search frictions in the goods market and the relevance of transportation
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Our model allows us to analyze three shocks that influence the ACR index: an aggregate
demand shock (e.g., changes in household money holdings driven by monetary policy or shifts in
preferences for consumption), a productive capacity shock (e.g., changes in producers’ fixed-factor
endowment), and a supply chain shock (e.g., a broad increase in transportation costs). It delivers
distinct predictions for how spare productive capacity and product market tightness co-move with
prices and consumption in response to each shock, thereby enabling the unique identification of

the causal effects of supply chain disruptions.

3.1. Producers and Retailers

There is an exogenous unit mass of producers and an endogenous measure of retailers. When
matched with a retailer, a producer manufactures y = [ final goods using its fixed-factor endow-
ment.' Producers sell goods to retailers in a frictional product market that prevents the sale
of full capacity. Each unmatched retailer (identified by the subscript U) makes one visit per
period to an unmatched producer, with each visit entailing a fixed cost per unit of the final good
p > 0. When a producer and a retailer meet and trade (as discussed below), the retailer resells
the purchased good to the household at a price p.

Matching process. In each period, the number of meetings (.#) between unmatched pro-

ducers, zy, and retailers, iy, is governed by a constant-returns-to-scale matching function:
1
M= (a5t +igt)E,

where ¢ is the elasticity of substitution between xy and iy, We assume € > 0 such that # <
min {zy, iy }, which is a necessary property of a matching function.

Product market tightness 6 = iy /xy is the ratio between the number of visits by unmatched
retailers and the number of unmatched producers. Individual firms take product market tightness
as given. The probability that a producer meets a retailer is:

fO) =" — 109t (2)

Tu

costs for the severance of commercial trade.

19We abstract from modeling producers’ endogenous production decisions, as this would require a multi-country,
multi-sector production network model to study the transmission of sectoral supply disruptions across countries
(di Giovanni et al., 2022, 2023).
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and the probability that a retailer meets a producer is

() = 7 = (146,
The function f(0) satisfies f(0) = 0, limp, 00 f(f) = 1, and fyp(0) > 0, while ¢(6) satisfies
q(0) =1, limg_, 1+ q(f) = 0, and gy(0) < 0. Three additional properties that will be useful later
are £(60)/a(0) = 0, fo(8) = ()1, and F(O)% + q(0)¢ = 1.

Transportation cost. Producers pay a per-unit idiosyncratic transportation cost to ship
their goods to retailers.?’ In each period, producers draw a per-unit transportation cost z from
the log-normal distribution G(z) with scale parameter v and shape parameter o, that is, G(z) =
® [(Inz — v)/o], where ®(-) is the standard normal c.d.f.?' As discussed later, there exists a
reservation transportation cost z above which matches are unprofitable and severed (z > Z),
while they continue otherwise (z < Zz).

Value functions. At the beginning of each period, matched producers sell the manufactured
goods to retailers and pay the transportation costs. Matched retailers sell their purchased goods
to households and pay the wholesale price of goods to producers. Unmatched producers and
retailers search to form a match with each other. At the beginning of the next period, each
producer draws a new transportation cost, and the match continues if the new cost is sufficiently
low to generate a positive surplus from trade.

Four value functions characterize the returns associated with the different statuses of producers

and retailers. The value for a matched producer (denoted by the subscript M), X,(2), is
Xu(2) = (r(2) = 2) L+ BE [max (Xar (2), Xu)] (3)

where r(z) is the endogenous wholesale price per unit of the final good, 5 is the discount fac-

tor, and 2’ is the transportation cost drawn at the beginning of the next period. Equation (3)

200ur results hold if the transportation cost is borne by retailers instead because the match separation condition
(11) is invariant to this modeling choice. For simplicity, we also assume that the household receives this shipping
cost as payment for its work in moving the goods.

21The assumption that transportation costs follow a log-normal distribution aligns with Kasahara and Lapham
(2013). A random distribution captures heterogeneity of transportation costs and generates an extensive margin of
trade: only matches with z < Z are viable, while those with z > Z are severed. This feature would be absent under
a fixed cost, where all matches survive, and comparative statics would operate only through intensive adjustments
(i.e., changes in quantities within existing matches rather than changes in the fraction of surviving matches). The
stochastic specification also provides a tractable way to study shocks to the cost distribution (through the scale
parameter ). Alternatively, one could model a full transportation sector where interactions among producers,
shipping companies, and retailers determine costs, as in Brancaccio et al. (2020), Bai and Li (2022), Dunn and
Leibovici (2023), and Bai et al. (2025a), but we keep the current setting for tractability.
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shows that the present value of being a matched producer consists of the current profit mar-
gin, (r(z) — 2) [, plus a continuation value that depends on whether the producer separates from
the match. Separation is determined by the next period’s transportation cost z’, with the max
operator selecting the optimal continuation or separation decision.

The value for an unmatched producer, Xy, is
Xy = Bf(O)E. [max (X (), Xv)] + 8 (1 = f(0)) Xu. (4)

With probability f(#), an unmatched producer meets a retailer and then decides whether to
separate if the new transportation cost makes the match unprofitable. With probability 1— f(6),
the producer fails to meet a retailer and remains unmatched at the start of the next period.

The value for a matched retailer, Ip(z), is
In(2) = (p = 7(2)) L+ PE [max (In(2), )] - ()

The retailer earns the resale price p from households for each unit of the good and pays the
wholesale price 7(z) to the producer. As before, the max operator selects the optimal continuation
or separation decision, conditional on 2’.

If the realized transportation cost makes the match unprofitable, the retailer separates and

begins the next period with value:

Iy = —pl + Bg(0)E. [max (In (<), Iv)] + B (1 — q(0)) Iv, (6)

where p is the fixed cost per unit of the final good that the retailer incurs with each visit to a
producer. Free entry into the product market drives the value for an unmatched retailer to zero;
that is, Iy = 0.

Nash bargaining. The total surplus from matching is equal to:
S(2) = Xu(2) = Xy + In(2) — I, (7)

and it is split through Nash bargaining. The producer receives a constant share n of the total

surplus, while the retailer receives the remaining share 1 — 7, implying:

n(I(z) = Iy) = (1 —n) (Xm(z) — Xv) . (8)
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Given the Nash bargaining rule (8), the value functions (3), (4), (5), and the free-entry

condition Iy = 0, the wholesale price that splits the surplus is

r(z) =n(p+pb) + (1 —n)z. 9)

The wholesale price is a weighted average of the retail price (adjusted for the search cost pf) and
the transportation cost z, with the weights determined by bargaining power. When producer
bargaining power is low (n — 0), the wholesale price approaches the transportation cost z.
In addition, higher tightness, which worsens retailers’ bargaining positions by lowering their
matching probability, increases the wholesale prices they pay to producers.

Match separation. Since the total value for a matched producer and a matched retailer,
that is, Xn(2) + Iy (2), strictly decreases with the transportation cost z, there exists a cut-off
transportation cost zZ above which matches become unprofitable and are therefore severed. This

cut-off makes the total surplus in Equation (7) equal to zero:
S(z) = 0. (10)

Substituting the value functions (3), (4), (5) and the free-entry condition I;; = 0 into Equation

(10) yields the match separation condition, expressed as a function of p, z, and 6:

F(p,z,0) = (p—2)l+ (1 —nf(0)) BE..S(Z") =0, (11)

where E_/S(2') = foz S(2')dG(%') is the expected surplus.
Match creation. Using the value function for an unmatched retailer in Equation (6), to-
gether with the free-entry condition Iy = 0, the match creation condition can be written as a

function of z and 0:

H(z, 0) = % — (1 —y)BE.LS(2) = 0. (12)

Aggregate supply. Aggregate supply in the economy is the quantity of goods traded by
retailers and producers that survive separation for a given productive capacity, equal to the
producers’ total factor endowment [. To determine this supply, we consider the law of motion for

the number of matched producers at the beginning of the next period, x’y;:

zhy = G(Z2)zm + f(O)G(Z)zy,
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and for the number of unmatched producers:
zy = [1=f(0) + f(6) 1 = G(Z)]zv + (1 = G(2) zar.
Using the identity xy; + 2y = 1, the law of motion for matched producers can be rewritten as:
vy = [(0)G(2) + (G(2) — f(0)G(2)) mar- (13)

Aggregate supply is, thus, the quantity of goods provided by matched producers for a given
productive capacity:

cs(Z,0) = 2r(Z, 0)L. (14)

3.2. The Representative Household

The representative household derives utility from consuming goods and holding real money

e—1
e 1 c
u C’ T — LC 51 + - T ,
P 1+ x I+x \p

where ¢ denotes consumption, m nominal money balances, p the price level, x > 0 the relative

balances:

preference for consumption over money, and € > 1 the elasticity of substitution between consump-
tion and real money balances. Following Michaillat and Saez (2015), we adopt this specification
to ensure that aggregate demand drives fluctuations in macroeconomic aggregates.

The household owns both producers and retailers, receiving lump-sum rebates from their
profits as well as compensation for transportation costs incurred in moving goods. Taking prices
as given, the household chooses consumption and nominal money balances to maximize utility,

subject to the budget constraint:

pe+m < p+ pes(z,0) — pliy — / Z'eg(2,0)dG(2) + / 2'eg(2,0)dG ("),
0 0

v~ ~~

Profits of Producers & Retailers Transportation Costs

where p > 0 is the household’s endowment of nominal money, c(Zz,6) is the aggregate supply as
defined in Equation (14), and pliy represents the aggregate search outlay borne by unmatched

retailers. Solving the household’s optimization problem yields the optimality condition:

X
c

1 T
O )
14+ x 14+x \p
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Aggregate demand. Aggregate demand is the level of consumption that maximizes utility at
a given price when the money market clears, a condition that holds both in and out of equilibrium.
Substituting m with g in Equation (15) and rearranging yields:

M

p (16)

ca(p) = x

which is strictly decreasing and convex in p on (0,400). Because a higher price reduces real

money balances, aggregate demand declines with the price.

3.3. Equilibrium and Steady State

We are now ready to define a period equilibrium (i.e., an equilibrium for a given period) and

a steady state.??

Definition 1. A (period) equilibrium for this economy is a price p, a reservation transportation
cost z, and a product market tightness 0 such that the match separation condition (11) and the

match creation condition (12) hold simultaneously:

and the retailer—household market clears:

05(5, 0) = Cd(p)7

where aggregate supply cs(Z,0) evolves according to the law of motion for matched producers in

Equation (13).

Rather than analyzing the full transition dynamics of the equilibrium after a shock (this
analysis is relegated to Appendix E.5), we focus on the steady state. As shown in Section 3.4,
comparative statics suffice to derive the identification restrictions for each shock of interest in our
causality analysis.

Setting 2, = xjs in Equation (13) gives the steady-state number of matched producers:

(<t
[— G+ [O)GE)

z31(2,0)

Steady-state aggregate supply is the quantity of goods provided by the steady-state number of

22We define a period equilibrium rather than a full sequential equilibrium to simplify notation. It can be viewed
as the prices and allocation at time ¢ given the history of past shocks.
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matched producers, given productive capacity I:

SS (= _.CL'SSZ _ () (2)
0 =G0 = e s reE - (17)

The steady state is defined in Definition 2, and its unique existence is established in Propo-

sition 1.

Definition 2. The steady state of this economy is a price p*, a reservation transportation cost z*,
and a product market tightness 0* that jointly satisfy the match separation condition F(p, z,0) = 0,
the match creation condition H(z,0) = 0, and the retailer—household market clearing condition

c(z,0) = cq(p), that is:

f(0)G(z) _ e
ORI ERES

Proposition 1. A unique steady state (p*,z*,0%) exists in which the match separation condi-

(18)

tion, the match creation condition, and the retailer—household market clearing condition all hold

simultaneously.
Proof. See Appendix E.1. [ |

Having established the existence and uniqueness of the steady state, we now define the steady-
state aggregate supply schedule p — ¢*(p) implied by the partial equilibrium in the producer—
retailer market —i.e., when the match separation and creation conditions jointly hold, F(z, 0; p) =

H(z,0) = 0 for a given p— and examine its properties in the following proposition.

Proposition 2. For any zZ > Zyw, where Zy, satisfies:

Fmin / ! p
/0 G(2")dz = =B (19)

the steady-state aggregate supply schedule p — ¢3*(p), arising from the partial equilibrium in the

producer—retailer market, has the following properties:

1. The mapping _
szazz—u—wu»@AGw

is continuously differentiable and strictly increasing, where:

ey

f(z)=(1-q(2)%)",

q(E) = p;z
(L=m)B J, G(z')d
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Consequently, there exists a unique, continuously differentiable steady-state aggregate supply

schedule p — ¢°(p), represented by the parametric curve (p(2),c:*(Z)) on Z € [Zmin, +00);

SS
S

SS
S

2. lim,, . ¢*(p) =0 and lim,_, - ¢3°(p) = I, where pu, is defined as:

Pmin = Zmin - ﬁ/ G(Z/) dzl = Zmin - La (20)
0 1—n

3. ¢3(p) is strictly increasing in p on [Pmin, +00), and converges to a constant as p — +00;

4. c5(p) is locally conver near pyy if & € (0,1), linear if & > 1, and strictly concave for

sufficiently large p.
Proof. See Appendix E.2. |

Proposition 2 shows that aggregate supply rises with price through two reinforcing mech-
anisms. First, a higher price raises the surplus from producer—retailer matches, strengthening
retailers’ incentives to search and thereby increasing product market tightness and the proba-
bility of successful matches. As more matches are formed, aggregate supply expands. Second,
a higher price raises the reservation transportation cost, allowing matches that would otherwise
have been abandoned to continue, further boosting supply. Although search frictions and trans-
portation costs constrain the flow of goods and generate spare capacity, the model preserves the
standard positive relationship between price and aggregate supply.

Panel 5a in Figure 5 plots aggregate demand, aggregate supply, and the steady state in the
downstream retailer—household market, identified by their intersection in the (¢, p)-plane. The
steady-state aggregate supply schedule ¢?* (blue line) is upward-sloping, as in standard models.
Spare capacity —measured as the difference between productive capacity and actual output,
[ — ¢*— captures the combined effects of search frictions and transportation costs.

Panel 5b in Figure 5 complements this by depicting the match separation condition (11), the
match creation condition (12), and the steady state in the upstream producer-retailer market,

identified by their intersection in the (z, §)-plane.?

23For reference, Appendix E.3 derives the slope and curvature of the match separation and creation schedules.
Under mild conditions, the match separation condition F(z,0;p) = 0 generates a strictly decreasing and strictly
convex relationship between 6 and Z, whereas the match creation condition H(Z, ) = 0 yields a strictly increasing
and strictly convex relationship.
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Figure 5: Graphical Representation of the Steady State

Notes. In Panel ba, cq(p), ¢3°(p), and | represent the aggregate demand schedule, the steady-state aggregate supply
schedule, and productive capacity, respectively. The threshold pyi, is defined in Equation (20). Panel 5b shows
the partial equilibrium in the producer—retailer market at the steady-state price p*. The conditions F(z, 8;p*) =0
and Hl(z,0) = 0 represent match separation and match creation, respectively. The threshold Zyi, solves Equation
(19). Finally, c¢*,p*, z*, and 0* denote the steady-state levels of consumption, price, reservation transportation
cost, and product market tightness, respectively.

3.4. Comparative Statics

We use comparative statics to examine how the aggregates in our model respond to unantic-
ipated adverse shocks to aggregate demand, productive capacity, and the supply chain when the
economy is at the steady state. These responses provide the identification restrictions for study-
ing the causal effects of supply chain disturbances in the SVAR model in the next section. To
address the indeterminacy that arises under a supply chain shock, we assume that the reservation
transportation cost is rigid in the short run (fixed by freight contracts), an assumption previewed
in Section 2.5 and justified in greater detail later in this section. Appendix E.5 complements the
analysis by presenting the full transition dynamics of the model after each shock and showing
that they are numerically consistent with the comparative statics discussed below.

An adverse aggregate demand shock arises from either a reduction in the nominal money
supply, u, or a decline in households’ preference for consumption, xy. An adverse productive
capacity shock corresponds to a negative disturbance to producers’ fixed-factor endowment, [. An

adverse supply chain shock is modeled as a general increase in transportation costs, represented
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by a rise in v, the scale parameter of the log-normal distribution of transportation costs G(-).
Table 1 summarizes the signs of the responses of macroeconomic aggregates to each shock of

interest.?* Figure 6 illustrates the comparative statics of aggregate demand, productive capac-

ity, and supply chain shocks in the downstream retailer—household market (left panels) and the

upstream producer-retailer market (right panels).

Table 1: Comparative Statics for Adverse Shocks to Aggregate Demand, Productive Capacity,
and the Supply Chain

Effects On:

Consumption Price Reservation Product  Wholesale Spare

Adverse Shock To: (or Output) Transportation = Market Price Capacity
Cost Tightness
¢ p z 0 r l—c

Aggregate Demand (p | or x |) - - — - - +
Productive Capacity (I {) - + + + + _
Assuming sticky z in short-run,
Supply Chain (v 1) - + 0 - + +

43

Notes. “0” denotes unchanged, “+” an increase, “—” a decrease, and “+” an undetermined effect. See Appendix
E.4 for the derivations of the comparative statics for each shock of interest.

Aggregate demand shock. Panel 6a in Figure 6 illustrates the comparative statics of a
decline in aggregate demand, where the demand curve shifts inward from ¢4 to ¢, as households
either hold less money or choose to reduce their consumption of goods.?” The resulting adjustment
is a decline in the price required to clear the downstream retailer-household market.

As prices fall and retailers’ profits from household sales decline, retailers visit fewer produc-
ers, thereby reducing product market tightness. At the same time, the lower price reduces the
reservation transportation cost, since trading partners can only sustain lower costs for trades to
remain profitable. The joint decline in price and tightness also lowers the wholesale price: the
sale of goods becomes less profitable, and the likelihood of retailers establishing a match with
producers increases. Consequently, both reduced product market tightness and lower reservation
transportation costs induce producers to sell a smaller share of their productive capacity in the

upstream producer—retailer market. Downstream consumption (equivalently, output) falls; and

24Comparable identification restrictions for prices and output can also be derived from a New Keynesian model,
where nominal rigidities —rather than search frictions— constrain price adjustment.

251f a government were present, the same reasoning would apply to fiscal shocks. Hence, our demand shocks
capture fiscal and monetary policy shocks, as well as preference shocks.
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Figure 6: Graphical Representation of Comparative Statics
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spare productive capacity rises.

Productive capacity shock. Panel 6b in Figure 6 shows the effects of a negative supply
shock that reduces productive capacity from [ to I’. This shock rotates the aggregate supply curve
inward while leaving pni, unchanged, since the distribution of transportation costs —and thus
the minimum reservation transportation cost z,;, and the price required for profitable trades—
remains unaffected. To clear the retailer-household market, the price must rise.

The higher price attracts more retailers, increasing product market tightness, and simulta-
neously raises the reservation transportation cost, allowing matches that would otherwise have
been forgone to proceed. However, neither the tighter producer-retailer market nor the higher
reservation transportation cost is sufficient to offset the direct loss of productive capacity, so
aggregate supply falls and consumption declines. At the same time, the joint increase in prices
and product market tightness pushes up wholesale prices, while spare capacity contracts.

Supply chain shock. Panel 6¢ in Figure 6 shows the comparative statics of an increase in the
scale parameter of the log-normal distribution of transportation costs, interpreted as an adverse
supply chain shock. A higher v shifts the transportation-cost distribution to the right, increasing
the likelihood that producers draw a transportation cost above the reservation threshold. On
the one hand, this lowers the expected total surplus from potential producer-retailer matches,
dampening retailers’ incentives to search and leading to a less tight market; graphically, the match
creation schedule shifts down from H = 0 to H' = 0. On the other hand, the lower expected
surplus also discourages producers from engaging in trade, further slackening the producer-retailer
market; graphically, the match separation schedule shifts down from F = 0 to F' = 0.

