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Abstract

With the advent of generative AI (genAI), the potential scope of artificial intel-
ligence has increased dramatically, but the future effect of genAI on productivity
remains uncertain. The effect of the technology on the innovation process is a
crucial open question. Some inventions, such as the light bulb, temporarily raise
productivity growth as adoption spreads, but the effect fades when the market
is saturated; that is, the level of output per hour is permanently higher but the
growth rate is not. In contrast, two types of technologies stand out as having
longer-lived effects on productivity growth. First, there are technologies known
as general-purpose technologies (GPTs). GPTs (1) are widely adopted, (2) spur
abundant knock-on innovations (new goods and services, process efficiencies, and
business reorganization), and (3) show continual improvement, refreshing this in-
novation cycle; the electric dynamo is an example. Second, there are inventions of
methods of invention (IMIs). IMIs increase the efficiency of the research and de-
velopment process via improvements to observation, analysis, communication, or
organization; the compound microscope is an example. We show that GenAI has
the characteristics of both a GPT and an IMI—an encouraging sign that genAI
will raise the level of productivity. Even so, genAI’s contribution to productivity
growth will depend on the speed with which that level is attained and, historically,
integrating revolutionary technologies into the economy is a protracted process.

∗Authors are listed in alphabetical order, not in order of relative contribu-
tion. Baily and Kane are at the Brookings Institution (mbaily@brookings.edu and
akane@brookings.edu). Byrne and Soto are at the Federal Reserve Board of Governors
(david.m.byrne@frb.gov and paul.e.soto@frb.gov). The views expressed here are not rep-
resented to be the views of the staff or trustees of The Brookings Institution nor of the
Federal Reserve. The authors are grateful to Michael Chui, Leland Crane, Avi Goldfarb,
Bob Gordon, Shane Greenstein, Anton Korinek, James Manyika, Sid Srinivasan, Scott
Stern, and Bill Whyman for helpful conversations.
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1 Introduction

In late 2022, OpenAI grabbed the world’s attention with ChatGPT,
the first of several recently released “generative AI” (genAI) programs that
use a computer model of human discourse to respond to natural-language
questions. The scope of AI has expanded dramatically with the advent of
genAI, including to tasks previously seen as quintessentially human, such as
competition-level mathematics (fig. 1 on the following page). Indeed, more
and more challenging benchmark tests have been needed to assess progress as
genAI has matched human performance on one task after another.1 In an en-
couraging sign, field test evidence of productivity improvements from genAI
in practical applications has also emerged, including for writing, computer
programming, and responding to call center inquiries (table 1 on page 4).2

It remains to be seen whether widely-used cost-effective business applica-
tions will follow from these successful field tests. Although some companies
do credit genAI with improvement to their bottom line, McKinsey (2025b)
reports that more than 80% of genAI-using firms “aren’t seeing a tangible
impact on enterprise-level [earnings before interest and taxes] from their use
of genAI.”3

Web searches for AI and downloads of the ChatGPT app have soared,
sparking intense competition for leadership in genAI (fig. 2 on page 5), and
the computational intensity of training genAI models and processing user
requests has led to a massive increase in data center construction and spend-
ing on AI-related semiconductor chips (fig. 3 on page 6). While optimists see

1. For more on the record of AI benchmark performance, see Maslej et al. (2024). The
external validity of such benchmarks—that is, how much they tell us about performance
on practical tasks seemingly related to the tests—is a matter of some debate (Liao et
al. 2021). New benchmarks, such as the ARC-AGI and the Graduate-Level Google-Proof
Q&A (GPQA) benchmarks, have been introduced to better evaluate advanced capabilities.
Recent models, especially “reasoning” models such as o3 from OpenAI and others discussed
in section 3.3.1 on page 21, have performed strongly on these more demanding tasks. Haupt
and Brynjolfsson (2025) argue that benchmarks that measure how well AI and humans
can jointly perform tasks are needed to shed light on practical AI use.

2. Brynjolfsson, Li, and Raymond (2025) find that call center operators became 14%
more productive when they used the technology; Peng et al. (2023) find that access to
GitHub Copilot enabled programmers to complete tasks almost 56% faster; and Noy and
Zhang (2023) find that writers who used ChatGPT worked more quickly and produced
higher-quality outputs.

3. McKinsey (2025b) also reports that a large share of their survey respondents—
primarily large corporations—credit AI with cost reductions in some business functions.
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Figure 1: AI Benchmark Performance

Note: The “human baseline” concept used varies by task. For more challenging tasks, the baseline tends
to reflect expert-level performance.
Source: Reproduced with permission from the 2024 AI Index Report, Stanford Institute for Human-
centered Artificial Intelligence.

potential for genAI to spur an information technology (IT)-fueled produc-
tivity boom comparable to the late 1990s and early 2000s, more downbeat
observers see claims about its capabilities as overstated and highlight po-
tential headwinds, such as regulations to guard against unintended harms,
political pushback as AI affects the jobs of human workers, and the colossal
energy requirements for training and running genAI systems.4 It is too early
to adopt either view with confidence. Whether practical genAI applications
will be consequential enough to raise aggregate productivity growth remains
to be seen. GenAI may be no more important than previous innovations in
IT already reflected in the historical trend, including its predecessors in the
field of AI.5

With only “green shoots” of quantitative evidence in hand that genAI
will raise productivity, we frame the prospective effect of genAI in qualita-

4. For an optimistic view, see Kurzweil (2024). For a more cautious perspective see
Narayanan and Kapoor (2024).

5. Moreover, the present era of modest productivity growth in the midst of mature ma-
chine learning, cloud computing, and smartphones should temper expectations for another
IT boom.
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Table 1: Selected GenAI Productivity Field Studies

Study Task Results

Noy and Zhang (2023) Writing ChatGPT speeds, improves writ-
ing. Writers shift from drafting
to idea generation and editing.

Brynjolfsson et al.,
(2023)

Customer
service

More issues resolved using conver-
sational assistant.

Dell’Aqua et al. (2023) Various GPT-4 increases task completion,
speed, and quality.

Peng et al. (2023) Coding Using GitHub Copilot, program-
mers complete tasks faster

Cui et al. (2024) Coding GitHub Copilot raises task com-
pletion.

tive terms: We ask what class of innovation it may be. Some labor-saving
innovations, such as the light bulb, temporarily raise productivity growth as
adoption spreads, but the effect fades when the market is saturated; that
is, the level of output per hour is permanently higher but the growth rate
is not. Other widely used technologies, such as the electric dynamo, spur
knock-on innovations—new products, process improvements, and business
reorganization—and refresh this adoption cycle through ongoing improve-
ment in the core technology (David 1990). The boost to productivity growth
from these general-purpose technologies (GPTs) may last longer. Yet other
inventions, such as the compound microscope, increase the efficiency of the
research and development process; these “inventions of methods of invention”
(IMIs) yield a sustained increase in productivity growth by lowering the cost
of research and development.

We first define “generative AI,” then consider the evidence that genAI is
a GPT, reviewing indicators for the scope of diffusion, the extent of knock-
on innovations, and signs of ongoing progress in the core technology. To
assess its status as an IMI, we discuss evidence that it increases the efficiency
of observation, analysis, communication, and organization in research and
review several indicators (patents, earnings calls, and query topics). For
both questions, we reference case studies for the financial, health care, and
information sectors and for the electricity generation industry (Baily and
Kane 2025a, 2025b; Kane and Baily 2025a, 2025b). We conclude there is
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Figure 2: Indicators of Interest in GenAI

(a) GenAI Mobile App Downloads (b) Web Searches for AI

Note: Apps are ChatGPT, Claude, DeepSeek, and Perplexity. Includes Android and iOS. Android down-
load information not available for China. Does not account for access via application program interface.
Web searches include related terms in Google’s “AI” topic.
Source: appfigures; Google Trends.

substantial evidence that genAI is both a GPT and an IMI, an encouraging
sign its adoption will lead to higher productivity in the future.

There is a substantial literature on the question of whether machine learn-
ing, which preceded genAI, may be a GPT (Cockburn, Henderson, and Stern
2019; Trajtenberg 2018; Bresnahan 2019; Goldfarb, Taska, and Teodoridis
2023; Bresnahan 2024), and Cockburn, Henderson, and Stern (2019) discuss
the possibility that machine learning is an IMI. There is little work focused
specifically on genAI. Eloundou et al. (2024), a prominent exception, con-
sider the prospects for genAI to be a GPT; relative to that work, we draw
on a broader set of indicators and consider evidence for whether genAI is
both a GPT and an IMI. Our focus on characteristics of the technology itself
and its integration into business processes complements the large literature
on the labor market impact of genAI.6 Our qualitative assessment of genAI
also serves as a primer to inform discussion of AI in the context other lit-
eratures, such as creative destruction and endogenous growth (Akcigit and
Van Reenen 2023).7

6. On labor market effects of AI, see Acemoglu and Restrepo (2020), Agrawal, J. Gans,
and Goldfarb (2023), Brynjolfsson, Li, and Raymond (2025), and Eloundou et al. (2024),
among others.

7. Our focus is primarily on the U.S. economy; Filippucci et al. (2024) take a global
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Figure 3: Indicators of U.S. AI-Related Investment

(a) Data Center Construction (b) Application-Specific Chips

Note: Nominal value of construction put in place. Application-specific chips include GPUs, TPUs, and
ASICs for other applications.
Source: Census Bureau; Semiconductor Industry Association.

2 What is Generative AI?

“Artificial intelligence” (AI) is an umbrella term encompassing a variety
of algorithms deployed on computers to mimic human thought, communica-
tion, and choices, such as machine learning, computer vision, and generative
models. (See Appendix A for a discussion of several influential definitions
of AI.) AI systems achieve these objectives by constructing and calibrating
mathematical models of complex patterns found in training data. The most
widely known implementations of genAI use a computer model of the hu-
man discourse found on the internet to respond to natural-language prompts
(questions or directives), though genAI systems take other forms as well as
we discuss below.

We narrow our focus to genAI for several reasons. First, the broad and
varied use of “AI” makes a coherent discussion of its effects on productivity
difficult. Second, the productivity impact of genAI is largely in the future,
in contrast to AI types already in use for which the effects on productivity
are, in principle, an empirical question. Third, the human-like behavior
of generative models has made concerns about the disruptive effects of AI
particularly salient.

perspective and address many of the same issues as our paper.
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Although systems which respond to prompts with natural language text
were a part of the AI field from its inception, early models were not grounded
in a model of human language. (For a short history of the field, see Appendix
B.) For example, rudimentary chatbots, such as ELIZA the psychotherapist,
text autocompletion, and “expert systems,” such as MYCIN for infection
diagnosis, appeared in the 1960s and 1970s. These systems had matured
by the 2010s, when sophisticated voice-driven chatbots like Alexa and Siri
had been introduced, news outlets were auto-generating routine stories, and
IBM’s Watson, famous for beating humans at Jeopardy in 2011, was repur-
posed to provide advice on a host of topics. These were symbolic, rules-based
systems, albeit with an element of randomness in their output.

Richer generative models appeared after the development of large lan-
guage models (LLMs). LLMs, which represent the meanings of words and
their relationships by locations in a high-dimensional space, emerged in the
2010s. Word2Vec, most notably, encoded words as vectors of numerical val-
ues, and while the values do not correspond to specific, interpretable charac-
teristics, they capture semantic relationships in an abstract space (Mikolov
et al. 2013). For example, while humans would represent a dress by its
color, size, and hem length, say, the characteristics chosen by Word2Vec
would not have a readily apparent interpretation (Bajari and Chernozhukov
2018). Aided by advances in computational power and big data processing
techniques, genAI developers pushed the field forward and achieved a break-
through with the Transformer architecture in 2017 (Vaswani et al. 2017).
(The technical features of the Transformer are discussed in a box below.)
This model allows for a richer representation of word meaning in its encod-
ing by accounting for context. Many GenAI models use LLMs to encode the
tokens (words, phrases, or parts of words) in the input in this fashion. After
embedding the input text into locations within a high-dimensional space of
abstract characteristics, they draw on the information embedded nearby to
guide the prediction of the next token, weaving the output into a relevant
natural-language response.

Because these models are created as neural networks, which are extremely
flexible, they differ from previous models, like IBM’s Watson, in that they are
not symbolic. That is, they do not have a predetermined logical structure.
The effect of this added flexibility and the richness enabled by their massive
scale is that the range of possible generated content is more open-ended
than earlier systems. For example, earlier symbolic attempts were capable
of producing formulaic news stories about a firm’s quarterly earnings or the
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outcome of a baseball game, but ChatGPT can provide a convincing nuanced
response to prompts such as “write a short story about an angst-ridden robot
in the style of Edgar Allan Poe.”

Importantly, genAI can support a wider array of applications than natu-
ral language tools for learning and creativity. Broadly stated, genAI systems
produce contextually appropriate artifacts using an open-ended stochastic
process that draws from patterns in a dataset. The artifacts may be a variety
of things other than text, including computer code, images, music, chemi-
cal structures, game environments, mathematical proofs, or dance moves, to
name a few. And, while the chat window user interface makes genAI accessi-
ble, it is not found in all applications. For example, in generative adversarial
networks (GANs), neural networks interact with each other, not humans, to
generate output.

Landmark AI Models: The Transformer

The transformer architecture, introduced by Vaswani et al. (2017), was
a game changer in AI, particularly as the engine behind genAI models.
Its key innovation, the “attention mechanism,” steers models to focus
selectively on relevant parts of the prompt, enabling more efficient
and accurate processing of language. This breakthrough has powered
major advancements in natural language understanding, translation,
and generation, forming the backbone of today’s most advanced genAI
systems.

Transformers process input data through a series of layers (steps),
each consisting of an attention mechanism followed by a multilayer
perceptron (MLP, defined below), proceeding as follows.

