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Abstract

Researchers often test firm conduct models using pass-through regressions or instru-
mental variables (IV) methods. The former has limited applicability; the latter relies
on potentially irrelevant instruments. We show the falsifiable restriction underlying the
IV method generalizes the pass-through regression, and cost pass-through differences
are the economic determinants of instrument relevance. We analyze standard instru-
ments’ relevance and link instrument selection to target counterfactuals. We illustrate
our findings via simulations and an application to the Washington marijuana market.
Testing conduct using targeted instruments, we find the optimal ad valorem tax closely
matches the actual rate.
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1 Introduction

Understanding how firms behave is a central objective in economics research. As firm conduct
is frequently unknown, researchers have developed various methods to infer it from data. An
influential idea in the early empirical industrial organization (IO) literature was to utilize the
implications of cost pass-through rates to test firm conduct.1 The simplest implementation in
Sumner (1981) estimates pass-through from a regression of prices on unit taxes. Because dif-
ferent oligopoly models predict different pass-through levels (e.g., Weyl and Fabinger, 2013),
the estimates from these regressions reject incorrect models of firm behavior. This approach
has been applied across multiple fields of economics, including IO, trade, and public finance.2

As noted in the literature (e.g., Bulow and Pfleiderer, 1983; MacKay, Miller, Remer,
and Sheu, 2014), the pass-through regression approach to infer conduct is only valid in a
narrow class of models and when a special cost shifter (e.g., unit tax or wholesale price)
is observed in the data. An alternative approach, originating with Bresnahan (1982) and
Lau (1982), relies on exogenous variation in market conditions to distinguish models. In a
differentiated products environment, Berry and Haile (2014) formalize this intuition into a
falsifiable restriction implemented with a set of potentially exogeneous instruments. While
their approach is widely applicable, it is crucial to assess the relevance of instruments for
falsification, i.e., their ability to distinguish misspecified models from the truth.

In this paper, we develop a framework for understanding the economic determinants of
instrument relevance when falsifying models of firm conduct. We find that differences in par-
ticular features of cost pass-through matrices across oligopoly models underpin falsifiability.
This has several practical implications for learning conduct, of which we highlight three.

First, we show that the falsifiable restriction in Berry and Haile (2014) coincides with
the regression approach in Sumner (1981) in the limited class of models with constant pass-
through – the only class where the regression approach is valid (MacKay et al., 2014). Thus,
the instrument-based approach generalizes the pass-through regression approach.

Second, we use our framework to evaluate the relevance of various conduct instruments.
In general, we find that rival cost shifters, product characteristics, and tax rates have differ-
ent empirical content; each targets different features of the model’s pass-through matrix and
other characteristics. We characterize exactly the aspects of conduct each instrument targets.

Third, we show how this characterization can guide instrument selection for particular
counterfactual analyses. For example, computing a counterfactual Laffer curve to determine

1See, for example, Sumner (1981); Sullivan (1985); Panzar and Rosse (1987).
2For recent applications of this method see, e.g., Pless and Van Benthem (2019) and Brugués and

De Simone (2024).
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a revenue-maximizing tax rate depends on both demand and firm conduct (e.g., Miravete,
Seim, and Thurk, 2018; Hollenbeck and Uetake, 2021). The features of conduct that de-
termine the optimal tax rate are exactly those targeted by an instrument based on past
variation in that tax rate. When such variation is not available, our framework illustrates
the trade-offs between other possible instruments.

While our falsification results are presented in a population context, they directly inform
finite sample testing procedures based on the Rivers and Vuong (2002) (RV) model selection
test. Lack of falsification due to irrelevant instruments leads to degeneracy of the RV test
and unreliable inference (Duarte, Magnolfi, Sølvsten, and Sullivan, 2024). Through Monte
Carlo simulations, we illustrate the usefulness of our framework for testing models of con-
duct with RV, highlighting the importance of ex-ante instrument selection for both testing
specific models and informing counterfactual outcomes. Our results also reveal the economic
determinants of the ex-post weak instrument diagnostic in Duarte et al. (2024).

As an application of our results, we consider the problem of setting the optimal ad valorem
tax rate in the Washington State marijuana market in 2016. Tax revenue is a key consid-
eration for governments legalizing marijuana, and Hollenbeck and Uetake (2021) show the
importance of accounting for firm market power to determine the optimal tax in this market.
Following legalization, it is unclear to what extent retailers behave strategically. Escudero
(2018) suggests that immediately following legalization (2014-2016), retailers may have used
a simple rule of setting prices equal to twice marginal costs, a strategy referred to as Keystone
pricing after a jewelers’ trade publication in which it was widely promoted in the late 1800s.
Hollenbeck, Hristakeva, and Uetake (2024) provide reduced-form evidence of a more nuanced
relationship between markups and the competitive environment in later years (2018-2022).

Motivated by these findings, we use our framework to formally test the strategically so-
phisticated Bertrand-Nash pricing model against the simpler Keystone pricing model in a
data sample from 2014-2017. These two models reflect two “extremes” of sophistication in
how firms respond to competition, and it is a priori unclear which will better fit the data.
We first estimate a demand system similar to Hollenbeck and Uetake (2021). We then test
the Bertrand-Nash model against Keystone pricing using ad valorem tax instruments, which
our framework shows are relevant for testing these models and will falsify models that yield
incorrect optimal tax predictions. Our test indicates that Keystone provides a better fit
than Bertrand-Nash during our sample period. Based on these findings, we solve for the
optimal state-level ad valorem tax in 2016. The revenue maximizing state-level tax rate
under Keystone is 38%, almost identical to the 37% rate the government adopted in 2015.
Alternative conduct models imply different optimal taxes.

This paper complements existing work (Backus, Conlon, and Sinkinson, 2021; Duarte
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et al., 2024) that advocates a model selection approach and offers inferential advances in
conduct testing. The falsification framework we develop can help clarify the economic de-
terminants of instrument strength for the RV test and inform ex ante instrument selection.
We illustrate this connection in our Monte Carlo simulations and our empirical application,
which both implement testing with RV.

Our work is also related to recent work on demand curvature and pass-through. Weyl and
Fabinger (2013) link pass-through to both firm conduct and demand curvature. Miravete,
Seim, and Thurk (2024) show how standard discrete choice demand models can be made
flexible, so as to produce a full range of demand curvature. Our results underscore the need
for flexible demand specifications that can accurately capture pass-through patterns.

We also contribute to a long line of literature on optimal tax policy, in which the Laffer
curve and other aspects of tax incidence have been studied extensively. Following the semi-
nal contribution of Ramsey (1927), this literature has traditionally imposed the assumption
of perfect competition (Auerbach, 1985, 2002; Slemrod, 1990). However, there is extensive
theoretical evidence that conduct has important implications for tax policy. For example,
Suits and Musgrave (1953) and Anderson, de Palma, and Kreider (2001) show that the rel-
ative efficiency of unit and ad valorem taxation depends on the form of market conduct.
Recent work by Kroft, Laliberté, Leal-Vizcaíno, and Notowidigdo (2023) and Brugués and
De Simone (2024) attempts to perform inference on conduct to better-inform tax policy.
These papers use “conduct parameter” and “conjectural variations” approaches; like pass-
through regressions, these approaches are only micro-founded for a narrow range of models
(Makowski, 1987; Lindh, 1992; Corts, 1999). We contribute to this literature by providing
guidance on which features of conduct – captured by the pass-through matrix – are most
relevant to tax policy. Our insights can help guide instrument choice when prior variation
in tax rates is unavailable. Relative to approaches based on pass-through regressions and
conjectural variations, our approach is valid in a much broader range of settings, including
those used in state-of-the-art structural equilibrium models.

The paper proceeds as follows. Section 2 describes the environment and shows that the
exclusion restriction approach generalizes the pass-through approach. Section 3 presents our
main results showing how differences in pass-through matrices form the economic determi-
nants of falsifiability. Section 4 compares the relevance of demand side, cost side, and tax
instruments. Section 5 motivates instrument selection for optimal tax counterfactuals. In
Section 6, we perform Monte Carlo simulations to show the applicability of our results to a
setting using the RV test. Section 7 develops an application to the Washington marijuana
market. Section 8 concludes. Proofs are found in Appendix A.
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2 Two Approaches to Falsification

We consider falsification of models of firm conduct using data across many markets.3 A set
of multi-product firms compete in each market t; for simplicity, we assume the same set of J
products is sold in every market, although their characteristics may differ across markets. For
each product and market combination (j, t), the researcher observes price pjt, market share
sjt, a vector of product characteristics xjt, and a vector of cost shifters wjt that affects the
product’s marginal cost. For any variable ajt, let at denote the vector of values for all prod-
ucts j in market t. We assume that, for all markets t, the demand system is st = s(pt, xt, ξt),
where ξt is a vector of unobserved product characteristics. To focus on the supply side, we
assume that the demand system is already known to the researcher. We normalize market
size to 1, so that quantity qjt and market share sjt can be used interchangeably.

The data in each market t are generated by equilibrium play in some true model of firm
behavior, characterized by a system of first-order conditions,

pt = ∆0t + c0t, (1)

where ∆0t is the true vector of markups in market t and c0t is the true vector of marginal
costs. Because true markups (or, equivalently, true costs) are unobserved, we consider the-
oretically plausible models to be falsified by the data. Under any imposed model m, we
can calculate the implied markups ∆mt as a known function of observables and demand
primitives. Implied marginal costs cmt can therefore also be calculated via a model-specific
version of the first-order conditions in Equation (1), as pt −∆mt.

For the first-order conditions of any model m to characterize a well-defined empirical
model, we require the following, analogous to Assumption 13 in Berry and Haile (2014):

Assumption 1. (Equilibrium Uniqueness) For any model m, including the true model,
either there exists a unique equilibrium, or the equilibrium selection rule is such that the
same pt arises whenever the vector (cmt, xt, ξt) is the same.

Several methods have been proposed to learn whether the imposed model m is falsified
by the data. We focus on two in the next subsections: the pass-through approach in Sumner
(1981), and the exclusion restriction approach in Berry and Haile (2014).

3Falsification encompasses cases of nested and non-nested models. We focus on the latter. For the
former, researchers can pursue identification of conduct; we discuss the usefulness of our framework for this
approach in Appendix B.
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2.1 Pass-through Regressions to Learn Conduct

Early tests of market power (e.g., Sumner, 1981) relied on a specific implication of different
models of conduct: cost (or, equivalently, unit-tax) pass-through. In a simple class of “rule-
of-thumb” pricing models, where firms set prices as a multiple of cost, own cost pass-through
can be expressed as a constant scalar ϕm across products and markets. Marginal cost pricing
(ϕm = 1) and Keystone pricing (ϕm = 2) are examples in this class. If data are generated by
a model m = 0 in this class, Equation (1) becomes pjt = ϕ0c0jt. Because cost pass-through
is represented by a scalar parameter, it can be measured via linear regression. To implement
the regression, we assume that marginal costs are constant in quantity, linear in observable
cost shifters wjt, and additively separable in an unobserved shock, or c0jt = wjtγ + ω0jt.
While the researcher can control for wjt, she cannot keep ω0jt fixed across markets.

With these assumptions, firms set prices pjt = ϕ0

(
wjtγ + ω0jt

)
. If we knew the value of γ,

then the true own pass-through ϕ0 could be consistently estimated by regressing pjt on wjt.
While γ is unknown for a vector of generic cost shifters, there may be components of cost
for which γ = 1. These include unit taxes which are levied on the firm (τjt) and wholesale
prices (pWjt ). As in Sumner (1981), suppose we observe a market-level unit tax τt for which
there is variation across markets. We can residualize all variables, including τt with respect
to the observed cost shifters wjt, excluding τt. Then, we can estimate own cost pass-through
by regressing pjt on τt: ϕ0 = βPTR = cov(τt, pjt)/var(τt). Hence, when βPTR ̸= ϕm, one can
falsify the rule-of-thumb model for which the firm prices at ϕm times marginal cost. For
example, if βPTR ̸= 1, marginal cost pricing is falsified.