Consequently, the partial equilibrium in the upstream producer-retailer market features lower
product market tightness and an ex ante ambiguous effect on the reservation transportation cost.
Because the response of this reservation cost is undetermined, Equation (17) implies that the
resulting impact on aggregate supply —and therefore on the steady-state price in the downstream
retailer-household market— remains unclear.

To resolve this analytical indeterminacy, we rely on sectoral evidence of short-run rigidity in
containerized shipping, discussed in Section 2.5, and assume that the reservation transportation
cost is fixed by freight contracts in the short run. Short-run rigidities in containerized shipping are
critical for the on-impact effects of supply chain shocks, since such disturbances operate directly

through transportation costs that are typically governed by contractual arrangements, while trade
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volumes and profitability do not adjust immediately. By contrast, demand and capacity shocks
primarily affect trade volumes or productive potential, which influence firms’ willingness to pay
for transportation and thereby allow reservation costs to adjust more flexibly.

With upstream production slack and a sluggish reservation transportation cost, the fraction
of goods shipped from producers falls, reducing the supply of goods available in the downstream
retailer-household market and pushing up the market-clearing price. Thus, prices rise while
consumption falls. Graphically, the aggregate supply curve shifts inward from ¢$* to cisl, ac-
companied by an increase in py, (the price threshold needed to “turn on” supply). Since the
economy’s productive capacity is unchanged while the number of successful trades declines, spare
capacity rises.?’

Finally, the higher downstream retail price feeds back into the upstream production market by
increasing the profitability of trades and thereby tightening the market, given that the reservation
transportation cost cannot adjust to absorb the additional pressure of the higher price on match
separation. To prevent the increase in prices from being strong enough to overturn the immediate
slackening in the upstream market caused by the supply chain disturbance (graphically repre-
sented by an upward shift of the match separation schedule in Panel 6¢), we impose the following

bound on the derivative of product market tightness # with respect to the cost parameter ~:

F
0 c |-t
76{ Fy’ >

where F., and Fy denote the partial derivatives of the match separation condition F(p, z,6;7v) =0
with respect to v and 6, respectively. Appendix E.4 provides a detailed derivation of this boundary
condition. In words, it limits the extent of upstream slack so that the price-feedback effect on
match separation does not outweigh the direct effect of the supply chain shock, ensuring the

coexistence of a fall in upstream market tightness and a rise in the downstream retail price.

4. The Causal Effects of Supply Chain Disruptions

We now turn to the causal effects of supply chain disruptions using an SVAR model that in-

corporates our ACR index and imposes restrictions on the responses of macroeconomic aggregates

26 Appendix E.5 shows that, even without imposing rigidity, the dynamic responses of all variables —except the
reservation transportation cost itself— remain consistent with their analytical counterparts.

2TFrom Equation (9), as prices increase and product market tightness falls in response to a supply chain shock,
the effect on the wholesale price is indeterminate.
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to three distinct shocks, in line with the theoretical predictions in Table 1.2

4.1. Empirical Framework

Our empirical specification of the SVAR model follows Rubio-Ramirez et al. (2010) and Arias
et al. (2018):

L
YAg=> Yy A+wC+e, 1<t<T, (21)
=1

where y; is an n x 1 vector of endogenous variables, w; = [1,¢]' is a 2 x 1 vector containing a
constant and a linear trend, and €; is an n x 1 vector of structural shocks. The matrices A; are
n X n structural parameter matrices for 0 <[ < L, with Ay assumed invertible, and C is a 2 x n
parameter matrix. The lag length is denoted by L, and T is the sample size. Conditional on past
information and the initial conditions yq, ..., y1_r, the vector €, is Gaussian with mean zero and
variance—covariance matrix I,,, the n x n identity matrix.

Equation (21) can be written more compactly as:
YAy =z A, +¢€, 1<t<T, (22)

where A, =[A] ... A} C']and x; = [y;_, ... y,_; w;]. The dimension of A, is m x n, where

m = nL + 2. The reduced-form representation implied by Equation (22) is:
yéz:c;B—i—u;, 1<t<T,

where B = A Aj' u, = €,Ay", and E(uu)) = 3 = (A A)) "L

Motivated by the variables in our theoretical model, we estimate the baseline SVAR using
monthly U.S. data on real personal consumption expenditures (PCE), the PCE chain-type price
index, and the import price index for all commodities. We also include two empirical mea-
sures constructed from Equations (23) and (24) —spare productive capacity and product market
tightness— together with our ACR index. The sample spans January 2016 to March 2025, and
all series are seasonally adjusted. Appendix F provides a detailed overview of the external data

and their sources.

28We could also pursue a full structural estimation of our model. However, this would require numerous ancillary
assumptions (e.g., parametric forms, shock persistence) that may be unreliable given current knowledge of global
supply chain models. Although we rely on some of these assumptions for our identification restrictions, we
are cautiously optimistic that these restrictions hold for more general specifications, even if demonstrable only
numerically. Hence, the added flexibility of SVARs appears most suitable here.
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As mentioned above, we first construct an empirical measure of spare productive capacity
(SpareCapacityRate,) by computing the import-weighted average spare capacity rate of the top
five U.S. trading partners (Mexico, Canada, China, Germany, and Japan), which together account
for more than half of U.S. goods imports.?? The weights are based on U.S. goods imports from

each country in 2016. Formally,

Import; 59,6

SpareCapacityRate, = Z : (1 — CapacityUtilizationi?t) , (23)

pys [Zie% Import; 59,6

where & = {Mexico, Canada, China, Germany, Japan}, Import, 59,5 denotes U.S. goods imports
(customs basis) from country 7 in 2016, and CapacityUtilization, ; is the capacity utilization rate
for country 7 in month ¢.

Next, we construct an empirical measure of product market tightness (Tightness,). Following
the definition 6 = iy /zy, we proxy the number of unmatched retailers (iry) with total U.S. man-
ufacturers’ new orders and the number of unmatched producers (zy) with the import-weighted

average spare capacity of the specified U.S. trading partners. Specifically,

Tightness, = ManufactureNewOrder,

: 24
SpareCapacityDollar, (24)

The time series for U.S. manufacturers’ new orders (ManufactureNewOrder;) is from the Federal
Reserve Economic Data (FRED). We construct the U.S. dollar value of the import-weighted

average spare capacity (SpareCapacityDollar,) as follows:

Import; 5016 IP;,
S C ityDollar, = : : : —IP; , 25
paretapacityTotatt Z,EZ% [Zie% Import, 515\ CapacityUtilization, , ! (25)

where IP;; denotes total industrial production of country ¢ in month ¢, measured in millions of
constant 2005 U.S. dollars. Finally, we use the import price as a proxy for the wholesale price to
capture U.S. manufacturers’ and retailers’ international sourcing strategies, particularly during
the COVID-19 pandemic.

Real PCE, the PCE price index, product market tightness, and the import price index enter
the SVAR in log points, while spare capacity and the ACR index enter in percentages. In the
baseline specification, we set the lag length to two, although we check that the results are robust

to longer lags.

29Gee https://wits.worldbank.org/CountrySnapshot/en/USA (accessed October 15, 2024).
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We estimate the SVAR model using the Bayesian approach of Arias et al. (2018, 2019, 2023),
imposing restrictions only on the first period of impulse responses (horizon k = 1), thereby
following the minimal-structure strategy of Mumtaz and Zanetti (2012, 2015).3° As shown in
Appendix E.5, the dynamic version of our theoretical model converges quickly —within one
month— and monotonically from one steady state to another following each shock of interest.
This provides additional support for imposing identification restrictions only at horizon k£ = 1.

Our identification scheme applies the sign restrictions derived from our theoretical model,
summarized in Table 1, together with zero restrictions on the response of the ACR index to

adverse shocks to aggregate demand and productive capacity at k = 1:

Restriction 1. An adverse shock to aggregate demand leads to a negative response of real
PCE, the PCFE price index, product market tightness, and the import price index, as well as a
positive response of spare capacity at k = 1. The ACR index does not respond at k = 1.

Restriction 2. An adverse shock to productive capacity leads to a negative response of
real PCE and spare capacity, and a positive response of the PCE price index, product market

tightness, and the import price index at k = 1. The ACR index does not respond at k = 1.

Restriction 3. An adverse shock to the supply chain leads to a negative response of real
PCFE and product market tightness, and a positive response of the PCE price index, spare capacity,
and the ACR index at k = 1.

The zero restrictions on the ACR index in Restrictions 1 and 2 are motivated by the short-run
operational rigidity of the containerized shipping industry, as discussed in Section 2.5. Container
ships typically require several weeks’ notice to alter schedules and arrivals in response to demand
or capacity shocks. As a result, our ACR index should not react within the first month. This is a
conservative assumption, but, as shown later in this section, it enables sharper identification (i.e.,
narrower posterior probability bands) of the inflationary nature of supply chain shocks compared

with cases where such zero restrictions cannot be imposed.

30We adopt a Normal-Generalized-Normal (NGN) prior distribution over Ag and A,. The NGN prior is a
conjugate prior characterized by four parameters (v, ®, ¥, €2). Parameters v and ® govern the marginal prior
distribution of vec(Ag), while ¥ and € govern the prior distribution of vec(A4) conditional on Ag. We set v =0,
® = 0,xn, ¥ = 0,4, and Q7 = 0,,x,n. This parameterization yields prior densities equivalent to those in
Uhlig (2005). Appendix G.1 further shows that our results are robust to the prior-robust approach of Giacomini
and Kitagawa (2021).
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By contrast, Restriction 3 allows the ACR index to respond to a supply chain disturbance at
k = 1, though it does not require such a response —we assess whether the corresponding posterior

probability bands exclude zero.

4.2. Baseline Results

Figures 7, 8, and 9 present the responses of the endogenous variables to adverse shocks to
aggregate demand, productive capacity, and the supply chain, respectively. The solid lines depict
the point-wise posterior median impulse response functions (IRFs), and the shaded areas show
the 68% and 90% posterior probability bands. Unless otherwise noted, all results are based on

ten million orthogonal reduced-form draws (B, X, Q), where Q is an n x n orthogonal matrix.3!
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Figure 7: IRFs to an Adverse Shock to Aggregate Demand

Notes. The IRFs to a one-standard-deviation adverse aggregate demand shock are identified using the Bayesian
SVAR in Equation (21), with the ACR index included and the sign/zero restrictions at horizon k& = 1 imposed as
specified in Restrictions 1-3.

We begin with the IRFs to an adverse aggregate demand shock, as shown in Figure 7. On
impact, real PCE declines by about 0.5%, while spare capacity increases by slightly less than
0.5 percentage point (p.p.). Both responses are precisely estimated, with posterior probability
bands excluding zero for roughly three months. Product market tightness exhibits a sharp drop

of more than 1%, and the lower bound of the 90% probability band suggests the effect could be

31Two representations (Ag, A;) and (Ao, Ay) are observationally equivalent if and only if Ay = AoQ and
A, = A, Q for some orthogonal Q (Arias et al., 2018).
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as large as 3-4%; tightness then gradually converges back toward zero within two years. The
PCE price index decreases modestly by about 0.1% on impact, remaining negative with high
posterior probability for more than a year before fading. The import price index displays a
similar deflationary pattern, initially falling by 0.2% and remaining significantly below baseline
through the first year. Lastly, the ACR index shows a short-lived negative response, but the wide

probability bands indicate high uncertainty, with much of the posterior mass centered near zero.

Real PCE: Aggregate PCE Price: Aggregate ) Spare Capacity
0.2 m— Posterior Medians
1 68% Posterior
0.1 1 Probability Bands
0.5 90% Posterior
: & Probability Bands
X R < =
okl S —— a
-0.1
-0.5
1 -0.2 -1
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
Months Months Months
6 Product Market Tightness 1 Import Price 04 ACR

%

-2 -0.5 -0.6
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

Months Months Months

Figure 8: IRFs to an Adverse Shock to Productive Capacity

Notes. The IRFs to a one-standard-deviation adverse productive capacity shock are identified using the Bayesian
SVAR in Equation (21), with the ACR index included and the sign/zero restrictions at horizon k = 1 imposed as
specified in Restrictions 1-3.

Figure 8 reports the IRFs to an adverse productive capacity shock. On impact, real PCE
dips slightly and spare capacity falls, while the PCE price, the import price, and product market
tightness rise, in line with Restriction 2. Tightness peaks on impact (around 2-3%), dips briefly,
and then rises again at roughly the three-month mark before gradually trending back toward
zero over the following year (an impulse pattern that, when interpreted through our theoretical
model, reflects a sudden contraction in productive capacity that raises tightness immediately,
recall Panel 6b in Figure 6, with slower price pass-through subsequently drawing additional
unmatched retailers and producing a secondary hump).

Import prices increase by about 0.5% within one quarter and remain above baseline for six

quarters, whereas PCE prices rise more modestly (peaking near 0.1%) and fade more slowly. Real
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PCE reverses quickly from its initial dip, rising by about 0.5-0.6% within the first quarter before
mean-reverting; by contrast, spare capacity troughs just above —0.5 p.p. around the one-quarter
mark and then recovers gradually toward zero. The ACR index is muted on impact, climbs to
roughly 0.1 p.p. at about three months, and then drifts below zero around the three-quarter
horizon, stabilizing near —0.1 p.p., suggesting complementarities between production constraints

and transportation frictions in the transmission of capacity shocks.
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Figure 9: IRFs to an Adverse Shock to the Supply Chain

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are identified using the Bayesian SVAR
in Equation (21), with the ACR index included and the sign/zero restrictions at horizon k& = 1 imposed as specified
in Restrictions 1-3.

Figure 9 shows the IRFs to an adverse supply chain shock. On impact, real PCE and product
market tightness fall, while spare capacity and the ACR index rise, in line with our identification
scheme. The PCE price response is sizable: the median increases steadily, peaking near 0.2%
around one year, and the lower bound of the 90% probability band stays above zero throughout,
indicating a robust inflationary effect.

Import prices, which are unrestricted in our specification, also rise persistently. The 68%
probability band remains above zero across most horizons, and the median peaks above 0.3% at
roughly the three-quarter mark. In the decomposition implied by Equation (9), this persistence
reflects that the direct price component outweighs the slackening (i.e., lower tightness) component,

yielding a net positive effect on import prices.
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The real-side variables display a distinct dynamic pattern. Real PCE dips modestly on impact
(about —0.2%), turns positive within 4-6 months (peaking near 0.2%), and then gradually mean-
reverts. Spare capacity rises initially (0.3 p.p.) but only briefly: it crosses below zero after a few
months and remains slightly negative for about a year before returning toward baseline. The ACR
index jumps on impact (0.5 p.p.) and then decays gradually, crossing zero around the 18-month

horizon, consistent with congestion easing as logistics adjust.
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Figure 10: Forecast Error Variance Decompositions (FEVDs) from the SVAR

Notes. Each line shows the posterior median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
identified Bayesian SVAR in Equation (21), with the ACR index included and the sign/zero restrictions imposed
at horizon k = 1 (Restrictions 1-3).

Figure 10 shows the share of forecast error variance explained by each of the three structural
shocks. Two broad patterns emerge. First, price variables are mainly driven by supply chain
disturbances at medium horizons. For the PCE price index, the supply chain share rises from
roughly 10% at short horizons to about 20-25% by 6-12 months and remains the largest contribu-
tor thereafter, while the contributions of demand and capacity shocks decline toward 5-10%. For
import prices, productive capacity shocks lead early (peaking near 25% around six months), but
the supply chain share increases steadily and eventually overtakes the capacity share, reaching
roughly 15% by two years; demand remains comparatively small throughout.

Second, real activity and product market tightness are driven primarily by productive capacity
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shocks. For real PCE, capacity shocks account for roughly 30% at 3-6 months and remain the
largest contributor even at two years, while the demand share is front-loaded —high on impact
but falling toward 10%— and the supply chain share rises gradually into the high single digits.
For spare capacity and product market tightness, capacity shocks again dominate (around 30-
35% at their peaks), with demand contributing mainly near impact and the supply chain share
remaining modest, though drifting upward over time.

As a validation check, the ACR is explained primarily by supply chain shocks —about 15-21%
across horizons— while demand and capacity shocks contribute little, especially within the first
six months. This aligns with the view that port congestion is largely insulated from short-run
fluctuations in demand and productive capacity, as discussed in Section 2.5.3?
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Figure 11: Historical Decomposition (HD) of U.S. HoH Headline PCE Inflation

Notes. The solid line plots U.S. headline PCE inflation, measured as HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars plot the corresponding cumulative historical contributions
of aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The historical
decomposition is computed from the identified Bayesian SVAR in Equation (21), using first-differenced endogenous
variables, and we report posterior medians. Sign/zero restrictions are imposed at horizon k = 1 as specified in
Restrictions 1-3.

Figure 11 presents the key empirical result of our analysis: the cumulative historical con-
tributions of the three identified shocks to U.S. half-on-half (HoH) headline PCE inflation over
the period September 2016 to March 2025.3% The main findings from the decomposition can be

32Shares sum to less than 100% because only the three identified shocks are plotted, with the residual variance
attributed to unidentified shocks.

33Historical contributions are accumulated beginning in September 2016, reflecting two lags in the VAR and
the use of first-differenced variables to compute HoH growth rates. For clarity, the figure excludes contributions
from lag terms, exogenous variables (the constant and the linear trend), and unidentified shocks; consequently,
the stacked bars for the identified shocks do not exactly sum to the black line (U.S. HoH headline PCE inflation).
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summarized in five points.

1. Before the pandemic (2016-2019), contributions from all three shocks were modest and often

offsetting, with the supply chain component generally slightly negative.*

2. The sharp disinflation at the onset of COVID-19 (early 2020) was driven primarily by a large
negative aggregate demand contribution, plausibly reflecting mobility restrictions that sup-
pressed consumption and heightened uncertainty, and reinforced by a concurrent negative con-

tribution from productive capacity, likely dominated by the sharp plunge in global oil prices.

3. The inflation surge from 2021 through mid-2022 was dominated by supply chain shocks, whose
cumulative contribution rose rapidly and surpassed that of the other shocks. Aggregate demand
also turned positive, and productive capacity shocks became increasingly inflationary due to
the gradual increase in global oil prices, China’s Omicron-related mobility restrictions, and

labor-market frictions in major U.S. trading partners that constrained effective capacity.

4. From the second half of 2022 through 2023, disinflation reflected the unwinding of supply
chain pressures and improving capacity. Demand faded as aggressive interest rate hikes and
quantitative tightening by major central banks worked to counter the high inflation inherited

from 2022.

5. From early 2024 to the end of the sample, inflation reaccelerated mildly, largely because of
renewed supply chain pressures (e.g., the escalation of the Red Sea crisis; see Bai et al., 2025a

for details), while demand and capacity continued to exert a modest drag.>®

4.3. Robustness Checks and Extensions

We conduct a range of robustness checks on our baseline results beyond those previously
discussed. First, Appendix G.2 re-estimates the SVAR using monthly inflation instead of price
levels for PCE and import prices. The conclusions are unchanged: cumulated inflation IRFs

closely mirror the price-level IRFs, and FEVD rankings remain stable. In addition, the shape

34This finding highlights the importance of strategic supply chain improvements to mitigate inflationary pres-
sures. For instance, U.S. ports, such as the Port of Los Angeles, undertook infrastructure upgrades between 2017
and 2019 to enhance capacity, efficiency, and resilience against systemic disruptions.

35Two additional observations are worth noting: (i) the peak inflation period aligns with the largest positive
supply chain contribution, consistent with the strong price effects in Figure 9; and (ii) during the subsequent
disinflation, capacity plays the leading role on the downside, in line with FEVD patterns that assign more real-
side variation to capacity shocks.
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and magnitude of the inflation IRFs to demand and capacity shocks align with classic evidence
on inflation responses to demand- and supply-side disturbances (e.g., Smets and Wouters, 2007).