First, a representation of the prompt (input text) suitable for anal-
ysis by the model is created. Specifically, the prompt is broken into
tokens (smaller pieces which may be phrases, words, or parts of words).
The tokens are converted into embeddings (numerical vector represen-
tations) which encode the semantic and syntactic meaning of each to-
ken. Loosely speaking, for each token, the closest of the other tokens,
as measured by the distance between their embeddings, are the ones
most important to understanding its meaning.

Second, the attention mechanism processes the matrix of token em-
beddings using three large matrices called the “query,” the “key,” and
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The Transformer (continued)

the “value.” For each token in the input, the query is compared to the
keys of all tokens to compute attention scores, which are used to form
a weighted average of values. This step allows each token’s representa-
tion to incorporate information from other tokens in the prompt based
on their contextual relevance.

Third, the data passes through an MLP, a type of neural network.
While the attention mechanism focuses on pairwise interactions be-
tween tokens, the MLP applies nonlinear functions (in contrast to the
linear attention mechanism) in refining the token representations.

This sequence—of computing the attention mechanism followed by
the MLP—is repeated multiple times depending on how many layers
are in the model (for example, the Llama-3 model has 32 layers), en-
abling the model to capture increasingly abstract features of the input
text.

The performance gains from scaling of this system through increas-
ing the size of these matrices—along with larger training datasets and
improvements in hardware and processing algorithms—underpins the
rising ability to handle complex language tasks.

3 Is GenAI a General Purpose Technology?

While the evidence for genAI-driven productivity in specific tasks is in-
triguing (table 1 on page 4), to look ahead to its future productivity impact,
we would like to know (1) if genAI will be widely adopted, (2) the extent of
related innovations, and (3) whether genAI will continue to improve. That
is, we would like to know if genAI is a general-purpose technology (GPT).8

Through widespread adoption, downstream complementary innovation, and
sustained innovation in the core technology, GPTs have long-lasting effects
on productivity. Examples of GPTs are shown in table 2 on the following
page.

As described by Lipsey, Carlaw, and Bekar (2005, xvi), “big GPT shocks
change almost everything in a society and revitalize the growth process by

8. Note that the “GPT” initialism in the names of OpenAI genAI models stands for
“generative pre-trained transformer.” We will use “GPT” to mean “general-purpose tech-
nology” exclusively in this paper except when referring to OpenAI models.
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Table 2: Examples of General Purpose Technologies

Technology Initial Impact
Domestication of plants 9000–8000 BCE
Writing 3400–3200 BCE
Iron 1200 BCE
Waterwheel Early medieval period
Three-masted sailing ship 15th century
Printing 15th century
Factory system Mid 18th century
Steam engine Late 18th century
Railway Mid 19th century
Internal combustion engine Late 19th century
Electricity Early 20th century
Motor vehicle Early 20th century
Mass production, continuous process factory Early 20th century
Lean production Late 20th century
Computer Late 20th century
Internet Late 20th century
Source: Adapted from Lipsey, Carlaw, and Bekar (2005).

creating an agenda for the creation of new products, new processes, and
new organizational forms.” For example, new products that followed the
development of the (electronic) computer include office productivity software,
ATM machines, and the routing equipment that directs traffic around the
internet. New processes that followed the development of reliable electricity
include the production of hydrogen by electrolysis, salvaging scrap steel using
electric arc furnaces, and the fabrication process for semiconductor chips.
And, a new organizational form that followed the introduction of the three-
masted sailing ship was the joint-stock company, used to finance the voyages
of large-scale trading firms.

We briefly describe the three criteria for a technology to be a GPT, then
examine in detail the evidence that genAI meets each one.

Diffusion The more widespread the application of a technology, the greater
the potential impact on aggregate productivity (Hulten 1978). That said,
however widely adopted, the direct productivity effect of a single invention is
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bounded. Productivity growth will be higher during the adoption transition,
but will return to its underlying trend when diffusion is complete (Robert
M. Solow 1956). To illustrate using the light bulb, once suitable filaments
were developed and the inexpensive incandescent light bulb was available,
the technology was gradually adopted in workplaces, raising productivity
through better visibility and lower risk of accident (Abdou 1997). Lighting
is necessary for nearly all human labor, so the potential effect on the level
of productivity from the light bulb was noteworthy, but once the light bulb
market was saturated, it delivered no further (direct) level effect and the
increment to productivity growth present during the transition disappeared.9

Knock-on Innovation Technologies that spur further innovation can de-
liver a longer-lived impetus to productivity growth. The greater persistence
of elevated growth is the result of a series of overlapping classical “light
bulb” growth effects.10 The electric dynamo is an example. The dynamo
uses electromagnetism to convert mechanical energy produced by a prime
mover—a steam engine, say—to electromagnetic energy, which is then con-
veyed by wires and converted back to mechanical energy by a motor used to
drive machinery in another location. Existing systems conveyed mechanical
energy directly to machinery through a set of belts. The dynamo/wiring/-
motor system is more energy efficient than the belt system except in very
simple arrangements, so the simple replacement of existing factory systems
yielded productivity gains. In addition, the dynamo enabled a more flex-
ible organization of production (David 1990). The less centralized factory
designs adopted by firms in response are a knock-on productivity-enhancing
innovation spurred by the dynamo.

Ongoing Core Innovation When a technology continues to improve over
time, the new target productivity level—fixed in the simple impulse-response
framework of the Robert M. Solow (1956) model—becomes a moving target.
Ongoing innovation translates into greater technical performance at a lower
cost, a form of productivity gain. Moreover, the price of capital typically

9. The light bulb was not solely a terminal innovation, of course. The surge in demand
for electricity represented by light bulbs led to centralized power stations (David 1990).
10. Complementary innovations may increase productivity by raising the effectiveness of

the GPT as well, such as raising the operating rate of computers by the invention of cloud
computing.
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follows the production cost downward spurring greater adoption. Innova-
tion is, in a sense, embedded in the capital (Kaldor 1957). Solid state elec-
tronics is an example. Relentless increases in the number of transistors on
each semiconductor chip has driven the price of computing lower, making it
cost-effective both to embed electronics in a greater variety of devices (like
inexpensive toys) and to enhance devices with more and more electronic ca-
pability (like smartphones).

3.1 Diffusion

Although comprehensive measures of the diffusion of genAI, specifically,
are limited, recent trends in the diffusion of AI, generally, may indicate the
underlying influence of genAI. Surveys show AI adoption rising, particularly
in large corporations where AI use is concentrated. Even so, a large majority
of firms still don’t see an application for AI in their business. Analyses of
the text of job descriptions suggest that AI can be used for a broad range
of workplace tasks, indicating that the potential for diffusion among firms
is high.11 At the same time, the share of job postings mentioning AI skills
is modest, indicating that firms are taking a cautious approach to hiring
workers to focus on AI use. Meanwhile, from the worker’s perspective, AI
adoption seems widespread; surveys of individuals document that a large
share of workers are already AI users.

Adoption surveys Distilling a single message from the available surveys
of AI use is difficult at first glance. The Census Bureau’s Business Trends and
Outlook Survey (BTOS) finds roughly 9% of firms use AI, while McKinsey
reports that 72% of firms do so (fig. 4 on page 14). On closer inspection,
these surveys are consistent with one another and reveal important nuances
in the state of AI adoption with respect to firm size and business functions.

Combining the results of these surveys points to far higher AI adoption
for large firms than small ones.12 The BTOS is a representative sample of

11. See Acemoglu et al. (2020), Brynjolfsson, Mitchell, and Rock (2018), Felten, Raj,
and Seamans (2019), Webb (2019), Eloundou et al. (2024).
12. There may well be significant heterogeneity within small firms on this question.

Because new firms, which are typically small, may begin life as digitally native firms,
they may adopt AI more easily. The pace of business applications with a high-propensity
of turning into businesses with payroll, reported by the Census Bureau, has moved up
significantly in the wake of the pandemic. Note that information on new firms will appear
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200,000 U.S. firms, only a handful of which are large corporations (Bonney
et al. 2024). The McKinsey survey, in contrast, is a convenience sample with
heavy representation from large corporations (McKinsey 2024).13 The U.S.
firm size distribution is highly skewed and large corporations have thousands
of employees (Kondo, Lewis, and Stella 2023). The threshold for the largest
firm-size group in the BTOS is 250 employees, for which BTOS reports 14.9%
adoption, and the BTOS reports that for smallest firm-size group, firms with
fewer than 5 employees, 9.7% were using AI in June 2025.

These surveys also suggest that AI use may be less prevalent in core
business functions than in support functions. Differences in the definition of
adoption between the surveys point to this conclusion. The BTOS survey
asks, “In the last two weeks, did this business use Artificial Intelligence (AI)
in producing goods or services? (Examples of AI: machine learning, natural
language processing, virtual agents, voice recognition, etc.).” The McKinsey
question is rather less restrictive, asking respondents if they use “AI in at
least one business function.” That is, the BTOS asks about use in core
business functions (“producing goods or services”), while McKinsey includes
non-core functions like “marketing and sales,” which is the function with
greatest AI use in their survey.

Evidence about adoption for genAI specifically is more limited. Only the
McKinsey survey asks separately about genAI, finding that use among their
(primarily large firm) respondents surged from roughly one-third in 2023
to two-thirds in 2024. Bick, Blandin, and Deming (2024) survey workers (a
representative sample of 18-64 year-olds in the United States) and find nearly
40% of respondents used genAI.

As posited in Crane, Green, and Soto (2025), high-level managers may
underestimate the extent to which their employees are using AI tools, or AI
users may be highly concentrated in large firms (roughly half of the U.S.
workforce) or AI-intensive industries. Consistent with the idea that AI users
may be concentrated in AI-intensive industries, Sergeyuk et al. (2025) survey
programmers and find 84% of them use AI. A recent trend in industry com-
position is suggestive as well. Decker and Haltiwanger (2024) identify a step

with a delay in the BTOS, for which the sample is drawn from the Census Business Register
(Bayard et al. 2018).
13. Although McKinsey states that its survey includes “participants representing the full

range of regions, industries, company sizes, functional specialties, and tenures,” responses
are not weighted by the relative prevalence of their characteristics in the population. We
thank Michael Chui for confirming that this is a fair characterization of the survey.
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up in the share of business establishments—reported by the Bureau of Labor
Statistics in the Quarterly Census of Employment and Wages—in industries
with a high share of employees in science, technology, engineering, and math
fields. We speculate this employee composition may be paired with higher
AI use.

Figure 4: AI Use Over Time

(a) Census BTOS (United States) (b) McKinsey (Global)

Note: For BTOS, respondents were asked about AI use in producing goods or services during the past
two weeks and anticipated in the next six months. For McKinsey, respondents were asked if they “use AI
in at least one business function”
Source: Census Bureau, Business Trends and Outlook Survey; McKinsey, “The State of AI in Early 2024.”

Job postings Job posting data from Lightcast (formerly Burning Glass)
categorized using terms associated with AI by Acemoglu et al. (2020), ex-
tended with terms not prevalent at the time of their analysis (such as “genAI”),
show the share of job postings currently related to AI to be roughly 4 percent,
using a broad definition of AI including a cluster of related skills (fig. 5 on
the following page). Importantly, that share moved up (from no more than 2
percent) around 2017, well before practical genAI applications became preva-
lent, consistent with earlier forms of AI driving the increase. AI-related job
postings have moved up only modestly since then, suggesting that explicit
use of genAI-related skills is not crucial to many jobs. In some sectors, most
notably the information sector (shown in the graph), the share of job postings
referencing AI is substantially higher.
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Figure 5: AI-Related Job Postings

Note: Jobs classified using AI-related terms found in job descriptions, as described in Acemoglu et
al. (2020). List of AI-related terms updated by Lightcast.
Source: Lightcast.

Case study evidence x

The information sector has adopted genAI rapidly. Among U.S. pro-
grammers, 92% were using AI tools (including genAI) as of June, 2023 (Shani
and GitHub Staff 2023). Other occupations within the information sector
use genAI in their work as well. Of graphic designers and illustrators, 69%
used genAI in their work in 2023, employing tools like generative fill and
large-scale text-to-image models such as DALL-E.14

In the U.S. health care system, adoption has been slow for IT gener-
ally and AI in particular (Poon et al. 2006; Goldfarb, Taska, and Teodoridis
2020). However, genAI may be an exception: A majority of physicians al-
ready used or were planning to use genAI in 2025 for generating chart sum-
maries, creating discharge instructions, and an array of other tasks (AMA
Augmented Intelligence Research 2025). Radiology is an enlightening exam-
ple of how genAI has changed AI use in health care. While approximately
30% of radiologists already used AI as of 2020 (Allen et al. 2021), the emer-
gence of genAI spread AI to all stages of the radiology workflow, including
the health system (e.g. imaging need prediction, claims processing), clini-
cians (e.g. prior authorization, communication), technologists (e.g. patient

14. See Offerman, Stefan. “Creative Pros See Generative AI as Part of Their Fu-
ture.” Adobe Blog, March 21, 2023. https://blog.adobe.com/en/publish/2023/03/21/
research-creative-pros-see-generative-ai-as-part-of-their-future.
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tracking, report generation), and radiologists (e.g. image quality assessment,
diagnosis) (Burnside et al. 2025).

Notwithstanding these inroads, AI use faces substantial hurdles in health
care. For example, N. Agarwal et al. (2023) document that combining human
analysis with AI diagnostics can yield disappointing results—radiologists
have difficulty determining how much confidence to assign the AI output.
And, although Sahni et al. (2023) conclude that machine learning has the po-
tential to assist with an array of tasks including diagnosis, treatment choice,
and managing records, they assess that for hospitals, AI adoption often can-
not be justified on financial factors alone.

GenAI is used for many tasks in finance as well. Companies can use
genAI to lower the cost of creating client-specific portfolios (Joshi 2025), im-
prove existing automated systems that respond to client requests (McKinsey
2025a), assist with regulatory compliance (R. Agarwal et al. 2024) and with
loan underwriting (Wang 2023).