However, the pass-through regression approach has a few conceptual and practical issues.
First, the required variation in taxes or observed cost components may not be available in
the data. Second, outside of constant pass-through environments, such as the one described
above or the homogenous product environments in Bulow and Pfleiderer (1983), own and ri-
val cost pass-through are not structural parameters. Instead, in market t, cost pass-through
under model m is represented by the J×J matrix Pmt, which varies with realizations of both
observable and unobservable determinants of demand and cost. Consequently, it is generally
not possible to recover the elements of Pmt via regression (MacKay et al., 2014).

2.2 Exclusion Restrictions to Learn Conduct

Following the seminal work of Bresnahan (1982) and Lau (1982), an alternative approach to
learn conduct in the presence of unobservable shocks to demand and cost is to leverage ex-
ogenous variation in market conditions. Berry and Haile (2014) generalized this intuition: if
a researcher can construct instruments zjt that are mean independent of the unobserved cost
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shocks under the true model, the exclusion restriction can serve as a falsifiable restriction.

Assumption 2. (Instrument Exogeneity) Marginal costs are c0jt = c̄0j(qjt,wjt) + ω0jt for
each j, and zjt is a vector of K excluded instruments such that E[ω0jt | wjt, zjt] = 0 a.s.4

We further simplify the environment with the following assumption:

Assumption 3. (Constant Marginal Cost) Marginal costs are constant in quantities and
only depend on the observable cost shifters wjt, or c̄0j(qjt,wjt) = c̄0j(wjt) for all j. Further,
c̄0j is differentiable in wjt, with partial derivatives ∂c̄0j

∂wjt
̸= 0 everywhere.

For our running example and our empirical application, we will assume that marginal costs
are linear in cost shifters, c̄0j(wjt) = wjtγ, as is standard in the empirical literature; but we
make no such assumption for our general falsification results.

Berry and Haile (2014) point out that several sources of variation are typically exogenous,
which can then be used to construct instruments. These include rival cost shifters and own
and rival product characteristics. We refer throughout to cost side instruments and demand
side instruments, respectively, as those formed with this variation.

When true costs and markups are unobserved, the exclusion restriction summarizes what
we know about the true model: E[ω0jt | wjt, zjt] = 0 holds for the true cost function. For
a candidate model m and candidate cost function c̄mj, we can use Equation (1) to define
ωmjt, a model specific analog of ω0jt, as ωmjt = pjt−∆mjt− c̄mj(wjt). Thus, E[ωmjt | wjt, zjt]

provides a natural way to measure a model’s fit. When E[ωmjt | wjt, zjt] = 0,5 the model has
the same fit as the true model, so it is not falsified by the instruments zjt. Conversely, when
there are no cost functions {c̄mj(wjt)}Jj=1 satisfying this falsifiable restriction almost surely
over the values of wjt and zjt, the model is falsified by the instruments zjt.

While instruments may be exogenous, they need not be relevant for falsification, meaning
the falsifiable restriction may not be violated for a model m that is not the truth. However,
determining instrument relevance from the falsifiable restriction is not obvious. To focus
on the economic determinants of instrument relevance, we next connect the intuition of the
pass-through regression to the instrument-based approach.

2.3 Connecting Pass-through Regression to Exclusion Restriction

Consider again the setting of Section 2.1: the true model is in the rule-of-thumb class, we
have variation in unit taxes τt, and have residualized all variables with respect to wjt. As we

4Here, as in the rest of the paper, the expectation is taken over realizations of unobservables, and almost
surely (a.s.) refers to realizations of the exogenous observables (wjt, zjt).

5This expression is the analogue of the condition in Theorem 9 of Berry and Haile (2014).
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are making a connection to regression, we implement the falsifiable restriction as a covari-
ance restriction using τt as an instrument. For models m in the rule-of-thumb class, where
pjt = ϕmcjt = ϕm

(
c̄jt + τt + ωjt

)
, we can rewrite E[ωmjtτt] = ϕ−1

m E[pjtτt]− E[(τt + ω0jt)τt].
6

By Assumption 2, τt is uncorrelated with ω0, so that model m is falsified when ϕm ̸=
(E[τtτt])

−1E[pjtτt]. Since (E[τtτt])
−1E[pjtτt] = βPTR, falsifying a rule-of-thumb model with

unit tax instruments amounts to comparing ϕm to the coefficient of the pass-through regres-
sion. In this limited setting, the instrument-based approach compares measured pass-through
with pass-through implied by model m and thus coincides with the regression approach.

This connection can be further used to understand instrument relevance. Consider again
the example of falsifying a rule-of-thumb model, but now using a rival firm’s cost shifter as
an excluded instrument, which we denote zjt. Model m is not falsified by this instrument,
because both E[pjtzjt] = E[τtzjt] = 0. Economically, in the rule-of-thumb class, pass-through
of a rival’s cost is zero, so variation in a rival’s cost shifters has no effect on market outcomes:
prices and shares. Notice that this can be cast as an irrelevance problem for an IV version
of the pass-through regression, where zjt is used to instrument for τt. In the next section, we
will show that differences in pass-through continue to underpin instrument relevance beyond
this simple environment where pass-through is summarized by a parameter.

3 Role of Pass-Through for Falsification

To gain insight into the economic determinants of instrument relevance, it is useful to follow
Backus et al. (2021) and rewrite the falsifiable restriction in terms of markups, an economic
implication of the model. As prices in the data are generated from the true model in Equation
(1), we can express the model specific unobservable ωmjt as ωmjt = ∆0jt −∆mjt + c̄0j(wjt)−
c̄mj(wjt) + ω0jt. From this, we can restate the falsifiable restriction as follows.7

Lemma 1. Under Assumptions 1-3, model m is falsified by instruments zjt if and only if
for some j there exists no function c̄mj(wjt) such that

E[∆0jt −∆mjt | wjt, zjt] = c̄mj(wjt)− c̄0j(wjt) a.s.

We want to understand the economic features of a model that underlie the empirical
content of this statistical condition and therefore distinguish models of conduct.8 Since this

6Note that residualized variables have zero mean, so for two variables x and y, E[xy] = cov(x, y).
7Proofs of all lemmas, propositions, and corollaries are in Appendix A.
8Previous work (Backus et al., 2021; Duarte et al., 2024) has explored statistical implications of this

condition in the context of the RV model selection test.
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condition involves the conditional expectation of a variable with respect to an instrument, a
useful step is to consider how the variable moves with a change in the instrument. Thus, it is
useful to restate Lemma 1 in terms of the marginal impacts of the instruments on markups.
To do this, we will assume markups do not move discontinuously as instruments change:9

Assumption 4. (Continuous Markups) For any model m, for any j, E[∆mjt | wjt, zjt] is
absolutely continuous in zjt.

Based on Lemma 1, for a model not to be falsified, the conditional expectation of ∆0jt−
∆mjt must match the difference in implied cost at each value of the instruments zjt. As
instruments are excluded from cost, a marginal change in any of the K instruments has no
effect on the implied costs for either model. This means that if a model is not falsified, the
impact of the instruments on the conditional expectation of ∆0jt −∆mjt must be zero. We
focus on the limit of this difference,

lim
h→0

E[∆0jt −∆mjt | wjt, zjt = z̃jt + hk]− E[∆0jt −∆mjt | wjt, zjt = z̃jt]

h

where hk is a K-vector of zeros with the scalar h in the k-th position. The marginal effect
of the k-th instrument z(k)jt on the conditional expectation of ∆0jt − ∆mjt is the average
difference in the marginal effect of z(k)jt on ∆0jt and ∆mjt, giving the following:

Lemma 2. Under Assumptions 1-4, model m is falsified by instruments zjt if and only if
for some j and k,

E

[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
̸= 0 w.p.p.

We illustrate the intuition behind Lemma 2 in the following example:

Example 1 : In this and every subsequent example, we consider a simple environment with
two single-product firms and logit demand, so that market shares j ∈ {1, 2} are given by

sjt =
exp(xjtβ − αpjt)

1 + exp(x1tβ − αp1t) + exp(x2tβ − αp2t)
,

where xjt are characteristics of product j in market t and α and β are coefficients. Further
suppose that there is no unobservable variation, so that demand (as a function of price) and
the cost of firm 1, c01t, remain fixed.

9Assumption 4 holds for all models in this paper, and for all standard models.
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First, suppose that the true model generating the data is Bertrand-Nash competition in
prices, which we will hereafter refer to as Bertrand, and we want to use rival cost shifters
to falsify the model of Keystone pricing, under which pjt = 2cmjt and ∆mjt = cmjt. Suppose
that we observe variation in the cost shifter of firm 2, w2t, so that z1t = w2t. Under Lemma
2, Keystone is falsified if the instruments differentially move the Keystone and Bertrand
markups for firm 1. Under the true Bertrand model, when w2t increases, both firms’ equi-
librium prices increase, and since c01t did not change, ∆01t increases by the same amount as
p1t.

10 Under the Keystone model, however, firm 1’s equilibrium price does not change with
variation in w2t, all else equal. To rationalize the increase in p1t, the Keystone model would
impute an increase in firm 1’s marginal cost cm1t and markups ∆m1t by half the amount of the
change in p1t. The difference between d∆01t

dw2t
and d∆m1t

dw2t
is what allows us to falsify Keystone.•

The derivative of markups with respect to the instruments is an object whose properties
depend on the economics of the firm conduct model, so this lemma allows us to connect the
econometric perspective on falsifiability with a more theoretical view. To falsify a model,
variation in the instruments must induce differential changes in the implied markups for
that model and the true model. However, since demand and cost shocks are unobserved,
it is not possible to isolate changes solely caused by the instruments; we therefore need the
marginal impact of the instruments to differ across the two models when we average over
the unobserved shocks.

Even beyond the restricted settings considered in Section 2.1 where the true own cost
pass-through can be consistently estimated via regression, it is still largely the cost pass-
through of a model that determines falsifiability. To see this, note that the markups for the
true data generating process and the model to be falsified are functions of two endogenous
variables, market shares and prices. As the demand system makes market shares a function of
prices, we can write the vector ∆mt as a function of prices, instruments and other exogenous
variables, ∆mt = ∆m(pt, zt,wt, xt, ωmt, ξt).

11

Instruments may affect markups either directly, or through prices. In light of Lemma 2,
we are interested in the average difference between the causal effects of an instrument z(k)jt

10In Example 2, we will derive the cost pass-through matrix for the Bertrand model, and see that it has
positive off-diagonal terms. The economic intuition is that when firm 2 raises its price in response to an
increase in costs, this decreases the own-price elasticity of firm 1, leading firm 1 to raise its price as well.

11This holds even if markups depend directly on marginal costs as in Keystone pricing, since marginal
costs are themselves determined by wjt and ωmjt.
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on model m and the truth. Letting (A)j denote the jth row of a vector or matrix, we have

d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

=
∂∆0jt

∂z
(k)
jt

− ∂∆mjt

∂z
(k)
jt︸ ︷︷ ︸

Direct Effect

+

(
∂∆0t

∂pt
− ∂∆mt

∂pt

)
j

dp0
dz(k)jt︸ ︷︷ ︸

Indirect Effect

where p0(·) is the function mapping primitives to equilibrium prices under the true model.
From this expression we see two distinct effects of instruments on the difference in markups.
The first is the direct effect of instruments, or ∂∆0jt

∂z
(k)
jt

− ∂∆mjt

∂z
(k)
jt

. This element is non-zero when-

ever instruments such as product characteristics differentially enter the markup functions
of model m and the truth. The second term represents the indirect effect, which happens
through prices. We further investigate the economic content of this term. For expositional
clarity, we make a simplifying assumption:

Assumption 5. (No Direct Effect of Costs) The markup functions ∆0t and ∆mt for both
the true model and the model to be falsified do not depend directly on marginal costs.