Second, Appendix G.3 examines invertibility by augmenting the information set in the SVAR.
Adding services activity and prices, oil prices, the federal funds rate, and wages leaves demand-
and capacity-driven IRFs essentially unchanged, but attenuates the supply chain price effects, as
one would expect from having more endogenous variables.

Third, Appendix G.4 tests for nonlinear transmission by shock size. Using LPs that interact
the identified shock series with indicators for small versus large realizations, and integrating over
the full posterior distribution of shocks from the Bayesian SVAR, we find divergent posterior
median IRFs but overlapping credible bands. This pattern suggests possible nonlinearities —
particularly for large shocks (e.g., Baqaee and Farhi, 2019, 2020), yet our main conclusions are
robust: the transmission mechanism is qualitatively similar across shock sizes, and the macroe-
conomic effects of the three identified shocks shown in Figures 7-9 are not sensitive to moderate
nonlinear amplification.

Fourth, Appendix G.5 shows that re-estimating the monthly SVAR with four and six lags —
holding priors, identification, and sample fixed— leaves the median IRFs and qualitative dynamics
essentially unchanged across all three shocks, with only modest widening of posterior probability
bands at short horizons. Finally, Appendices G.6 and G.7 provide further checks by dropping the
linear trend and by using alternative proxies for activity and prices.

We also explore two extensions. In a companion paper (Bai et al., 2025b), we analyze the
effectiveness of monetary policy during global supply chain disruptions. Guided by the theoret-
ical predictions of our model in Section 3 and supported by evidence from a threshold vector
autoregression (TVAR) and LPs, we find that supply chain disruptions increase the sensitivity of
prices while reducing the sensitivity of output to contractionary monetary policy shocks, thereby
introducing state dependence into the stabilization trade-off for monetary policy.

Furthermore, we re-estimate the U.S. SVAR with goods and services inflation and three shocks
(demand reallocation, oil, and supply chain). The pandemic-era surge in goods inflation is driven
mainly by demand reallocation (e.g., Guerrieri et al., 2022; Ferrante et al., 2023) and supply
chain shocks, with oil playing a visible but secondary role. By contrast, services inflation moves
little, shows limited pass-through from goods, and reflects only modest contributions from the

identified shocks, consistent with stickier prices and sector-specific dynamics. For the Euro Area,
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an analogous SVAR points to a dominant and persistent role for oil price shocks in 2021-22,

reflecting Europe’s heightened energy dependence. Full results are available upon request.

4.4. Identification Gains From Congestion Indices

Finally, we directly compare the estimated price responses across alternative proxies for global

supply chain conditions, illustrating the identification gains from using our port congestion indices

to isolate supply chain disturbances.
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Figure 12: Price Responses to an Adverse Supply Chain Shock Across Alternative Proxies

Notes. IRFs of the U.S. PCE chain-type price index to a one-standard-deviation adverse supply chain shock,
identified using the Bayesian SVAR in Equation (21) across eight specifications: (i) no supply chain proxy; (ii)
ACR; (iii) ACR with zero restrictions at horizon k& = 1 on the responses of ACR to aggregate demand and
productive capacity shocks; (iv) ACT with the same zero restrictions; (v) Trans-Pacific ACR with the same zero
restrictions; (vi) HARPEX; (vii) the New York Fed’s GSCPI (Benigno et al., 2022); and (viii) the SDI from
Smirnyagin and Tsyvinski (2022) and Liu et al. (2024). The sign restrictions in Restrictions 1-3 are imposed to
identify the adverse supply chain shock in all specifications except (i), where the positive restriction on the ACR
response to such a shock is omitted.

Figure 12 shows that, when the SVAR is augmented with the ACR index, the IRF of the
PCE chain-type price index to an adverse supply chain shock is larger in magnitude and more
precisely estimated than when no proxy is included. Imposing zero restrictions on the responses
of the ACR (ACT, or the Trans-Pacific ACR, i.e., a targeted ACR index for major ports along
the Trans-Pacific route) to demand and capacity shocks at horizon k& = 1 —motivated by our

domain knowledge of short-run operational rigidity in the containerized shipping industry, as
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discussed in Section 2.5— further sharpens identification. The resulting price responses exhibit
higher peaks, and the lower bound of the 90% probability band diverges from the zero-response
line as the median response approaches its peak, thereby underscoring the inflationary effects
of supply chain disturbances in line with our theoretical predictions. By contrast, when using
HARPEX, GSCPI, or SDI, the median responses are smaller and the credible bands straddle zero

at all horizons, indicating weaker and less precisely estimated price effects.
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Figure 13: FEVD of the U.S. PCE Price Index Across Alternative Proxies

Notes. The figure plots the posterior-median shares of the forecast error variance of the U.S. PCE chain-type
price index attributable to aggregate demand, productive capacity, and supply chain shocks across horizons, for
each of the eight specifications discussed above.

Consistent with these IRFs, the FEVD results in Figure 13 show that using our congestion
indices —especially under the above zero restrictions— attributes a larger share of the forecast
error variance of PCE prices to supply chain shocks at medium horizons. By contrast, when
alternative proxies are employed, the variance attribution shifts toward aggregate demand, with
supply chain shocks playing only a minimal role throughout. We report the full IRF and FEVD
comparisons, along with a robustness check that replaces the PCE chain-type price index with

the PCE goods price index (which yields analogous conclusions), in Appendix H.
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5. Conclusion

Our findings suggest several promising avenues for future research. First, the ACR index
reveals substantial heterogeneity in global port congestion, raising questions about whether
spillovers across ports stem from geographical proximity or production synergies (Fernandez-
Villaverde et al., 2021, 2024a,b). Second, our results highlight the importance of spare capacity
in assessing the severity of supply chain disruptions, suggesting the need to endogenize its ad-
justment and examine its persistence and interaction with inventories. Third, incorporating
input—output networks to analyze how spare capacity transmits supply chain shocks across firms
could yield valuable insights, as production structures may amplify or dampen disturbances and
trigger endogenous changes (Ghassibe, 2024; Xu et al., 2025). We plan to explore some of these

extensions in future work.
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A. Background on the Containerized Shipping Industry

This appendix provides additional background on the containerized shipping industry, high-
lighting the institutional frictions and operating practices that shape its short-run dynamics.

Scheduling rigidities and port congestion. As noted in the main text, the shipping
industry commonly follows a “hurry up and wait” practice in port calls (Du et al., 2015). For
example, a vessel may depart the loading port at full speed to meet the originally requested time
of arrival at the pilot boarding place (RTA PBP) on day 14. If severe congestion arises three days
into the voyage and the RTA PBP is postponed to day 17, the vessel may not receive this update
in time to adjust its speed. Even when such forewarnings are received, ships often maintain their
speed because altering it could violate contractual obligations. As a result, vessels frequently
“hurry” to arrive, only to “wait” at anchorage. This phenomenon is widespread in container
shipping, where operational inefficiencies arise from mismatches between scheduled port calls and
real-time port conditions.

Oil price, vessel speed, and port congestion. Fuel costs account for 50-60% of a liner
shipping company’s operating expenses (Notteboom, 2006), and vessel fuel consumption increases
roughly with the cube of sailing speed (Li et al., 2016). As a result, container ship operators adjust
sailing speeds in response to fluctuations in bunker oil prices. We estimate a strong negative
relationship between oil prices and average vessel speed: a 1% increase in the Brent crude price
reduces sailing speed by about 0.022%, a highly significant effect (p = 0.004). In contrast,
when we regress congestion rates at the top 50 container ports worldwide on Brent crude prices
(controlling for year and month fixed effects), we find no statistically significant relationship: the
estimated coefficient is positive but small relative to its standard error, with a p-value of 0.313
and an R? of only 0.021.1

This divergence reflects industry-wide institutional frictions. Higher oil prices encourage
slower sailing to save fuel, but port congestion is shaped by scheduling rigidities and the “hurry up
and wait” practice of port calls, which break the link between congestion dynamics and fuel prices.
Thus, oil prices matter for cost-driven adjustments but not for congestion, which is governed by

coordination failures and port inefficiencies.

!Data on the Brent crude oil price are retrieved from the FRED database (mnemonic: POILBREUSDM). Data
on average container ship speed, measured in knots, are retrieved from Clarksons. The statistically insignificant
result for port congestion also holds when using the natural logarithm of average congestion time at the top 50
container ports.
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Idle ships. According to the Clarksons Shipping Intelligence Network, idle ships are defined
as vessels that (i) are not recorded with an average speed greater than one knot for seven days
or more, (ii) are not identified as being under another status (such as laid-up, under repair, or in
storage), and (iii) are either not subsequently recorded with an average speed greater than one
knot for two or more consecutive days or have not moved more than 20 km.

Figure A.1 plots the share of idle container ships as a percentage of the global fleet. This
proportion declined from about 6% to 3% at the end of 2017, hovered around 4-5% through 2018—
2019, and then spiked to roughly 8.5% at the onset of the COVID-19 pandemic in early 2020.
It subsequently fell sharply and stabilized at about 4%. The pandemic-driven surge in idle ships
reflected active capacity management by shipping companies, which withheld capacity in response
to the collapse in consumer and business demand (Li et al., 2025). To minimize the impact of
this abrupt change on port-congestion estimates, we exclude idle ships when constructing the

congestion indices (see Appendix C.1.1).

9 T T T T T T T T T

= TIdle Ships
= =Median = 3.8%
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Figure A.1: Share of Idle Container Ships in the Global Fleet
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B. Testing Short-Run Rigidity in Containerized Shipping

This appendix tests the short-run rigidity assumption in the containerized shipping industry.
Specifically, we examine whether the ACR index responds on impact to a monetary policy shock
using local projections (LPs). LPs offer a flexible model specification and are robust to the curse
of dimensionality, making them well suited for capturing dynamic responses.

Our assessment involves estimating
ACRtJrk = o + ﬁk MPt -+ Uk t+k> (Bl)

where 0 < k£ < K indexes the forecast horizon, ACR;} is the k-period-ahead value of the ACR
index, MP; is the monthly orthogonalized Bauer-Swanson monetary policy surprise published by
the Federal Reserve Bank of San Francisco (Bauer and Swanson, 2023), «y is a horizon-specific
constant, and uy . is the k-step-ahead forecast error.? The coefficients {8, } 5 trace the response
of ACR over K months to a one-standard-deviation policy shock, where the standard deviation
is computed within our estimation sample.

We estimate Equation (B.1) via least squares (Jorda, 2005), using Newey—West standard errors
(Newey and West, 1987) for ;. As the forecast horizon k increases, the fj estimates may become
noisier, particularly in a small sample. To address this, we apply the smooth local projections
(SLP) method (Barnichon and Brownlees, 2019), approximating ;. with a linear B-spline basis

expansion:
M
B~ Y bmBu(k), (B.2)
m=1

where B,,(k) are B-spline basis functions and b, are parameters estimated using a penalized
procedure that shrinks Equation (B.2) toward a quadratic polynomial in k.

We estimate the LPs beginning at horizon k£ = 0. Panel B.1la reports the impulse responses
of the ACR index to a one-standard-deviation Bauer-Swanson monetary policy shock. The solid
line denotes the median estimates, and the shaded areas show the 68% and 90% confidence bands.

The on-impact response of the ACR index is close to zero and statistically insignificant, consistent

2We use the Bauer-Swanson series because it delivers precise estimates in recent samples. We rely on the
monthly orthogonalized surprises from the “Monetary Policy Surprises” webpage maintained by the Federal Re-
serve Bank of San Francisco. As of our download, the monthly series runs through December 2023; accordingly,
we estimate over January 2016-December 2023. This window still spans the key period of global supply chain
disruptions in 20202022 and does not change our main conclusions.
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with our assumption of short-run rigidity in the containerized shipping industry.

Beyond the immediate horizon, however, the ACR index exhibits a gradual decline over the
medium run, with median responses turning more negative after six months and remaining below
zero for up to two years. Although these medium-run effects are only marginally significant given
the wide confidence bands, they suggest that monetary tightening may eventually dampen port

congestion, likely through its effects on trade flows and shipping demand.

0.6 . . 0.4
— Median Estimates
0.4+ 68% Confidence Bands
90% Confidence Bands 0.2
0.2 F .
NI S E—
2
=02k
-0.4+
-0.4}
-0.6F
0.8 - : - 0.6 | . .
0 6 12 18 24 0 6 12 18 24
Months Months
(a) ACR (b) ACT

Figure B.1: Impulse Responses of Port Congestion Indices to a Monetary Policy Shock

Notes. The IRFs of the ACR and ACT indices to a one-standard-deviation Bauer—-Swanson monetary policy shock,
obtained from the LP model (B.1) estimated with the SLP method (Barnichon and Brownlees, 2019). Estimates
are based on the sample period January 2016-December 2023.

Panel B.1b reports results using the Average Congestion Time (ACT) index, which serves
as an alternative robustness check by measuring the average number of hours ships spend in
anchorage before berthing. The ACT index exhibits a broadly similar pattern: no significant on-
impact effect, followed by a modest but persistent decline over the medium run. This confirms
that our findings are not an artifact of using a rate-based measure of congestion.

Taken together, these results support the assumption of short-run operational rigidity in the
containerized shipping industry: neither the ACR nor the ACT index reacts contemporaneously
to monetary policy shocks. At the same time, the medium-run declines observed in both indices
are consistent with the view that monetary policy transmits to global shipping activity gradually,

through its effects on demand for traded goods and shipping services.
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C. A Density-Based Spatial Clustering Algorithm

This appendix provides details of our density-based spatial clustering algorithm —the itera-
tive, multi-attribute, density-based spatial clustering of applications with noise (IMA-DBSCAN).
The same details can be found in the companion paper (Bai et al., 2023).

We use this algorithm to estimate port congestion for the top 50 container ports worldwide.?
We first describe the methodology underlying the algorithm. We then present an illustrative case
study for the Port of Ningbo-Zhoushan in China, showing its ability to identify both anchorage
and berth locations —where other methods fall short. Finally, we construct weekly congestion
indices —the ACR and ACT indices— to demonstrate that our measurement of port congestion
is robust across time frequencies.

For completeness, the appendix also includes the pseudocode of IMA-DBSCAN to facilitate
replication. The parameter values and ranges used in our estimation appear in Table C.1, and
the AIS data inputs are publicly available. The algorithm can be adapted to compute conges-
tion measures for ports beyond the top 50 container ports, and individual port-level congestion

statistics are available upon request.

C.1. Methodology

As depicted in Figure C.1, the proposed IMA-DBSCAN algorithm has several distinctive
features. Foremost among these is its two-tiered iterative structure. At the first level, we extract
each container ship’s trajectory at each of the top 50 ports from the AIS data and apply traditional
DBSCAN to filter out noise and cluster the ship’s mooring points (Ester et al., 1996). While this
step identifies mooring areas, it does not sufficiently differentiate between the anchorage and
berth areas of a port.

The second level addresses this limitation by applying a spatial-temporal DBSCAN (ST-
DBSCAN; see Birant and Kut, 2007) to the resulting clusters. In this phase, we use an iterative
procedure to determine a generalized and optimal parameter setting for the clustering algorithm.
Another hallmark of IMA-DBSCAN is its integration of multiple attributes at the second level:
beyond spatial data (e.g., coordinates), we incorporate non-spatial information (e.g., headings

and timestamps) to enhance clustering accuracy. In what follows, we elaborate on the specifics

of each level of IMA-DBSCAN.

3See https://www.worldshipping.org/top-50-ports (accessed June 15, 2022) for the full list of ports.
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Figure C.1: Methodology Framework of IMA-DBSCAN

C.1.1. First Level: Data Preprocessing

While AIS data provide detailed information on ship positions, directly clustering these records
to determine a port’s anchorage and berth areas is challenging. First, even when restricted to
a specific port area and timeframe, the sheer volume of records means that running DBSCAN
on the raw data leads to extended processing times. Second, the high incidence of incorrect
AIS signal assignments can produce inaccurate clustering results, such as clusters that are not
actual berths or that cover implausibly large areas. Third, if a ship remains in a port area for
an extended period, the density of AIS records may cause DBSCAN to misclassify that stay as a
cluster. Given these issues, preprocessing the AIS data is essential.

At the first level of IMA-DBSCAN, we filter the AIS records for each ship in the port area,
focusing on observations with speeds below 1 knot. Such positions suggest that a ship is berthed,
anchored, or in an unusual status (e.g., idle, laid-up, under repair, or in storage). We then tally
these positions; if the count falls outside an acceptable range (e.g., fewer than 100 or more than
100,000), we classify the ship’s data as abnormal and exclude it from further analysis. Because a
ship may dock at a port multiple times, we define a cutoff period At (e.g., 12 hours) to separate

consecutive arrivals: if the gap between two stays exceeds At, we treat them as distinct port
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calls. To streamline the dataset while maintaining consistency, we retain only the first data point
for each hour.

For every port call, the refined positions are clustered using the traditional DBSCAN with
parameters Eps and MinPts. We select an Eps value small enough to capture a ship’s mooring
area and a MinPts value sufficient to classify transient stops as noise. At this stage, AIS prepro-
cessing is complete. The resulting samples are then passed to the second level of IMA-DBSCAN
to identify a port’s anchorage and berth areas. For reference, the pseudocode for the first level

of IMA-DBSCAN is provided in Algorithm 1.

C.1.2. Second Level: Multiple Attributes and Iteration

Information on headings. AIS data contain both spatial (geographical coordinates) and non-
spatial (headings) information. Figure 1 in the main text illustrates the positions of a ship in a
port alongside its headings. At a berth, headings are either aligned in the same direction or exactly
opposite, whereas in an anchorage area they appear random with no discernible pattern. This
observation matches real-world behavior: ships in anchorage often fail to maintain a consistent
heading due to wind and wave variations.

Consequently, in the second level of IMA-DBSCAN, we incorporate heading information to
improve estimation accuracy.* Specifically, IMA-DBSCAN relies on three parameters: Epsl,
Eps2, and MinPts. Here, Epsl is the maximum geographical (spatial) distance between two
points, Eps2 is the maximum non-spatial distance between two headings, and MinPts is the
minimum number of points within the thresholds defined by Epsl and Eps2.

The geographical distance D is computed using the Haversine formula:

D [(z1,22), (y1,y2)] = 2 - R - arcsin [\/sin2 (xl ;‘%) + cos - cosyy - sin’ (xQ _ yQ)

5 , (C.1)

where the coordinates are in radians and R = 6,371 km is the Earth’s mean radius. The non-

4Non-spatial information is also useful for distinguishing between berths (see Algorithm 2). In our initial
experiments, coordinates alone identified only the approximate locations of anchorage and berth areas, not the
exact number of berths.
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spatial distance Ah between two headings is defined as:

|h1 — h2|, if |h1 — hgl S 1800,
Ah(hy, hy) = (C.2)

360° — |hy — hg|, otherwise.

Using these distance measures, the neighbors of a point are those with a geographical distance
less than Epsl and a heading distance less than Eps2. A core point is defined as one with at
least MinPts neighbors, and clusters in IMA-DBSCAN consist only of these core points.

Iteration process. Since the geographical shapes of anchorage and berth areas vary widely
across ports, and the boundaries of anchorage areas shift continuously with waves and winds, the
parameters in IMA-DBSCAN must ideally vary across ports to achieve optimal results. To this
end, we propose an iterative method for determining parameter values. Specifically, while Eps2
is fixed at 1°, Epsl and MinPts vary by port.