In electricity generation and distribution, firms are experimenting
with genAI, with approximately 33% piloting genAI in their customer service
operations.15 Some companies use genAI in their load forecasting processes,
while others use the technology to simulate equipment degradation and in-
form predictive maintenance, areas where machine learning was already in
use (Gao et al. 2024).

3.2 Knock-on Innovation

In the course of adopting new technologies, firms retool, retrain, and reor-
ganize to better exploit their productivity potential.16 This process involves
knock-on innovation in products, production processes, and operations. In
the case of genAI, knock-on product innovation includes the diverse array
of user interface software for generative models and the emergence of more
capable robots. Process innovation includes genAI-enhanced approaches to
product design and production line operation. Organizational innovations
include centralized data governance and optimization of supply chains and
data centers.

15. Penrod, Emma. “A Third of Utilities Have Begun to Pilot Generative AI for Cus-
tomer Service, Other Uses: Report.” Utility Dive, July 12, 2023. https://www.utilitydive.
com/news/utilities-generative-ai-artificial-intelligence-capgemini-report/686601/.
16. Bresnahan and Greenstein (1996) discuss this process in detail, which they refer to

as “co-invention.”
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Bresnahan (2024) observed that early machine learning (pre-generative
AI) adoption was concentrated in places where complementary innovation
was less necessary, such as in firms that were highly digitized from their
founding (digital natives). In such firms, adoption of AI was more straight-
forward, involving substitution of AI for existing IT capital or deploying AI to
undertake tasks not previously part of operations.17 In 2018, nearly 10 years
after internet giants had begun using machine learning at scale (e.g. Ama-
zon’s random forest demand forecasting (2009) and Google’s Panda search al-
gorithm (2011)), AI began to gain traction at other firms (fig. 4 on page 14).18

Digital natives will surely lead the charge for genAI as well. For other firms,
the pace and success of knock-on innovation will be a key determinant of the
scale and timing of productivity effects from genAI.19

3.2.1 Products

User interfaces (UIs) provide a channel through which requests and re-
sponses can pass between the user and the model, whether a human user or
another system, such as a vehicle or a robot. In the early days of genAI, users
accessed genAI through their own Python programs or through websites such
as the OpenAI Playground. A major shift occurred in November 2022, when
OpenAI released ChatGPT, a conversational interface that made genAI in-
teractions significantly more accessible to a broader audience. Since then,
several new interfaces have emerged. In 2023, OpenAI introduced Custom
GPTs, enabling users to create specialized LLMs for specific domains, such

17. The legendary email from Jeff Bezos instructing internal teams at Amazon to exclu-
sively use APIs to deliver data and functionality would have landed rather differently at a
non-native company, for example. Even at Amazon, though, continuous digital transfor-
mation is challenging, as Yegge (2011) relates in his account of the aftermath of the Bezos
email.
18. Bresnahan (2019, 157) describes the use of machine learning at Amazon, Facebook,

Google, and Netflix, particularly for matching (e.g. consumers to products) and for user
interfaces and notes “there is little application of [artificial intelligence technologies] outside
the Internet Giants as of spring 2018.” Bughin and Van Zeebroeck (2018, 1) notes that
“only a fraction of companies—about 10 percent—have tried to diffuse AI across the
enterprise, . . . An additional quarter of companies have tested AI to a limited extent.”
19. The emergence of cloud services may have catalyzed machine learning adoption out-

side of digital natives, and AI as a service such as Azure OpenAI Service may play a
similar role for genAI.

17



as LegalGPT for legal matters.20 In 2024, OpenAI announced integration of
their ChatGPT model to Apple’s Siri voice assistant and Google launched
NotebookLM, which made it easy to upload documents and transform them
into interactive discussions.21 In addition, there are “copilots” that inte-
grate AI into existing user workstreams, notably GitHub Copilot (computer
programming) and Microsoft 365 Copilot (office productivity).

System interfaces allow hardware and software systems to access the core
AI system. For example, Nvidia’s Isaac Software Development Kit (SDK) fa-
cilitates the integration of AI into robotics.22 Access to AI through SDK helps
the robot with environmental integration problems, such as simultaneously
tracking its location and mapping its environment (SLAM). Development of
multimodal models which can take in inputs of different kinds (text, images,
sensor readings) and can output instructions to the robot, such as the rota-
tion and torque for a joint, have pushed robot-AI integration forward (Reed
et al. 2022; Brohan et al. 2023)

System interfaces also make possible the design of agentic AI systems,
which collect information during operation, interpret context, make deci-
sions and act in pursuit of goals autonomously (Park et al. 2023).23 Exam-
ples include AutoGen, from Microsoft, and CrewAI. For example, an airline
reservation app using agentic AI would be capable of handling the complex
steps of searching for available flights, proactively aligning the user’s travel
options with their preferences, making the booking, adjusting to disruptions
to the reservation process (e.g. sporadic price changes), and including special
accommodations along the way (e.g. upgrading seats if available within the

20. See “Introducing GPTs,” November 6, 2023. https://openai.com/index/
introducing-gpts/
21. See “OpenAI and Apple announce partnership to integrate Chat-

GPT into Apple experiences,” June 10, 2024. https://openai.com/index/
openai-and-apple-announce-partnership/; See “NotebookLM gets a new look,
audio interactivity and a premium version,” December 13, 2024. https:
//blog.google/technology/google-labs/notebooklm-new-features-december-2024/
22. Robot capabilities have advanced in tandem with AI progress. Industrial robots

were trained using machine learning beginning in the 1990s (Arinez et al. 2020; Soori,
Arezoo, and Dastres 2023). Even more sophisticated robots, which can learn from their
environments, integrating sensor data, are available today, including civilian and military
autonomous vehicles (Knight 2016; Pierson and Gashler 2017).
23. For more detail on agents, see Wiesinger, Marlow, and Vuskovic (2024). For an array

of agentic AI use cases, see Renner and Chaban (2024).
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user’s preferences).

3.2.2 Production processes

Product design is a use of genAI that will be self-evident to users of tools
such as DALL-E to create whimsical images; powerful genAI tools are also
capable of designing products of all kinds that meet technical and aesthetic
specifications. Perhaps less obviously, the design process itself can be trans-
formed through knock-on innovation. Saadi and Yang (2023) interviewed
designers and observed:

Rather than thinking about how to create several one-off designs,
designers may consider how to create a system for design that
would allow the design tool to generate a large number of valid
outputs. This can involve setting the appropriate specifications,
manufacturing methods, and product architecture early in the
process to input into computational tools.

Production line operation Serradilla et al. (2022) provides an overview
of the use of deep learning, including genAI such as generative adverserial
networks, to optimize line configuration, throughput, efficiency, and carbon
footprint. Predictive maintenance using synthetic data and scenario simu-
lation is another application for genAI in industry. Sai, Sai, and Chamola
(2024) provides examples of production optimization outside of manufactur-
ing as well.

3.2.3 Organization

Among the organizational innovations spurred by AI are cross-functional
teams with access to data that spans the enterprise, breaking down barri-
ers between business units, optimization of supply chains, and reallocation
of employees to de-emphasize repetitive writing tasks (Iansiti and Lakhani
2020).

3.2.4 Case study evidence

Task-specific user interface programs are already in use in the health
care industry. For example, one hospital system used genAI to field a flood
of questions during the COVID-19 pandemic (Wittbold et al. 2020). AI is
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also used to transcribe conversations and dictations to create clinical notes
(Handa and Sorensen 2023). Hornback et al. (2025) document how Fast
Healthcare Interoperability Resources (FHIR), a protocol for the secure ex-
change of sensitive health information, has evolved to support emerging AI
technologies. These efforts include the integration of BERT, a transformer
model, for encoding unstructured text data (Peterson, Jiang, and Liu 2020)
and the development of a generative model, FHIR-GPT (Y. Li et al. 2024).
In finance, JP Morgan Chase adopted AI for contract review using software
called COiN (Contract Intelligence) and reported saving 360,000 hours of
costly lawyers and loan officers (Weiss 2017). In the information sector,
Peng et al. (2023) document that the use of GitHub Copilot markedly in-
creased the productivity of programmers, particularly less experienced ones.
And, data center networks have evolved to better support genAI and genAI
has contributed to network optimization beyond the contributions of machine
learning (Y. Liu et al. 2024). GenAI has proved useful in the energy sector
as well. Choi et al. 2024 describe a custom interface to genAI designed to
assist control room operators in balancing supply and demand on electrical
grids.

3.3 Ongoing Core Innovation

Since the introduction of the Transformer, genAI models have steadily
pushed out the frontier of capability. At first, advances were largely driven
by increasing the scale of the model (via the number of “parameters” in
the model), computational power used (“compute”, in the lingo of AI), and
the size of the training dataset (fig. 6 on the following page). AI scientists
and engineers often focus on the “scaling laws” that describe the benchmark
performance effects of increasing each of these inputs (Kaplan et al. 2020).
More recently, tactics to use compute more efficiently and to refine models
for specific applications have been a focus as well.

Importantly, economic performance (productivity) only rises when more
can be accomplished while holding input costs fixed. In other words, we are
looking for shifts in scaling law functions, not movement along the curves.
Accordingly, we focus below on (a) how innovations in model architecture
(the algorithms used for distilling information from data) raise genAI model
capabilities without raising training costs, (b) how hardware innovations
lower the cost of computation, and (c) how richer datasets (with more infor-
mation per token) can be brought to bear on training.
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Figure 6: Number of Parameters and Training Dataset Size

Note: Only models with reported parameter size and training dataset size are included in the dataset.
For instance, GPT-4 is excluded as its parameter size is not known.
Source: Epoch (2024) with major processing by Our World in Data
(rahman-owen-you:2024:tracking-compute-intensive-ai-models).

3.3.1 Model Development

Since the introduction of the Transformer, model development has pro-
gressed at a blistering pace, including improvements attributable to ramping
up model scale, training dataset size, and the amount of compute employed—
the scaling laws discussed above—and the introduction of novel model con-
cepts and techniques to increase the efficiency of model training. An im-
portant catalyst in this process has been a rise in open-source models, which
has accelerated experimentation across text-generation models, and since the
second half of 2024, multi-modal models (fig. 7 on the next page).

The training of genAI models (optimal calibration of its parameters) takes
place in two stages: pre-training and fine-tuning. Pre-training produces a
broadly-applicable “foundation model”; fine-tuning refines the foundation
model for a specific application. The trained model is then used in inference—
responding to user requests. Efforts early in the wave of genAI improvement
that followed the Transformer focused on pre-training, but the escalating cost
of making progress in that stage has led researchers to explore improvements
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Figure 7: Open-Source AI Models

Source: Hugging Face.

in fine-tuning and inference, as discussed below.24

In addition to training and inference innovations, advances in performance
have come from novel model concepts. Mamba, introduced in 2023, achieved
subquadratic-time sequence modelling by avoiding the pairwise comparison
among tokens used in the attention mechanism, meaning that as input texts
lengthen, the computational burden increases at a slower pace than the
Transformer (Gu and Dao 2023).25 Small-scale models, with lower com-
putational requirements, have been a focus for some applications as well,
such as personal devices and lower resource settings, making LLMs more ac-
cessible to the average user. Microsoft’s Phi and models from Mistral AI, in
particular, have shown relatively strong performance given their size (Jiang

24. See Zeff, Maxwell. “Current AI Scaling Laws Are Showing Di-
minishing Returns, Forcing AI Labs to Change Course.” TechCrunch
(blog), November 20, 2024. https://techcrunch.com/2024/11/20/
ai-scaling-laws-are-showing-diminishing-returns-forcing-ai-labs-to-change-course/.
25. In particular, Mamba estimates the parameters of a latent state space structure.
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et al. 2023; Abdin et al. 2024).

Pre-training Between 2018 and 2022, a key pre-training tactic in the effort
to improve genAI performance was to increase model size. Size is measured
in the number of estimated parameters, most notably the weights that deter-
mine how much influence each neuron has on each of the others in a neural
network. For example, GPT models initially had 117 million parameters in
2018 (GPT-1), then 1.5 billion in 2019 (GPT-2), and a staggering 175 billion
in 2020 (GPT-3).26 Unfortunately, costs typically rise quadratically when
parameters are added: each word (token) in the input sequence has to be
compared to all of the others in the attention mechanism, as discussed in the
box on the Transformer.

Remarkably, the cost of training a model of a given size was halved ap-
proximately every eight months through 2024 because of improvements in
algorithmic efficiency (Ho et al. 2024). But, by 2022, the direction of in-
novation had begun to shift; scaling laws indicated diminishing returns to
model size for foundation models, and focus turned to optimizing training
efficiency. Hoffmann et al. 2022, for example, note that raising the number
of parameters faster than the amount of data used leads to “undertrained”
(imprecisely estimated) parameters that are less useful for inference and rec-
ommend scaling the model size no faster than the dataset size.

Fine-tuning As the returns to model size scaling have diminished, re-
searchers have begun focusing more attention on fine-tuning foundation mod-
els for specific tasks. That is, developers have used domain-specific training
data to increase the model’s expertise beyond the capabilities of foundation
models for narrowly defined questions.