Most standard conduct models based on profit maximization satisfy this assumption.
Moreover, as long as the mapping from marginal costs to prices is invertible, any dependence
of markups on costs can be restated as a dependence on prices to satisfy Assumption 5. For
example, under Keystone pricing ∆Kjt = cjt, but we can alternatively write ∆Kjt =

1
2
pjt

to remove the direct dependence on costs and satisfy Assumption 5, which therefore serves
more as a labeling convention than a substantive assumption.12

For any model m we can compute the cost pass-through matrix Pmt via the Implicit
Function Theorem. Writing the first-order conditions for any model m in market t as

Fm(pt, ct) = pt − ct −∆mt = 0

equilibrium prices under model m are an implicit function of costs, pt = pm(cmt), defined as
the solution to Fm(pm(cmt), cmt) = 0. Thus, for any model m, pm is defined implicitly by
these first-order conditions; under Assumption 5, the Implicit Function Theorem gives

Pmt =
dpm(·)

dct
= −

[
∂Fm
∂pt

]−1
∂Fm
∂ct

= (I −H∆mt
)−1

where H∆mt
= ∂∆mt

∂pt
. In the indirect effect, we can rewrite the difference in price derivatives

of markups in terms of inverse pass-through matrices, because P−1
mt =

(
I − ∂∆mt

∂pt

)
as long as

12Assumption 5 can fail when the mapping from costs to prices is not invertible – for example, if a firm
priced a product at $50 whenever marginal costs were between $30 and $40.
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Pmt is invertible. We make the assumption that it is:13

Assumption 6. (Invertibility of Pass-throughs) For any model m, in any market t, the
pass-through matrix Pmt has full rank.

Example 2 : We return to the “example environment” of two single-product firms under
simple logit demand, and calculate equilibrium markups and pass-through matrices for four
models we will use extensively for intuition. First is marginal cost pricing, pjt = c0jt, under
which markups are ∆MCjt = 0, and pass-through and inverse pass-through matrices are
PMCjt = P−1

MCjt = I. Second is the Keystone model, where prices are set at twice marginal
costs; this gives markups ∆Kt =

1
2
pt, cost pass-through matrix PKt = 2I, and inverse pass-

through matrix P−1
Kt = 1

2
I. Next is Bertrand price competition, which in this setting gives

markups, inverse pass-through, and pass-through matrices

∆Bt =

 1
α(1−s1t)

1
α(1−s2t)

 , P−1
Bt =

 1
1−s1t

− s1ts2t
(1−s1t)

2

− s1ts2t
(1−s2t)

2
1

1−s2t

 , and PBt = κBt

 1
1−s2t

s1ts2t
(1−s1t)

2

s1ts2t
(1−s2t)

2
1

1−s1t


where s0t = 1−s1t−s2t and κBt = s−1

0t (1−s1t)2(1−s2t)2. Finally, there is the differentiated-
products version of Cournot competition in quantities, where each firm chooses a market
share sjt (taking the other firm’s share as given) to maximize profits. This gives markups,
inverse pass-through, and pass-through

∆Ct =

[
1−s2t
αs0t
1−s1t
αs0t

]
, P−1

Ct =

[
1−s2t
s0t

0

0 1−s1t
s0t

]
, and PCt =

[
s0t

1−s2t
0

0 s0t
1−s1t

]

Assumption 6 holds for all four conduct models. Also in this simple environment, the Cournot
model has zero pass-through of rival’s costs (or zero off-diagonal elements for PCt) like
marginal cost pricing and Keystone pricing. This will be important in future examples. •

Breaking the terms in Lemma 2 into the direct and indirect effects yields the following:
13This assumption has economic content, as it requires that each product has non-zero pass-through

for at least one cost (either own or rival) in the market. Moreover, pass-through vectors for each product
cannot be linear combinations of those of other products, meaning that costs must affect different products
in a distinct way. This is satisfied in most models, as the pass-through of own cost that is measured by the
main diagonal of Pmt is typically different than the pass-through of rival costs.
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Proposition 1. Under Assumptions 1-6, a model m is falsified by instruments zjt if and
only if for some j and k,

E

[
∂∆0jt

∂z
(k)
jt

− ∂∆mjt

∂z
(k)
jt

+
(
P−1
mt − P−1

0t

)
j

dp0
dz(k)jt

| wjt, zjt

]
̸= 0 w.p.p. (2)

This proposition casts falsification in terms of the direct and indirect effect of the instruments.
When the instruments move the markup functions directly and differentially, this will likely
enable falsification. Furthermore, if instruments indirectly affect markups through prices,
falsification depends on (P−1

mt −P−1
0t ), the difference in inverse pass-throughs of the true model

and model m. Similar to the intuition obtained from the pass-through regression, differences
in inverse pass-throughs (and therefore pass-throughs) permit falsification, though only if
instruments move prices under the true model, i.e. dp0

dz(k)jt

̸= 0.

The general framework we develop has practical applications. We highlight two in the
next sections: evaluating the relevance of specific instruments, and motivating instrument
selection when a researcher’s objective is to perform a particular counterfactual.

4 Evaluating Instrument Relevance

Next, we evaluate the relevance of instruments commonly used in the literature. We start
with standard cost side instruments (based on rival cost shifters) and demand side instru-
ments (based on product characteristics). We then augment Proposition 1 for settings with
taxes, and show the relevance of tax instruments.

4.1 Cost Side Instruments

The implications of Proposition 1 are particularly stark when the instruments are formed with
rival cost shifters. Under Assumption 5, the instruments have no direct effect on markups,
and enter either markup function only through p0(·). Note that since the marginal cost
function c̄mj is not observed directly, a firm’s own cost shifters are irrelevant instruments for
conduct: for any modelm, we can always specify a cost function c̄mj giving E[ωmjt|wjt] = 0.14

Thus, only observable shifters of a rival’s cost are plausibly relevant instruments.

Example 3 : We return to the example environment. Suppose we want to falsify Bertrand
competition when the true model is Cournot competition, using variation in the cost shifter
of firm 2, w2t, so that z1t = w2t. Assume w2t is scalar, and c̄02(w2t) = γw2t. Under the true

14For any model m, define c̄mj(wjt) = E[pjt|wjt]− E[∆mjt|wjt], and E[ωmjt|wjt] = 0 follows.
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model, variation in w2t only moves the price of firm 2, with dp0
dz1t

=
[

0
γ

s0t
1−s1t

]
. In this simplified

environment where there is no direct effect of the instruments under either model and where
the unobservables are held fixed, falsification under Proposition 1 obtains if in any market
t,
(
P−1
Bt − P−1

Ct

)
1

[
0

γ
s0t

1−s1t

]
̸= 0 or γ s0t

1−s1t

((
P−1
Bt

)
12
−
(
P−1
Ct

)
12

)
̸= 0. Thus, Bertrand is falsified

by variation in w2t, as the (1,2)-elements of P−1
Bt and P−1

Ct differ. If instead we wished to falsify
either the Keystone model or marginal cost pricing, we would fail: pass-through matrices
under both Cournot and the model to be falsified are diagonal, so

(
P−1
Ct

)
12

=
(
P−1
Kt

)
12

=(
P−1
MCt

)
12

= 0, and rival cost shifters are irrelevant for falsifying either of the two models. •

To move from Example 3 to our general environment, define the J×J matrix [P−1
m P0]

⋆ by

[P−1
m P0]

⋆
j = E

[
P−1
mt P0t | wjt, zjt

]
j
.

That is, [P−1
m P0]

⋆ is the expected value of P−1
mt P0t, but where the expectation in the j-th

row is taken conditional on the realized values of product j’s cost shifters and instruments
(wjt, zjt). Thus, [P−1

m P0]
⋆ is a function of the full vector of observables (wt, zt), with each

row depending on a different subset of those observables. This matrix arises from Equation
(2) because dp0

dz(k)jt

will often be proportional to P0t, so (P−1
mt − P−1

0t )
dp0

dz(k)jt

∝ (P−1
mt P0t − I).

Given observable and unobservable variation, falsifiability depends on the matrix [P−1
m P0]

⋆:

Corollary 1. Suppose that for each product j, the vector of instruments zjt includes a cost
shifter of every rival product. Under Assumptions 1-6, model m is falsified by the instruments
if with positive probability over (wt, zt), the matrix [P−1

m P0]
⋆ is not diagonal.

For intuition, put aside the expectation over unobservables, and focus on model m being
falsified by rival cost shifters if P−1

m P0 is not diagonal. This is when P0 ̸= PmD for any
diagonal matrix D, i.e., when some column of Pm is not a scalar multiple of the corresponding
column of P0. Assuming own cost pass-through rates are nonzero, this in turn happens if
and only if there is some (j, ℓ) such that the ratio

dpℓt
dcjt

/
dpjt
dcjt

differs between model m and the true model. If instead this ratio is the same across the two
models, then modelm can be rationalized by the unknown ∂c̄mj

∂wjt
, leading to lack of falsification

with cost side instruments.15 For example, if Pmt and P0t are always both diagonal matrices,
then this ratio is always zero and model m is not falsified by cost side instruments. Thus,

15Suppose a shifter of cost j moves, resulting in changes to prices pj and (potentially) pℓ. The change in
pj is proportional to dp0jt

dcjt
∂c̄0j
∂wjt

; the change in pℓ is proportional to dp0ℓt

dcjt
∂c̄0j
∂wjt

. The effect of the cost shifter
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we can think of cost side instruments targeting the ratio of a rival product’s pass-through of
a product j’s cost to product j’s pass-through of its own cost.16

4.2 Demand Side Instruments

The General Case: In the general case, Proposition 1 characterizes when a model can be
falsified using product characteristics. Two key differences arise between the case of cost side
instruments just discussed and the case of demand side instruments. The first is that product
characteristics are sometimes excluded from cost, allowing the researcher to use variation in
both own and rival products’ characteristics as valid instruments. This feature makes the
indirect effect of instruments more useful: insofar as product characteristics are excluded
from marginal cost, the ability to use own product characteristics as instruments will help
the researcher trace out the full pass-through matrix, as opposed to relying on only the ratio
of off-diagonal to diagonal elements for falsification. Thus, models with different diagonal
pass-through matrices could still be falsified with demand side instruments. Second, in most
standard conduct models, product characteristics will directly enter the markup function
and therefore have a direct effect on the implied costs, so that ∂∆mjt

∂z
(k)
jt

̸= 0. Adding an extra

channel in general makes falsification easier, although there may be cases in which direct
effects cancel out indirect effects, thus hindering falsification.

An Interesting Special Case: For a subset of conduct models and demand systems, we
can simplify Equation (2) to a condition that is easier to interpret. For this result, we focus
on models that satisfy two conditions. First, the first-order conditions (1) must be a system
of equations containing only markups, market shares, and the derivatives of market shares
with respect to prices; all other variables only enter into the first-order conditions through
these. Second, demand must have a linear index structure. We state these conditions as
formal assumptions next, beginning with the former.

Assumption 7. (No Direct Effects of Primitives) For both the true model and the model
to be falsified, the first-order condition can be written as a function of only markups, market
shares, and price derivatives of demand ∂st

∂pt
.

Under Assumption 7, ∆mt = ∆m

(
st,

∂st
∂pt

)
so that the implied markup function for any

model m only depends directly on st and ∂st
∂pt

. In Appendix C, we demonstrate a range

∂c̄0j
∂wjt

is not known ex ante; but for a model where dpmℓt

dcjt

/
dpmjt

dcjt
differs from the truth, no value of ∂c̄mj

∂wjt
can

rationalize both price changes, so ωmjt can’t be mean-independent of wjt.
16Falsifiability does not require every product’s instruments zjt to include a shifter of every rival product’s

cost, just that there be some pair (j, ℓ), ℓ ̸= j, where [P−1
m P0]

⋆
j,ℓ ̸= 0 and zjt includes a shifter of c0ℓ.
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of conduct models which satisfy this assumption. These include all models where firms
act to maximize their profits under some assumption about how rival firms will respond to
their choices, such as Bertrand, Cournot, and Stackelberg; they also includes many collusive
models, and models of altruistic firms who maximize a weighted sum of own profits and
consumer surplus. For example, under Bertrand competition the implied markups are

∆Bt = −
[
Ω⊙

[
∂st
∂pt

]′]−1

st,

where Ω is the ownership matrix, with Ωij = 1 if products i and j are sold by the same
firm and zero otherwise. Here, we see that all primitives enter the equilibrium markup only
through their effects on

(
st,

∂st
∂pt

)
. The assumption is also satisfied by marginal cost pricing,

where ∆MCt = 0. However, the assumption fails in Keystone pricing, where pt enters the
implied markups directly: ∆Kt = 1

2
pt. The assumption also fails in models where firms’

objective functions depend in part on revenue rather than profit.
Under an additional assumption on the demand system, the effect of product character-

istics becomes very similar to the effect of cost shifters on markups:

Assumption 8. (Demand Index) Demand depends on xt and pt only through a one-
dimensional index δt = xtβ − αpt + ξt, with α > 0, all elements of β nonzero, and st =

s(xt, pt, ξt, ·) = s(δt, ·).