During the iteration, we define four intermediate variables: Dist, m, m/, and NumC'. Here,
Dist is the average distance between a point in a cluster and the cluster’s center; m is the number
of points; m’ is the number of noisy points (initialized to zero); and NumC' is the number of
clusters.® Using these variables, we update Epsl and MinPts as follows:

m—m'

Epsl = « - Dist, MinPts =3 - NamC
um

Although o and S are not subject to explicit constraints, they must fall within a reasonable
range to ensure both convergence and meaningful results. After evaluating performance under
various parameter settings, we find « € [0.4,0.6] and 5 € [0.06,0.1] to be appropriate. We also
introduce Disty, which records the value of Dist from the previous iteration (initialized to zero).

ST-DBSCAN is then executed iteratively. In each round, it operates with the current values
of Epsl and MinPts and with Eps2 fixed at 1°. Its outputs classify points either into clusters or
as noise. Based on these outputs, the intermediate variables, as well as Epsl and MinPts, are
updated, and the procedure is repeated. The process terminates when the difference Dist — Dist
is less than or equal to ADist (e.g., 100 m).°

At convergence, each point is either assigned to a cluster or labeled as noise. We interpret

5At initialization, when no clusters exist, we treat all points as belonging to a single cluster. If all points are
classified as noise, we set NumC = 1.

6The two-tiered structure and use of non-spatial information do not undermine the efficiency of IMA-DBSCAN.
In practice, the values of Epsl and MinPts stabilize after only about five iterations, with further iterations yielding
negligible changes.
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the resulting cluster areas as berths and the areas with noisy points as anchorages.
Information on timestamps. After running ST-DBSCAN, we find that many clusters
should be merged, as they often represent the same berth in reality. To improve the accuracy
of berth identification, we merge clusters by using the timestamp information in the AIS data.
Specifically, we first calculate the start and end times of each port call in each cluster. Since
only one ship can dock at a berth at any given time, we then identify, for each cluster under
consideration, its closest cluster and check for any overlap in docking times. If there is at least
one overlap, the two clusters are treated as distinct berths. If there is no overlap, they are merged

to represent a single berth (see Figure C.2 for an illustration).

A Port Call in Cluster 2

Case 1 1 1 1 1 >
a dy ) do t

A Port Call in Cluster 1
A Port Call in Cluster 2

"
Case 2 1 1 1 1 >
aj 9 dy ds t
|

A Port Call in Cluster 1
Figure C.2: Merging Clusters

Notes. Two scenarios that guide the criteria for merging clusters after executing ST-DBSCAN at the second level.
Let a; and d; denote the arrival and departure times of a ship during a port call assigned to cluster 1. Similarly,
let ay and do represent the arrival and departure times for a port call assigned to cluster 2, the geographically
closest cluster to cluster 1. In the first scenario, the docking intervals do not overlap, so clusters 1 and 2 are
merged. In the second scenario, the docking intervals overlap, and the clusters are kept separate, since two ships
cannot occupy the same berth simultaneously.

To distinguish between anchorage areas, we apply DBSCAN again to the points previously
classified as noise. Here, the parameters Eps’ and MinPts’ are chosen based on domain knowl-
edge. We also remove clusters with fewer than N port calls, where N is set to align with official
statistics (if any) on the minimum number of port calls recorded at the top 50 ports worldwide
during the sample period. For reference, the pseudocode for the second level of IMA-DBSCAN
is provided in Algorithms 2, 3, and 4.

Finally, the parameter values used in estimating port congestion are reported in Table C.1.
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Table C.1: Parameter Values for IMA-DBSCAN

Parameter
First Level At Eps MinPts
Value 12 hours 50 m 10
Second Level o B ADist Eps'  MinPts' N
Value 0.5 0.08 100 m 1,000 m 50 5

Algorithm 1 Level 1 IMA-DBSCAN

Inputs:

Ay ={ayy,...,a,;}: the set of coordinates recorded in the AIS data for a ship !

Si={s14,---,8n.}: the set of speeds recorded in the AIS data for a ship !
Ty = {t1s,-..,tns}: the set of timestamps recorded in the AIS data for a ship {
Outputs:
D, ={dy,,...,dn,}: the coordinates of the first observation for each hour in B,
H; ={hyy,..., hp,}: the heading of the first observation for each hour in B;
1: /* Data Preprocessing */
2. By = {by;...by;} < the set of coordinates in A; that indicate a speed less than 1 knot
3: /* Exception Identification */
4: if |By| < 100 or |B;| > 100,000 then
5: ‘ Remove the data and stop > The ship has an abnormal port call
6: else
7 ‘ Continue
8: end if
9: /* DBSCAN Clustering */
10: X bl,l
11: for 1 < 2 : k do
12: if t;, —t;_1 < At then
13: ‘ Append b;; to X
14: else
15: DBSCAN(X, Eps, MinPts)
16: X« 0
17: Append b;; to X
18: end if
19: end for
20: Remove the observations labeled as noise from B,
21: Keep only the first observation for each hour in B; > Note that only m observations remain
in By at this stage
22: Dy ={dyy,...,dn,} < the coordinates of the first observation for each hour in B,
23: Hy = {h1y,..., hp;} < the heading of the first observation for each hour in B,
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Algorithm 2 Level 2 IMA-DBSCAN

Inputs:
D = {D,,...,Dr}: the set of coordinates for all ships after Level 1 IMA-DBSCAN
H = {Hy,...,H.}: the set of headings for all ships after Level 1 IMA-DBSCAN
O={D,H} ={o01,...,0pn}: the combined set of coordinates and headings
Outputs:
Chertn: the set of clusters marked as berths
Canchorage: the set of clusters marked as anchorages

1: /* Parameter Initialization */
2: Dist < the average distance between a point in D and the center of the mass of D

3: m <+ |D|

4: Epsl < a - Dist

5: MinPts < [ -m

6: /* Iteration Process */
7. Disty < 0

8: while Dist — Disty > ADist km do

9: ST—DBSCAN(O, Epsl, Eps2 = 1°, MinPts) > See function ST-DBSCAN
10: Disty < Duist
11: Dist < the average distance between a non-noisy point in D and the center of the mass

of its assigned cluster

12: m’ < |noisy points in O|
13: NumC < |clusters in O|

14: Epsl <~ « - Dist

15: MinPts < - (m —m') /[NumC

16: end while

17: /* Merging Clusters */
18: Use the center of the mass of each cluster to calculate the distance in between

19: for all clusters ¢ in O do

20: ¢’ < the nearest cluster less than 500 m away from c

21: if the docking times of ¢ and ¢ do not overlap then

22: ‘ Replace the cluster label of ¢ with that of ¢

23: end if

24: end for

25: /* Berth and Anchorage Detection */

26: Cheren, < clusters in O
27: Canchorage < DBSCAN(noisy points in O, Eps’, MinPts')

28: /* Ezception Remouval */
29: for all clusters ¢ in Cierp, and Copchorage dO

30: NumP <« the number of port calls in cluster ¢

31: if NumP < N then

32: ‘ Remove ¢

33: end if

34: end for
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Algorithm 3 ST-DBSCAN

Inputs:

O ={o01,...,0p}: the combined set of coordinates and headings

Epsl: maximum geographical (spatial) distance

Eps2: maximum non-spatial distance

MinPts: minimum number of points within the distance of Epsl and Eps2
Outputs:

C ={ci,...,cu}: the set of clusters in O

1: /% The codes are adapted from those in Birant and Kut (2007). */
2: function ST—DBSCAN(D, Epsl, Eps2, MinPts)

3: Cluster Label = 0

4: for i< 1:m do

5: if o; is not in a cluster then

6: Y < RetrieveNeighbors(o;, Epsl, Eps2) > See function RetrieveNeighbors
7 if |Y| < MinPts then

8: ‘ Mark o; as noise

9: else > Construct a new cluster
10: Cluster Label < Cluster Label + 1

11: for j < 1:]Y]| do

12: ‘ Mark all objects in Y with current Cluster Label

13: end for

14: Push(all objects in Y)

15: while not IsEmpty() do

16: CurrentObj = Pop()

17: Z < RetrieveNeighbors(CurrentObj, Epsl, Eps2)

18: if |Z| > MinPts then

19: for all objects 0 in Z do
20: if o is not marked as noise or it is not in a cluster then
21: Mark o with current Cluster Label
22: Push(o)
23: end if
24: end for
25: end if
26: end while
27: end if
28: end if
29: end for
30: C ={ci,...,cu} + the set of clusters in O
31: end function
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Algorithm 4 RetrieveNeighbors

Inputs:

o: an observation in O

Epsl: maximum geographical (spatial) distance

Eps2: maximum non-spatial distance
Outputs:

Netghbors: the set of neighbors for o

: function RetrieveNeighbors(o, Epsl, Eps2)

Neighbors <+ ()

for all observations o' in O do

Distl < D(o,0) > See Equation (C.1)
Dist2 < Ah(o,0) > See Equation (C.2)
if Distl < Epsl and Dist2 < Eps2 then

‘ Append o' to Neighbors

end if

end for

10: return Neighbors

11: end function

C.2. Tllustrative Cases

To demonstrate the capability of IMA-DBSCAN to accurately identify the anchorage and
berth areas of a port —something other methods often fail to achieve— we apply the algorithm
to the Port of Ningbo-Zhoushan in China, chosen for its intricate layout. Figure C.3a displays
the first 50,000 AIS observations collected since January 1, 2020, within the port. The blue dots
indicate the positions of low-speed container ships. Before applying IMA-DBSCAN, we mark
approximate anchorage areas and berth locations using satellite images and nautical charts as
benchmarks: red polygons denote anchorage areas, and yellow rectangles denote berth locations.”

Figure C.3b presents the clustering results of IMA-DBSCAN for Ningbo-Zhoushan, mirroring
the layout in Figure C.3a for direct comparison. The clusters in Figure C.3b (colored red, yellow,
blue, purple, cyan, and orange) closely match the anchorage areas in Figure C.3a.®

In Figure C.3e, we further highlight the locations of four terminals —Beilun, Daxie, Pukou,

and Yuandong. Benchmarked against satellite maps, these identifications prove highly accurate:

“Our illustrative case of Ningbo-Zhoushan focuses on a one-month snapshot, as the first 50,000 AIS observations
fall within January 2020. This identification remains representative in subsequent months because anchorage and
berth areas do not change significantly in the short run. In practice, IMA-DBSCAN can be applied periodically
to monitor potential changes in port layouts.

8For clarity, we also show the convex hulls of these clusters in Figure C.3d.
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as shown in the top row of Figure C.4, each berth within the terminals is precisely delineated,
with boundaries that align closely with reality.’

To benchmark IMA-DBSCAN against existing methods, we compare it with ST-DBSCAN.!?
ST-DBSCAN is widely recognized in the literature as a leading spatial clustering algorithm ca-
pable of handling spatio-temporal data. Figure C.3c reports its results, which are less precise
than those of IMA-DBSCAN. Although ST-DBSCAN generally identifies anchorage points, it
misclassifies several high-density regions as berths, even when they are not. For instance, in
the blue rectangle of Figure C.3f, ships that remained in an area for extended periods (possi-
bly undergoing maintenance) are mistakenly treated as berths. Likewise, in the black rectangle,
ST-DBSCAN labels points as berths that should instead be classified as mooring areas. As a
result, ST-DBSCAN provides only a rough outline of anchorage areas and fails to identify berth
locations with precision.

Figure C.4 offers a more granular comparison for the four Ningbo-Zhoushan terminals. ST-
DBSCAN produces ambiguous results, with overlapping clusters that are spatially close but have
divergent headings. Terminal boundaries can be discerned, yet individual berths are barely dis-
tinguishable. By contrast, IMA-DBSCAN delivers clusters that align cleanly with each berth.
While tuning MinPts or lowering Epsl can improve ST-DBSCAN’s accuracy, this requires con-
tinuous manual adjustment, which is difficult to apply consistently across ports. In contrast,
the iterative design of IMA-DBSCAN automatically determines parameters, enabling accurate
identification of both berths and anchorage areas.

Finally, we apply both algorithms to the Ports of Los Angeles and Long Beach (U.S.), Rot-
terdam (Netherlands), and Singapore. As shown in Figures C.5 through C.7, IMA-DBSCAN
consistently outperforms ST-DBSCAN, delivering more accurate identification across all major

container ports examined.

9Some blue dots in Figure C.3a do not correspond to any anchorage or berth in Figure C.3b, reflecting ships
that anchored only briefly.

OFor this comparison, the ST-DBSCAN parameters are set to Epsl = 2,500 m, Eps2 = 1°, and MinPts = 100,
following Ester et al. (1996).
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Figure C.3: Identification of Anchorage and Berth Areas in the Port of Ningbo-Zhoushan

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Port of Ningbo-Zhoushan in
China. These are shown as blue dots, covering coordinates from 121.60°E to 123.00°E and from 29.50°N to 30.35°N. As benchmarks, satellite maps and
nautical charts are used to mark anchorage areas (red polygons) and berth locations (yellow rectangles). Panels (b) and (c) present the clustering results
using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b), the blue dots denote identified anchorage areas, whereas in Panel (c¢) they are classified
as noise, outlining the general distribution of anchorages but without distinguishing individual ones. Panel (d) displays the anchorages from Panel (b)
separately in red polygons, while Panel (e) shows the berths from Panel (b) separately in yellow, identifying the four terminals of Pukou, Daxie, Beilun, and
Yuandong. Finally, Panel (f) depicts the approximate berth locations identified by ST-DBSCAN in yellow, with the blue and black rectangles indicating,
respectively, noise misclassified as berths and anchorages mistaken for berths.
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Figure C.4: Detailed Results of Berth Identification: IMA-DBSCAN (Top Row) vs. ST-DBSCAN (Bottom Row)

Notes. Detailed berth identification for the four terminals —Beilun, Daxie, Pukou, and Yuandong— within the Port of Ningbo-Zhoushan. Berths identified
by IMA-DBSCAN appear in yellow (top row), and those identified by ST-DBSCAN appear in brown (bottom row).
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Figure C.5: Identification of Anchorage and Berth Areas in the Ports of Los Angeles and Long Beach

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Ports of Los Angeles and Long
Beach in the U.S., shown as blue dots. Panels (b) and (c) present the clustering results using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b),
the blue dots denote identified anchorage areas, whereas in Panel (c¢) they are classified as noise, outlining the general distribution of anchorages without
distinguishing individual ones. Panel (d) displays the anchorages from Panel (b) separately in red polygons, and Panel (e) shows the berths from Panel (b)
separately in yellow. Finally, Panel (f) depicts the approximate berth positions identified by ST-DBSCAN in yellow.
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Figure C.6: Identification of Anchorage and Berth Areas in the Port of Rotterdam

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Port of Rotterdam in the
Netherlands, shown as blue dots. Panels (b) and (c) present the clustering results using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b),
the blue dots denote identified anchorage areas, whereas in Panel (c¢) they are classified as noise, outlining the general distribution of anchorages without
distinguishing individual ones. Panel (d) displays the anchorages from Panel (b) separately in red polygons, and Panel (e) shows the berths from Panel (b)
separately in yellow. Finally, Panel (f) depicts the approximate berth positions identified by ST-DBSCAN in yellow.
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Figure C.7: Identification of Anchorage and Berth Areas in the Port of Singapore

Notes. In Panel (a), the sample data consist of the first 50,000 AIS observations recorded since January 1, 2020, within the Port of Singapore, shown as blue
dots. Panels (b) and (c) present the clustering results using IMA-DBSCAN and ST-DBSCAN, respectively. In Panel (b), the blue dots denote identified
anchorage areas, whereas in Panel (¢) they are classified as noise, outlining the general distribution of anchorages without distinguishing individual ones.
Panel (d) displays the anchorages from Panel (b) separately in red polygons, and Panel (e) shows the berths from Panel (b) separately in yellow. Finally,
Panel (f) depicts the approximate berth positions identified by ST-DBSCAN in yellow.



C.3. Weekly Indices of Port Congestion

The integration of high-frequency AIS data with our IMA-DBSCAN algorithm enables the
construction of port congestion indices at frequencies higher than monthly updates. The AIS
system processes over 2,000 reports per minute and can update information as often as every two
seconds. Moreover, unlike traditional algorithms that require data sampled at fixed intervals,
IMA-DBSCAN is uniquely flexible. Its streamlined design allows it to operate without predefined
frequencies, making it especially well-suited to the highly variable and high-frequency nature of
AIS data.

Figure C.8 shows the ACR index at a weekly frequency. Compared to the monthly ACR index
in Figure 4 in the main text, the two series exhibit similar trends. However, the weekly series is
substantially more volatile, since the number of ship visits to each port may vary considerably

from week to week.!!
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Figure C.8: Weekly ACR Index

In addition to the ACR index, we also introduce an alternative high-frequency congestion
measure, the ACT index. Unlike the ACR index, which is rate-based, the ACT index measures
the average number of hours a container ship spends waiting in a port’s anchorage before docking

at a berth, weighted by the relative number of ship visits to each of the top 50 container ports

1 The ACR index could also be constructed at daily or even hourly frequencies. However, because only a few
ship visits occur at a given port each day or hour, the resulting series would be too volatile, with values of 0%
and 100% occurring frequently.
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worldwide:

ACT, = Z Delayed,, ; + Undelayed,, , ' DelayHours,, ,
> ez (Delayed,, + Undelayed,,,) Delayed,, + Undelayed,,, | ’

pPEPR

where Delayed,, ,;, Undelayed,,;,, and DelayHours,, denote the number of delayed and undelayed

ship visits, and the total hours ships spend in the anchorage areas of port p in week ¢, respectively.
Figure C.9 plots the weekly ACT index, which closely co-moves with the weekly ACR index
over the sample period. In Appendix H.3, we also aggregate the ACT index to the monthly

frequency and use it in our causality analysis. The results confirm that our identification strategy

is robust to using ACT instead of ACR as the measure of global supply chain conditions.
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Figure C.9: Weekly ACT Index

Notes. The ACT index is a weighted average of the number of hours ships wait in a port’s anchorage before
docking at a berth, with the weights given by the relative number of ship visits to each port.
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D. Discussion of Model Assumptions

This appendix discusses two critical assumptions in our model: search and matching frictions
in the product market and endogenous separation of producer-retailer matches due to transporta-
tion costs. First, to represent the search and matching frictions in a tractable manner, we assume
that a matching function governs the number of trades between producers and retailers. Second,
to succinctly capture the decision-making process between a producer and a retailer when their
trade is subject to a transportation cost, we assume that upon meeting, both parties endogenously
separate once the idiosyncratic transportation cost exceeds a reservation threshold. We discuss
each of these two assumptions in turn.

The matching function. There is ample literature on the sources of matching frictions in the
product market, including the difficulty of locating and connecting with buyers across locations
(Benguria, 2021; Krolikowski and McCallum, 2021; Lenoir et al., 2022), the costly acquisition of
information about market conditions (Allen, 2014; Chaney, 2014), and informal trade barriers
such as common language (Melitz and Toubal, 2014) and geography (Eaton and Kortum, 2002).

Common across all these theories is the presence of barriers to trade between producers and
retailers, implying that not all unmatched producers engage in trade, and that not all retailers’
sourcing visits succeed. We assume a simple constant-returns-to-scale matching function that
summarizes how unmatched producers and retailers’ visits are transformed into trades. This
allows us to abstract from the complex matching process while preserving its key implication:
unmatched producers trade only with probability f(6)G(z) < 1, and retailers’ visits are successful
only with probability ¢(#)G(z) < 1.

Endogenous separation on transportation cost. The separation margin in the product
market can be modeled in the same way as in the labor market when workers face negative
productivity shocks to their employment matches (Bils et al., 2011; Menzio and Shi, 2011; Fujita
and Ramey, 2012). More concretely, producers face idiosyncratic transportation costs in their
trading relationships with retailers, and sufficiently adverse draws lead to the termination of
those relationships. This assumption is plausible only if there is convincing evidence that (i)
transportation costs matter for the decision to trade, and (ii) there exists a threshold above
which trading partners choose to sever their relationship.