Several techniques have been developed to improve this type of founda-
tion model adaptation. Transfer learning involves taking a foundation
model that has been fine-tuned for a specific task and adapting it (fine-
tuning it again) for a related task, a process which typically involves only
a modest amount of modification. Instruction tuning provides the model
with guidance for specific scenarios that enhance its performance for targeted
use cases. For example, the Alpaca model is a fine-tuned version of Meta’s

26. Shree, Priya. “The Journey of Open AI GPT Models.” Walmart
Global Tech Blog (blog), November 10, 2020.https://medium.com/walmartglobaltech/
the-journey-of-open-ai-gpt-models-32d95b7b7fb2
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Llama model, refined by adding a set of instructions and desired outputs to
the training process (Taori et al. 2023).27 Reinforcement learning has
been extensively applied in AI for fine-tuning, allowing the model to refine
its behavior based on a reward function (Mnih et al. 2013). A particularly
influential approach along these lines was reinforcement learning from
human feedback (RLHF), a technique that aligns the model’s output
with human preferences by learning explicitly from human reactions to the
model’s responses to their queries (Christiano et al. 2017). For example, the
model may provide the user with several responses to a query and ask the
user to rank them, then use the ranking to improve performance in future
queries. This technique gained widespread attention in the context of genAI
with the release of InstructGPT in 2022 (Ouyang et al. 2022).

Inference Inference costs (in terms of electricity, time, compute, and car-
bon emissions) have risen with the popularity of genAI, leading to a focus
on techniques to make this step more efficient.28

• One of the most important innovations in this area has been the Mix-
ture of Experts (MoE) approach, an architecture that activates only
a subset of model parameters in response to queries (Jacobs et al. 1991).
A router determines which “expert” (portion of the full model) to acti-
vate based on the input. This adjustment allows the model to employ
only a subset of the billions of parameters in the original foundation
model, drastically reducing computational costs (Shazeer et al. 2017).

• Pruning is another inference refinement; here extraneous parameters
are removed outright from the model (Cetin et al. 2024).

• Developers also incorporate distillation, a compression-like technique
that uses knowledge from large complex models to inform smaller, less
costly models (Hinton, Vinyals, and Dean 2015).

27. The supplemental training set showed Llama the desired response to particular
queries, such as “Instruction: Brainstorm a list of possible New Year’s resolutions. Output:
lose weight, exercise more, eat healthier.”
28. After setting a flat fee for access to ChatGPT, OpenAI CEO Sam Altman was sur-

prised by the flood of user requests. See “Sam Altman says he’s losing money on OpenAI’s
$200-per-month subscriptions: ‘People use it much more than we expected’.” Economic
models have long predicted this outcome when the price of the marginal unit is set to zero.
See, for example, the discussion of overuse of common pasture in The Wealth of Nations
(Smith 1776).
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• Quantization reduces the level of accuracy in order to reduce costs
in terms of computation and memory requirements (e.g. moving from
32-bit to 8-bit floating point precision). For example, in 2023 Microsoft
developed BitNet, an LLM with competitive performance that trans-
forms floating point parameters in the model to a terniary digit (0, 1,
or -1) (Wang et al. 2023).

• Token caching involves temporarily storing information anticipated
to be needed in future inference steps.29 For example, the prompts sent
by a user to a model for inference may tend to be similar, implying that
by caching processed tokens (words, phrases), anticipated computation
costs can be reduced (Pope et al. 2023).30

The recently introduced DeepSeek R1 model leverages several of the tech-
niques described above to deliver a substantial performance improvement
compared to existing models (See the box, “Landmark AI Models: DeepSeek
R1.”).

In some cases, recent efforts have acted to extended inference time to en-
hance performance. Extending inference time raises costs, but on the margin,
resources may be better used for responding to queries than for additional
training. OpenAI’s recent o1 model exemplifies the benefits of this approach
via its superior performance across various domains, particularly reasoning-
heavy tasks.31 And, constraining the model to provide a response grounded
in logic can lead to better results as well; chain-of-thought (CoT) rea-
soning guides the LLM to articulate a series of steps in its inference (Wei
et al. 2022).

29. The fact that caching, a technique first employed in computing in the 1960s (on IBM
System/360 mainframes), was first introduced to genAI inference in 2023 suggests there
may be other basic numerical methods that have yet to be leveraged. If so, this bodes well
for future efficiency improvements.
30. Sakana AI recently introduced an approach using neural networks called NAMMs to

optimally decide whether to keep or discard tokens, saving up to 75% of cache mem-
ory. See Dickson, Ben. “New LLM Optimization Technique Slashes Memory Costs
up to 75%.” VentureBeat (blog), December 13, 2024. https://venturebeat.com/ai/
new-llm-optimization-technique-slashes-memory-costs-up-to-75/.
31. See Nuñez, Michael. “OpenAI Scientist Noam Brown Stuns TED

AI Conference: ’20 Seconds of Thinking Worth 100,000x More Data’.”
VentureBeat (blog), October 23, 2024. https://venturebeat.com/ai/
openai-noam-brown-stuns-ted-ai-conference-20-seconds-of-thinking-worth-100000x-more-data/.
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Landmark AI Models: DeepSeek R1

A salient example of recent model innovation occurred in January, 2025
when DeepSeek unveiled R1 (short for “reasoning”) (DeepSeek-AI et
al. 2025). This model set a new bar for cost-effective, high-quality
multi-modal models. DeepSeek stunned the AI research community
by reporting the costs for training this 671 billion parameter model
to be just under $6 million.a Although observers noted this figure
does not account for the substantial reliance on R&D by other AI
developers, the news led to a material change in perceptions of the
role of Chinese AI companies. News of DeepSeek R1 coincided with
a one-day market valuation drop of nearly $600 billion for NVIDIA
as DeepSeek had achieved leading edge performance with far less of
NVIDIA GPU-provided compute than previously believed necessary.b

And, the DeepSeek R1 release may have spurred a major competitor
to accelerate their product offerings: OpenAI soon updated o3-mini,
its extended inference model, lowered its price, and offered a free-trial
version.

Deepseek R1 blends several concepts that had been known in the
genAI field for some time to improve performance and slash inference
costs including mixture of experts, chain-of-thought reasoning, rein-
forcement learning, distillation, and quantization. Deepseek R1 en-
deavored to optimally combine all of these techniques to reduce costs.
Some of these techniques were already commonly used in frontier mod-
els but others, such as their novel approach to reinforcement learning,
called Group Relative Policy Optimization (GRPO), were not.

Relative to other frontier model developers, DeepSeek shifted at-
tention from supervised learning during the fine-tuning stage to rein-
forcement learning.

a. See the technical report for DeepSeek V3 (DeepSeek-AI et al. 2024, 5):
“...DeepSeek-V3 costs only 2.788M GPU hours for its full training. Assuming the
rental price of the H800 GPU is $2 per GPU hour, our total training costs amount
to only $5.576 million. Note that the aforementioned costs include only the official
training of DeepSeek-V3, excluding the costs associated with prior research and
ablation experiments on architectures, algorithms, or data.”

b. See Subin, Samantha. “Nvidia Sheds Almost $600 Bil-
lion in Market Cap, Biggest One-Day Loss in U.S. History.”
CNBC, January 27, 2025. https://www.cnbc.com/2025/01/27/
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DeepSeek R1 (continued)

nvidia-sheds-almost-600-billion-in-market-cap-biggest-drop-ever.html.

Agents Another direction for progress currently receiving intense attention—
distinct from the pre-traning/refinement/inference optimization approach—
is the creation of AI agents. Agentic AI systems develop strategies to pursue
broad goals and recalibrate in response to their environment, in contrast to
tool-based AI, which has a stable structure and calibration and is equipped
only to respond to carefully crafted requests. While agents of different kinds
are commonplace in the home and at work, both in physical form, such as
self-driving cars, and in virtual form, such as web browsers, agentic AI is
distinguished by its autonomy in pursuit of more abstractly specified goals.
One definition comes from Boston Consulting Group:32

Put simply, AI agents are artificial intelligence that use tools to
accomplish goals. AI agents have the ability to remember across
tasks and changing states; they can use one or more AI models
to complete tasks; and they can decide when to access internal
or external systems on a user’s behalf. This enables AI agents
to make decisions and take actions autonomously with minimal
human oversight.

AI agents extend capabilities of AI to wider use in business, particularly
to people with little technical knowledge or skill. For example, in the case
study of health care, we noted that LLMs are being used to help with the
paperwork burden faced by health care professionals, including making ap-
pointments, following up on treatment protocols and submitting insurance
claims. Specialized AI agents can be programmed to provide this rather
specific type of assistance, operating in combination with LLMs.

However, agents require programming and testing and cannot simply ap-
ply an off-the-shelf AI program. Correctly specifying the objective function
for the AI agent is difficult. It may inadvertently be guided to maximize its
programmed reward while subverting the real objective of the user.33 More-

32. See Boston Consulting Group. “AI Agents.” Accessed August 1, 2025. https://
www.bcg.com/capabilities/artificial-intelligence/ai-agents.
33. See “Faulty Reward Functions in the Wild,” February 14, 2024. https://openai.com/

index/faulty-reward-functions/.
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over, in extreme cases bad actors may hijack agents in business or military
uses, leading to disastrous outcomes.

3.3.2 Hardware

GenAI model training and inference has massive computational require-
ments, making ongoing innovation in electronic hardware (and related hard-
ware, such as cooling systems), essential to continued technical advance.
Progress in this area has been rapid in recent years.

GenAI processing relies heavily on graphics processing units (GPUs).
Like the image processing tasks GPUs were first designed for, training and
inference for deep neural networks requires a large number of identical, inde-
pendent computations which can be run in parallel on a GPU. (In contrast,
microprocessing units (MPUs) perform computations sequentially, in the
main.) GenAI processing also relies to a lesser extent on field-programmable
gate arrays (FPGAs), which are more flexible than GPUs, particularly for
inference. And, application-specific integrated circuits (ASICs) are used for
specific steps in estimation as well.34 For example, tensor processing units
(TPUs) are customized for matrix multiplication, heavily used in neural net-
works. They consist of thousands of multipliers and adders connected to
each other to form a large physical matrix. Storing the matrix parameters
in on-chip registers drastically reduces the need to access off-chip memory,
dramatically increasing computational efficiency.

Successive GPUs released by NVIDIA have delivered leaps in AI per-
formance achieved by improvements in the power consumption and compu-
tational power of the processing cores—known as Compute Unified Device
Architecture (CUDA)—adding and refining TPUs on the GPU chip, and in-
creasing and refining cache (on-chip) memory. The history of NVIDIA GPU
generations illustrates this progression.35 CUDA, first introduced in 2007,
explicitly supported non-graphics computing; prior to CUDA, programmers
were required to reframe computations in terms of graphics operations.36 As

34. The logical circuits on FPGAs can be reconfigured through programming and tailored
to specific algorithms. The circuitry in ASICs is customized for specific tasks at the time
of fabrication and cannot be changed. Technically, GPUs are ASICs as well.
35. This discussion was substantially improved by a discussion with Claude AI and re-

search on Wikipedia.
36. With CUDA and associated tools, programmers can use standard programming tech-

niques in C/C++.
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Table 3: Price of Compute, Selected Nvidia GPUs

Model Year Price TFLOPS Price/TFLOP Transistors

GeForce 8800 GT 2007 $349 0.3 $1,163 0.8B
GeForce RTX 4060 2024 $299 15.1 $20 18.9B
Change (ann. rate) NA –1% 23% –24% 19%

Source: TechPowerUp.

AI became a prominent use case for NVIDIA GPUs, new architectures were
increasingly optimized for deep learning—beginning with Pascal (2016)—
and for genAI—beginning with Hopper (2022). On-chip TPUs were first
introduced with the Volta microarchitecture in 2017 and successive GPU
generations—Turing (2018), Ampere (2020), Hopper (2022), and Blackwell
(2024)—each included improved TPUs.

While the engineering performance of leading edge GPUs has rocketed
upwards in recent years, prices have increased dramatically as well. Fortu-
nately for productivity, holding performance constant, the price of GPUs has
moved down: In 2007, a $349 GPU provided 0.3 teraflops (TFLOPS) of com-
pute and in 2024, a $299 GPU delivered 15.1 TFLOPS, implying an average
annual rate of price decline of 24% that persisted for 17 years (table 3). As
shown in fig. 8 on the next page, this example is representative of a broader
trend: the cost efficiency of computation has improved dramatically. More-
over, performance measured in TFLOPS likely understates the advance in
AI hardware performance over this period as some design changes operate
to reduce the number of TFLOPS needed for a given level of AI training or
inference. For example, GPUs have taken on board additional logic blocks to
accelerate matrix operations (Tensor cores) and GPUs have been partitioned
to provide more flexible use of TFLOPS (Lino 2024).

Continuation of this trend of declining computation cost is not guaran-
teed. What seems like inexorable progress from a distance is in fact the
result of a long sequence of difficult engineering feats when seen up close.37

Historically, a key contributor to falling costs in the semiconductor industry
has been steady miniaturization at the leading edge of the chip industry.
Through 2003, the linear dimensions of the features (e.g. transistors) on

37. To get a sense of the staggering array of engineering problems involved in moving be-
tween chip generations, flip through any edition of the International Technology Roadmap
for Semiconductors on the worldwide web.
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Figure 8: Price Indices of GPU Improvements

(a) Price per TFLOP

Note: Price per TFLOPS (trillion floating-point operations per second). The blue line represents the best
fit line for NVIDIA GPUs, and the orange line represents the best fit line for AMD GPUs.
Source: TechPowerUp.