This assumption is satisfied when the demand system is logit or nested logit; it is not
generally satisfied for mixed logit demand models with random coefficients on either price
or characteristics, but we expect the added variation in richer models to make falsification
easier, not harder.17

Together, Assumptions 7 and 8 imply that the markup functions ∆0 and ∆m depend
on prices and product characteristics only through δt. This, in turn, implies that xt and ct

affect equilibrium markups only through the term xtβ − αct, and therefore that the effects
of marginal costs and product characteristics on markups are virtually identical. For intu-
ition, consider the Bertrand model with single-product firms. Instead of choosing prices,
we can think of firms directly choosing markups ∆jt to maximize (pjt − cjt)sj(δjt, δ−jt) =

∆jtsj
(
xjtβ − αcjt + ξjt − α∆jt, δ−jt

)
. The optimal ∆jt depends on market primitives only

through the term xjtβ−αcjt+ ξjt. The same logic extends easily to all the models discussed
in Appendix C.

17Alternatively, we can define δt = xtβ − pt and st = s (xt, pt, ξt, ·) = s (δt, ξt, ·). The proceeding results
still apply, and this admits mixed logit models as long as some product characteristic is a perfect substitute
for income.
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Example 4 : In Example 3, cost side instruments could not falsify Keystone or marginal
cost pricing when the truth is Cournot. Here, we consider falsification with demand side
instruments. Let xjt be a scalar characteristic of product j, and suppose z1t = x1t.

First, consider falsifying marginal cost pricing. Our example environment satisfies As-
sumption 8, and both the Cournot model and marginal cost pricing satisfy Assumption 7;
so for both models, x1t and c1t affect firm 1’s markups only through the term x1tβ − αc1t,
and therefore d∆1t

dx1t
= −β

α
d∆1t

dc1t
. Under Lemma 2, then, the model of marginal cost pricing will

be falsified if and only if d∆MC1t

dc1t
̸= d∆C1t

dc1t
. Indeed, under marginal cost pricing, markups are

zero, and therefore d∆MC1t

dc1t
= 0; while under Cournot, d∆C1t

dc1t
= [PCt]11 − 1 = − s1

s0+s1
̸= 0; so

the marginal cost pricing model is falsified.
Falsifying Keystone pricing is subtler, because markups ∆Kjt = 0.5pjt violate Assumption

7. However, since product characteristics do not move prices, demand side instruments have
neither a direct nor an indirect effect on markups, and d∆K1t

dx1t
= 0. As noted above, under

Cournot, d∆C1t

dx1t
= −β

α
d∆C1t

dc1t
= β

α
s1

s0+s1
̸= 0, so the Keystone model is falsified as well.

Finally, if the truth were Keystone, demand side instruments would be irrelevant for
falsifying marginal cost pricing, and vice versa, since d∆m1t

dx1t
= 0 for both models. •

Under Assumptions 7 and 8, demand side instruments shift markups in the same way as
marginal costs, suggesting that instrument relevance will be similar to cost side instruments.
However, while own cost shifters are not excluded from costs (and therefore can’t be used
to show a violation of the exclusion restriction), own product characteristics are excluded.
Whereas falsification using cost shifters depends on the off-diagonal terms of P−1

m P0, falsifi-
cation using demand side instruments can use the diagonal terms as well. We can formalize
this as follows:

Corollary 2. Suppose that for every product j, the vector of instruments zjt includes a
product characteristic of every product. Under Assumptions 1-8, model m is falsified by the
instruments zt if with positive probability over (wt, xt), the matrix [P−1

m P0]
⋆ is not equal to

the identity matrix.

The intuition is that the marginal effect of a product characteristic x(k)ℓt on the inferred
costs of product j under model m is proportional to (I − P−1

mt P0t)jℓ. Thus, if this term is
nonzero in expectation for some values of observables, a change in x(k)ℓt would lead to changes
in the mean of cmjt; since product characteristics used as instruments are excluded from costs,
this would again violate the restriction that ωmjt is mean-independent of the instruments.

Loosely, while falsifying a model with cost side instruments requires that P−1
mt P0t is not

diagonal on average, falsifying a model with demand side instruments only requires that
P−1
mt P0t ̸= I. Thus, when α and β are both non-zero, it is easier to falsify model m using
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product characteristics: under Assumptions 1-8 any model which is falsified by rival cost
shifters is also falsified by product characteristics. This is because under Assumptions 7
and 8, the effect of product characteristics on markups is nearly identical to the effect of
marginal costs, but scaled by demand system parameters β and α which are already known
rather than through a cost function c̄mj(·) which is ex ante unknown. This allows demand
side instruments to target the entire pass-through matrix, not just the ratio of off-diagonal
to diagonal elements, allowing falsification whenever (loosely) Pm ̸= P0. In the more general
case where either Assumption 7 or 8 does not hold, however, demand side instruments target
a mix of pass-through and the direct effect of the instrument; this added effect likely helps
in falsifying incorrect models, but leaves the source of this falsification more opaque.

4.3 Tax Instruments

Next, we consider tax rates as another source of exogenous variation. Suppose that govern-
ments levy market-level unit and/or ad valorem taxes, at rates τt and vt, respectively.18 For
ad valorem taxes, we will work with νt, the fraction of the consumer’s payment received by
the firm, which is 1− vt when the tax is levied on the firm and 1/(1 + vt) when it is levied
on the consumer. For unit taxes, we will assume they are levied on firms.

In the presence of taxes, the after-tax version of the first order condition (1) is

νtpjt − τt = νt∆0jt + c0jt, (3)

where νtpjt − τt is the after-tax revenue received by the firm for product j in market t.
Similar to Assumption 5, we assume that taxes do not directly enter markups:

Assumption 9. (No Abnormal Effects of Tax Rates) The markup functions ∆0t and ∆mt

for the true model and the model to be falsified do not depend directly on tax rates.

This can be thought of as an assumption that taxes are fully salient and there is no avoid-
ance/evasion. For example, under the Keystone model markups are ∆Kjt =

1
2
pjt. In the

presence of a unit tax and no ad valorem tax, this means pKjt = 2(τt+cKjt); the firm perceives
the unit tax as part of its marginal costs. With an ad valorem tax instead, pKjt = 2cKjt/νt;
the firm sets price such that after-tax revenue is twice marginal cost.

If variation in taxes is available, and assumed to be exogenous, we can use it to con-
struct tax instruments. We can rewrite ωmt as ωmjt = νt∆0jt − νt∆mjt + c̄0j(wjt)− c̄mj(wjt)

+ ω0jt. Falsification depends on the impossibility of finding a cost function c̄mj giving
E[ωmjt|wjt, zt] = 0; since E[ω0jt|zt] = 0 and the instruments are excluded from c̄0j and c̄mj,

18Note that taxes apply uniformly to all products, so τt and νt are scalars, not vectors.
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falsification occurs if E[νt(∆0jt −∆mjt)|wjt, zt] varies with the instrument. Under Assump-
tion 9, ∂∆mjt

∂zt
=

∂∆0jt

∂zt
= 0 for either type of tax instrument; this lets us restate the falsifiable

restriction as follows.

Proposition 2. Under Assumptions 1-6 and 9, a model m is falsified by the tax instrument
zt if and only if for some j,

E

[
νt
(
P−1
mt − P−1

0t

)
j

dp0
dzt

+
(
∆0jt −∆mjt

) dνt
dzt

| wjt, zjt

]
̸= 0 w.p.p. (4)

That is, after ruling out any direct effect of the instrument entering the markup function,
the marginal impact of an instrument on the across-model difference in (after-tax) markups
still has two potential effects: the indirect effect through prices, and a new effect if the
instrument is correlated with the ad valorem tax rate. We now discuss the relevance of unit
taxes and ad valorem taxes in turn.

Unit Tax Instruments: We first consider unit tax instruments. For each model m, there is
an implied “composite” marginal cost c̃mjt = c̄mt(wjt) + τt+ωmjt, such that νt(pjt−∆mjt) =

c̃mjt. Therefore, marginal cost is composed of two types of observed cost shifters: wjt which
enters in an ex ante unknown way, and τt which enters additively with a known coefficient
of 1. Since this coefficient is known ex ante, variation in a firm’s own marginal cost induced
by the unit tax can serve as exogenous variation for distinguishing conduct.

We noted in Example 4 that in our example environment, traditional demand side instru-
ments fail to falsify a model of marginal cost pricing when the true model is Keystone pricing.
Further, since marginal cost pricing and Keystone both have diagonal pass-through matrices,
instruments based on rival cost shifters would also fail to falsify marginal cost pricing under
Keystone truth. Here, we illustrate that unit tax instruments do allow falsification.

Example 5 : Fix νt = 1 (no ad valorem tax), and suppose that we observe variation in a unit
tax which is levied on both firms, τt, so that zt = τt. Further suppose we are in a simplified
environment where the unobservables and other cost shifters are held fixed. Under Keystone,
∆0jt =

1
2
pjt, and under marginal cost pricing, ∆mjt = 0, so the tax rate τt does not enter

directly into either markup function. Further, P0t = 2I and Pmt = I, and under the true
model, dp0

dτt
= [ 22 ], since unit variation in τt moves both firms’ costs by 1, increasing both

prices by 2 under the true model (Keystone). Under Proposition 2, then, falsification occurs
because

(
P−1
mt − P−1

0t

)
1

dp0
dτt

=
(
[1 0]−

[
1
2

0
])

[ 22 ] ̸= 0. •

In our general environment, we can establish the following:
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Corollary 3. Suppose that for each product j, the instrument zt is the unit tax τt. Under
Assumptions 1-6 and 9, model m is falsified by the instrument if with positive probability
over (wt, zt), the matrix [P−1

m P0]
⋆ has some row whose elements do not sum to 1.

While the tax rate acts as a cost shifter, there are two important features that make this
result different from Corollary 1. First, because the unit tax shifts marginal costs additively,
the variation in unit tax rates is not needed to estimate the effect of τt on marginal cost,
and can therefore be used as instrumental variation. In contrast with other cost shifters,
this makes the instrument relevant for falsification even when the true model and the model
to be falsified both have diagonal pass-through matrices. However, the unit tax applies to
all products equally, rather than shifting marginal costs of one product at a time. For this
reason, there may be non-diagonal pass-through matrices for which unit tax instruments do
not permit falsification. For example, take P0t = [ 0.8 0.2

0.2 0.8 ] and Pmt = [ 1 0
0 1 ]: under either of

these two conduct models, a unit increase in the tax rate increases both products’ prices by
1, making them observationally equivalent.19

Ad Valorem Tax Instruments: Next, we consider the relevance of ad valorem tax in-
struments. Inspection of Equation (3) shows that while unit taxes have an additive effect
on markups (or costs), ad valorem taxes instead have a multiplicative effect on markups.
This allows variation in the tax rate to distinguish models with different average levels of
markups, not only those models with different pass-through matrices. Variation in ad val-
orem tax rates therefore allows falsification in some cases where it would be impossible with
any of the other instruments considered so far.

Example 6 : Return to the example environment, and suppose the true model is one in
which pre-tax markups are set to a constant level ζ0 across markets, so that ∆0jt = ζ0j.
We consider falsifying a model in which firms set constant markups ∆mt = ζm ̸= ζ0. Now,
P0t = Pmt = I. Variation in product characteristics, rival cost shifters, or unit taxes have
no effect on markups, making cost side, demand side and unit tax instruments irrelevant for
falsification. However, when using ad valorem tax instruments, the falsification condition
in Proposition 2 becomes E [ζm − ζ0 | wt, νt] ̸= 0, which holds for any ζm ̸= ζ0. Thus, ad
valorem taxes are relevant instruments for distinguishing constant markup models. •

This example generalizes to the following corollary:
19If the government levied product-specific unit taxes, then falsification would obtain, as Pmt ̸= P0t.
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Corollary 4. Suppose that for each product j, the instrument zjt is νt, a transformation
of the ad valorem tax rate. Let Assumptions 1-6 and 9 hold. Further suppose that either
Pmt = P0t or the instrument does not move prices under the true model. Model m is still
falsified as long as E [∆mt|wt, νt] ̸= E [∆0t|wt, νt] w.p.p. over (wt, νt).