The prediction that transportation cost affects the probability of trade has been extensively
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corroborated by the trade literature. For example, evidence in Rodrigue (2020) shows that
across all transport modes, a 10% increase in transportation costs reduces trade volumes by
more than 20%. In maritime transportation specifically, Brancaccio et al. (2020) exploit tariff
changes across the trade network to find that a 1% change in shipping costs generates roughly a
1% change in world trade value. Likewise, Wong (2022) estimates the elasticity of containerized
trade with respect to freight rates using the round-trip effect as an instrument. For route ¢, j, she
constructs a Bartik-style instrument to proxy for predicted trade on route j,4, and reports that a
1% increase in per-unit container freight rates decreases containerized trade value by 2.8% when
dyad-by-product controls are included.

Both theory and observation point to the existence of a reservation transportation cost that
trading partners consider when assessing whether a match is profitable. In practice, this thresh-
old reflects the highest cost a firm can absorb when deciding to begin exporting or to maintain
an existing trading relationship, covering expenses such as fuel, labor, and insurance. Evidence
from plant-level data reinforces this idea. To account for the wide dispersion in export and im-
port intensities across plants, Kasahara and Lapham (2013) extend the model of Melitz (2003)
by allowing for heterogeneity in transportation costs. This modification delivers a natural self-
selection mechanism: only plants with sufficiently low costs find it worthwhile to trade. These
insights together support the notion of a reservation transportation cost below which trade be-
comes profitable.

A related threshold logic arises in the literature on transport infrastructure and exporting. For
instance, Naudé and Matthee (2011) argue that firms require a minimum level of infrastructure
in order to enter export markets, whereas further improvements have limited effects on export
volumes. Because infrastructure affects transportation costs, this argument is consistent with the

presence of a reservation transportation cost that firms weigh when making export decisions.
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E. Proofs and Discussions Omitted from the Main Text

The following appendices include all long proofs that are omitted from the main text, as well

as several important discussions on model dynamics.

E.1. Proof of Proposition 1

We first rewrite E,.S(z). Using the definition of S(z) in Equation (7), we derive the following

expression for the total surplus:
S(z) = (p—2)l+ (1 —nf(0)) BES(Z).

Subtracting Equation (11) from this expression yields S(z) = (z — z){. Substituting back into the

expectation,

E.S(z) = /OZ(Z — 2 dG(2)

K /0 G dz/]

=1 [(z — ) G()

= / G(Z) d?,
0

where the second line follows by integration by parts.

Replacing E,/S(2’) in Equations (11) and (12) gives the following rearranged match separation

condition: i
Fp.0) =0 = p-z+(1-nf0) [ GE)dz =0 (E1)
0
and the rearranged match creation condition:
H(z,0) =0 = L 1-n)p / G(')dz =0, (E.2)
q(0) 0

where G(-) is the log-normal cumulative distribution function with density g(-).
Subsequently, we study the three-equation system given by the rearranged match separation
condition (E.1), the match creation condition (E.2), and the retailer-household market clearing

condition (18), i.e.,

f(0)G(%) H o

Lp.2.0) = 1= G(2) + f(0)G(z) X p
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Assume F, H, and L are C! and, at a solution (p*, z*,6*), the partial derivatives satisfy:
F,=1>0, Fa= -1+ (1-nf(6) §G(2) <0. Fo=-na0)*5 [ G()d <0,
0

p6!

He =—(1-m)8G(E) <0, Ho= a5

> 0;

L_XH L OlwE=a)/esOl o
S O R IO N (R O RS TO1EE)

and take [ >0, u >0, x >0, p>0.

Consider the Jacobian with respect to (p, z, 6),

F, F. F,
S_o®HL) |
T opze |V M

L, L: Ly

At any solution (p*, z*, 6%),

detJ = F, (H:Ly—HL:)+ L, (F:Hy— FoH;) < 0,
v\ ~~ > v\ ~~ >
>0 <0 >0 <0

because H; < 0 < Hy and L;, Ly > 0 give the first bracket < 0, while F; < 0 and Fy < 0 with
H; < 0 < Hy give the second bracket < 0. Thus J is invertible and, by the Implicit Function
Theorem, a solution is locally unique.

To obtain existence and global uniqueness, we reduce the system to a single equation in Z.

Since F, > 0, for every (z, ) there is a unique p = A\(z, #) solving F = 0, with:

F; F
—— >0, )\9:——0>O.

)\5 =
Fp Fp

Likewise, since H; < 0 < Hp, there is a unique 6 = h(Zz) solving H = 0 locally, with A/(z) =
—H;/Hy > 0. Define the scalar function:

By the chain rule and the signs above,

A/(Z) =L, As + Ny h/(Z) +
NGNS ON

>0 >0 >0 >0 >0 >0 >0
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so A is strictly increasing on any interval where A and h are defined.

Now, we bracket a root. As z — 07, G(2) = 0 and L — —x°u/p < 0, so A(Z) < 0 for small Z.
As Z = +o00, G(2) — 1, so the first term of L, i.e., [f(0) G(2)/ (1 — G(Z) + f(0) G(Z))] I, tends
to [. Moreover,

Ar=-F:=1-(1-nf(0) BG(z) 21— >0,

because G(z) < 1 and 1 — nf(f) < 1. Hence A(z, h(2)) grows at least linearly in z, so p =
A(zZ,h(Z)) — +oo and the second term x°u/p — 0. Therefore A(Z) — [ > 0 as z — +o0.
By continuity and strict monotonicity of A, there exists a unique z* with A(z*) = 0. Setting
0* = h(z*) and p* = A(z*, 6*) then solves the original system.

Consequently, a steady state (p*, z*, %) exists and is globally unique over the relevant domain,

and at that point the Jacobian is non-singular.

E.2. Proof of Proposition 2

Recall from Appendix E.1 that the rearranged match separation condition is:

F(z,0;p): p=2—(1-nf(0)) BI(2),
and the rearranged match creation condition is:

H(z,6) : r’;) — (1—n)BI(2),

where

and G(-) denotes the log-normal cumulative distribution function with density g(-).
Property 1. From H, we obtain:
_ _ P
(1—=n)B1(2)
which uniquely determines #(z) because ¢ is continuous and strictly decreasing in 6. Given that

f(0) =0q(0) and f(0)¢ + q(0)¢ = 1, this yields:

s

f(2) = (1-a(2))*, (E.4)
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with f(z) € [0,1). Substituting into ' defines:

p(z) =z2— (1 —-nf(2)B1(2). (E.5)

Using I.(2) = G(2), ¢=(2) = — (q(2)/1(2)) G(%), and the identity f(0)*+q(0)¢ = 1, differentiating
Equation (E.4) leads to:

(Z) = — f(2)¢ 21—5@
(2 = (1= 1)) 2 52

Subsequently, differentiating Equation (E.5) and performing a short algebraic rearrangement —
rewriting p(z) = zZ — B1(2) + nBf(2)1(Z) and collecting terms in f(Z) and f;(Z)— yields:

N CORYEICONOR (E:6)
Since G(2) € (0,1) and f(2)=¢ > 0, it follows that dp/dz > 1 — 3 > 0. Hence p(Z) is strictly
increasing, continuously differentiable, and therefore invertible. This establishes the existence,
uniqueness, and C' regularity of the mapping p — z(p), and thus of p — ¢*(p) = ¢**(z(p)). The
minimal admissible Z is determined by I(Znim) = p/[(1 — n)p], at which point ¢(Zn,) = 1 and
f(Zmin) = 0.

Property 2. At Z,,, Equation (E.5) yields pmin = Zmin — p/(1 — 1), while Equation (17)
gives ¢*(Zmin) = 0. As Z — o0, we have I(Z) — +oo, implying ¢(zZ) — 0 and f(zZ) — 1 by
Equations (E.3) and (E.4), and G(z) — 1. Consequently, ¢5*(z) — [. From Equation (E.6),
dp/dz — 1 — B +np > 0, and thus p — +o0.

Property 3. Differentiating Equation (17) with respect to z and defining D(z) = 1—G(z) +
f(2)G(z) yields:

dey J(2)9() + OB (L= GE) L),

dz D(z)?

Combining this expression with dp/dz from Equation (E.6) gives:

dey? _ f(2)9(2) + G(2) (1 = G(2)) f(2)
dp  D(2)*(1 = pG(2) +nBG(2) f(2)'F)

Moreover, as z — +00, we have f(z) — 1, f5(2) = 0, D(2) — 1, and dp/dz — 1 — 3+npS. Hence,

[ > 0.

dey® 9(2)

S

dp 1-B+ngB

10, (E.7)

since g(z) — 0.

Property 4. Let G, = G(Zum) and C = p/[(1 — n)B]. A first-order expansion of H around
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Zmin vields:
[(2) = O + Gm('g - zmin) + 0(Z - gmin)a

and hence

C G

q(g):ﬁ:1_7’”(

Since f(2)* =1 = q(2)* = £ (Gm/C) (Z = Zuin)

n
( ) — Zin) €. (E.8)

Combining this with Equation (E.5) and noting that I ~ C' gives:

zZ— Emin) + 0<2 - zmin)-

0(Z — Zmin), We obtain the local approximation:

P = Pumin ~ (1 = BG) (Z = Zmin) + 18 C f(2). (E.9)

If £ € (0,1), the first term in Equation (E.9) dominates. Using Equations (E.8) and (E.9)

together with the first-order approximation of c3*,

we obtain:

G (€Gn/C)E
(1= G (1= BG)

1
(P — Pmin) €,

c’(p) ~

=

which is locally convex.
If £ > 1, the second term in Equation (E.9) dominates (or ties when £ = 1), yielding a locally
linear aggregate supply. In particular, if £ > 1,

o5 G, _
Cg (p) ~ (1 . Gm) T]BC (p _pmin)a

=1,
e o (b o)
s \D (1—Gm)C [1—ﬁGm<1_n)] P — Pmin)-

Lastly, from Equation (E.7), as z — 400, we have:

dCSS

d_; ~ Kg(’§)7

where k = 1/(1 - +np) > 0. Since the log-normal density ¢ is unimodal and strictly decreasing
in the upper tail, it follows that for sufficiently large z (equivalently, large p), dcs®/dp is strictly

decreasing. Hence, d*c3*/dp* < 0.
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E.3. Slope and Curvature of Match Separation and Creation Schedules

Define: i
I(z) = / G(Z)d7,
0
where G(-) is the log-normal cumulative distribution function with strictly positive, continuous

density g(+). Its derivatives are given by:
I:(2) = G(2) € (0,1), I=(2) = g(2) > 0.

It is also useful to record the following first and second derivatives of f(6) and ¢(6) with

respect to 6, which will be invoked repeatedly throughout the Appendix:

Jo6) =6 (L4076 T 50, fou(6) = (146021407 <7 <,

1 _1_ 1— 20¢
go(0) = =05 (14+65) < <0, qop(0) = (14065 1952—1§+;§
In particular, ¢(f) is strictly convex for all § > 0 whenever £ € (0, 1].
Match separation schedule. Using the rearranged match separation condition (E.1), by

the Implicit Function Theorem, we have:

W __F_f-nf0)G()—1

dz  Fy Bn fo(0)1(2)
Since 5 € (0,1), f(0) € [0,1), and G(2) < 1,

AL =nf(0)) G(z) <1,

so the numerator of df/dz is strictly negative while the denominator is strictly positive. Hence,
df/dz < 0.
Differentiating once more gives:

20

dz2

dz dz

Fszs +2F5 d—? + Foo (@)2] /Fo,
where the partial derivatives are:
Fzz = B(1—=nf(0))9(2) >0, Fz=—pnfo(0)G(2) <0,
Foo = —Bnfoe(0)1(2) >0, Fp=—PBnfe(0)I(2) <O.
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Since df/dz < 0, each term inside the bracketed sum in the numerator is strictly positive, while
the denominator is negative. Thus, d?6/dz*> > 0, and the match separation schedule is strictly
decreasing and strictly convex in (z,0).

Match creation schedule. Recall from Appendix E.2 that the rearranged match creation

condition is:

H(z, 0) = ﬁ —(1-n)BI(z)=0.

From ¢(0) = (1 + 6¢)~/¢, we obtain the closed-form expression for 6(Z):

which is well-defined on the interior domain:

P
(I—=mn)p’

or, equivalently, Z € [Zpn, +00), where Z,;, is given by Equation (19) in the main text. Differ-

I1(z) >

entiating the closed form yields:

0 0= g [A= ] e 1}%@ -0

For curvature, write 0(z) = h (I(2)) with:

Since I5(z) = G(z) and I::(2) = g(z), we obtain:

2 _ 3
;l_gz [(1 pﬁ)ﬂ} 1(2)5—2 9(2>1—2§ [1(2)9(2) 9(2)6 — (=1 G(Z)z} ‘

The prefactor is strictly positive, so the sign of d?6/dz* is governed by the (second) bracketed
term. If & € (0, 1], the bracketed term is strictly positive for all interior z, implying d*6/dz? > 0.

If £ > 1, the curvature is positive whenever
1(2)g(2)0(2)* > (£ - 1) G(2)*.

Note that as Z — 400, we have g(zZ) — 0 and G(Z) — 1. In the far upper tail, this causes the

left-hand side to eventually fall below the right-hand side, at which point the schedule becomes
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locally concave. By contrast, on ranges where ¢g(z) remains sufficiently large and G(z) is bounded

away from 1, the inequality holds, implying convexity.

E.4. Proof of Comparative Statics in Table 1

We revisit the three-equation system defined in Appendix E.1. Let x := (p, z,0)" solve:
F(p, z,6;7)
Glzipl,y)=| H(z,6;7) | =0,
L(p,z,0; 1, 1,7)

and assume F,H,L € C'.'? Evaluating all partial derivatives at the steady state and adopting
the sign pattern outlined in Appendix E.1,

F,>0, F;<0, Fp<0; H;<O0, Hy>0; L,>0, L;>0, Ly>0,

the Jacobian with respect to x is given by:

F, F, F,
J = G:t - O HE He y
L, L. L

hence J is non-singular by the Implicit Function Theorem.

Comparative statics with respect to ;1 and [. Since only L. depends directly on p and [,

G,=(0,0,L,)", L,=-= <0;

Gl = (Oa O)Ll)Tu ]L’l =

- C() + fOGE "

by the Implicit Function Theorem,
z,=—J'G., re{wl},

and Cramer’s rule yields:

__(FH-FH)L, __ (FH)L, , _ (FH)L,
Pr= det J T T et T T T ety

12Gince the household’s preference parameter for consuming goods, , enters the system in the same way as the
money supply parameter, o (through the aggregate demand function (16)), the comparative statics with respect
to x are identical to those for u. We therefore omit the proof for brevity.
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Given that:
det J =T, (H;Ly — HyL;)+L, (F;Hy — FoH;) < 0, TF;Hy—FH; <0, F,Hy >0, F,H; <O,

we obtain:

pp>0, z,>0, 6,>0;, p§p<0, %<0, 6<0.

For the other variables of interest, it is straightforward to verify that their comparative statics

with respect to p and [ are as follows:

ol —
cp=L:2,+1Lg0,>0, r,=np,+npb, >0, %:—cu<0;
ol —c) 1-G(2)

—]Lgfl—ngl > 0.

q=-Lyp >0, m=np+np <O, ol 1-G((Z)+ f(O)G(2)

Comparative statics with respect to v, holding z fixed. We focus on a short-run horizon
in which producers’ reservation transportation cost Z is fixed by long-term freight contracts, i.e.,

zZ, = 0. Differentiating the three-equation system while treating z as constant, we obtain:

z 1 !/ _
Fo= =) o) [ o1 <o

z 1 ! _
HvZ(l—n)ﬁé/o ¢(%) a2’ >0,
0)1

L f( 1 (Inz—v
b= (1—G(E>+f(9)G(2))20¢< o )<O’

and recall Hy > 0, L, > 0, Ly > 0. From H(z,§;~) = 0 with z, = 0:

H

Hy0,+H, =0 = 6,=-——L<0.
IHy
From L(p, Z,0; p,1,v) = 0 with z, = 0:
_Loby + 1Ly

Lypy +Le0,+L, =0 = p,= > 0,

L

p
because Ly > 0, 0, <0, L, <0, so the numerator Ly 0., + L, is negative, and IL,, > 0.

Equivalently, we can solve the system (H, F) for (6., p,). This yields the same 6, < 0 and,

—Fyf., — F,
Py = —
Y ]Fp

To ensure consistency with the IL-based expression at the steady state, as [, > 0, a sufficient
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condition for the F-based numerator to be positive is:

FoH.,
Hy -

—F, > Fyf, = —

For the other variables of interest, the comparative statics of consumption ¢ and spare capacity

| — ¢ with respect to v can be verified directly:

ol —
cy = —L,p, <0, %:—CW>O.

As for the wholesale price r, differentiating Equation (9) yields:
ry =1 (py +pb,).

Using the rearranged match separation condition (E.1),

p=7—(1—nf(6) BI(z), I(z)= / G d,

with 2z, = 0 we get:

pr = ~BI0—f(0) L) ~nI(2) f(0)8,], L) = 2 f> <0

Next, from the rearranged match creation condition (E.2),

ﬁ:(l—mm@ = p=(1-nBIz)q0),
0;

and differentiating H(Z, 6;v) = 0 with z, = 0 gives:

% _ (1 —n)BL(2)
Ho  p (—qs(0)/q(0)%)

Given that f(0) = 0q(0), fo(0) = q(0)'*¢, and go(0) = —05~1q(6)'¢, we have:

_ (1 -n)BL(Z)
T p0ig()

HBG'Y—FH,Y:O = 97:—

< 0.

Combine the pieces:

pytp0, =31 —nf(0))I,(z)+0, [BnI(2) fo(0) + p]
= —B(1—nf(0))L,(2) + 0, B1(2) q(0) (1 — 1+ nq(9)°)

o 1 — 1+ nq(0)*
= BL,(2) |— (1 =nf(0)) + e |
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where in the second line we used p = (1 — 1)31(2)q(0) and fy(0) = q(6)'*¢, and in the third
line we substituted the expression for ., and canceled p. Using f(#) = 0q(f) and the identity
f(0)¢ +q(6)¢ = 1, a short algebraic rearrangement of the bracketed term yields:

1—n+nq(0)* 1-f(O)°"
0q(0)t 05 1g(0)sY

—(1=nf(0)+
Therefore, the closed form of r, is given by:

1—f(0) "

ry =Py +p0y) =B L(3) g e

With I,(z) < 0 and 6°'¢(#)*~! > 0 when 6 € (0,+00) (i.e., at an interior solution), we have:

(

+ it &€ (0,1),

sign(r,) =0 ife&=1,

— ifeE> 1.

\

E.5. Convergence Dynamics

Next, we explore the convergence dynamics of our model from the initial steady state to
the new steady state after unexpected and permanent shocks to aggregate demand, productive
capacity, and the supply chain.

The dynamics of our model involve the evolution of three key endogenous variables —the
number of matched producers (x)s¢), reservation transportation cost (%), and product market
tightness (0;)— following each exogenous shock.

Three equations govern these variables:

_1 Inz — -1 Inz —
TMt+1 = (1 +0t_£> ‘ CD(M) + [1 — (1 +9t_£> E] (P(M) T M.t (E.10)

o o

€ -1 Zt Inz —
X“l 54 {1—n<1+955> f} 5/ @(u) dz' =0, (E.11)
0 g

p(1+9§)2—(1—n)5/zt¢<lnzl_7) 2 =0, (E.12)
0

g

where ®(-) is the standard normal cumulative distribution function. The other variables of
interest, as listed in Table 1, are essentially functions of x4, 2, and 6;.