(b) Price per vRAM

Note: Price per vRAM in GB (video random access memory). The blue line represents the best fit line
for NVIDIA GPUs, and the orange line represents the best fit line for AMD GPUs.
Source: TechPowerUp.
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Figure 9: Progress on Moore’s Law: Two Perspectives

(a) Transistor Count (b) Transistor Size

leading edge chips were reduced by 30 percent with each generation (node),
yielding a (0.7 ∗ 0.7 ≈) 50 percent reduction in the space they occupied on
a chip every two years (fig. 9b). From that year forward, the dimensions of
these features were reduced far more slowly, though the industry, using the
term “effective node,” contended that performance gains with each genera-
tion matched the historical trend. The apparent slowdown in cost improve-
ments of TFLOPS and video random access memory (vRAM) in fig. 8 on the
previous page may well reflect that development. Since then, chip innovation
has relied less heavily on miniaturization. For example, increasing “die size”
(the surface area of the chip) has allowed the number of transistors per chip
to continue to climb (fig. 9a).38

The proximate cause of the miniaturization slowdown was the end of
a regularity known as “Dennard scaling” whereby power usage was largely
unchanged even as more electronic activity was squeezed into the same sur-
face area (Dennard et al. 2003). Because heat generation is increasing in

38. Since “Moore’s Law” is a prediction that the number of transistors per die (chip) will
double every two years, it arguably still holds true. Of course, because Gordon E. Moore
(1965, 1975) does not contain a testable hypothesis, debates about whether Moore’s Law
holds are largely semantic. As is evident from fig. 9a, there is no single value for transistors
per chip at any point in time.
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Figure 10: Indicators of Power Demand and Supply

(a) Data Center Efficiency (b) U.S. Electricity Generation

Note: Data center efficiency indicator is gigaflops per watt of supercomputers labeled “industry” or
“vendor”.
Source: Top500.org for efficiency. U.S. Energy Information Administration for electricity generation.

power usage, cooling cost began to rise with each node. Consequently, de-
velopment efforts in the computing sector shifted to focus on a balance of
computing speed and power consumption. Energy efficiency merits atten-
tion as well; concerns have arisen that power demand for genAI use may
outpace growth in power-generation capacity, throttling genAI-led produc-
tivity advances. Two recent developments temper that concern. The energy
efficiency of the most efficient industrial supercomputers, which include the
data centers of major IT service providers, has roughly doubled since 2022,
when genAI use began to climb, and U.S. electricity generation is forecast to
expand substantially in coming years (fig. 10).39

3.3.3 Datasets

GenAI models “learn” by adjusting parameters to best represent the con-
tent of large amounts of text (and other media), allowing them to estimate
the probability that a given word or phrase should appear next in the se-
quence it generates in response to a prompt. Loosely speaking, the larger
the corpus of text available to the model, the better it can estimate these

39. Forecasts for the share of power use attributed to data centers in the United States
in 2028 range from 6.7 percent to 12 percent, up from 4.4 percent in 2023 (Kamiya and
Coroamă 2025).
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probabilities. Figure 6 on page 21 illustrates the increase over time in the size
of the datasets used to train the models. The change in the coloration of the
circles, from purple to blue to green to yellow, indicates the rapid increase
in the size of the training datasets.

Some observers believe that we may be approaching the limit of what we
can learn from public text data.40 A crucial nuance to this aspect of model
improvement is that access to more information, not more text in itself, is
needed to continue to improve genAI models.41 To illustrate with an extreme
example, doubling the size of the training text by exactly duplicating the cor-
pus will yield no improvement to the model. Good quality data enables the
model to learn the underlying language structure efficiently, which requires
the data to span the full extent of the language with minimal redundancy and
noise. Consequently, there are two looming challenges with respect to train-
ing data. First, more obscure or sensitive topics may have little coverage in
public-facing content. Second, diminishing marginal returns to training will
set in as developers move from information-rich content, such as Wikipedia
and scientific articles, to more inane text, like social media posts.

One approach to mitigating the content constraint is transfer learning,
where a model pre-trained with public data is improved by further training
using proprietary data.42 This not only increases the size of the dataset, but
may increase the scope as well. Developers are also wrestling with the ques-
tion of “domain generalization,” where a model is used to generate content
on topics outside the scope of the training dataset (Zhou et al. 2022).

As the information content of the marginal text from the internet falls,
other techniques for generating data for training become more attractive.
In one approach, small localized modifications of the training data can be
introduced. For example, the performance of an image recognition model
may be improved by supplementing the training set of labeled images with
their mirror images.43 Such variations in input data constrain the model
parameter search process in a useful way. If an image is a dog, say, the

40. Villalobos et al. (2022) predict that the scope of training sets may approach the full
extent of public high-quality text data as early as 2026.
41. In terms of information theory, models improve from entropy, the expected amount

one will learn from the data generation process producing the text (Shannon 1948).
42. Cockburn, Henderson, and Stern (2019) note that this raises the issue of market

structure as a potential constraint on progress in AI.
43. This approach was taken by the developers of AlexNet, a model which revolutionized

the field (Krizhevsky, Sutskever, and Hinton 2012).
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model should recognize that its mirror image is a dog as well, a desirable
property known as “regularity.”

Another approach to augmentation is the use of “synthetic data” cre-
ated via generative models to emulate the patterns and characteristics of
real data (Liu et al. 2024). For example, an LLM designed to tackle math-
ematical questions might be trained on a dataset of questions generated by
another LLM, using bootstrapping techniques to create similar questions
from a human-produced training dataset (Yan et al. 2025). This approach
is attractive for medical imagery as well, where creating training data, such
as CT scans, is both resource-intensive and constrained by privacy concerns
(Guo et al. 2025).44

Last, datasets can be augmented by harvesting information collected with
sensors, particularly in physical environments such as industrial robots and
autonomous vehicles (Feng et al. 2019). This approach offers the prospect
of a broader domain of use for genAI models and further diffusion of the
technology.

3.4 The Case that GenAI is a GPT

To summarize, although it is early to tell how widespread the use of
genAI will be, the case that generative AI is a general-purpose technology is
compelling, supported by the impressive record of knock-on innovation and
ongoing core innovation.

Of the three GPT criteria, widespread adoption is the most difficult to
argue that genAI has met. Although some field studies have provided encour-
aging results that genAI may raise productivity, outside of large corporations,
few firms have adopted the technology. The share of jobs requiring AI skills
is low and has moved up only modestly, suggesting that firms are taking a
cautious approach. The ultimate test of whether genAI is a GPT will be the
profitability of genAI use at scale in a business environment and such stories
are hard to come by at present. That said, use among individuals is high,
perhaps unbeknownst to their employers, and with genAI increasingly folded

44. The usefulness of synthetic data is a matter of some debate. Some observers have
raised concerns that training with synthetic data (and AI-generated text increasingly
present on the internet) will yield low-quality or even nonsensical results, a phenomenon
known as “model collapse” (Alemohammad et al. 2023; Shumailov et al. 2023). Others
have argued that model collapse only occurs when the original training text is replaced by
model-generated text (Gerstgrasser et al. 2024).
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into office productivity software (such as Microsoft 365), its use may become
so unremarkable that firms and workers may not be aware it is in use.

The case that genAI meets the knock-on innovation criterion is somewhat
stronger. Key areas of product innovation include user interface software and
interface with robotics, where the genAI model enables far more sophisticated
applications. Production process innovation includes digital twins to improve
production line efficiency. Organizational innovations include restructuring
of the product design business function. What share of organizations can
justify the digital transformation needed for genAI, such as centralized data
governance, particularly for non-digital-native companies, remains to be seen.

Core technology innovation is the criteria for which the case is the clearest.
GenAI performance has moved up at a blistering pace since the introduction
of the Transformer thanks to increasingly large datasets and application of
more computing power. More importantly, performance has risen while hold-
ing inputs constant (data, compute, and model size), driven by algorithmic
improvements. If this trend continues, the direct cost of using genAI will
fall, spurring greater adoption.

Artificial General Intelligence

In 1960, Herbert A. Simon, winner of the 1975 Turing Award and
1978 Nobel Memorial Prize in Economic Sciences wrote, “within the
very near future—much less than twenty-five years [before 1985]—we
shall have the technical capability of substituting machines for any and
all human functions in organizations” (Simon 1960, 22). This is the
concept now known as “artificial general intelligence” (AGI).a

Demonstrating the feasibility of AGI is a long-run objective of
many AI researchers but is not a particularly interesting exercise for
economists. Technical feasibility is a necessary condition, but far from
a sufficient one, for a technology to raise productivity. It is technically
feasible to turn lead into gold, for example, but only at prohibitive cost
(Matson 2014). And, conjecture about future technology, however well
informed, is not sufficient for a useful productivity forecast, which must
answer the question of when, not just if, the technology will appear
and, a fortiori, when it will be practical to use. Moreover, achieving
human-level performance on all tasks would likely entail devoting re-
sources to improving performance on tasks AI is ill-suited for at the

35



AGI (continued)

expense of tasks where improvement would be more readily achieved.
Dell’Acqua et al. (2023) explore this issue and provide extensive evi-
dence this is a first-order impediment to AGI.

Some present-day IT leaders believe AGI is imminent: In 2024,
Elon Musk predicted the arrival of AGI within two years, Sam Alt-
man predicted its arrival by 2025, and Dario Amodei expected AGI by
2026. Others are skeptical: Yann LeCun speculated it may never be
achieved.b Historically, technology forecasts have been highly unreli-
able. Berkeley (1949), for example, foresaw a machine that would read
handwritten text; noteworthy practical use of handwriting recognition
systems U.S. Post Office came fifty years later.

Fortunately, AGI is not a precondition for genAI to be a GPT, nor
do we need a forecast for the timing of the arrival of AGI to forecast
the effects of genAI on productivity.

a. Remarkably, Čapek (1920) had already envisioned a world with robots that
performed all human tasks, including ones involving physical manipulation of the
environment. At that time, although punchcard tabulators programmable with
plugboards existed, most “computers” were human (Grier 2007).

b. See Reuters. “Tesla’s Musk Predicts AI Will Be
Smarter than the Smartest Human next Year.” April 8,
2024, sec. Technology. https://www.reuters.com/technology/
teslas-musk-predicts-ai-will-be-smarter-than-smartest-human-next-year-2024-04-08/;
Varanasi, Lakshmi. “Here’s How Far We Are from AGI,
According to the People Developing It.” Business In-
sider, November 9, 2024. https://www.businessinsider.com/
agi-predictions-sam-altman-dario-amodei-geoffrey-hinton-demis-hassabis-2024-11;
PYMNTS.com. “Meta AI Head: ChatGPT Will Never Reach Human Intelli-
gence,” May 22, 2024. https://www.pymnts.com/artificial-intelligence-2/2024/
meta-ai-head-chatgpt-will-never-reach-human-intelligence/.

4 Is GenAI an Invention of a Method of In-

vention?

In classical “light bulb” growth models (commonly known as “Solow-
Swann” models), the source of total factor productivity (TFP)—the part of
productivity growth not attributable to capital accumulation—is unspecified
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(Robert M Solow 1994). About the importance of TFP that emerged when
this model was brought to the data, Abramovitz (1956, 11) famously ob-
served, “since we know little about the causes of productivity increase, the
indicated importance of this element [TFP] may be taken as some sort of
measure of our ignorance about the causes of economic growth in the United
States and some sort of indication of where we need to concentrate our at-
tention.” “Endogenous growth” models have since appeared, including some
that add a research sector to produce new technologies in response to in-
centives (Romer 1994; Aghion and Howitt 1992; Akcigit and Van Reenan
2023).45 Like other sectors, efficiency in the research sector can be increased
by the use of appropriate capital, such as an invention of a method of inven-
tion (IMI).46 Griliches (1957) noted that the hybridization process developed
for creating new varieties of corn played this role. Other examples of IMIs are
shown in table 4 on the following page, grouped into observational, analytical,
communication, and organizational tools. We consider below whether genAI
falls into these categories and how it can contribute to research productivity
beyond what is contributed by machine learning. We then review a number
of broad indicators of the role of AI in research, including patent filings, the
share of AI use accounted for by users with research jobs and tasks, and new
evidence on the prevalence of AI references in company conference calls.

Prior to the appearance of genAI, AI had already diffused across a wide
range of scientific disciplines (Carobene et al. 2024). And, it had already
been shown to improve the efficiency of research. Cockburn, Henderson, and
Stern (2019, 23) note that pre-generative AI assists with the “labor-intensive
search with high marginal cost of search” involved in many types of R&D.
Put differently, AI improves prediction, a point emphasized by Agrawal, J.
Gans, and Goldfarb (2018), including predicting how materials might be-
have. Examples of phenomenal success are well known. Scientists have made
major advances toward practical nuclear fusion using reinforcement learning
techniques to adjust the magnetic system that contains the plasma in a fusion

45. Of course, in actuality TFP is not simply the output of a research sector. TFP results
when firms choose, in response to research results, to make complementary investment in
intangibles (Brynjolfsson, Rock, and Syverson 2021) in the context of government policy
(Baily et al., n.d.) and is importantly affected by business dynamism (Decker et al. 2017),
labor market efficiency (Davis and Haltiwanger 2014), and market structure (Goettler and
Gordon 2011).
46. The term originates from Whitehead (1925), according to Mowery and Rosenberg

(1999).
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Table 4: Examples of Inventions of Methods of Invention

Observational tools
Telescope 1608 CE
Compound microscope 1620 CE
Pendulum clock 1656 CE
DNA sequencer 1973 CE

Analytical tools
Mainframe (IBM S/360) 1964 CE
Personal computer (IBM PC) 1981 CE
Machine learning 1998 CE

Communication tools
Printing press (Gutenberg) 1439 CE
Internet protocol (TCP/IP) 1975 CE

Organizational innovations
Scientific societies (Accademia dei Lincei) 1603 CE
Corporate labs (GE) 1900 CE
Government labs (U.S. NRL) 1923 CE
Big science (Oak Ridge) 1961 CE
Source: Authors’ judgment.

reactor (Degrave et al. 2022; Seo et al. 2024). Richardson et al. (2020) used
the “knowledge graph”—which encodes relationships among scientific publi-
cations using machine learning—created by BenevolentAI to produce a novel
treatment for COVID-19. Machine learning has also been used extensively
for predicting the properties of novel metal alloys, economizing on physical
experimentation and computer simulations (Hart et al. 2021). Our focus is on
the question of whether genAI enables additional efficiencies in R&D beyond
these and other improvements provided by machine learning. In particular,
we ask whether genAI enhances measurement, analysis, communication, and
organization of invention.