Note that if Pmt ̸= P0t and the tax rate does move equilibrium prices, then the two terms
in Equation (4) are both nonzero, and could theoretically cancel each other out. In fact,
this happens for all rule-of-thumb models where after-tax revenue is set to a fixed multiple
of (non-tax) marginal costs: if νtpjt = ϕmcmjt, then νt∆mjt = (ϕm − 1)cmjt does not change
with νt, making falsification of the “wrong” model within this class impossible. For models
outside this rule-of-thumb class, the two effects are unlikely to cancel: for example, when
comparing Bertrand and Cournot competition, the model with higher markups (Cournot,
see Magnolfi, Quint, Sullivan, and Waldfogel, 2022b) is typically associated with lower cost
pass-through, which gives the two terms in Equation (4) the same sign, ensuring falsification
of the wrong model.

Corollaries 3 and 4, and the discussion above, illustrate the usefulness of tax rates as
instruments for conduct. Tax rates enter the equilibrium first-order conditions directly,
without introducing additional parameters to be estimated. This enables researchers to use
variation in tax rates to distinguish models of conduct even when other instruments fail,
or to falsify classes of models that other instruments may not. In addition, as shown in
Propositions 1 and 2 , the marginal effect of an instrument on prices plays an important role
in its ability to distinguish between models of conduct, and there is a long line of empirical
literature documenting the strong effects of tax rate changes on prices (see, e.g., ? and the
references therein).20

5 Instrument Selection for Counterfactuals

Researchers often want to know the correct model of conduct not for its own sake, but to per-
form counterfactual analyses. Different counterfactual exercises depend on different features
of the model; our falsification framework can identify instruments that target these partic-
ular features, making the counterfactuals more credible. As an illustration, we consider the
problem of maximizing tax revenue by learning the Laffer curve, which has garnered recent in-
terest (Miravete et al., 2018; Hollenbeck and Uetake, 2021; Brugués and De Simone, 2024).21

20In contrast, DellaVigna and Gentzkow (2019) provide evidence that some types of demand shifters may
only have weak effects on prices in the data-generating process. This also appears to be an issue for other
common conduct instruments, leading to inferential problems (Backus et al., 2021; Duarte et al., 2024).

21The insights in this section readily extend to other optimal tax policy settings: for example, if the
government wished to maximize a convex combination of revenue and consumer surplus.
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5.1 Learning the Laffer Curve

Counterfactual predictions are essential to understanding the Laffer curve, as taxes usually
have limited support in the data. The policymaker must use the model to forecast revenue
at unobserved tax rates. We limit attention to the optimal tax in a single market, t, for
expositional parsimony. Government revenues in market t for any tax rates (ν, τ) are

Rt(ν, τ) = τ
∑
j

sjt
(
p0t(ν, τ)

)
+ (1− ν)

∑
j

p0jt(ν, τ)sjt
(
p0t(ν, τ)

)
. (5)

This expression emphasizes that market shares depend on prices, and prices on tax rates;
all other primitives are held constant and suppressed. The observed price pt = p0t(νt, τt)

corresponds to the current tax rates (νt, τt). The policymaker knows the revenue at observed
tax rates, but must use a model m to predict counterfactual prices pmt(ν, τ) and therefore
revenue at other rates. Recent literature (Miravete et al., 2018; Hollenbeck and Uetake, 2021)
shows that the Laffer curve can differ substantially across different models. The policymaker,
not observing the true conduct model, wants the model that best matches the true Laffer
curve. Our framework sheds light on the link between falsification by particular instruments
and the counterfactual Laffer curve.

We assume the government optimizes one tax rate, keeping the other fixed. Our appli-
cation to the Washington cannabis market exemplifies this: the government only uses an ad
valorem tax. We analyze the Laffer curves for unit and ad valorem tax rates separately.

Unit Tax: Fix the ad valorem tax at its observed level ν = νt and allow the unit tax to vary.
Equation (5) reveals which aspect of firm conduct determines the Laffer curve. Assuming
the demand function sjt(·) is identified, we need only identify p0t(νt, ·), the effect of unit tax
on prices. Applying the Implicit Function Theorem to Equation (3) yields dp0t

dτ = 1
νt
P0t(τ)ι,

where ι is a J-vector of ones.22

Corollary 5. Under Assumptions 1-6 and 9, if Pmtι = P0tι everywhere, then model m
produces the true Laffer curve for the unit tax.

The proof, detailed in the Appendix A, can be summarized as follows. All models are con-
structed to rationalize observed prices, so pmt(τt) = p0t(τt) = pt. With νt fixed, Pmtι = P0tι

22Formally, stack Equation (3) and rewrite it as νtpt − νt∆0t − τtι = 0. With νt fixed, define F (pt, τt) as
the left-hand side, so p0t(τ) is implicitly defined as the solution to F (p0t(τ), τ) = 0. The Implicit Function

Theorem then gives dp0t

dτ = −
(

∂F
∂pt

)−1
∂F
∂τt

= −
(
νtI − νt

∂∆0t

∂pt

)−1

(−ι) under Assumption 9. As shown in the

text, P0t =
(
I − ∂∆0t

∂pt

)−1

, and therefore dp0t

dτt
= 1

νt
P0tι.
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is sufficient for the derivatives of pmt(·) and p0t(·) to match everywhere, making these func-
tions identical and resulting in identical Laffer curves. Thus, Corollary 5 shows that model m
yields the correct optimal tax when the row sums of the model’s pass-through matrix equals
that of the data-generating pass-through matrix, a weaker requirement than Pmt = P0t.

Using the unit tax as an instrument creates a close link between the falsification con-
dition in Proposition 2 and the Laffer curve equivalence condition in Corollary 5. With a
single unit tax applying to all products, the falsification condition in Equation (4) simplifies
to: E

[
P−1
mt (P0tι− Pmtι) | wt, τt

]
̸= 0. Therefore, model m is not falsified when Pmtι = P0tι

almost surely on the data’s support. Thus, using the unit tax as the instrument directly tar-
gets the most relevant part of the pass-through matrix for the unit tax policy counterfactual.
Example 7 further illustrates this connection.

Example 7 : Consider the simple environment of Example 1 where the true model is Keystone
pricing and the alternative model is Bertrand. Under Proposition 2, variation in a unit tax,
which moves own and rival cost, falsifies Bertrand as PBtι < 1 < 2 = PKtι. Further, since
PBtι ̸= PKtι, the Laffer curve under Bertrand differs from the truth. Now consider falsifying
a shifted Keystone model (m = S) whereby pjt = 2cjt + ζjt, where ζjt is a constant. Notice
that, since PSt = PKt and therefore PStι = PKtι, the shifted Keystone model is not falsified
by the unit tax instrument. However, because the pass-through matrices are the same, the
two models imply the same unit tax Laffer curve. Thus, while variation in the unit tax may
not falsify all wrong models, it will permit the researcher to learn the true Laffer curve. •

Ad Valorem Tax: Now fixing the unit tax at τ = τt, we examine the Laffer curve for the ad
valorem tax. With demand identified, accurately capturing the tax’s effect on prices is once
again the key step. Applying the Implicit Function Theorem to Equation (3) yields dp0t

dν =
1
ν
P0t(ν)(∆0t(ν)−p0t(ν)), where only ν varies and we suppress dependence on other arguments.

The key term to determine the Laffer curve is P0t(∆0t − p0t). This resembles the unit tax
case, with ∆0t − p0t replacing ι due to νt’s multiplicative entry in the equilibrium condition.
As before, imposing model m will result in a potentially different implied Laffer curve.

Corollary 6. Under Assumptions 1-6 and 9, if Pmt(∆mt − pmt) = P0t(∆0t − p0t) whenever
pmt = p0t, then model m produces the true Laffer curve for the ad valorem tax.

A consequence of Corollary 6 is that any rule-of-thumb model where markups are a
constant fraction of prices – such as Keystone and marginal cost pricing – will yield the
same Laffer curve.23 For model m in the rule-of-thumb class, ∆mt = ψmpt, and Pmt = 1

1−ψm
I

and (∆mt − pt) = (ψm − 1)pt so that Pmt (∆mt − pt) = −pt, which does not depend on ψm.
23For Keystone, ∆Kt = 0.5pt, while for marginal cost pricing, ∆MCt = 0× pt.

23



Using the ad valorem tax as a conduct instrument links falsification to the optimal tax
counterfactual. Because pt = p0t = pmt in the data, the falsification condition in Equation

(4) simplifies to E
[
P−1
mt

(
P0t (∆0t − pt)− Pmt (∆mt − pt)

)
| wt, νt

]
̸= 0. If Pmt (∆mt − pt) =

P0t (∆0t − pt) almost surely in the support of the data, model m is not falsified. Thus, the
ad valorem tax instrument targets the most relevant objects for the tax counterfactual.

5.2 Counterfactual-Relevant Instruments: A Discussion

Corollaries 5 and 6 show that the tax rate itself is the most relevant instrument to learn
conduct to find the Laffer curve, as it targets the most crucial aspects of pass-through
and markups. However, this raises a question: if we observe both tax rates and market
outcomes, why use a structural model instead of simply identifying the tax rate with the
highest observed revenue? In real-world data, variation in observed tax rates is often limited,
while finding the optimal tax requires inferring revenue for every potential tax rate. Using
the existing variation in taxes allows us to learn the model of conduct that best fits the
features of the data relevant to the Laffer curve. However, when the data does not contain
any variation in the tax rate of interest, a researcher can use our framework to understand
the tradeoffs involved in selecting another instrument (i.e., the other tax rate, rival cost
shifters, or product characteristics) to learn conduct and subsequently the Laffer curve.

To illustrate how our framework informs selecting “second best” instruments, consider
the case of setting an optimal unit tax. The key object is P0tι, which the unit tax instru-
ment directly targets. Insofar as variation in the ad valorem tax rate exists, it may seem
intuitive to use variation in the “other tax” to learn conduct and the Laffer curve. However,
our results above show that the ad valorem tax targets P0t (∆0t − p0t), making it generally
difficult to target P0tι with these instruments. In the special case where marginal costs are
the same for all products, so that c0jt = c∗0t and cmjt = c∗mt for all (j, t), falsifiability requires
E
[

1

ν
2
t

P−1
mt (c

∗
0tP0tι− c∗mtPmtι) | wt, νt

]
̸= 0. At best, the ad valorem tax instrument can only

target P0tι up to an unknown, market-varying scale factor c∗0t. Thus, it appears that the ad
valorem tax instrument cannot be first-best for the unit tax Laffer curve.

With demand side and cost side instruments, the situation is more optimistic, though
there are tradeoffs. While our results in Section 4 show that demand and cost side instru-
ments do not generally target P0tι, cases exist where both target P0t directly. Outside of
the knife-edge case where the indirect and direct effects perfectly offset, demand side instru-
ments constructed with own and rival product characteristics simultaneously target both P0t

and the direct effect. Furthermore, when the demand system satisfies Assumption 8 and
the conduct model satisfies Assumption 7, the demand side instruments target only P0t. For
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cost side instruments, consider the special case where marginal cost depends additively a
special shifter w∗

jt such that cjt = c̄jt+ γw∗
jt+ω0jt. When a researcher both observes w∗ and

knows the value of γ (e.g., for observed wholesale prices, γ = 1), they can use variation in
own and rival w∗ to construct instruments. These instruments function like product-specific
unit taxes, and it is straightforward to show that they target P0t.

The benefit of targeting P0t is that models where Pmt = P0t will deliver the true Laffer
curve. The downside is that targeting the full pass-through matrix P0t is stricter than target-
ing P0tι. This is potentially problematic because it implies that such instruments may falsify
models which deliver the true Laffer curve. One can circumvent this issue by constructing an
instrument from the market-level average of xjt or w∗

jt (across own and rival products). Under
Assumptions 7 and 8, using the average value of product characteristics x̄t as an instrument
yields the falsification condition β

α
E
[
P−1
mt (P0tι− Pmtι) | wt, x̃t, x̄t

]
̸= 0, where x̃jt = xjt− x̄t.