To analyze the convergence dynamics, we first compute the initial and new steady states of the
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model before and after a change in the respective parameter. This requires setting zar+41 = Ty
and solving Equations (E.10), (E.11), and (E.12) simultaneously. We then assume the system
starts at the initial steady state and examine the rate of convergence to the new steady state
after each shock of interest. Lastly, we study whether the convergence is monotonic.

We calibrate the model at a weekly frequency using U.S. data, so that four periods in the
theoretical model correspond roughly to one lag in the monthly SVAR. The baseline parameter
values, which are standard in the literature, are reported in Table E.1. In particular, following
Fernandez-Villaverde et al. (2024), we set the producer’s bargaining power, 7, to 0.5, implying
an equal split of the total surplus from matching. We also set ¢ = 2 to yield a steady-state
spare capacity of 0.17. This value corresponds to the average spare capacity rate of 17% among
the top five U.S. trading partners —Mexico, Canada, China, Germany, and Japan— during the
pre-pandemic period 2016-2019, weighted by U.S. goods imports from each country in 2016. The
import-weighted average spare capacity rate is estimated using Equation (23) in the main text,
with data sources provided in Appendix F. Finally, the number of matched producers in the first

iteration (x)s1) is initialized at its steady-state value.

Table E.1: Baseline Calibration

Parameter Description Value
n Bargaining power of producers 0.5
p Fixed search cost 0.5
X Taste for consuming goods
£ Elasticity of substitution between ¢ and m/p 2
7 Nominal money supply 10
[ Productive capacity 1
16 Discount factor 0.999
0l Scale parameter of G(+)

o Shape parameter of G(-)
19 Elasticity of substitution between xy and iy

E.5.1. An Adverse Shock to Aggregate Demand

We first consider an adverse shock to aggregate demand, represented either by a 5% decrease in

the money supply p (from 10 to 9.5) or by a 5% decrease in the preference for consuming goods
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X (from 1 to 0.95). Tables E.2 and E.3 report the resulting convergence dynamics. Figures E.1
and E.2 illustrate the paths of consumption (equivalently, output) and price. In both scenarios,
convergence to the new steady state is rapid, requiring only three iterations, because the model
lacks a state variable, such as capital, that would generate persistence. The convergence dynamics

are monotonic.

Table E.2: Convergence Dynamics: An Adverse Shock to Aggregate Demand (= 10 — 9.5)

# Matched Consumption  Price Reservation Product Wholesale  Spare

Tteration Producers  (or Output) Transportation — Market Price Capacity
Cost Tightness

Ty c p z 0 r l—c
Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8206 0.8206 11.5773 17.1049 11.1775 17.1355 0.1794
2 0.8219 0.8219 11.5584 17.2839 11.3250 17.2524 0.1781
3 0.8217 0.8217 11.5617 17.2518 11.2986 17.2314 0.1783
New Steady State 0.8217 0.8217 11.5612 17.2567 11.3026 17.2346 0.1783

Notes. The values of the endogenous variables at the two steady states are obtained by setting xas++1 = zas,r and
solving Equations (E.10), (E.11), and (E.12) simultaneously. In this calculation, the parameter y is set to 10 in
the initial steady state and reduced to 9.5 in the new steady state (a 5% decrease). For the first iteration, xar1
is initialized at its steady-state value while p is decreased to 9.5.

12.1

Initial Steady State e

12.04

11.94

Price (p)
f

11.7 4

164 .~ New Steady State

0.821 0.822 0.823 0.824 0.825 0.826 0.827 0.828
Consumption (c)

Figure E.1: Convergence Dynamics of Consumption and Price: An Adverse Shock to Aggregate
Demand (p = 10 — 9.5)

Notes. The iteration numbers are marked on the corresponding dots.
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Table E.3: Convergence Dynamics: An Adverse Shock to Aggregate Demand (x = 1 — 0.95)

# Matched Consumption  Price Reservation Product Wholesale  Spare

Iteration Producers  (or Output) Transportation = Market Price Capacity
Cost Tightness

Tag c P Z 0 r l—c
Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8128 0.8128 11.1038 16.1385 10.3850 16.2174 0.1872
2 0.8156 0.8156 11.0655 16.4846 10.6680 16.4420 0.1844
3 0.8151 0.8151 11.0726 16.4202 10.6153 16.4002 0.1849
New Steady State 0.8152 0.8152 11.0715 16.4301 10.6234 16.4067 0.1848

Notes. The values of the endogenous variables at the two steady states are obtained by setting xar 111 = sy
and solving Equations (E.10), (E.11), and (E.12) jointly. In this process, the parameter x equals 1 in the initial
steady state and is reduced to 0.95 (a 5% decrease) in the new steady state. For the first iteration, xps 1 is set to
its steady-state value, while y is lowered to 0.95.

Initial Steady State _#
12.04

11.81

~ 11.6

Price

11.44

11.2 1
New Steady State

"""""" €2

0.814 0.816 0.818 0.820 0.822 0.824 0.826  0.828
Consumption (c)

Figure E.2: Convergence Dynamics of Consumption and Price: An Adverse Shock to Aggregate
Demand (x =1 — 0.95)

Notes. The iteration numbers are marked on the corresponding dots.
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E.5.2. An Adverse Shock to Productive Capacity

Next, we examine a 5% reduction in the producers’ fixed-factor endowment [ from 1 to 0.95. As
shown in Table E.4 and Figure E.3, convergence to the new steady state is rapid, requiring only

three iterations, and the adjustment remains monotonic.

Table E.4: Convergence Dynamics: An Adverse Shock to Productive Capacity (I = 1 — 0.95)

# Matched Consumption  Price Reservation Product Wholesale  Spare

Iteration Producers  (or Output) Transportation — Market Price Capacity
Cost Tightness

Ty c p z 0 r l—c
Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8355 0.7937 12.5989 19.2144 12.9300 19.1392 0.1645
2 0.8343 0.7925 12.6176 19.0229 12.7697 19.0126 0.1657
3 0.8345 0.7927 12.6144 19.0547 12.7964 19.0337 0.1655
New Steady State 0.8344 0.7927 12.6149 19.0502 12.7925 19.0307 0.1656

Notes. The values of the endogenous variables at the two steady states are obtained by setting xas 41 = xar,r and
solving Equations (E.10), (E.11), and (E.12) simultaneously. In this process, the parameter [ is 1 in the initial
steady state and 0.95 in the new one (a 5% decrease). For the first iteration, s 1 is set to its initial steady-state
value, and [ is reduced to 0.95.

1264 334\ New Steady State

12.54

12.44

Price (p)

12.24

12.1
Initial Steady State "¢

0.795 0.800 0.805 0.810 0.815 0.820 0.825
Consumption (c)

Figure E.3: Convergence Dynamics of Consumption and Price: An Adverse Shock to Productive
Capacity (I =1 — 0.95)

Notes. The iteration numbers are marked on the corresponding dots.
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E.5.3. An Adverse Shock to the Supply Chain

Lastly, we consider a 5% increase in the scale parameter of transportation costs, 7, from 1 to
1.05. As shown in Table E.5 and Figure E.4, the system converges to the new steady state within

three iterations, and, as with the demand and capacity shocks, the adjustment is monotonic.

Table E.5: Convergence Dynamics: An Adverse Shock to the Supply Chain (v =1 — 1.05)

# Matched Consumption  Price Reservation Product Wholesale  Spare

Iteration Producers  (or Output) Transportation — Market Price Capacity
Cost Tightness

Ty c p z 0 r l—c
Initial Steady State 0.8281 0.8281 12.0753 18.1291 12.0247 18.1084 0.1719
1 0.8208 0.8208 12.1834 18.0045 11.7737 18.0374 0.1792
2 0.8221 0.8221 12.1640 18.1875 11.9245 18.1569 0.1779
3 0.8219 0.8219 12.1675 18.1547 11.8974 18.1354 0.1781
New Steady State 0.8219 0.8219 12.1669 18.1596 11.9015 18.1387 0.1781

Notes. The values of the endogenous variables at the two steady states are obtained by setting xas 41 = xar,r and
solving Equations (E.10), (E.11), and (E.12) simultaneously. In this process, the parameter « is set to 1 in the
initial steady state and adjusted to 1.05 in the new steady state (i.e., a 5% increase). For the first iteration, xas1
is set to its initial steady-state value, and + is increased to 1.05.

12.18 \
New Steady State
N

12.16 A

_ 12,14

Price (p

12.12 A

12.10 A

12.08 A

Initial Steady State "®

0.821 0.822 0.823 0.824 0.825 0.826 0.827 0.828
Consumption (c)

Figure E.4: Convergence Dynamics of Consumption and Price: An Adverse Shock to the Supply
Chain (y =1 — 1.05)

Notes. The iteration numbers are marked on the corresponding dots.
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F. External Data Sources for Baseline Estimation

Table F.1 lists the external data sources used in the baseline SVAR estimation in Section 4,
together with any adjustments applied. Below, we provide further details on the construction of
spare capacity and product market tightness. The data used for robustness checks are described
in subsequent appendices.

Spare capacity. In the main text, we define spare capacity as an import-weighted average of
capacity utilization shortfalls across the top five U.S. trading partners (Mexico, Canada, China,
Germany, and Japan). To implement this measure, we first construct monthly industrial produc-
tion (IP) indices from official month-over-month growth rates, chaining forward from January
2016 and normalizing the starting value to 100. For Mexico and Japan, monthly capacity uti-
lization rates are available and used as reported, except that Japan’s index is rescaled so that its
2020 average equals 100 percent. For Canada, China, and Germany, where capacity utilization is
reported only quarterly, we interpolate to monthly frequency using the Chow—Lin method (Chow
and Lin, 1971) with the chained monthly IP series as indicators. We then apply fixed weights
based on each country’s share of U.S. imports in 2016 to obtain the aggregate spare capacity se-
ries used in estimation. We seasonally adjust the resulting series using the X-13ARIMA-SEATS
algorithm provided by the U.S. Census Bureau.

Product market tightness. Tightness is defined as the ratio of U.S. manufacturers’ new
orders to the import-weighted value of spare capacity. To construct this variable empirically,
we deflate the nominal series on U.S. manufacturers’ new orders using the producer price index
(PPI) for total manufacturing (manually seasonally adjusted), thereby expressing it in millions
of constant 2005 U.S. dollars. The denominator, import-weighted spare capacity in U.S. dollar
terms, is derived from country-level IP (converted into constant 2005 U.S. dollars using World
Bank benchmarks) and capacity utilization rates, with the same interpolation procedures applied
where necessary. These country-level series are aggregated using 2016 U.S. import shares as
weights, and we seasonally adjust the final series. The resulting ratio provides the empirical

measure of product market tightness used in the baseline SVAR estimation.
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Table F.1: External Data Sources for Baseline Estimation

Variable Mnemonic  Source Notes on Construction/Adjustment

U.S. Variables

Real PCE PCEC96 U.S. Bureau of Economic Analysis Raw series obtained directly from FRED.

PCE chain-type price index PCEPI U.S. Bureau of Economic Analysis Raw series obtained directly from FRED.

Imports of goods: Mexico IMPMX U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: Canada IMPCA U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: China IMPCH U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: Germany IMPGE U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Imports of goods: Japan IMPJP U.S. Census Bureau Customs basis, seasonally adjusted by authors (X-13ARIMA-SEATS).
Total manufacturers’ new orders AMTMNO U.S. Census Bureau Raw series obtained directly from FRED.

PPI: total manufacturing PCUOMFGOMFG  U.S. Bureau of Labor Statistics Seasonally adjusted by authors (X-13ARIMA-SEATS).

Import price index: all commodities IR

U.S. Bureau of Labor Statistics

Seasonally adjusted by authors (X-13ARIMA-SEATS).

Variables for Top U.S. Trading Partners

Capacity utilization rate: Mexico N/A

Capacity utilization rate: Canada N/A

Capacity utilization rate: China N/A

Capacity utilization rate: Germany N/A

Capacity utilization rate: Japan N/A

IP MoM growth:
IP MoM growth:
IP MoM growth:
IP MoM growth:
IP MoM growth:

IP: Mexico
IP: Canada
IP: China
IP: Germany
IP: Japan

Mexico N/A
Canada N/A
China N/A
Germany N/A
Japan N/A
N/A
N/A
N/A
N/A

N/A

National Institute of Statistics and Geography

Statistics Canada
National Bureau of Statistics of China
European Commission

Ministry of Economy, Trade and Industry

National Institute of Statistics and Geography

Statistics Canada

National Bureau of Statistics of China
Federal Statistical Office

Ministry of Economy, Trade and Industry
World Bank

World Bank

World Bank

World Bank

World Bank

Official monthly series..

Quarterly series interpolated to monthly frequency using IP.
Quarterly series interpolated to monthly frequency using IP.
Quarterly series interpolated to monthly frequency using IP.
Official monthly series.

Monthly series from official source.

Monthly series from official source.

Monthly series from official source.

Monthly series from official source.

Monthly series from official source.

Annual series from World Development Indicators.

Annual series from World Development Indicators.

Annual series from World Development Indicators.

Annual series from World Development Indicators.

Annual series from World Development Indicators.




G. Robustness of Baseline Results

G.1. Prior Robustness

This appendix shows that the main conclusions from our baseline SVAR model remain robust
when we use the prior-robust SVAR approach of Giacomini and Kitagawa (2021). This approach
removes the need to specify a prior for the structural parameter based on the reduced-form
parameter, the source of the asymptotic disagreement between Bayesian and frequentist inference.
It does so by developing a class of priors that keeps a singular prior for the reduced-form parameter
while allowing arbitrary conditional priors for the structural parameters, given the reduced-form
parameter. This method strengthens the robustness of our SVAR analysis and ensures that our
conclusions do not hinge on specific prior choices.

In practice, we apply their Algorithm 1 to approximate the set of posterior means and the
associated robust credible regions for the IRFs of the selected endogenous variables in response
to each structural shock. We make two modifications to Algorithm 1. First, in Step 2, to draw
the orthonormal ()’s subject to Restrictions 1, 2, and 3, we use the QR decomposition method as
in Arias et al. (2018) rather than the original linear projection approach. Both methods deliver
comparable distributions of () and similar computational costs. Second, we replace Step 3 of
Algorithm 1 with Step 3’ of Algorithm 2 to approximate the lower and upper bounds of the
prior robust posterior means and the corresponding robust credible regions. These adjustments
improve the precision and applicability of the procedure in our setting and yield more reliable
approximations of posterior means and credible regions for the IRFs.

In Figures G.1-G.3, the solid lines show the point-wise posterior medians, while the shaded
areas display the 68% equal-tailed point-wise posterior probability bands. These bands are based
on the baseline estimation sample from Section 4 in the main text. Dotted curves plot the set
of prior-robust posterior means, and dashed-dotted curves indicate the associated 68% robust
credible regions. All results are computed using 1,000 independent draws of the reduced-form

parameters and 100,000 orthogonal matrix draws for each reduced-form parameter.
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Figure G.1: IRFs to an Adverse Aggregate Demand Shock: Prior Robustness

Notes. IRFs to a one-standard-deviation adverse aggregate demand shock estimated using the prior-robust SVAR
method proposed by Giacomini and Kitagawa (2021).
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Figure G.2: IRFs to an Adverse Productive Capacity Shock: Prior Robustness

Notes. IRFs to a one-standard-deviation adverse productive capacity shock estimated using the prior-robust SVAR
method proposed by Giacomini and Kitagawa (2021).
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Figure G.3: IRFs to an Adverse Supply Chain Shock: Prior Robustness

Notes. TRFs to a one-standard-deviation adverse supply chain shock estimated using the prior-robust SVAR
method proposed by Giacomini and Kitagawa (2021).

G.2. Price Levels vs. Inflation Rates in the SVAR

Next, we examine whether our results depend on using price levels rather than inflation rates.?
Starting from the baseline SVAR, we replace the PCE chain-type price index and the import
price index with their monthly inflation rates using log differences, leaving the variables, priors,
identification (sign and zero restrictions), and lag length unchanged. Let m; denote inflation.
For any horizon k, the implied response of the log price level equals the cumulative sum of the
inflation IRFs, IRFa1,,(k) = Z?:o IRF,(j), so the inflation and level specifications are directly
comparable.

Figures G.4-G.6 illustrate this comparison. For both PCE and import prices, the cumulated
inflation responses (orange) closely track the corresponding price-level IRFs from the levels SVAR
(gray) across horizons, with similar impact, hump shape, and reversion. Figures G.7-G.9 further
show that real-side responses (real PCE, spare capacity, product market tightness, and ACR)
remain qualitatively unchanged relative to the baseline: same signs, similar peak timing, and

comparable persistence. Thus, moving from price levels to inflation does not alter our results.

13We use the levels specification in the baseline because our theoretical framework in Section 3 delivers sign
predictions for the price level (a one-off increase rather than a permanent change in inflation).
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Next, we compare FEVDs across the two specifications. Figure G.10 reports those from the
inflation-based SVAR. Relative to the price-level specification in Figure 10, for PCE inflation the
supply chain disturbance accounts for the largest share of the forecast error variance at medium
to long horizons in both models, with demand and capacity shocks playing smaller roles. For
import price inflation, all three shocks contribute roughly equally, with demand shocks marginally
more important. For real PCE, spare capacity, and product market tightness, either demand or
capacity shocks dominate at short to medium horizons in both specifications, while the supply
chain contribution remains moderate but rises gradually with the horizon. For the ACR, the
supply chain shock is the primary driver throughout. Overall, the ordering and magnitudes of
contributions are robust to whether the model is estimated in levels or in inflation rates.

Finally, the inflation responses are consistent with canonical DSGE evidence. For instance,
Smets and Wouters (2007) show that a positive demand shock raises output and inflation simul-
taneously (Figure 2), while a positive productivity shock raises output and temporarily lowers
inflation (Figure 7). Our adverse demand and capacity shocks generate the mirror image, and

the short-run magnitude of the PCE inflation response in our data is comparable to theirs.
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Figure G.4: Price-Level vs. Cumulated-Inflation IRFs: Adverse Aggregate Demand Shock

Notes. Price-level (gray) and cumulated inflation (orange) IRFs for PCE and import prices after an adverse
aggregate demand shock.
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Figure G.5: Price-Level vs. Cumulated-Inflation IRFs: Adverse Productive Capacity Shock

Notes. Price-level (gray) and cumulated inflation (orange) IRFs for PCE and import prices after an adverse

productive capacity shock.
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Figure G.6: Price-Level vs. Cumulated-Inflation IRFs: Adverse Supply Chain Shock

Notes. Price-level (gray) and cumulated inflation (orange) IRFs for PCE and import prices after an adverse supply

chain shock.
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Figure G.7: IRFs to an Adverse Aggregate Demand Shock: PCE and Import Price Inflation

Notes. IRFs to a one-standard-deviation adverse aggregate demand shock using the baseline SVAR specification,
except that the PCE chain-type price index and the import price index are replaced with their monthly inflation
rates (log differences).
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Figure G.8: IRFs to an Adverse Productive Capacity Shock: PCE and Import Price Inflation

Notes. IRFs to a one-standard-deviation adverse productive capacity shock using the baseline SVAR specification,
except that the PCE chain-type price index and the import price index are replaced with their monthly inflation
rates (log differences).
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Figure G.9: IRFs to an Adverse Supply Chain Shock: PCE and Import Price Inflation

Notes. IRFs to a one-standard-deviation adverse supply chain shock using the baseline SVAR specification, except
that the PCE chain-type price index and the import price index are replaced with their monthly inflation rates
(log differences).
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Figure G.10: FEVDs from the SVAR: PCE and Import Price Inflation

Notes. Each line reports the posterior-median share of the forecast error variance of an endogenous variable that
is attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the PCE chain-type price index and the import price
index are replaced with their monthly inflation rates (log differences).
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G.3. Invertibility Under an Expanded Information Set

This appendix assesses whether the baseline six-variable SVAR omits forecast-relevant infor-
mation that could undermine invertibility.'* In the SVAR context, non-invertibility arises when
the model’s information set is too limited, so structural shocks cannot be expressed as linear
combinations of past reduced-form innovations, and the identified shocks may conflate omitted
disturbances (Ferndndez-Villaverde et al., 2007). To address this concern, we enlarge the infor-
mation set to include additional macroeconomic and cost-push indicators and re-estimate the
model, while maintaining the baseline identification on the original block.