GenAI as an observational tool Observational tools, such as micro-
scopes, telescopes, and cameras produce imperfect images due to defects in
their components and variation in the environment. GenAI provides a tool
to impute imperfect portions of images as well as missing observations in
datasets of all kinds in a fashion more consistent with the apparent properties
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of the underlying phenomena. For example, generative techniques for image
enhancement, which rely on an implicit model of the manifold of the data
generating process—closer to the actual physics, say, of a remote galaxy seen
through an imperfect lens—perform better than techniques, such as splines,
relying solely on smoothness assumptions (i.e. that nature does not make
leaps) (G. Liu et al. 2018; Lugmayr et al. 2022).

GenAI as an Analytical Tool Like the compound microscope for phys-
ical phenomena, Christian (2020) notes that LLMs serve as a kind of micro-
scope to look at social phenomena. Caliskan, Bryson, and Narayanan (2017,
183), for example, find that “text corpora contain recoverable and accurate
imprints of our historic biases.” This new visibility may promote and support
analysis of social science questions not previously tractable. There has been
an explosion of sentiment analysis and other forms of NLP in recent years
fueled by this capability of genAI.47 While the identification of underlying
sentiment (encoding) is strictly speaking a function of the LLM, conveying
the discovered sentiment to the user is necessarily a generative process. Ko-
rinek (2023) documents a variety of potential roles for genAI in the economic
research process; that genAI may play a similar role in many other fields is
a reasonable conjecture.48

GenAI-Supported Organizational Innovation Institutional organiza-
tion plays a central role in the effectiveness of R&D (Mowery and Rosen-
berg 1999), as do informal associations into professional networks (Wang
and Barabási 2021) and geographic clusters (Porter and Stern 2001). Conse-
quently, the method of invention for any given research program properly in-
cludes the institutions involved. Emerging applications of AI “digital twins”
offer the prospect of R&D with a reduced institutional footprint in many
areas of study. Among these are drug discovery (Bordukova et al. 2024), in-
dustrial research (Tao, Zhang, and Zhang 2024), and materials science (Ka-

47. Sentiment analysis is possible with earlier forms of AI but the capabilities of genAI
models are vastly greater (Gentzkow, Kelly, and Taddy 2019; Dell 2025).
48. Early versions of this paper cited Toner-Rodgers (2024), which purported to show

that genAI substantially accelerates the discovery process in materials science. The ve-
racity of that work has since been questioned by the author’s institution and prominent
researchers in the field. Credible empirical evidence on the effect of genAI on scientific
research efficiency would be a timely contribution to resolving the uncertainty around the
effects of genAI on productivity.
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Table 5: The Stages of a Research Project

Conceptual reviewing the literature, formulating the broad
problem, identifying specific goal

Planning determining research design and procedures, iden-
tifying resource needs, procuring funding

Empirical collecting data, preparing data for analysis
Analytical identifying data features, testing hypotheses, in-

terpreting results
Dissemination communicating to audience (colleagues, industry,

policymakers, public, students) in written, visual,
and oral form

lidindi et al. 2022). For example, generative adversarial networks (GANs)
may provide an alternative to animal testing for toxicology (Chen et al. 2022).

GenAI as a Communication Tool Although empirical and analytical
stages of research projects focus on measurement and calculation, many as-
pects of the research process involve manipulating language. GenAI may
be employed in the writing tasks involved in the conceptual, planning, and
dissemination stages of research projects, such as drafting literature reviews,
grant applications, and seminar slides (table 5). Whether, on net, genAI
improves the efficiency of such tasks once the effort needed for review and
editing of the documents drafted by genAI is accounted for is an open ques-
tion. If so, genAI may play a similar role to the printing press and word
processing as a catalyst to the invention process.

Research agents AI agents (discussed in section 3.2.1 on page 17) have
emerged that endeavor to automate the core of research entirely, generat-
ing research questions, designing and conducting experiments, and reporting
results. Thus, research agents may play the role of an observational, an-
alytical, and communication IMI all at once. Examples include Google’s
AI co-scientist and Sakana’s The AI Scientist (Gottweis et al. 2025; Lu et
al. 2024).49

49. Stoughton (2023) documents co-scientist innovation at the National Science Founda-
tion.
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Opinions of the significance of research agents vary widely. Importantly,
the design, conduct, and communication of experiments is only a portion
of the activities of a scientist (table 6 on the next page). Even so, Lu et
al. (2024) report that The AI Scientist can generate publishable research for
as little as $15 per journal article, a striking finding. On the other hand,
Beel, Kan, and Baumgart (2025, 1) evaluate Sakana’s agent and conclude,

We evaluated the AI Scientist and found several critical short-
comings. The system’s literature review process is inadequate,
relying on simplistic keyword searches rather than profound syn-
thesis, which leads to poor novelty assessments. In our exper-
iments, several generated research ideas were incorrectly classi-
fied as novel, including well-established concepts such as micro-
batching for stochastic gradient descent (SGD). The AI Scientist
also lacks robustness in experiment execution—five out of twelve
proposed experiments (42%) failed due to coding errors, and those
that did run often produced logically flawed or misleading results.
In one case, an experiment designed to optimize energy efficiency
reported improvements in accuracy while consuming more com-
putational resources, contradicting its stated goal. Furthermore,
the system modifies experimental code minimally, with each it-
eration adding only 8% more characters on average, suggesting
limited adaptability. The generated manuscripts were poorly sub-
stantiated, with a median of just five citations per paper—most
of which were outdated (only five out of 34 citations were from
2020 or later). Structural errors were frequent, including missing
figures, repeated sections, and placeholder text such as “Conclu-
sions Here”. Hallucinated numerical results were contained in
several manuscripts, undermining the reliability of its outputs.

Moreover, genAI research agents may have a subtle but important limita-
tion: uncovering the fundamental features of phenomena. K. Li et al. (2022)
argue that genAI does have that capability. They trained a generative model
to play the board game Othello without providing the rules of the game then
demonstrated that the model can play appropriately in a setting not found
in the training data, concluding that genAI has created an “emergent world
model.” Other research has challenged this conclusion. jylin04 et al. (2024)
argue that the model is employing a “bag of heuristics,” rather than a set of
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Table 6: Scientific Activity beyond Research Projects

Conceptual designing a research program (a connected set of
research projects); packaging program to influence
appropriate audiences (e.g. writing textbooks)

Leadership playing executive and advisory roles in local and
profession-wide academic and government special-
ist communities

Mentoring supervising research, advising and instructing stu-
dents

Support fostering buy-in to research program from institu-
tional leadership

Networking recruiting collaborators and maintaining relation-
ships

Commercialization translating research results into practical applica-
tions

game rules.50 This question is a crucial one in determining the capabilities
of genAI to contribute to science. Without a model of the underlying struc-
ture of the physical or social phenomenon under study, one cannot articulate
its fundamental laws. This limitation may arise naturally from the training
process; humans learn the fundamentals of science from textbooks, but these
laws may not be the rhetorical foundation for the verbal exchanges on the
topic found in the training corpus.

4.1 Indicators of GenAI Research and of GenAI Use
in Research

We discuss below a set of indicators of genAI research (patents) and of
genAI use in research (conference call transcripts and genAI queries).51

50. A useful entry point to this ongoing debate is “LLMs and World Models,” by Melanie
Mitchell, February 13, 2025, found at the AI: A Guide for Thinking Humans Substack
blog.
51. For evidence of the potential for genAI use in research based on job descriptions, see

Eloundou et al. (2024, 1308) who note that “scientists and researchers” and “technologists”
are the job groups most highly exposed to LLMs, and that “this suggests that when LLMs
improve, they have potential to cause downstream improvements in R&D productivity for
workers in sectors deploying them.”
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Patents AI-related patents issued by the United States Patent and Trade-
mark Office (USPTO) increased markedly following the advent of genAI,
suggesting a related surge in genAI research (fig. 11).52 The USPTO in-
dex of AI-related patents began climbing in 2018, shortly after the publi-
cation of the seminal paper by Vaswani et al. (2017) which introduced the
Transformer architecture, quickly reaching a level 50 percent higher, which
it has sustained since 2019. We also observe that increases in patent activity
for AI modalities particularly related to genAI—natural language processing
(NLP), vision, speech, and knowledge processing—have risen even further.
This suggests that the recent surge in patenting activity is not merely a
reflection of advancements in machine learning.

Figure 11: AI Mentions in Scientific Patents

Source: Artificial Intelligence Patent Dataset (2023), U.S. Patent Office.

GenAI Prompts Handa et al. (2025) provide a rich set of information on
actual genAI use in their Anthropic Economic Index (AEI), a useful com-
plement to the detailed work on the potential impact of genAI based on

52. Pairolero et al. (2025) use BERT-based embeddings to refine a previous iteration of
their patent classification methodology that used Word2Vec. We use their most conser-
vative threshold of 93% probability to identify AI-related patents. We refer the reader to
the USPTO website hosting their data for more information: https://www.uspto.gov/ip-
policy/economic-research/research-datasets/artificial-intelligence-patent-dataset.
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analysis of job descriptions from Eloundou et al. (2024). The AEI assigns
millions of conversations from Claude (Anthropic’s premier genAI system) to
roughly 3,500 of the tasks defined by the U.S. Department of Labor’s O*NET
Dataset.53 An equal fraction of each task’s percentage share of all prompts
is then apportioned to each occupation which includes that task in O*NET.

Table 7 on the next page shows the estimated share of prompts accounted
for by occupational groups, their employment share, and the ratio of the two.
(If prompts were equally distributed across all workers, these ratios would
each be equal to 1.) “Computer & mathematical occupations”, which in-
cludes the computer programmers for whom genAI use is especially intense,
have the highest ratio of prevalence of genAI use to occupational prevalence,
10.9. Use intensity is nearly as high among scientists, who account for 7.1
times as many prompts as would be found if prompts were equally distributed
across workers.54 Other occupational groups with high relative prevalence of
genAI use include “arts, design, sports, entertainment & media”; “architec-
ture & engineering”; and “educational instruction & library”. The remaining
87.6% of employment is accounted for by occupations which AEI found had
a share of Claude prompts roughly equal to or lower than their share of em-
ployment, highlighting the very concentrated nature of genAI adoption in
the economy at present.

Table 8 on page 46 shows the prevalence of selected O*NET tasks related
to scientific discovery among Claude AI prompts. These tasks collectively
account for only 0.9% of all prompts, revealing that the share of prompts
accounted for by scientists (6.4%) includes far more than scientific discov-
ery. These discovery tasks are most commonly related to the creation of
mathematical or statistical models of technical phenomena, such as business,
scientific, and engineering, either to foster understanding of the phenomena
or to predict how modeled systems would perform. Such tasks account for
86.5% of the scientific tasks Claude AI is asked to help with. Other tasks in-
clude the advancement of mathematical science (9.0% of scientific prompts)
and the design of research projects (4.5%).

Figure 12 on the next page illustrates significant automation and augmen-
tation of tasks among our groupings of research occupations: programmers
exhibit the highest automation rate, with over half of the requests handled

53. Patterns of Anthropic use may not be representative of the patterns for all genAI
programs, of course. See section 7.1 of Tamkin et al. (2024) for a discussion of related
work.
54. Naturally, they may be using genAI for computer programming tasks as well.
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Table 7: Occupations with High GenAI Usage

Job Type Prompt Share Empl. Share Ratio

Computer & mathematical 37.2 3.4 10.9
Arts, design, sports, entertainment,
& media

10.3 1.4 7.4

Life, physical, & social science 6.4 0.9 7.1
Architecture & engineering 4.5 1.7 2.6
Educational instruction & library 9.3 5.8 1.6
Memo: Other occupations 31.8 87.6 0.4

Note: Percent share of prompts submitted to Claude AI and linked to tasks
by Anthropic. Task weights are apportioned equally to all occupations which
include that task in O*NET.
Source: Anthropic Economic Index.

Figure 12: GenAI Automation vs. Augmentation in Researcher Roles

Note: Authors’ calculations.
Source: Anthropic Economic Index.
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Table 8: O*NET Scientific Task Prevalence in Claude AI Prompts

Task Share (pct.)

Modelling & Prediction 86.5
conduct logical analyses of business, scientific, engi-
neering, and other technical problems, formulating
mathematical models of problems for solution by
computers.

46.1

design or develop software systems, using scientific
analysis and mathematical models to predict and
measure outcome and consequences of design.

16.9

complete models and simulations, using manual or
automated tools, to analyze or predict system per-
formance under different operating conditions.

15.7

develop mathematical or statistical models of phe-
nomena to be used for analysis or for computational
simulation.

4.5

design computer simulations to model physical data
so that it can be better understood.

2.2

develop software applications or programming to use
for statistical modeling and graphic analysis.

1.1

Other Tasks 13.5
develop new principles and new relationships be-
tween existing mathematical principles to advance
mathematical science.

9.0

design research projects that apply valid scien-
tific techniques and use information obtained from
baselines or historical data to structure uncompro-
mised and efficient analyses.

4.5

Note: Share of all Anthropic prompts accounted for by these tasks is 0.9%.
Task-level prompts labeled by Anthropic.
Source: Anthropic Economic Index.
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by genAI being automation tasks. Social science researchers show slightly
lower automation rates, with economists showing over 23% of their prompts
being automation focused. Notably, for hard science researchers (e.g., physi-
cists, biochemists), the share of their genAI use for automation is nearly 15%
higher than their natural science counterparts. This difference likely reflects
AI’s strength in data-intensive and simulation-based research such as those
found in hard sciences like physics and materials science.