Similarly, when the special shifter w∗
jt is observed and γ is known, using w̄∗

t as the instrument
directly targets P0tι as the falsification condition becomes γE

[
P−1
mt (P0tι− Pmtι) | w̃t, w̄t

]
̸=

0. In either case, the market-level average instrument targets P0tι directly.
Consider now the case of setting an optimal ad valorem tax. Both pass-through and the

level of markups determine the ad valorem Laffer curve, and no instrument other than ad
valorem taxes targets both of these objects. Which instrument is second-best in this case de-
pends on the relative importance of indirect and level effects, which will vary by application.

Overall, these examples show how researchers can use our falsification framework to un-
derstand the tradeoffs inherent to various instruments. In the case of Laffer curves, imposing
additional assumptions – e.g., linearity, known coefficients, and index restrictions – can en-
able researchers to effectively replicate the first-best conduct instrument. These assumptions
can be supported by economic intuition and institutional knowledge, and in some cases they
are testable.24 Whether such a replication is possible depends on the counterfactual at hand.

6 Monte Carlo Simulations

We further illustrate the main results of the paper with simulations tied to the examples
described in the preceding sections. To align the environment with the falsification frame-
work, we simulate data for 50,000 markets using the simulation class in PyBLP (Conlon and
Gortmaker, 2020). In each market t, the number of single-product firms Jt is a randomly
chosen integer between two to ten, leaving us with 319,719 observations in the sample. We
adopt a simple logit demand system, in line with our falsification examples.

The parameterization of demand results in a mean own price elasticity of -8.59 and
24For example, the demand side index restriction in Assumption 8 is testable.

25



diversion to the outside option of 0.37. On the supply side, we assume that the marginal
costs are a linear function of two observed cost shifters, which are excluded from demand,
and of ω0jt, the true unobserved cost shock. The government levies both a unit tax (τt)
and an ad valorem tax (vt) on all products in market t. The unit tax is remitted by the
firms while consumers remit the ad valorem tax. We assume that the true model of conduct
is Keystone pricing, whereby firms set tax exclusive prices as twice their marginal cost, or
νtpjt = 2cjt + 2τt. Full details of our simulation environment are available in Appendix D.

6.1 Testing with Rivers and Vuong (2002)

The researcher considers a menu of four models: the true Keystone model (m = K), Bertrand
(m = B), Cournot (m = C), and a shifted Keystone model (m = S). For the shifted
Keystone model, νtpjt = νtη + 2cmjt + 2τt, where a fixed η = 1 is added to markups for all
products in all markets. To make inferences on firm conduct in finite samples, the researcher
adopts the model selection test in Rivers and Vuong (2002) (RV). For the RV test, the null
hypothesis states that two competing models of conduct m = 1, 2 have the same lack-of-fit,
or HRV

0 : Q1 = Q2, while the alternatives correspond to superior fit of one of the two models,
HRV

1 : Q1 < Q2 and HRV
2 : Q2 < Q1. With this formulation of the hypotheses, the testing

procedure determines which of the two models has the smallest lack of fit.
As in Duarte et al. (2024), we express Qm as a GMM objective function Qm = g′mWgm,

where gm = E[zjtωmjt] and W = E[zjtz
′
jt]

−1 is the weight matrix. For this GMM measure of
fit, the RV test statistic is then

TRV =

√
n(Q̂1 − Q̂2)

σ̂RV
,

where Q̂m = ĝ′mŴ ĝm, ĝm = n−1ẑ′ω̂m, Ŵ = n(ẑ′ẑ)−1, and σ̂2
RV is an estimator for the

asymptotic variance of
√
n(Q̂1 − Q̂2).

25

By imposing the true demand system, and considering the true model as one of the
alternatives, the RV test has a close connection to the falsification framework. Suppose the
true model is model 1; then Q̂1 ≃ 0 in large samples. Then, the numerator of the RV test
coincides with the falsifiable restriction for model 2, and rejection of the RV null in favor
of model 1 coincides with the falsification of model 2. However, when both models are not
falsified, the RV test statistic is degenerate, causing severe inferential problems. Thus, the
F−statistic diagnostic from Duarte et al. (2024) can be used as finite-sample evidence of
instrument relevance. In addition to this ex-post diagnostic, the results in Sections 4 and

25See Duarte et al. (2024) for a variance estimator accounting for randomness in Ŵ and ĝm.
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5 show how a researcher can use the economics of pass-through implied by the models of
conduct being tested to choose ex-ante potentially relevant instruments.

To perform testing, we consider four sets of instruments: the unit tax τt, the ad valorem
tax vt, cost side instruments (the sum of rival cost shifters in a market, denoted as “Riv.
Cost”), and demand side instruments (the number of rival products in a market and the sum
of rival product characteristics, denoted as “Riv. BLP”), which we also pair with own charac-
teristics (“Riv. BLP + Own x’s”). We run the RV test separately with each instrument set.

6.2 Simulation Results

Test Results: Table 1 presents the results of testing all pairs of models. Examples 1-6
suggest that when testing Bertrand against Keystone, all instruments should be relevant.26

Table 1: Test Results for Simulated Data

Instruments:
Statistic Unit Tax Ad Valorem Tax Riv. Cost Riv. BLP Riv. BLP + Own x’s

(1) (2) (3) (4) (5)

Panel A: Bertrand vs. Keystone
TRV 25.2 16.1 9.8 16.3 29.4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 249.3 138.1 21.2 44.8 157.6
† † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧

Panel B: Cournot vs. Keystone
TRV 23.7 23.4 −0.0 0.7 40.8

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 47.8 46.8 0.1 0.0 66.8
† † † ∧ ∧∧ † † † ∧ ∧∧ † † † † † † † † † ∧ ∧∧

Panel C: Shifted Keystone vs. Keystone
TRV −0.1 4.8 0.6 0.5 0.5

∗ ∗ ∗

The table reports, for each set of instruments and pair of models, the RV test statistics TRV. Panels A and B
also report the effective F -statistic (Duarte et al., 2024); we don’t report it in Panel C as the pair of models
does not satisfy Assumption 2 in Duarte et al. (2024). Columns 1-5 correspond to different instruments; panels
A-C correspond to three different pairs of models. A positive RV test statistic suggests a better fit of Keystone.
The symbol ∗ ∗ ∗ indicates rejection of the null of equal fit 0.01 confidence level. The symbols † † † and ∧∧∧
indicated that F is above the appropriate critical values for worst-case size below 0.075, and best-case power
above 0.95, respectively. Both TRV and the F -statistics account for market level clustering. n = 319, 719.

We see in Panel A that the RV test statistics are all positive for this pair of models and
are well above 1.96, so that the null is rejected in favor of Keystone. When testing Bertrand

26A table in Appendix E summarizes instrument relevance results for these examples.
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against Keystone, the F -statistics are all larger than the critical values for worst-case size of
0.075 and best-case power of 0.95, suggesting all instruments are relevant.

By contrast, Example 3 suggests that variation in rival product characteristics and rival
cost shifters are irrelevant for falsifying Cournot against Keystone when demand is logit. We
see in Columns 3-4 of Panel B that these instruments have virtually no power and the null
is not rejected. Example 4 however suggests that variation in own product characteristics,
which can pick up on differences in the main diagonal of the pass-through matrices, should
falsify Cournot. In Column 5, we see that including own product characteristics creates rele-
vant instruments which reject the null in favor of the true Keystone model. Examples 5 and
6 suggest that the tax instruments are relevant: Columns 1-2 show that these instruments
are strong for size and power and reject the null in favor of Keystone.

Finally, when testing the shifted Keystone model against Keystone (Panel C), both mod-
els have the same pass-through matrices as discussed in Example 7. Thus, we expect the unit
tax, product characteristics (own and rival), and rival cost shifters (Columns 1,3-5) to be irrel-
evant, and TRV is close to zero in those cases. However, the level of the markups differs across
the two models. Ad valorem tax instruments (Column 2), which can falsify a wrong model
based on the level effect, strongly reject the shifted Keystone model in favor of Keystone.

Laffer Curve: Next, we consider the tax implications of the models tested above. To
mimic the problem facing a state government setting a single tax rate across many markets,
we randomly select 500 of the 50,000 markets in our simulated data. In Panel A of Figure 1,
we compute the Laffer curve for the unit tax, holding the ad valorem tax fixed at the levels
in the simulated data. To obtain the Laffer curve under a given model of conduct, we first
back out cmjt, the implied marginal cost under that model. Holding demand and cost fixed,
we then solve for equilibrium at each level of the tax and compute the associated revenue.

From the results in Table 1, we find that Keystone and shifted Keystone are the two
models that are not falsified by unit tax instruments, as they feature the same pass-through
matrices. Furthermore, in line with Corollary 5, we see in Panel A of Figure 1 that these
models imply the same Laffer curve. Conversely, since Bertrand and Cournot yield different
Laffer curves than the true one, they have different Pmtι than Keystone, which permits the
falsification of these models with unit tax instruments (Panels A and B of Table 1).

In Panel B of Figure 1, we compute the Laffer curve for the ad valorem tax, holding the
unit tax fixed at their simulated levels and following the same steps outlined for Panel A. In
Table 1, we find that Keystone is the only model not falsified by ad valorem tax instruments.
This is in line with Corollary 6: the other models all produce a different Laffer curve, thus
have different Pmt(∆mt − pt), and are therefore falsified by ad valorem tax instruments.

These results illustrate three ways in which our falsification framework can be used. First,
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Figure 1: Laffer Curve for Unit and Ad Valorem Taxes
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Figure illustrates the Laffer curve implied by different models of conduct. In Panel A, we hold fixed the ad
valorem tax in each market and vary the unit tax from 0 to 5. In Panel B, we hold fixed the unit tax but vary
the ad valorem tax from zero to one. To compute the curves in each panel, we simulate counterfactual prices,
quantities, and government revenue at different levels of the appropriate tax for each candidate model.

the falsification results in Section 4 enable ex-ante instrument selection to avoid irrelevant
instruments. For instance, when testing Keystone versus Cournot, our results suggested that
cost side instruments would be irrelevant. Second, our framework can motivate instrument
choice for specific models. For instance, we found ad valorem tax instruments to be partic-
ularly useful to falsify the shifted Keystone model, which is otherwise hard to distinguish
from Keystone. Finally, when a researcher targets a specific counterfactual, as in Section 5,
they can use our framework to tailor the instrument choice for learning the optimal policy.

With these takeaways in mind, we now turn to an empirical setting where conduct is
unknown, and policymakers are interested in setting revenue-maximizing taxes.

7 Empirical Application

As an application of our results, we consider the problem of setting the optimal ad valorem
tax in Washington State’s marijuana market, which is well-suited for several reasons. First,
setting the optimal tax is an important consideration in this market, as revenues are sub-
stantial. Second, optimal taxes depend on conduct (Miravete et al., 2018; Hollenbeck and
Uetake, 2021), and it is unclear how well retailers’ conduct in this market aligns with stan-
dard structural models (Escudero, 2018; Hollenbeck et al., 2024). Third, our results suggest
that for a tax exercise, conduct would best be learned using an ad valorem tax instrument,
which is available in this market through local cannabis tax variation.

29



7.1 Institutional Background and Data

Washington legalized cannabis for medical use in 1998, and in 2012, through voter approval
and passage of I-502, was among the first states to legalize recreational cannabis.27 In July
of 2014, retail sales of cannabis began in Washington.

The state regulates the cannabis industry in several ways. First, there is a cap on
the number of retailers.28 Second, the state restricts vertical relations between producers
(growers), processors, and retailers. While producers and processors — those who convert
marijuana plants into various products — can integrate with one another, neither can inte-
grate with a retailer. Only retailers can sell cannabis products directly to consumers. Third,
the state assesses an ad valorem tax on cannabis sales. When cannabis was first legalized,
the state levied a 25% tax at each point of sale — from producers to processors, processors
to retailers, and retailers to consumers. In July 2015, this changed to a 37% tax on the final
sale to consumers only.29 Additionally, local municipalities imposed their own ad valorem
taxes, which range from seven to ten percent.

In part to enforce tax collection, the state tracks detailed “seed-to-sale” data on all
cannabis products. Our empirical application benefits from these unusually detailed data.
We construct a dataset containing product shares and prices for many markets. The un-
derlying data come from BioTrack, an administrative data collection software that tracks
cannabis from plant production and processing through retail (“seed-to-sale”).30 These data
include the universe of wholesaler and retailer transactions for cannabis products. Thus, for
every transaction, we observe prices paid both by consumers to retailers as well as by retail-
ers to wholesalers. Biotrack also collects supplemental information on the organizations in
the market, from which we observe when retailers began operating, and lab testing of plants,
from which we observe cannabis product CBD and THC content.