The augmented specification adds five endogenous variables —real PCE of services, the PCE
services price index, the West Texas Intermediate (WTI) spot price, the effective federal funds
rate, and average hourly earnings— yielding an eleven-variable SVAR.'® Real services PCE and
the PCE services price index capture potential reallocation between goods and services that may
confound the aggregate demand block. The WTI spot price accounts for oil shocks that affect
import costs and domestic prices. The federal funds rate controls for endogenous monetary policy
responses. Average hourly earnings capture wage-driven cost-push pressures not fully reflected in
price indices. Together, these additions create a richer information set that addresses the most
likely sources of omitted forecast-relevant information.

We keep the sample, lag length, deterministic terms, and priors identical to the baseline and
re-identify the same three shocks —aggregate demand, productive capacity, and supply chain—
using the original sign and zero restrictions on the baseline block at horizon &k = 1.16

Figures G.11-G.13 present the IRFs from the baseline and augmented SVARs. Three results
stand out. First, for demand and capacity shocks, the IRFs remain largely invariant across
specifications in both shape and magnitude, showing that the baseline six-variable system already
spans the forecast-relevant information for these two shock blocks. Second, for the supply chain
disturbance, the responses of the PCE and import price indices become smaller and less precisely

estimated once services activity and prices, oil prices, the policy rate, and wages are added. Third,

4\We thank an anonymous referee for suggesting this check.

15All additional series used in this appendix are retrieved from FRED with the following mnemonics:
DGDSRX1 (real PCE of goods), PCESC96 (real PCE of services), DGDSRG3MO86SBEA (PCE goods price index),
DSERRG3MO086SBEA (PCE services price index), WTISPLC (WTTI spot price), FEDFUNDS (federal funds rate), and
CES0500000003 (average hourly earnings). All series are seasonally adjusted except for the federal funds rate.

16 A1l identification restrictions are imposed on the baseline variables; the added series are left unrestricted with
respect to the three identified shocks.

A-51



the ACR behaves similarly across specifications for demand and capacity shocks, but its response

to a supply chain shock is attenuated in

the augmented system.

The attenuation of supply chain price responses is a mechanical result of expanding the

information set: variation that the smaller system could allocate to the “supply chain” shock

is reassigned to explicit cost-push and policy channels once additional variables enter the SVAR.

Nonetheless, the augmented model supports the baseline six-variable SVAR results.
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Figure G.13: IRFs to an Adverse Supply Chain Shock: Baseline vs. Augmented

Finally, as shown in Figures G.14-G.16, replacing real aggregate PCE and the PCE price
index with their goods components (while holding the other variables fixed) and comparing this
system to an augmented one that includes the services block, oil prices, the policy rate, and wages

leads to the same broad conclusion. The augmented specification supports the conclusion that

we have invertibility.
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Figure G.15: IRFs to an Adverse Productive Capacity Shock: Goods-Focused vs. Augmented
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Figure G.16: IRFs to an Adverse Supply Chain Shock: Goods-Focused vs. Augmented

G.4. Nonlinear Transmission by Shock Size

Research on production networks (e.g., Baqaee and Farhi, 2019, 2022) shows that shock prop-
agation can be nonlinear, particularly for large disturbances. To assess whether the transmission
mechanisms of the three identified shocks —aggregate demand, productive capacity, and supply
chain— depend on shock magnitude, we develop a nonlinear LP framework. This test is especially

relevant here, given the intrinsic nonlinearities in aggregate demand and supply curves, as well
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as in the match creation and separation conditions studied in Proposition 2 and Appendix E.3.
Let s; denote the identified aggregate demand, productive capacity, or supply chain shock at
time t. For each posterior draw ¢ = 1,..., N from the baseline Bayesian SVAR, we compute a

draw-specific threshold ¢) = median(|s\”|) and define indicators:

Smalll” = 1<|s£i)| < c(i)> . Large!” =1 — Small”.
For each horizon £k =0,1,..., K, we estimate:
Yerk = Qg + At + 61(;) <S§i) Small?) + 71?) (39 Largegi)> + ul(ngrm (G.1)

where ;1 is the k-period-ahead value of an endogenous variable in the Baseline SVAR, oy is a
horizon-specific constant, t is a deterministic time trend, and u,(ﬁ L is the k-step-ahead forecast
error for draw ¢. To reduce noise at longer horizons, we estimate Equation (G.1) using the SLP
method (Barnichon and Brownlees, 2019), applying Newey—West standard errors (Newey and
West, 1987) to obtain inference for 8 and 7\” 17

To aid interpretation, we scale coefficients by the within-draw conditional standard deviations:

o =sd (sgi) ‘ Smallgi) = 1) , al(;) = sd <s§i) ’Largegi) = 1) .

small rge

The shock-size-specific IRFs are:
IRFgl)lall(k) = /BI(CZ) O-Sl)iall’ IRFI(;Z“ge(k) = ,y](j) O-l(fil)fge‘

We report pointwise posterior medians with 68% credible intervals across i for each k.

This procedure tests whether large shocks propagate differently from small ones, as expected
under nonlinear network amplification, while incorporating uncertainty in shock identification.
Because the sample includes the COVID-19 pandemic, which plausibly represents the largest
shock in the period, this analysis ensures that the documented dynamics are not driven by a
single exceptional episode.

Figures G.17-G.19 plot the IRFs to adverse aggregate demand, productive capacity, and supply
chain shocks, respectively, with each shock split into large and small categories. The median
responses to large shocks differ in both magnitude and profile from those to small shocks, but

the posterior probability bands overlap across most horizons. We read this as evidence that

17See Appendix B for details on SLP.
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nonlinearities may matter, especially for large shocks, while our main conclusions remain intact:
the transmission mechanism is qualitatively stable across shock sizes, and the macroeconomic

effects of the identified shocks are not driven by moderate nonlinear amplification.
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Figure G.17: Nonlinear Transmission of Aggregate Demand Shocks by Size

Notes. IRFs to small and large adverse aggregate demand shocks, with shock size classified by the median
magnitude of the identified shock series from the baseline SVAR.
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Figure G.18: Nonlinear Transmission of Productive Capacity Shocks by Size

Notes. IRFs to small and large adverse productive capacity shocks, with shock size classified by the median
magnitude of the identified shocks from the baseline SVAR.
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Figure G.19: Nonlinear Transmission of Supply Chain Shocks by Size

Notes. IRFs to small and large adverse supply chain shocks, with shock size classified by the median magnitude
of the identified shocks from the baseline SVAR.

G.5. Different Lag Structures

To examine whether our results depend on the number of lags, we re-estimate the baseline
SVAR with four and six lags, holding the sample, priors, identification, and other settings fixed.

Three findings stand out. First, median IRFs are highly similar across lag specifications: as
shown in Figures G.20-G.25, there are no sign reversals, shifts in peak timing, or changes in
overall dynamics. Second, uncertainty bands widen only modestly with more lags, mainly in
the first 6-8 months; at medium horizons they overlap substantially, and long-horizon differences
remain minor. Third, the key narratives discussed in Section 4 hold unchanged: an adverse
supply chain disturbance still dampens real activity and product market tightness, raises spare
capacity, and pushes prices upward.

We retain two lags in the baseline specification for parsimony and robustness. With monthly
data and a relatively small SVAR, additional lags quickly enlarge the parameter space and reduce
estimation efficiency without adding empirical content. Since IRFs and qualitative inference are

insensitive to lag length, L = 2 captures the essential dynamics while avoiding overfitting.
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Figure G.20: IRFs to an Adverse Aggregate Demand Shock: Four Lags
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Figure G.21: IRFs to an Adverse Productive Capacity Shock: Four Lags
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Figure G.22: IRFs to an Adverse Supply Chain Shock: Four Lags
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Figure G.23: IRFs to an Adverse Aggregate Demand Shock: Six Lags

A-59



Real PCE: Aggregate 0.2 PCE Price: Aggregate Spare Capacity

m— Posterior Medians
68% Posterior
Probability Bands

1 90% Posterior

Probability Bands

1
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
Months Months Months
A Product Market Tightness 1 Import Price 0.5 ACR
fal

%

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
Months Months Months

Figure G.24: IRFs to an Adverse Productive Capacity Shock: Six Lags
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Figure G.25: IRFs to an Adverse Supply Chain Shock: Six Lags
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G.6. Dropping the Linear Trend

We re-estimate the baseline SVAR with an intercept only, holding the sample, lag length,
priors, shock normalization, and identification (sign/zero restrictions) fixed. This checks whether
allowing for a linear drift in level variables affects impulse responses or variance shares.

Figures G.26-G.28 show the IRFs under the constant-only specification. For the demand
shock, the results closely track the baseline: real PCE falls on impact and mean reverts; spare
capacity rises and then fades; the price level dips slightly before returning toward zero; and the
responses of product market tightness, import prices, and ACR remain small and short lived.

Posterior probability bands coincide across the two specifications, and any level shifts are minor.
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Figure G.26: IRFs to an Adverse Aggregate Demand Shock: Constant Only

For the capacity shock, activity responses retain their familiar hump—shaped dynamics with
gradual reversion. The price-level response is nearly identical at short and medium horizons;
if anything, removing the trend induces a slightly more negative drift at long horizons, but the
change remains within posterior uncertainty:.

For the supply chain shock, the qualitative pattern is unchanged across specifications: the
price level rises on impact and stays elevated at medium horizons; real activity eases, and spare
capacity increases; import prices and ACR jump contemporaneously and then recede. Relative to
the baseline, the constant—only specification delivers very similar peak timing and magnitudes for

real and nominal variables, with broadly overlapping uncertainty bands. If there is any detectable
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change, it is a mild increase in medium—horizon persistence of the price-level response, but its
shape and economic interpretation stay the same.
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Figure G.27: IRFs to an Adverse Productive Capacity Shock: Constant Only
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Figure G.28: IRFs to an Adverse Supply Chain Shock: Constant Only

As shown in Figure G.29, the FEVDs remain stable across specifications. Supply chain shocks
continue to be the dominant source of PCE price variation at medium horizons, while capacity

shocks still account for most of the variance in spare capacity and product market tightness.
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Dropping the trend shifts a modest share of variance toward supply chain shocks for real PCE

and import prices at longer horizons, but the ranking of contributions is unchanged.
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Figure G.29: FEVDs from the SVAR: Constant Only

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the linear time trend is replaced with an intercept only.

Taken together, allowing for a linear deterministic trend has limited influence on our conclu-
sions. Because prices are modeled in levels, we retain the baseline with a linear trend to absorb
secular drift and treat the constant-only specification as a robustness check that confirms the main
narratives (demand and capacity dynamics and the prominent role of supply chain disturbances

for inflation) are effectively unchanged.

G.7. Alternative Proxies for Activity and Prices

This appendix evaluates robustness to alternative measures of activity and prices. We con-
sider three alternatives: (i) real PCE of goods and the PCE goods price index (FRED mnemon-
ics DGDSRX1, DGDSRG3MO86SBEA); (ii) IP and the PPI for final-demand finished goods (INDPRO,
WPSFD49207); and (iii) real GDP and the GDP price deflator (GDPC1, GDPDEF). For (iii), the
monthly real GDP series is constructed via Chow-Lin interpolation of the quarterly series using
IP as the monthly indicator, while the monthly GDP deflator is obtained via Chow-Lin interpo-
lation of the quarterly series using both CPI (CPTAUCSL) and PPI (WPSFD49207) as indicators,
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following Chow and Lin (1971). All series are seasonally adjusted.

Goods PCE and prices. Replacing aggregate PCE and its chain-type price index with
goods-only measures leaves the dynamics essentially unchanged. Goods demand shocks resemble
the baseline: activity falls on impact and prices dip slightly before returning toward zero (Figure
G.30). Production capacity and supply chain shocks are very similar to the baseline case (Figures
G.31-G.32).

The FEVDs likewise preserve the baseline ranking: supply chain shocks account for a material
share of price variance at medium horizons, while capacity shocks dominate activity variance after
the first few months (Figure G.33). The HD in Figure G.34 also highlights the drivers of PCE
goods inflation discussed in Section 4, with the exception that productive capacity shocks played

only a minimal role in pushing up inflation from late 2020 to mid 2021.
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Figure G.30: IRFs to an Adverse Goods Demand Shock: Goods PCE and Prices
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Figure G.31: IRFs to an Adverse Productive Capacity Shock: Goods PCE and Prices
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Figure G.32: IRFs to an Adverse Supply Chain Shock: Goods PCE and Prices
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Figure G.33: FEVDs from the SVAR: Goods PCE and Prices

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that real PCE and the PCE price index are replaced by goods
PCE and the PCE goods price index.
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Figure G.34: HD of U.S. HoH PCE Goods Inflation

Notes. The solid line plots U.S. PCE goods inflation, measured as the HoH growth rate of the PCE goods price
index, against the left axis (%). The shaded bars report the cumulative historical contributions of goods demand,
productive capacity, and supply chain shocks, plotted against the right axis (p.p.). The HD is computed from
an identified Bayesian SVAR with the baseline specification, except that real PCE and the PCE price index are
replaced with goods PCE and the PCE goods price index.
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IP and PPI. Using IP and the finished-goods PPI slightly amplifies the price pass-through
of a supply chain disturbance relative to the baseline: the PPI rises more and for longer (Figure
G.37). Responses to demand and capacity shocks otherwise align with the baseline. The demand
shock reduces activity on impact and induces, at most, a mild and short-lived disinflation. The
capacity shock lowers activity, reduces spare capacity, and triggers a price jump on impact; in
subsequent months, activity rebounds, spare capacity briefly retraces before declining again, and
inflationary pressures continue to build (Figures G.35 and G.36).

The FEVDs reveal a slightly different pattern: while supply chain shocks still explain a mate-
rial share of PPI variation across horizons, capacity shocks account for most of the medium-
horizon variation in both activity and prices (Figure G.38), with demand shocks remaining
concentrated at short horizons. Consistently, Figure G.39 shows that capacity shocks are the
predominant driver of producer price inflation in the post-pandemic period, while demand and

supply chain shocks play only minor roles.
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Figure G.35: IRFs to an Adverse Goods Demand Shock: IP and PPI
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Figure G.36: IRFs to an Adverse Productive Capacity Shock: IP and PPI
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Figure G.37: IRFs to an Adverse Supply Chain Shock: IP and PPI
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Figure G.38: FEVDs from the SVAR: IP and PPI

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that real PCE and the PCE price index are replaced by IP
and the PPL
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Figure G.39: HD of U.S. HoH Producer Price Inflation

Notes. The solid line plots U.S. producer price inflation, measured as the HoH growth rate of the PPI for final-
demand finished goods, against the left axis (%). The shaded bars show the corresponding cumulative historical
contributions of goods demand, productive capacity, and supply chain shocks, plotted against the right axis (p.p.).
The HD is computed from an identified Bayesian SVAR with the same specification as the baseline, except that
real PCE and the PCE price index are replaced by IP and the PPI.
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Real GDP and GDP deflator. When we use the Chow—Lin-interpolated GDP and de-
flator, the median IRFs track the baseline closely but display wider posterior bands, reflecting
the extra measurement uncertainty introduced by temporal disaggregation (Figures G.40-G.42).
Demand shocks lower activity on impact, while the deflator response is attenuated and gradually
mean reverts at longer horizons. Capacity shocks reproduce the familiar real-side dynamics and
associated price responses, and supply chain shocks raise the deflator with hump-shaped pass
through. The FEVDs preserve the baseline ranking: capacity shocks dominate real activity at
medium horizons, supply chain shocks account for most price variance, and demand shocks re-
main concentrated at short horizons (Figure G.43). The HD in Figure G.44 likewise shows no

major differences from the attribution in Figure 11.
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Figure G.40: IRFs to an Adverse Aggregate Demand Shock: Real GDP and GDP Deflator

Taking stock. In sum, four observations stand out. First, the macroeconomic impacts of
demand and capacity shocks are robust across alternative measures of output and prices. Second,
supply chain price effects are at least as strong, and often stronger, when producer- or GDP-based
price indices are used, underscoring the role of logistics bottlenecks as an independent source
of price variation. Third, the FEVDs consistently show that (i) capacity shocks dominate real
activity at medium horizons, (ii) supply chain shocks account for a sizable share of price variance,
and (iii) demand shocks remain concentrated at short horizons. This pattern holds in both the

baseline FEVDs and all three alternatives. Finally, across different proxies for inflation, a large
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share of the post-pandemic surge in U.S. inflation can be attributed to supply-side disruptions,

with the relative importance of capacity versus supply chain shocks varying by measure.
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Figure G.41: IRFs to an Adverse Productive Capacity Shock: Real GDP and GDP Deflator
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Figure G.42: IRFs to an Adverse Supply Chain Shock: Real GDP and GDP Deflator
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Figure G.43: FEVDs from the SVAR: Real GDP and GDP Deflator

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that real PCE and the PCE price index are replaced by real
GDP and the GDP price deflator.
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Figure G.44: HD of U.S. HoH GDP Deflator Inflation

Notes. The solid line plots U.S. GDP deflator inflation, measured as the HoH growth rate of the GDP deflator,
against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of aggregate
demand, productive capacity, and supply chain shocks, plotted against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that real PCE and the PCE
price index are replaced with real GDP and the GDP deflator.
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H. Identification Gains From Supply Chain Proxies

This appendix documents the identification gains —both in the magnitude of price responses
to supply chain disturbances and in the precision of the posterior estimates— that arise when
our congestion indices are used as measures of global supply chain conditions in the SVAR.

As a starting point, Appendix H.1 estimates the causal effects of supply chain shocks when
no proxy is included, providing a natural lower bound against which to evaluate the gains from
adding proxies and imposing domain-knowledge-based identification restrictions. Appendix H.2
then includes the ACR index but removes the zero restrictions on its responses to aggregate
demand and productive capacity shocks at horizon k = 1, showing that much of the improvement
comes simply from incorporating our congestion indices.

Appendices H.3 and H.4 show that using the ACT index or a targeted ACR index for major
Trans-Pacific ports central to the U.S. goods supply chain delivers results that are quantitatively
similar to those from the ACR baseline. By contrast, Appendices H.5-H.7 examine HARPEX,
the New York Fed’s GSCPI (Benigno et al., 2022), and the SDI from Smirnyagin and Tsyvinski
(2022) and Liu et al. (2024) as alternative proxies, revealing sizable discrepancies that materially
alter the estimated macroeconomic effects of supply chain disturbances.

Finally, Appendix H.8 replaces the PCE chain-type price index with a goods-only measure,

confirming that the main conclusions remain intact.

H.1. No Proxy

We re-estimate the SVAR without a direct proxy for global supply chain conditions and com-
pare it with the baseline specification that includes ACR under zero restrictions on its responses
to aggregate demand and productive capacity shocks at horizon k& = 1 (Restrictions 1-3). The
price IRFs in Figure H.1 clearly illustrate the loss of identification: without a proxy, the median
responses of the PCE chain-type price index and the import price index to an adverse supply
chain shock are smaller, and the 68% and 90% posterior bands overlap zero across most horizons.
By contrast, with ACR and zero restrictions (Figure 9 in the main text), the median responses are
larger, the bands are tighter, and they remain above zero for longer horizons, yielding a sharper
inflationary signal from supply chain disturbances.

The FEVDs in Figure H.2 convey the same pattern. In the no-proxy case, a larger share of

the forecast error variance of PCE prices is attributed to aggregate demand, with only a modest
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role for the supply chain shock. In the baseline with ACR and zero restrictions (Figure 10), the
supply chain contribution rises at medium horizons, which shows that ACR isolates the relevant
supply side component that would otherwise be absorbed by aggregate demand.