Conference Call Mentions GenAI’s integration into the invention pro-
cess is also revealed through firm communication. We analyze quarterly
earnings calls, which are routine events where firm executives discuss com-
pany performance, future projects, and key developments with investors and
analysts. Figure 13 on the following page plots the count of the number of
firms referencing AI in the context of research as indicated by the firm men-
tioning an AI-specific term (“machine learning,” “deep learning,” “artificial
intelligence,” “genAI, or “generative AI”) within a research-related context
(within 10 words of “inventi-”, “research-”, or “discover”). A sudden rise
appears in 2023, with approximately 60 public companies per quarter men-
tioning such usage. This increase in integration of AI with R&D is illustrative
of the role it has begun to play in innovation in a corporate context. Two
examples are provided below.
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Figure 13: Mentions of AI Usage for Research in Conference Calls

Note: Authors’ estimates. Data through Q4 2024.
Source: S&P Capital database merged with Compustat.

In 2024, John Wiley & Sons, a publishing company, announced expan-
sions in compound databases leveraging advanced AI and its capability to
accelerate scientific discoveries:55

Wiley has just released two new database collections using ad-
vanced AI techniques to significantly expand the number of com-
pounds available for analysis from food-related compounds to in-
dustrial compounds. The end goal here to help scientists reach
better conclusions faster.

Similarly, Cadence Design Systems, an electronic systems design firm
highlighted the potential of AI to automate fields such as biology and life
sciences.56

And then the third phase of AI adoption is AI applied to areas
that were not automated in the past, okay? So I think that may
take longer, maybe 5 years plus, but that has to be driven to
digital biology and life sciences. I mean there’s a huge application
of AI.

55. See John Wiley & Sons, Inc. FQ1 2025 Earnings Call. https://s27.q4cdn.com/
812717746/files/doc financials/2025/q1/q125-earnings-transcript.pdf
56. See Cadence Deisgn Systems, Inc. FQ3 2023 Earnings Call.
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4.2 Is GenAI an IMI?

Our assessment is that there is a strong case that genAI is an IMI. Indeed,
it is a multifaceted IMI, having characteristics of an observational IMI (e.g.
image enhancement), an analytical IMI (e.g. sentiment analysis), an organi-
zational IMI (e.g. digital twins), and a communication IMI (e.g. document
drafting). Whether the excitement over genAI research agents will prove to
be merited or not, genAI’s ability to augment these four dimensions of inven-
tion suggests that the idea generation process is becoming more productive.

It also appears that it is taking root within the research community.
The signal from the USPTO’s AI database is that AI patents surged when
the use of genAI became practical. GenAI prompt analysis from Anthropic
points to relatively intense use of AI by scientists as well as in adjacent fields
like computing and engineering. And, corporate earnings calls increasingly
mention genAI while discussing their research efforts.

5 Conclusion

The release of ChatGPT in late 2022 was a stark inflection point in public
interest in genAI and predictions of a first-order impact on productivity in the
future soon followed.57 Yet, as exciting as progress in genAI is from a science
and engineering standpoint, its economic effects are highly uncertain. For
firms to justify the reorganization and other complementary capital needed to
exploit genAI, the return from the technology, less the total cost of ownership,
must be high enough. Field studies do point to efficiency gains in selected
business functions and many firms have experimented with the technology,
but only a small share of them attest to material improvements to their
bottom lines from the technology thus far.

To complement the limited empirical evidence, we ask what the charac-
teristics of genAI suggest its future impact on productivity may be. GenAI
has features typical of both a general-purpose technology—headed toward
being widely used, stimulating related innovation, and displaying ongoing
improvement in (economic) performance—and an invention of a method of

57. Goldman Sachs analysts forecast that genAI will eventually increase in U.S. labor
productivity by 15%. See Briggs, Joseph, and Sarah Dong. “Global Economics Comment:
AI Productivity and Labor Market Impacts Are Still Small (For Now).” Goldman Sachs
Economic Research, March 14, 2025.
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invention—raising the efficiency of R&D through improvements to observa-
tion, analysis, communication, or organization.

Because both GPTs and IMIs promote productivity growth for extended
periods, it is reasonable to expect genAI will have a noteworthy impact on
productivity. Importantly, genAI’s potential for productivity does not de-
pend on the elusive goal of reaching artificial general intelligence (AGI). It
can qualify as a GPT and IMI well before the arrival of AGI. The main hurdle
is diffusion. Complementary innovations like interfaces, robotics, and agents,
for example, are emerging, and technological progress is ongoing. Yet, out-
side of the tech sector, firm-level adoption in production processes is still
modest. As an IMI, the case is stronger: genAI usage is gaining traction
within the scientific community via workflows and patents. Even so, we offer
several cautionary observations.

First, we expect that genAI will boost productivity growth relative to the
counterfactual economy without it. If the growth effect of machine learning
(and other IT innovations) is waning, the impact of genAI will have to match
the impact of machine learning on the likes of Amazon and Facebook for the
economy simply to match the recent history of productivity growth.58

Second, the GPT effect on productivity is inherently slow as it involves
complementary investment. For example, the effect on the productivity level
of solid-state computing was large, but it played out over decades, damping
the effect on productivity growth. The tech boom was a long time coming:
Massive advances in computational technology, including the invention of
the solid state transistor and the fundamentals of system design had accu-
mulated by the end of the 1940s and a steady decline in computing costs had
begun (Nordhaus 2007).59 The surge in productivity attributed to informa-
tion technology arrived some fifty years later.

Third, investment to deploy new technologies is fraught with risk. If

58. Bresnahan (2024) notes that the spread of earlier AI technologies to other companies
slowed once the digitally native companies had jumped in.
59. Predictions of an IT-infused future of abundance soon followed, but noteworthy pro-

ductivity gains only appeared in tandem with time-consuming complementary investment,
such as business reorganization. For example, Berkeley (1949), based on observation of
the handful of computers in existence, eagerly anticipated automatic address books, li-
braries, translators, typists, and stenographers, as well as business process optimization,
psychological testing and training, weather forecasting, and even weather control. Others,
such as Martin (1960, 4), cautioned that productivity gains would be hard-won: “The
data-processing system of an organization is of almost unimaginable complexity. The
introduction of a computer usually involves widespread changes in this complex system.”
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genAI is a widely adopted “killer app” that defines a new era of IT, the
computing capacity needed to deliver genAI to millions of simultaneous users
will be massive. Anticipation of this outcome helps explain the wave of
investment in data centers and electricity generation. But, building to meet
anticipated demand can lead to disastrous consequences, as illustrated by the
history of railroad expansion and the associated boom-bust cycles in the 19th

Century.60 For IT systems, the capacity forecasting problem is compounded
by the progress of technology, which drives down the hardware investment
required to deliver a given level of service.61 A critical further concern is the
availability of electrical power to accommodate the demands of data centers
supporting widespread genAI use (Pilz, Mahmood, and Heim 2025). And, of
course, R&D is inherently risky because the returns are erratic: The chain
of choices made between insight from research and greater output per hour
is long.

Nevertheless, our forecast for the most likely outcome is for a noteworthy
contribution of genAI to the level of labor productivity, though the range of
plausible outcomes is wide, with respect to both the magnitude of the total
contribution and how that impact is spread over time (hence, the productivity
growth rate).

60. On the British experience in the 1840s, see Campbell and Turner (2012) and Odlyzko
(2012).
61. This forecasting challenge for fiber optic telecommunications systems, combined with

duplicative effort by competing networks, was a major factor behind the economic down-
turn in 2001 (Couper, Hejkal, and Wolman 2003; Doms 2004). On the capital overhang in
the telecommunications network in the early 2000s, see Hecht (2016, 53): “The post-bubble
network was vastly overbuilt and underused. In late 2002, consulting firm TeleGeography
estimated only 10 percent of the long-haul fibers installed in Europe and North America
carried any signals, and that only 10 percent of the wavelengths in those fibers were lit.
. . . Soon, creditors were trying to unload dark-fiber networks for pennies on the dollar.”
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A Definitions of AI

We illustrate the varied use of the term “artificial intelligence” by dis-
cussing four influential definitions. Alan Turing devised a broad, conceptual
definition—the “Turing test”—to determine if a system was indistinguishable
from humans in 1950. The Dartmouth Project, a seminal meeting for the AI
field in 1956, provided a more demanding analytical definition with concrete
criteria for what AI must do. In 2020, the National Artificial Intelligence Ini-
tiative placed a definition into U.S. law with a rather different set of criteria.
And, since 2020, the U.S. Patent and Trademark Office has used an algorith-
mic approach: a large language model (LLM) supplemented by reinforcement
learning with human feedback (RLHF) that can classify any technology as
AI or not based on similarity to descriptions of eight related areas of science
and engineering. Importantly, while the sets of technologies meeting these
four definitions have substantial overlap, they are far from identical. Thus,
it is crucial to stipulate the scope of analysis when discussing “AI” and its
economic effects.62

A.1 Alan Turing

Turing (1950), while not offering a definition of artificial intelligence, de-
scribed a procedure to determine if a machine can imitate human responses
well enough that a human interlocutor cannot reliably distinguish between
the machine and a human.

This, of course, is the origin of the “Turing test” which is often referenced
to gauge effective artificial intelligence. We judge that for most observers,
passing the Turing test would be a sufficient condition for a system to be
AI, but it isn’t a necessary condition in current usage. After all, few people
would be fooled into thinking the machine learning-based recommendation
engines used on social media sites are human. Moreover, mimicking and
replacing humans is not the sole goal of the AI field. Indeed, the adverse social

62. This set of definitions is far from exhaustive. See the discussion in Filippucci et
al. (2024) for a definition of scope for AI usefully grounded in a production function
framework as well as references to other definitions. The OECD, for example, has codified
this definition: “An AI system is a machine-based system that, for explicit or implicit
objectives, infers, from the input it receives, how to generate outputs such as predictions,
content, recommendations, or decisions that can influence physical or virtual environments.
Different AI systems vary in their levels of autonomy and adaptiveness after deployment”
(Perset 2024).
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consequences of that approach are a concern of some scholars who recommend
a focus on using AI to complement human activity instead. Brynjolfsson
(2022, 14) observes:

We can work on challenges that are easy for machines and hard
for humans, rather than hard for machines and easy for humans.
The first option offers the opportunity of growing and sharing
the economic pie by augmenting the workforce with tools and
platforms. The second option risks dividing the economic pie
among an ever-smaller number of people by creating automation
that displaces ever-more types of workers.

Another shortcoming of this definition has been raised by philosophers who
have disputed the use of the Turing test to assess whether a machine can
think. Searle (1980) offers the counterexample (the “Chinese room argu-
ment”) of an individual, ignorant of Chinese, passing the Turing Test by
using an instruction manual to connect questions posed in Chinese charac-
ters to appropriate responses without understanding their meaning.

A.2 The Dartmouth Project

The term “artificial intelligence” can be traced to the summer of 1956,
when Dartmouth College professor John McCarthy convened the seminal
“Summer Research Project on Artificial Intelligence” (Nilsson 2009). The
project proposal stated its premise and objectives and contained an implicit
definition of AI (in italics) (McCarthy et al. 2006, 13):63

The study is to proceed on the basis of the conjecture that ev-
ery aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made
to simulate it. An attempt will be made to find how to make ma-
chines use language, form abstractions and concepts, solve kinds
of problems now reserved for humans, and improve themselves.

63. He chose the term “Artificial Intelligence” to distinguish the field from “automata
theory”—a branch of computer science focused on rule-based mathematical models of
computation—and “cybernetics”—a field focused on control systems, feedback, and com-
munication in machines and living things.
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The Dartmouth AI definition is far broader than the Turing test. Systems
that pass the Turing test would surely be included in the scope of the Dart-
mouth definition by virtue of using language, provided a system need not
satisfy all the criteria at once. The project also envisioned systems forming
abstractions, anticipating the flexible models found in neural network sys-
tems. That is, the training of these models is agnostic about the analytical
structure, rather than calibrating a predetermined functional form. And, the
idea that AI systems will improve themselves hints at the concept of artifi-
cial general intelligence. Last, the “solve kinds of problems now reserved for
humans” criterion is likely the vernacular definition many casual observers
would provide for AI if pressed to do so, though whether present-day ob-
servers would reserve the same set of problems for humans as observers in
1956 is unclear.

A.3 National Artificial Intelligence Initiative

Naturally, as the topic of AI has become a focus of public policy in recent
years, the U.S. legal system has required a definition. One is provided in the
National Artificial Intelligence Initiative (NAII) (15 U.S.C. § 9401(3)):

The term “artificial intelligence” means a machine-based system
that can, for a given set of human-defined objectives, make pre-
dictions, recommendations or decisions influencing real or virtual
environments. Artificial intelligence systems use machine and
human-based inputs to

(A) perceive real and virtual environments;

(B) abstract such perceptions into models through analysis in
an automated manner; and

(C) use model inference to formulate options for information or
action.

Like the Dartmouth definition, this law provides concrete criteria for a sys-
tem to be AI, but the sets of criteria are rather different. Unlike the Dart-
mouth definition, the law requires that systems collect observations from the
environment. Like the Dartmouth definition, though, the NAII definition
requires that AI systems form abstractions, and one can loosely compare the
“formulate options for information and action” criterion to the “solve prob-
lems” criterion in the Dartmouth definition. However, there is no mention of
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language in the government definition, an important part of the Dartmouth
and Turing definitions, nor any mention of self improvement.

A.4 The U.S. Patent and Trademark Office

The U.S. Patent and Trademark Office (USPTO), identifies patents that
“contain” AI for the Artificial Intelligence Patent Dataset. This exercise re-
quires a definition that provides an unequivocal declaration for each patent,
unlike the other definitions discussed above. To that end, the USPTO iden-
tified eight “AI component technologies” and trained a large language model
to identify patents referencing those technologies using an iterative super-
vised learning process where subject experts identified examples of AI and
non-AI for each technology and reviewed the AI algorithm determinations
for accuracy (quoted from Giczy, Pairolero, and Toole 2022, 6–8):

1. Knowledge processing: The field of knowledge processing contains
methods to represent facts about the world and to derive new facts
(or knowledge) from a knowledge base. For example, expert systems
generally contain a knowledge base and an inference method to obtain
new facts from that knowledge base.