Due to the difficulty of comparing package size weights between different product types
(e.g. liquid, extracts, and solids), we only keep products labeled as “usable” marijuana (dried
leaves and flowers), which represent 72% of all transactions in the data. Within this category,
we subset to package sizes of 1 and 3.5 grams (following Escudero, 2018), which are by far
the most popular, accounting for 60% of usable product revenue.31 Features of the cannabis

27As of 2024, 38 states have legalized cannabis for medical use and 24 for recreational use.
28The Washington State Liquor and Cannabis Board initially limited the number of retailer licenses

to 334, and allocated licenses across counties proportional to population. In jurisdictions with too many
applications, licenses were assigned via lottery. In January 2016, the state increased the number of retail
licenses to 556. The state also caps the number of each licensee’s retail locations at three.

29Hansen, Miller, and Weber (2022) explore the effects of this tax change on the tendency for producers
and processors to vertically integrate.

30These tracking efforts are, in part, to thwart sales in neighboring states where cannabis was illegal.
31See Table 4 in Appendix F for a summary of all data cleaning steps.
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market complicate the observed prices in the raw data. Because cannabis is illegal at the
federal level, retailers accept cash payments and manually record transactions, resulting in
inconsistencies regarding whether reported prices included the tax. Hollenbeck and Uetake
(2021) correct for this, and we use their reconstructed tax-inclusive retail prices.32

We define a product to be a package size from a processor sold at a retailer in a month and
markets to be city-month pairs. We calculate a product’s price as the sales volume-weighted
average price. We define the market size to be twice the maximum amount ever purchased
in a given geographic market. We further draw 2000 consumers’ incomes from the empirical
distribution of income in each city, which we obtain from the US Census. The data include
prices and shares for 1,428 products across 2,639 markets from August 2014 to May 2017.

Appendix Table 5 displays summary statistics of the data used in estimation. Wholesalers
charge an average of $3.60 for a gram of cannabis, while retailers charge $7.60, on average.
While the average market has over 100 cannabis processors, retail market quotas restrict the
average market to 14 retailers. We follow the literature (Escudero, 2018; Hollenbeck and
Uetake, 2021) in concluding from these facts that wholesaler market power is unlikely to be
important, and we focus our attention on how retailers set prices instead.

Figure 2: Ratio of Retail and Wholesale Price

The figure plots densities of the ratio of retail and wholesale prices for each product in our data.

Figure 2 graphs the ratio of retail unit prices to wholesale unit prices. We see a mass
of ratios concentrated around two, lending credence to the hypothesis that firms engage in
Keystone pricing. A formal test follows in Section 7.3.

32Additional details on data construction can be found in Appendix A of Hollenbeck and Uetake (2021).
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7.2 Demand Estimation

We follow Hollenbeck and Uetake (2021) in adopting a random coefficient nested logit de-
mand model (Grigolon and Verboven, 2014). We briefly summarize our demand model here,
and provide a more detailed exposition in Appendix F.

Product characteristics include a constant, package size, THC and CBD levels (and their
values squared), and the log of the number of products offered in the store to capture variation
in shelf space across stores. We allow consumer preferences for characteristics and prices to
vary with individual-level income. We also include fixed effects at the retailer, processor,
and year-month levels. Our nesting structure includes all inside goods in one nest.

Following Hollenbeck and Uetake (2021) we construct demand instruments from several
sources of exogeneous variation. These include the number of products sold at competing
dispensaries in the market, also interacted with the mean income, BLP-style instruments
(sum of THC and CBD for products within a store, and for products in all other stores),
and exogenous own cost shifters (rainfall and temperature in the region of production and
their lags). We estimate demand using PyBLP (Conlon and Gortmaker, 2020).

Results for demand estimation are reported in Appendix Table 6. Similar to Hollenbeck
and Uetake (2021), we find a positive interaction between income and price and a negative
interaction between income and the constant. We also find that consumers prefer products
with a higher level of THC, though at a declining rate, while they dislike products with higher
levels of CBD. The median own-price elasticity in our sample is -6.451 suggesting a fair de-
gree of substitution across strands of usable marijuana. Inspection of the aggregate elasticity
allows comparison to the results in Hollenbeck and Uetake (2021), who aggregate products of
the same type within a store, and to demand for related products (e.g., liquor). Our aggre-
gate elasticity of -3.32 (-2.9 when weighted by market size) is in line with median own-price
elasticity in Hollenbeck and Uetake (2021) (-2.89) and broadly similar to the aggregate elas-
ticity in the Pennsylvania liquor market found in Miravete, Seim, and Thurk (2020) (-2.48).

One potential concern is that our implementation of the RCNL model restricts the range
of curvature of demand (Miravete et al., 2024). In turn, misspecifying demand in this way
can lead to restrictions on the pass-through implied by certain models of conduct (e.g.,
Bertrand). Because we show, in the previous section, that differences in pass-through matri-
ces help distinguish different models of conduct, this potential misspecification could affect
our test results. Miravete et al. (2024) allow for greater flexibility in modeling heterogeneous
price sensitivity by incorporating a Box-Cox transformation of the income interaction. They
show that this can greatly increase the range of curvature implied by discrete choice demand
models. Without micro-data, we lack sufficient identifying power to pin down the additional
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parameters required by this approach. Instead, in Appendix G, we calibrate different ap-
proximations for the Box-Cox transformations for income and include them in the RCNL
demand system. We find that our testing results are unaffected.

7.3 Test for Conduct

Models of Conduct: We consider three models of conduct that are discussed in previous
literature for this market: (i) Marginal Cost Pricing—retailers choose tax-exclusive prices
equal to marginal cost; (ii) Keystone Pricing—retailers choose tax-exclusive prices equal to
twice marginal cost; and (iii) Bertrand Pricing (Nash Price Setting)—retailers set prices
competitively to maximize profits in the complete information pricing game (considered in
Hollenbeck and Uetake, 2021). Escudero (2018) provides some descriptive evidence that
Keystone pricing is plausible in the market during our sample period, while Hollenbeck et al.
(2024) provide evidence of strategic interactions in a later period. It is thus unclear a priori
which model best fits the data during our sample period.

For the first two models, implied costs and markups can be immediately computed from
observed prices. Given our demand estimates, we can also compute ∆B and cB for the
Bertrand model. We specify marginal cost as the sum of observed wholesale prices pW and
additional retail costs. In turn, these include a linear function of observed shifters w and an
unobserved shock. The vector wjt includes product fixed effects.33

Inspection of Implied Costs and Markups: Before performing formal testing, we in-
spect the data and the implications of different models for markups and costs. Given that
we observe wholesale prices, and that these likely make up a large fraction of the marginal
cost of selling a product, it is natural to compare the model-implied costs to these prices.
Figure 3 reports the distributions of implied costs for all models, as well as the observed
wholesale prices in dollars per gram. We notice first that Keystone implies lower marginal
costs than Bertrand which in turn implies lower marginal costs than marginal cost pricing.
While the distribution of the Keystone implied costs is close to the distribution of wholesale
prices, the other models’ implied cost distributions are far from wholesale prices.

The descriptive statistics reported in Table 2 further shed light on the differences across
the three models. The fit as measured by RMSE of implied costs with respect to observed
wholesale prices is substantially better for Keystone. Moreover, wholesale prices represent
on average 98% of the Keystone total marginal cost. In contrast, marginal cost pricing and
Bertrand imply that wholesale prices represents only 49% and 65% of retail marginal costs, re-
spectively. Inspection of markups reveals that while firms have market power under Bertrand,

33In Appendix G, we show the robustness of our test results to alternative specifications of cost.
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Figure 3: Model Implied Marginal Costs
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markups are even higher under Keystone pricing. While not conclusive, our descriptive anal-
ysis suggests that the Keystone model is the most reasonable of the three and that the model
of marginal cost pricing is implausible in this market. Additionally, our findings in Section 5.1
indicate that both Keystone and marginal cost pricing will produce the same counterfactual
Laffer curve for the ad valorem tax because they have identical ad valorem tax pass-through.
Thus, going forward, we focus on distinguishing Bertrand from Keystone.

Table 2: Descriptive Statistics of Model Implied Markups and Costs

Statistic MC Pricing Keystone Bertrand

RMSE of cm and pW 4.38 0.78 3.02
Mean pW /cm 0.49 0.98 0.66

Mean ∆m/p 0 0.50 0.22
Mean ∆m($) 0 3.84 1.56
25th percentile ∆m($) 0 3.10 1.19
50th percentile ∆m($) 0 3.75 1.30
75th percentile ∆m($) 0 4.45 1.76

We report descriptive statistics of measures of model implied markups and costs. Each column corresponds
to a different model of conduct.

Implementation of the Test: To make inference on firm conduct in finite samples, we
adopt the model selection test in Rivers and Vuong (2002) (RV) introduced in Section 6,
which requires instruments. Because we have variation in the data in state-wide and local
ad valorem taxes, our results in Section 5 suggest that for an optimal ad valorem taxation
counterfactual, we should use ad valorem tax instruments. However, if the researcher has
a different objective, such as learning conduct for its own sake, they may want to consider
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different sets of relevant instruments. In addition to taxes, three other sources of variation in
the data should be relevant for testing. These are (i) rival cost shifters - RC (sum of rainfall,
temperature, and their lags); (ii) product characteristics - PC (own and rival number of
products, total own and rival CBD and THC); (iii) wholesale prices - WP. In our setting,
wholesale prices are functionally equivalent to product-specific unit tax rates.

While all of these instruments are exogenous under standard assumptions (including
marginal cost pricing upstream), their relevance can be analyzed in light of our falsification
framework. Assuming that the true model is one of the two candidates we test in this
application, any of these instruments is plausibly relevant, i.e. capable of falsifying the wrong
model, as shown in the previous examples. However, we also learn that different instruments
leverage different features of the pass-through matrix to distinguish models of conduct. Thus,
using each set of instruments separately to perform the test will provide robust evidence.

Beyond our falsification results, the ability of different sets of instruments to falsify
conduct in a finite sample will depend on the variation present in the data. To assess the
strength of instruments in the data, we report values of the F -statistic for the RV test
developed in Duarte et al. (2024).

Test Results: We test the Bertrand and Keystone model using the RV test with Tax, RC,
PC, and WP instruments. We report the results in Table 3.34

Table 3: Test Results

Instruments:

(Preferred) (Other Instruments)

Statistic Tax RC PC WP

(1) (2) (3) (4)

TRV 13.519 3.767 9.555 17.037

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 34.338 2.126 18.653 1,639.6

† † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧

The table reports, for each set of instruments, the RV test statistics TRV and the effective F -statistic
(Duarte et al., 2024) for testing Bertrand versus Keystone. A positive RV test statistic suggests a better
fit of Keystone. The symbol ∗ ∗ ∗ indicates rejection of the null of equal fit 0.01 confidence level. The
symbols † † † and ∧ ∧ ∧ indicated that F is above the appropriate critical values for worst-case size below
0.075, and best-case power above 0.95, respectively. Both TRV and the F -statistics account for two-step
estimation error and clustering at the market level. n = 187, 499.

In each column – corresponding to a set of instruments – the table reports the RV test
statistic TRV and the effective F -statistic (Duarte et al., 2024) for testing Bertrand versus

34Results are obtained with pyRVtest (Duarte, Magnolfi, Sølvsten, Sullivan, and Tarascina, 2022).
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Keystone. A positive value of the RV test statistic above 1.96 indicates rejection of the
null of equal fit in favor of better fit for Keystone at the 0.05 confidence level. All sets of
instruments decisively reject the null in favor of Keystone. Given that we observe rejection,
we are not concerned by low power, but we may still be concerned that these results are due
to weak instruments leading to size distortions. For all instruments, F is above the critical
value for the worst-case size of 0.075, suggesting size distortions are likely to be minimal.

Table 3 provides strong evidence that Keystone better describes conduct in this market.
Across sets of instruments, each leveraging different features of the two models, the data
consistently support Keystone as the superior model of conduct during our sample period,
compared to Bertrand. In the next section, we explore how performing counterfactuals under
the Keystone model has important implications for public policy.