The HD of U.S. headline PCE inflation in Figure H.3 reinforces this point. Without a proxy,
the 2021-22 inflation surge is attributed mainly to demand and capacity shocks, and the supply
chain shock plays a limited role. In the baseline (Figure 11), the supply chain contribution grows
visibly larger over the same period, consistent with congestion in maritime logistics and showing
that ACR provides cleaner identification of supply-chain-driven price pressures.

Taken together, the no-proxy specification serves as a natural lower bound. Introducing
ACR and imposing the k = 1 zero restrictions, motivated by industrial practice, increases the
magnitude and precision of price responses and shifts the variance and historical contributions

toward the supply chain shock, in line with the mechanism emphasized in our framework.
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Figure H.1: IRFs to an Adverse Supply Chain Shock: No Proxy

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that the ACR index is omitted.
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Figure H.2: FEVDs from the SVAR: No Proxy

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the ACR index is omitted.
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Figure H.3: HD of U.S. HoH Headline PCE Inflation: No Proxy

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type
price index, against the left axis (%). The shaded bars show the cumulative historical contributions of aggregate
demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed from an
identified Bayesian SVAR identical to the baseline, except that the ACR index is omitted.
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H.2. ACR Without Zero Restrictions

Next, we include the ACR index in the SVAR but remove the zero restrictions on its responses
to aggregate demand and productive capacity shocks at horizon £ = 1. Figure H.4 shows that,
relative to the no-proxy case, adding ACR raises the median response of the PCE chain-type
price index to an adverse supply chain shock, with narrower 68% and 90% posterior bands that
more often lie above zero. However, the responses remain less precisely estimated than in the
baseline with ACR and zero restrictions (Figure 9 in the main text), where the bands tighten
further and the inflationary signal is clearer.

Figures H.5 and H.6 point to the same conclusion. With the ACR index, the supply chain
shock explains a larger share of the forecast error variance of PCE prices and contributes more to
the 2021-22 inflation surge than in the no-proxy case. Yet, in both dimensions, its role remains
smaller than in the baseline (Figures 10 and 11), where the timing and magnitude more closely
align with observed congestion in maritime logistics.

In sum, including ACR alone accounts for most of the identification gains (both in the size
of price responses and the precision of estimates), while the zero restrictions provide additional

tightening that sharpens the inflationary signal from supply chain shocks.
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Figure H.4: IRFs to an Adverse Supply Chain Shock: ACR Without Zero Restrictions

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that the zero restrictions on the ACR index are omitted.
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Figure H.5: FEVDs from the SVAR: ACR Without Zero Restrictions

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the zero restrictions on the ACR index are omitted.
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Figure H.6: HD of U.S. HoH Headline PCE Inflation: ACR Without Zero Restrictions

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the zero restrictions on
the ACR index are omitted.
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H.3. ACT

As introduced in Appendix C.3, we define an alternative port congestion metric, the ACT
index. This index measures the average number of hours a container ship waits in a port’s
anchorage area before docking at a berth, weighted by each port’s share of ship visits. Figure H.7
plots the ACT index alongside the ACR index at a monthly frequency. The two series co-move
closely and display similar dynamics, except during 20162017, when infrastructure upgrades
worldwide appear to have focused on the extensive margin (reducing the share of delayed ships)
with limited progress on the intensive margin (reducing average delays).'®

Given the high correlation between ACR and ACT, it is unsurprising that, as shown in Figures
H.8-H.10, using the ACT index in the causality assessment yields results that are quantitatively
similar to those in the ACR baseline.
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Figure H.7: ACR vs. ACT

Notes. The ACR and the ACT over the sample period January 2016-March 2025 (correlation ~ 0.86). The ACR
is expressed in percentage terms and shown on the left axis, while the ACT is plotted on the right axis in hours.
Both indices are seasonally adjusted.

18Tn 2016-2017, capacity expansions (new berths, deeper channels, larger cranes) lowered the likelihood of delays
at the extensive margin. By contrast, operational reforms needed to shorten average waiting times at the intensive
margin were slower to materialize.
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Figure H.8: IRFs to an Adverse Supply Chain Shock: ACT

Notes. The IRFs to a one-standard—deviation adverse supply chain shock are estimated using the baseline SVAR
specification in Section 4, except that the ACT index replaces the ACR index as the proxy for global supply chain
conditions.
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Figure H.9: FEVDs from the SVAR: ACT

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the ACT index replaces the ACR index as the proxy for
global supply chain conditions.
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Figure H.10: HD of U.S. HoH Headline PCE Inflation: ACT

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the ACT index replaces
the ACR index as the proxy for global supply chain conditions.

H.4. Trans-Pacific ACR

In addition to the global ACR index, we construct a targeted ACR index for the major
container ports along the Trans-Pacific route, one of the busiest shipping corridors linking East
Asia (primarily China) and the U.S., handling nearly 30 million TEUs annually.’ We use this
index in the SVAR as a robustness check, since congestion along the Trans-Pacific route may exert
a disproportionately large influence on the U.S. economy. Shocks identified with this targeted
measure may thus reflect supply chain disturbances more specific to the U.S. than those captured
by the global ACR index.?°

Figure H.11 plots the Trans-Pacific ACR index alongside the global ACR index at a monthly
frequency. While the two series track each other closely over the sample, the targeted index
displays larger short-term swings, particularly during the pandemic.

The estimated effects are similar to those in the ACR baseline. Figure H.12 shows that a

supply chain shock generates stagflationary pressures, raises spare capacity, and lowers product

19The Trans-Pacific ACR index aggregates congestion at the Port of Busan in South Korea; the Ports of Hanshin
and Keihin in Japan; the Ports of Los Angeles and Long Beach in the U.S.; and the Ports of Dalian, Dongguan,
Guangzhou Harbor, Hong Kong, Kaohsiung, Ningbo-Zhoushan, Qingdao, Shenzhen, Shanghai, Tianjin, Xiamen,
and Yang Shan in China.

20Relatedly, Kilian et al. (2023) develop a monthly index of container trade volumes to and from North America.
Although this measure helps identify shocks to domestic demand and to foreign demand for U.S. manufactured
goods, it is not suitable for our purpose of identifying supply chain disturbances.
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market tightness. The median inflation responses remain sizable and broadly comparable to the
baseline, with the lower bounds of the posterior bands staying above zero within a year of the
shock. As shown in Figure H.13, supply chain shocks continue to account for the largest share of
the forecast error variance of the PCE price index at medium and long horizons, while capacity
shocks remain the dominant driver of the other endogenous variables except for the Trans-Pacific
ACR. Finally, the HD in Figure H.14 is nearly indistinguishable from that obtained with the
global ACR, indicating that the narratives in Section 4 regarding the drivers of U.S. headline

PCE inflation are robust, even when focusing specifically on congestion at Trans-Pacific ports.
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Figure H.11: Global ACR vs. Trans-Pacific ACR

Notes. The global ACR and the targeted ACR for major ports along the Trans-Pacific route over January 2016—
March 2025 (correlation ~ 0.90). Both indices are expressed in percentage terms and seasonally adjusted.
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Figure H.12: IRFs to an Adverse Supply Chain Shock: Trans-Pacific ACR

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
described in Section 4, except that the targeted ACR index for major Trans-Pacific ports is used as the proxy for
the U.S.-specific supply chain conditions.
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Figure H.13: FEVDs from the SVAR: Trans-Pacific ACR

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
explained by each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR with the same specification as the baseline, except that the targeted ACR index for major Trans-
Pacific ports is used as the proxy for the U.S.-specific supply chain conditions.
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Figure H.14: HD of U.S. HoH Headline PCE Inflation: Trans-Pacific ACR

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type
price index, against the left axis (%). The shaded bars show the cumulative historical contributions of aggregate
demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed from
an identified Bayesian SVAR with the same specification as the baseline, except that the targeted ACR index for
major Trans-Pacific ports is used as the proxy for the U.S.-specific supply chain conditions.

H.5. HARPEX

Shipping costs offer a near-real-time read on logistics conditions and are often used to proxy
the state of the global supply chain. Within this class, HARPEX (an aggregate of container time-
charter rates across vessel sizes) captures the price of shipping capacity rather than congestion
itself, and it also enters the New York Fed’s GSCPI (Benigno et al., 2022).2! Because charter rates
adjust quickly to shifts in demand, fuel costs, and market expectations, we do not impose the
zero restrictions on HARPEX's responses to aggregate demand and productive capacity shocks at
horizon k = 1. For context, Figure H.15 compares ACR and HARPEX; although the two series
co-move, they differ in magnitude and timing, consistent with ACR tracking port congestion and
HARPEX reflecting the price of transport services.

Figure H.16 shows that replacing ACR with HARPEX yields a more muted response of the
PCE chain-type price index to an adverse supply chain shock: the median effect is small, and
the 90% posterior band largely includes zero across horizons. Consistently, the FEVDs in Figure

H.17 attribute a larger share of the forecast error variance of PCE prices to aggregate demand at

21Finck and Tillmann (2022) also incorporate HARPEX (together with the RWI/ISL container throughput index
and the GSCPI) as endogenous variables in SVARs to capture international container shipping and global supply
chain conditions. Their identification of a global supply chain shock combines conventional sign restrictions with
narrative information (e.g., the 2011 Tohoku earthquake, the 2021 Suez Canal blockage, and the 2022 Shanghai
backlog).
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medium horizons, with only a modest portion explained by the supply chain shock, suggesting
that HARPEX blends congestion signals with movements driven by demand and other market
forces.

The HD in Figure H.18 reinforces this conclusion. During the 2021-22 inflation surge, the
contribution from the supply chain shock is present but materially smaller than under the ACR
baseline, while demand and capacity account for a greater share. Taken together, the evidence
from impulse responses, variance decompositions, and the historical decomposition of U.S. head-
line PCE inflation indicates that HARPEX primarily reflects broader shipping market dynamics

driven by demand and costs, whereas ACR more directly isolates congestion-related pressures.
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Figure H.15: ACR vs. HARPEX

Notes. The ACR and HARPEX over the sample period January 2016-March 2025 (correlation = 0.70). The ACR
is expressed in percentage terms and shown on the left axis, while HARPEX is plotted on the right axis with a
baseline value of 1,000 on January 31, 2001. The HARPEX series is published by Harper Peterson and retrieved
from the Refinitiv data platform. Both series are seasonally adjusted.
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Figure H.16: IRFs to an Adverse Supply Chain Shock: HARPEX

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that HARPEX replaces the ACR index as the proxy for global supply
chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k£ = 1.
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Figure H.17: FEVDs from the SVAR: HARPEX

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that HARPEX replaces the ACR index as the proxy for global
supply chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k£ = 1.
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Figure H.18: HD of U.S. HoH Headline PCE Inflation: HARPEX

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that HARPEX replaces the
ACR index as the proxy for global supply chain conditions and its responses to demand and capacity shocks are
left unrestricted at horizon k£ = 1.

H.6. GSCPI

The GSCPI combines cross-border transportation costs and manufacturing PMI subcompo-
nents (e.g., suppliers’ delivery times) to infer global supply chain conditions (Benigno et al.,
2022). While widely used, these inputs introduce potential measurement errors: transportation
costs fluctuate with factors unrelated to supply chain disruptions (such as shifts in fuel prices or
shipping demand), PMI indicators reflect subjective managerial assessments that may embed ex-
pectations or misperceptions, and longer delivery times can arise from production-side bottlenecks
rather than congestion in the logistics network. By contrast, our ACR index is constructed from
satellite-based vessel data and directly tracks global port congestion (a first-order manifestation
of supply chain disruptions) (Transportation Research Board Executive Committee, 2006).

Figure H.19 compares ACR and the GSCPI over 2016-2025 and shows that, although posi-
tively correlated, the two indices diverge in amplitude and timing. During the early pandemic, di
Giovanni et al. (2022) interpret the sharp rise in the GSCPI as evidence of China’s lockdown and
its later decline as reflecting partial reopenings in 2020. The ACR, however, indicates that the
lockdown did not generate congestion of a magnitude consistent with severe global disruptions,

nor did the reopenings deliver immediate relief at major ports. This contrast foreshadows the
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weaker inflation signal obtained when the GSCPI substitutes for ACR.

Figure H.20 shows that the response of the PCE chain-type price index to an adverse supply
chain shock is muted: the median effect is small, and the 90% posterior band includes zero
throughout, in contrast to the clearer response under ACR with the zero restrictions. Likewise,
the FEVDs in Figure H.21 allocate more of the variance in real PCE and in PCE and import prices
to aggregate demand at medium horizons, while the supply chain share remains comparatively
modest.

The HD in Figure H.22 corroborates this view, showing that the contribution of the supply
chain shock to the 2021-22 inflation episode is visible but materially smaller than in the ACR
baseline, with demand and capacity accounting for a larger share. Together, these diagnostics

point to a diluted imprint of supply chain disturbances when the GSCPI is used in place of ACR.
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Figure H.19: ACR vs. GSCPI

Notes. The ACR and the New York Fed’s GSCPI over January 2016—-March 2025 (correlation ~ 0.49). The ACR
is expressed in percentage terms and shown on the left axis, while the GSCPI is plotted on the right axis in
standard deviations from its historical average. The GSCPI series is retrieved from the Federal Reserve Bank of
New York. Both series are seasonally adjusted.
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Figure H.20: IRFs to an Adverse Supply Chain Shock: GSCPI

Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification described in Section 4, except that the GSCPI replaces the ACR index as the proxy for global supply
chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.21: FEVDs from the SVAR: GSCPI

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the GSCPI replaces the ACR index as the proxy for
global supply chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon
k=1.

A-88



4 T T T T T T T T T 15
[Supply Chain /;
[ ]Productive Capacity a,

3 - Aggregate Demand 1 \;
——TU.S. Half-on-Half Headline PCE Inflation .8

=]

2 05 5

2

=

5]

o

SIS~ W (| T 0 3
=

3]

A7

0 -0.5 i
<

2

1 -1 %
g

=]

| ©]

1 1 1 1 1 1 1 1 1 _15

2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure H.22: HD of U.S. HoH Headline PCE Inflation: GSCPI

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the GSCPI replaces
the ACR index as the proxy for global supply chain conditions and its responses to demand and capacity shocks
are left unrestricted at horizon k = 1.

H.7. Supply Disruptions Index (SDI)

Smirnyagin and Tsyvinski (2022) and Liu et al. (2024) construct the SDI using the S&P
Global Panjiva dataset of U.S. seaborne import records. The index tracks regular consignee-
shipper relationships on a quarterly basis and records a disruption when an otherwise active pair
becomes inactive for one quarter before resuming. From 2016 to 2025, the SDI has remained
relatively stable before the pandemic, rose in early 2020, showed renewed elevation during the
2021-22 inflation episode, and then eased thereafter (Figure H.23).

Turning to the SVAR evidence, Figure H.24 shows that when SDI replaces ACR, the responses
of the PCE chain-type price index (and likewise the import price index) to an adverse supply
chain shock are less precisely estimated: median effects are small, and the 90% posterior band
often includes zero across horizons.

Consistently, the FEVDs in Figure H.25 assign only a small share of fluctuations in PCE and
import prices to supply chain shocks at medium horizons. The HD in Figure H.26 likewise shows
that supply chain shocks made only a limited contribution to the 2021-22 inflation episode, with
demand and capacity playing larger roles. Echoing the results with the GSCPI, substituting SDI

for ACR weakens the identification of the inflationary effects of supply chain disturbances.
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Figure H.23: ACR vs. SDI

Notes. The ACR and the SDI over the sample period January 2016-March 2025 (correlation a2 0.45). The ACR
is expressed as a percentage and shown on the left axis, while the SDI is plotted on the right axis in percentage
points. The SDI series is retrieved from https://www.disruptions.supply (accessed August 3, 2025). Both

series are seasonally adjusted.
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Figure H.24: IRFs to an Adverse Supply Chain Shock: SDI
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Notes. The IRFs to a one-standard-deviation adverse supply chain shock are estimated using the baseline SVAR
specification in Section 4, except that the SDI replaces the ACR index as the proxy for global supply chain

conditions and its responses to demand and capacity shocks are left unrestricted at horizon k& = 1.
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Figure H.25: FEVDs from the SVAR: SDI

Notes. Each line shows the posterior-median share of the forecast error variance of an endogenous variable
attributed to each of the three identified structural shocks across horizons. The FEVDs are computed from the
Bayesian SVAR identified as in the baseline, except that the SDI replaces the ACR index as the proxy for global
supply chain conditions and its responses to demand and capacity shocks are left unrestricted at horizon k = 1.
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Figure H.26: HD of U.S. HoH Headline PCE Inflation: SDI

Notes. The solid line plots U.S. headline PCE inflation, measured as the HoH growth of the PCE chain-type price
index, against the left axis (%). The shaded bars show the corresponding cumulative historical contributions of
aggregate demand, productive capacity, and supply chain shocks against the right axis (p.p.). The HD is computed
from an identified Bayesian SVAR with the same specification as the baseline, except that the SDI replaces the
ACR index as the proxy for global supply chain conditions and its responses to demand and capacity shocks are
left unrestricted at horizon k£ = 1.
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H.8. Goods Price Responses Across Proxies

We replicate the cross-proxy exercise in Section 4.4 using the PCE goods price index instead
of the aggregate PCE price index. Figure H.27 reports impulse responses to a one-standard-
deviation adverse supply chain shock across eight specifications: no proxy; ACR; ACR with
zero restrictions on its responses to demand and capacity shocks at horizon k& = 1; ACT with
the same restrictions; Trans-Pacific ACR with the same restrictions; HARPEX; GSCPI; and
SDI. When ACR, ACT, or the Trans-Pacific ACR is combined with these zero restrictions, the
median responses are larger and more precisely estimated —posterior bands are tighter, with
the 68% interval above zero at nearly all horizons and the 90% interval largely above zero—
clearly indicating the inflationary nature of supply chain disturbances and consistent with our
theoretical predictions. In contrast, omitting a proxy or using HARPEX, GSCPI, or SDI yields

smaller responses with wider bands that generally include zero.
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Figure H.27: Goods Price Responses to an Adverse Supply Chain Shock Across Proxies

Notes. Posterior-median impulse responses of the U.S. PCE goods price index, with 68% and 90% posterior
probability bands, to a one-standard-deviation adverse supply chain shock across eight SVAR specifications: (i)
no supply chain proxy; (ii) ACR; (iii) ACR with zero restrictions at horizon k = 1 on its responses to aggregate
demand and productive capacity shocks; (iv) ACT with the same zero restrictions; (v) Trans-Pacific ACR with
the same zero restrictions; (vi) HARPEX; (vii) GSCPI; and (viii) SDI. Aside from the choice of proxy, all eight
specifications follow the baseline model in Section 4, except that real PCE and the aggregate PCE price index are
replaced by goods PCE and the PCE goods price index. The sign restrictions in Restrictions 1-3 are imposed to
identify the adverse supply chain shock in all specifications except (i), where the positive restriction on the ACR
response is omitted.
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The FEVD results in Figure H.28 show that the congestion indices, together with the zero
restrictions motivated by our domain knowledge, assign a larger share of the forecast error vari-
ance of PCE goods prices to supply chain disturbances at medium horizons. In contrast, with
alternative proxies, the attribution shifts toward aggregate demand. These patterns mirror the
aggregate-price results and highlight the identification gains from combining congestion-based

proxies with zero restrictions.
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Figure H.28: FEVD of the U.S. PCE Goods Price Index Across Proxies

Notes. Posterior-median shares of the forecast error variance of the U.S. PCE goods price index attributable to
goods demand, productive capacity, and supply chain shocks across horizons for each of the eight specifications
discussed above.
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