2. Speech: Speech recognition includes methods to understand a se-
quence of words given an acoustic signal. For example, the noisy chan-
nel model is a statistical approach used to identify the most likely
sequence of words given verbal input using Bayes’ rule (Russell and
Norvig 2009).

3. AI hardware: The field of AI hardware includes physical hardware
designed to implement artificial intelligence software. For example,
Google designed the Tensor Processing Unit (TPU) to run neural net-
work algorithms more efficiently. AI hardware may include logic cir-
cuitry, memory, video, processors, and solid-state technologies. It may
also include embedded software that implements other AI component
technologies, such as machine learning algorithms.

4. Evolutionary computation: Evolutionary computation contains a
set of computational methods utilizing aspects of nature and, specif-
ically, evolution (Russell and Norvig 2009). For example, genetic al-
gorithms include methods for selecting algorithm variants through the
selection of optimal random mutations by maximizing fitness.
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5. Natural language processing: Natural language processing contains
methods for understanding and using data encoded in human natural
language. For example, language models represent probability distri-
butions of language expressions (Russell and Norvig 2009).

6. Machine learning: The field of machine learning contains a broad
class of computational learning models. For example, supervised learn-
ing classification models are algorithms that learn to classify observa-
tions based on pre-labeled training data. Machine learning includes,
among other techniques, neural networks, fuzzy logic, adaptive sys-
tems, probabilistic networks, regression, and intelligent searching.

7. Computer vision: The field of computer vision contains methods
to extract and understand information from visual input, including
images and videos. For example, edge detection identifies the bound-
aries and borders contained in an image. Additional areas of computer
vision include object recognition, manipulation (e.g., transformation,
enhancement, or restoration), color processing, and conversion.

8. Planning/control: The field of planning and control contains meth-
ods to identify and execute plans to achieve specified goals. Key as-
pects of planning include representing actions and states of the world,
reasoning about the effects of actions, and efficiently searching over
potential plans. Modern control theory includes methods to maxi-
mize objectives over time (Russell and Norvig 2009). For example,
stochastic optimal control considers dynamic optimization in uncertain
environments. Additionally, planning and control includes data sys-
tems for administration/management (e.g., managing an organization
and its employees, including inventory, workflow, forecasting, and time
management), adaptive control systems, and models or simulators of
systems.

Among the concrete challenges faced by this classification effort are what
non-software components of AI systems are included. Tensor Processing
Units (TPUs), for example, are chips designed to accelerate AI inference,
while graphics processing units (GPUs) were originally designed for graphics
rendering but have since been re-engineered to accelerate AI model training.
As challenging as this question is, the inclusion of hardware is essential for a
definition that is conceptually stable over time with respect to the function
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Table 9: Distinguishing Features of AI Models

symbolic vs. connectionist
deterministic vs. stochastic
discriminative vs. generative

of the technology; the division of tasks between hardware and software varies
over time within functionally identical IT systems (Hennessy and Patterson
2011).

Further distinction by type of AI would be a welcome refinement. Cock-
burn, Henderson, and Stern (2019) found distinguishing among robotic, sym-
bolic, and neural network AI technologies as useful for their work on inno-
vation. In light of recent developments in the theory and application of AI,
identifying patents as related to generative AI would be useful for research
as well.

B A Short History of AI

The Dartmouth Summer Research Project, in 1956, is often used as a
rough marker of the beginning of the AI field, though the scientists in atten-
dance did not share a theory of what the field entailed (Moor 2006).64 And,
foundational work took place before the Dartmouth project. For example,
McCulloch and Pitts (1943) had studied the use of artificial neurons, Shan-
non 1948 had identified Markov Chains as a potential basis for generating
new content, and Turing (1950) had introduced a test for machine intelligence
(now known as the Turing test) whereby a human attempts to determine if
a hidden interlocutor is a computer or another human.65

We sketch subsequent developments in AI theory and application below.
As will be apparent, substantial progress on AI preceded the explosion of
attention to AI that followed the introduction of ChatGPT in 2022.

64. For more on the conference, see Nilsson (2009), Wooldridge (2021), and Olson (2024).
65. Indeed, Andrey Markov identified language as a use for his mathematical structures

as early as 1906 (Markov 2006).
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B.1 Early AI Research

Following the Dartmouth project, AI research developed models distin-
guished along several dimensions (table 9 on the previous page).

• Symbolic AI encoded a system of explicit rules in computer programs.
For example, Newell, Shaw, and Simon (1958) designed a model called
“Logic Theorist” that successfully proved 38 theorems from Whitehead
and Russell’s Principia Mathematica (Whitehead and Russell 1927).
Connectionist AI, in contrast, allowed complex rules to emerge or-
ganically, sacrificing interpretability for flexibility (James et al. 2017).
The Perceptron model in Rosenblatt (1958), foundational for this ap-
proach, was a single neuron, used to combine signals from multiple
input channels to classify images. Later models, such as MADALINE
(Multiple Adaptive Linear Neuron), combined multiple layers of neu-
rons together. These networks combine input signals into an output
signal with the weight given to each input signal evolving during the
training process.

• Though early models were typically deterministic AI systems, where
a given input would consistently produce the same output, stochas-
tic AI models emerged as well where the path taken was not prede-
termined. For example, SNARC (Stochastic Neural Analogue Rein-
forcement Calculator), simulated a rat navigating a maze by random
experimentation with different paths (Minsky 1952).

• Most early efforts focused on classification—discriminative AI—such
as using the Perceptron to label pictures. But, the ambition to create a
generative AI system that would respond to questions with an appro-
priate free-form text response was already present in this era. In 1966,
the ELIZA chatbot provided a rudimentary simulation of a conversation
with a psychotherapist. Unlike present-day AI chatbots, ELIZA used
a deterministic, symbolic logic approach, relying on pattern matching
and word substitution (Weizenbaum 1966).66

In addition to these theoretical characteristics, applied AI systems are
distinguished by the type of training used in their development. Some use

66. Strictly speaking, some AI models, such as the “expert systems” described below,
are neither generative or discriminative, so our classification scheme is not exhaustive.
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reinforcement learning, interacting with the environment to refine the
model. Others use predictive learning, where the system is trained in
advance of use. Predictive learning primarily took the form of supervised
learning in this period, such as when the Perceptron was trained with la-
beled pictures. However, Selfridge (1958) was a major advance in algorithms
for pattern recognition, which was foundational for unsupervised learning,
where the system develops classification categories without guidance.

Early efforts to apply theoretical models were limited by advances in
computing hardware. Greater AI system capability typically requires a larger
model, where size is measured in the number of parameters (fig. 6 on page 21).
Early models, like Theseus—a robotic maze-solving mouse—and the Perceptron—
the rudimentary neuron mentioned above—had tens or hundreds of param-
eters. Recent models, like DALL-E, Llama, and GPT-3 have hundreds of
billions of parameters. Moreover, more complicated models typically require
larger training datasets (fig. 6 on page 21). Computational requirements for
model training and application rise with the size of the model and the size
of the training dataset.

B.2 Emergence of Practical AI

Early practical applications of AI were found in solving classification prob-
lems in high-volume communication systems. LeCun et al. (1989) developed
the LeNet model adopted by the U.S. Postal Service to read hand-written ZIP
codes. The post office was soon reading entire handwritten addresses using
AI as well (Srihari and Kuebert 1997). Another early practical application
of AI was the identification of spam email (Sahami et al. 1998).

Notwithstanding these advances in the 1980s and 1990s, interest in the
connectionist approach, and neural networks in particular, had fallen off
with the downbeat assessment of Minsky and Papert (1969). Interest re-
turned with the insights provided by Hinton and Salakhutdinov (2006), who
introduced advances in training methods (greedy layer-wise pre-training) and
efficient use of large datasets (dimensionality reduction). A key innovation
that followed soon after was the convolutional neural network (CNN), an
advance in connectionist AI that focused on rapid development of a coarse
representation of the image which revealed some features, like edges, but not
others. Krizhevsky, Sutskever, and Hinton (2012) demonstrated the power
of CNN by leaping ahead of other competitors in the ImageNet Large Scale
Visual Recognition Challenge, a benchmark for computer vision, with their
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AlexNet system. Referring to the characteristics described above, these early
image systems were connectionist, deterministic, discriminative, and trained
by predictive learning. AlexNet also demonstrated the value of data augmen-
tation by adding mirror images of training pictures to the training set.

In the news industry in this period, symbolic models such as Cyborg at
Bloomberg and Heliograf at the Washington Post were used to write articles.
Unlike present-day generative models, these systems relied on structured
data—tagged as sports scores or stock prices, for example—not on models
of the language as a whole, making them a kind of proto-generative AI. In
2013, articles on major company financial announcements and sports events
were generated with these systems and by 2017, these models were used for
expanded coverage of sparsely populated news markets and small companies,
and were even used to generate rudimentary news videos (Keohane 2017).

Symbolic AI was put to practical use in this period as well. Expert
systems leveraged a large trove of domain-specific information and a set of
rules (encoded in an “inference engine”) provided by specialists to provide
guidance, such as medical diagnoses (Buchanan and Smith 1988). Examples
include MYCIN, used to diagnose infectious diseases, and IBM’s Watson,
deployed in medical and other applications (Shortliffe 1977; Ferrucci 2012).
Expert systems fell out of favor over time due to their cost of development,
limited reliability, and narrow field of application (Gill 1995).

Most importantly, as emphasized by Agrawal, J. S. Gans, and Goldfarb
(2019, 32), AI practitioners soon realized that discriminative AI could be
recast as “prediction in the statistical sense of using existing data to fill in
missing information” and these models were soon used in a diverse set of
prediction problems. (Indeed, these systems are often now referred to as
“predictive AI.”) Amazon, for example, first used AI to forecast demand for
its products in 2009, then continuously updated its forecasting approach to
adopt emerging AI techniques (table 10). Machine learning, another term
for this approach to AI, is credited by Amazon and other major IT companies
with increasing profitability during this period (Bresnahan 2019).

B.3 Generative AI

Public interest in AI surged in late 2022 with the appearance of ChatGPT,
a user interface for a viable genAI system—one that can respond to natu-
ral language prompts with human-like (coherent, nuanced, context-specific)
responses in the form of text, images, videos, and sounds. The event was
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Table 10: History of Amazon Demand Forecasting Techniques

Year Forecasting Technique

2007 Time-Series Models
2009 Random Forest
2011 Seasonality Models
2013 Sparse Quantile Random Forest
2015 Feed-Forward Networks
2017 Multi-Horizon Quantile Recurrent Forecaster
2020 MQ Transformer

Source: Reproduced from Hardesty (2019)

the culmination of a roughly 10-year period of advances in large language
models (LLMs).

LLMs are a mathematical representation of the linguistic relationships
among the “tokens” (words, groups of words, and portions of words) found
in a “corpus” (set of texts or other media). A key advantage of LLMs is their
ability to reduce unstructured text to flexible structural representations that
do not rely on a small set of variables specified in advance. Rudimentary
early attempts at language models encoded words as long vectors of zeros
with a single element—the index assigned to the specific word—marked with
a “1” (Hancock and Khoshgoftaar 2020). In 2013, Google introduced a richer
method known as the Word2Vec model (Mikolov, Sutskever, and Le 2013).
Words are represented with dense vectors known as embeddings such that
the distance between two embeddings reflects the semantic similarity between
the represented words. Word2Vec revolutionized many natural language
processing (NLP) tasks, such as classification and translation.

A limitation of Word2Vec encodings is that a word’s representation is
the same regardless of the context. For example, the model will represent
the word “bank” with the same embedding whether the input text is “I
withdrew money from my bank account” or “I went fishing down at the
river’s bank.” Since Word2Vec assigns fixed embeddings, it cannot distinguish
whether “bank” refers to a financial institution or a riverbank, impeding its
understanding of the text.67

67. Computer scientists have wrestled with this word sense disambiguation problem since
the 1950s. Bar-Hillel (1960) in discussing the prospects for fully automatic high-quality
translation, offered this assessment: “What such a suggestion amounts to, if taken se-
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A major breakthrough in addressing this shortcoming came with the in-
troduction of the Transformer model, an architecture that creates context-
aware word representations by efficiently processing the entire input text
at once (Vaswani et al. 2017). This architecture is defined by two princi-
pal characteristics: the attention mechanism and positional encodings.
The attention mechanism enables the model to assign, for each token, varying
degrees of relevance to different parts of the input, allowing it to understand
context in longer sequences of text. Positional encodings ensure that word
order is meaningfully integrated into the model’s processing of inputs. (See
the box, “Landmark AI Models: The Transformer,” for more detail.) This
advancement changed how machines encoded text, shifting the focus within
NLP toward a deeper understanding of language.68

With the advent of the Transformer, genAI flourished. Most notably, text
generation improved at a blistering pace in this period, though NVIDIA’s
generative adversarial network (GAN) (2018) and DALL-E (2021) were strik-
ing advances in image generation; audio generation was dominated by WaveNet
(2016), a different architecture, for a time, but eventually the Transformer
approach was used for speech generation as well. Especially prominent were
a series of models produced by OpenAI: GPT-2 (Radford et al. 2019), GPT-
3 (Brown et al. 2020), ChatGPT (OpenAI 2022), GPT-4 (OpenAI 2023),
and others. Successive models were increasingly human-like in their knowl-
edge and creativity, eventually passing Turing tests due to their coherent and
contextually relevant output.

riously, is the requirement that a translation machine should not only be supplied with
a dictionary but also with a universal encyclopedia. This is surely utterly chimerical
and hardly deserves any further discussion.” It appears we now have such a universal
encyclopedia in hand.
68. Particularly important was the introduction of the BERT model the following year

(Devlin 2018). The final ‘T’ in BERT stands for ‘Transformer’ (bidirectional encoder
representations from transformers)
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