7.4 Counterfactuals

We perform three counterfactual exercises to illustrate the importance of learning conduct
for optimal tax policy, focusing on the problem of setting the state-level ad valorem tax for
the year 2016. While the government may have other considerations when setting taxes (e.g.,
curbing consumption to address externalities), we focus solely on revenue raised from the
tax. Throughout, we hold market structure and local taxes fixed at their levels in the data.

The first two exercises highlight the importance of learning firm conduct for optimal tax
policy counterfactuals. In both, we hold the primitives of demand and cost fixed and only
vary the form of conduct. As policymakers might use wholesale price as a proxy for marginal
cost, the first exercise sets marginal cost equal to the observed wholesale price. The second
exercise imposes the marginal cost implied under Keystone, the model that bests fit the
data. In both exercises, we then simulate counterfactual prices, quantities, and government
revenue at different levels of the state-wide ad valorem tax for each candidate model.

Our results are plotted in Figure 4. We find that the model of conduct has substan-
tial implications for the Laffer curve when holding demand and cost fixed, in line with
the conclusions from the recent literature (Miravete et al., 2018; Hollenbeck and Uetake,
2021; O’Connell and Smith, 2024). For both formulations of cost, the results are similar: the
revenue-maximizing state-level tax rate is considerably lower under Keystone than Bertrand.
In fact, when using the Keystone-implied costs in Panel B, the revenue maximizing state-level
tax rate under Keystone is 38%, almost identical to the 37% rate the government adopted
in 2015. The Bertrand model produces very different results; the associated Laffer curve lies
well above the Keystone curve and is maximized at vstate = 90% (Panel B).
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Figure 4: Laffer Curve in 2016 Fixing Cost Across Models
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Panels A and B report, for 2016, the Laffer curve implied by different models of conduct for the state-level ad
valorem tax (holding local tax rates fixed). Panel A imposes marginal cost equal to the wholesale price. Panel
B imposes marginal cost equal to the estimates under Keystone pricing, the preferred model according to
our testing results. We then simulate counterfactual prices, quantities, and government revenue at different
levels of the tax for each candidate model.

In the third exercise, we consider the thought experiment of a policymaker who commits
to a specific model of conduct to both recover costs and simulate the Laffer curve. To compare
across assumptions on conduct, we obtain marginal cost estimates under each candidate
model. We then use the model-specific cost estimates to simulate counterfactual prices,
quantities, and government revenue at different levels of the state-wide ad valorem tax. Our
results are plotted in Figure 5.

Figure 5: Laffer Curve in 2016 Under Model Implied Costs
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We report for 2016, the Laffer curve implied by different models of conduct for the state-level ad valorem
tax (holding local tax rates fixed). Using marginal cost estimates obtained under each model, we simulate
counterfactual prices, quantities, and government revenue at different levels of the tax.
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Since market outcomes are observed in the data, the Laffer curves for Bertrand and Key-
stone coincide at the tax rate in the data. Compared to Bertrand, the Keystone Laffer curve
is maximized at a lower state-wide ad valorem tax rate (38% vs 46%). Compared to Figure
4, allowing costs to change under each model improves the model’s fit and its associated Laf-
fer curve. However, there are quantitatively important consequences to adopting the wrong
model. Setting tax at the level implied by Bertrand would lead to a loss of government
revenue equal to $2.06 million.

8 Conclusion

We discuss falsification of models of conduct in a general environment where researchers
observe market outcomes for firms selling differentiated products. Our results highlight the
economic features of different models that permit falsification, including the important role
of cost pass-through. Thus, the falsifiable restriction in Berry and Haile (2014) generalizes
the pass-through regression used in Sumner (1981) to learn firm conduct.

With our framework, we compare the relevance of various conduct instruments, such as
rival cost shifters, product characteristics, and tax rates. In general, we find that different
instruments target different features of the pass-through matrix. Furthermore, we show how
our framework can guide instrument selection when counterfactual policy prediction is the
primary objective. For counterfactuals designed to learn the revenue-maximizing tax, his-
torical variation in the tax rate of interest provides the best instrument for learning conduct.

We demonstrate the usefulness of our framework in a set of simulations and an application
to the Washington marijuana market. Appropriately-chosen ad valorem tax instruments
conclude that a model of Keystone pricing best fits the data and that the state has chosen
virtually the optimal tax rate. We anticipate that our results will offer a useful toolkit for
researchers tackling new classes of models or instruments in a wide range of empirical settings.
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Online Appendix

Appendix A Proofs

Proof of Lemma 1. As we note in the text, in our parametric framework, the falsifiable
restriction in Equation (28) of Berry and Haile (2014) is35

E[ωmjt | wjt, zjt] = E[pjt −∆mjt − c̄mj(wjt) | wjt, zjt] = 0 a.s.

Since observed prices are generated under the true model as

pjt = ∆0jt + c0jt = ∆0jt + c̄0j(wjt) + ω0jt

and E[ω0jt | wjt, zjt] = 0 under Assumption 2, the falsifiable restriction is equivalent to

E[∆0jt + c̄0j(wjt) + ω0jt −∆mjt − c̄mj(wjt) | wjt, zjt] = 0 a.s.

or equivalently

E[∆0jt −∆mjt | wjt, zjt] = c̄mj(wjt)− c̄0j(wjt) a.s.

giving the result.

Proof of Lemma 2. We prove the inverse of both directions. If the model is not falsified,
then there exists a set of cost functions {c̄mj(wjt)}j satisfying the falsifiable restriction.
Since neither c̄mj nor c̄0j can depend on the instruments, this means (by Lemma 1) that for
each j and each value of wjt, the expectation E[∆0jt − ∆mjt|wjt, zjt] is almost everywhere
constant with respect to zjt. Taking the limit

lim
h→0

E[∆0jt −∆mjt | wjt, zjt = z̃jt + hk]− E[∆0jt −∆mjt | wjt, zjt = z̃jt]

h

as in the text and noting that this must be 0 almost surely, this becomes

E

[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
= 0 a.s.

giving the result.
35See Section 6, Case 2 in Berry and Haile (2014) for a discussion of their non-parametric environment.
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For the opposite direction, if for every j and k, E
[

d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
= 0 almost

surely, then E[∆0jt − ∆mjt | wjt, zjt] must be the same for almost all values of zjt. If so,
define

c̄mj(wjt) = c̄0j(wjt) + Ezjt
[
E[∆0jt −∆mjt | wjt, zjt]

]
and c̄mj satisfies the equality condition in Lemma 1 almost surely, so the model is not
falsified.

Proof of Proposition 1. See text preceding Proposition 1.

Proof of Corollary 1. Let z(k)jt , the k-th instrument for product j, be the ith cost shifter of
rival product ℓ. Since our instruments are cost shifters, under Assumption 5, ∂∆mjt

∂z
(k)
jt

and ∂∆0jt

∂z
(k)
jt

are both 0. From Proposition 1, then, model m is falsified if for some (j, k),

E

[(
P−1
mt − P−1

0t

)
j

dp0
dz(k)jt

| wjt, zjt

]
̸= 0 w.p.p.

Since the instrument z(k)jt is a cost shifter of product ℓ ̸= j,

dp0
dz(k)jt

=
∂p0
∂ct

∂ct

∂z
(k)
jt

= P0teℓ
∂c̄0j

∂w(i)
jt

,

where eℓ is the ℓ-th vector of the canonical basis. As a result, model m is falsified if

E

[(
P−1
mt P0t − I

)
j
eℓ
∂c̄0j

∂w(i)
jt

| wjt, zjt

]
̸= 0 w.p.p.

for some j and some ℓ ̸= j. Since by assumption ∂c̄0j

∂w(i)
jt

̸= 0, if we choose ℓ and j such that

the (j, ℓ) element of E[P−1
mt P0t | wjt, zjt] is nonzero, this condition holds and the model is

falsified.

Proof of Corollary 2. By Lemma 2, falsifiability comes down to whether for some j and k,

E

[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
̸= 0 w.p.p.

Let z(k)jt be the i-th characteristic of product ℓ, and let x(i)t denote the vector of that char-
acteristic for all J products. Note that x(i)t has both a direct effect on ∆mt and an indirect
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effect through its impact on equilibrium prices,

d∆mt

dx(i)t
=

∂∆mt

∂x
(i)
t

+
∂∆mt

∂pt

dp0
dx(i)t

where dp0
dx(i)t

is the effect of x(i)t on equilibrium prices under the true model 0.

Under Assumption 8, x(i)jt and pjt affect ∆mt and ∆0t directly only through δjt, so

∂∆mt

∂x
(i)
t

=
∂∆mt

∂δt

∂δt

∂x
(i)
t

=
∂∆mt

∂δt
β(i)I

and
∂∆mt

∂pt
=

∂∆mt

∂δt

∂δt
∂pt

=
∂∆mt

∂δt
(−αI)

and, putting the two together,

∂∆mt

∂x
(i)
t

= −β
(i)

α

∂∆mt

∂pt

We already defined the notation H∆mt
= ∂∆mt

∂pt
, so ∂∆mt

∂x
(i)
t

= −β
(i)

α
H∆mt

.

Next, to calculate dpt
dx(i)t

, recall that equilibrium prices are defined implicitly as the solution
to the true first-order conditions F (·) = pt− ct−∆0t = 0. By the implicit function theorem,

dpt
dx(i)t

= −
[
∂F

∂pt

]−1
[
∂F

∂x
(i)
t

]
= −

[
I −H∆0t

]−1

[
−∂∆0t

∂x
(i)
t

]
= −

[
I −H∆0t

]−1

[
β(i)

α
H∆0t

]

Recalling that Pmt = (I −H∆mt
)−1, this is

dpt
dx(i)t

= −β
(i)

α
P0t

(
I − P−1

0t

)
=

β(i)

α
(I − P0t)

Plugging these into d∆mt

dx(i)t

= ∂∆mt

∂x
(i)
t

+ ∂∆mt

∂pt

dpt
dx(i)t

gives

d∆mt

dx(i)t
= −β

(i)

α
H∆mt

+H∆mt

(
β(i)

α
(I − P0t)

)
= −β

(i)

α
H∆mt

P0t = −β
(i)

α
(I − P−1

mt )P0t
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From this,

E

[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
= E

[
β(i)

α

(
(P−1

0t − P−1
mt )P0t

)
j,ℓ

| wjt, zjt

]

=
β(i)

α
E
[(
I − P−1

mt P0t

)
j,ℓ

| wjt, zjt

]
Thus, unless E[(P−1

mt P0t)j | wjt, zjt] = e′j for each j almost surely, there is some (j, k) satisfying

E

[
d∆0jt

dz(k)jt

− d∆mjt

dz(k)jt

| wjt, zjt

]
̸= 0 w.p.p., the condition for falsifiability under Lemma 2.

Proof of Proposition 2. Given (3), c0jt = c̄0j(wjt) + ω0jt = νtpjt − τt − νt∆0jt and cmjt =

c̄mj(wjt) + ωmjt = νtpjt − τt − νt∆mjt, so

ωmjt = νtpjt − τt − νt∆mjt − c̄mj(wjt) + c̄0j(wjt) + ω0jt − νtpjt + τt + νt∆0jt

= νt∆0jt − νt∆mjt + c̄0j(wjt)− c̄mj(wjt) + ω0jt

Since c̄0j, c̄mj, and E(ω0jt|wjt, zjt) don’t depend on the instruments, falsification occurs if
E(νt∆0jt − νt∆mjt|wjt, zjt) for some j varies with one of the instruments. Since

d(νt∆0jt)

dz(k)jt

= νt
∂∆0jt

∂z
(k)
jt

+ νt
∂∆0jt

∂pt

dp0
dz(k)jt

+∆0jt

dνt
dz(k)jt

and ∂∆0jt

∂pt
= ∂(pt−c0t)

∂pt
= I − P−1

0t , and the analogous expression for d(νt∆mjt)

dz(k)jt

, (4) follows.

Proof of Corollary 3. Since the instrument is zt = τt,
dνt

dz(k)jt

= 0; and under Assumption 9,

the tax rate doesn’t enter into ∆mjt or ∆0jt directly, so falsification obtains if

E

[
νt(P

−1
mt − P−1

0t )j
dp0
dτt

∣∣∣∣wjt, τt

]
̸= 0

with positive probability for some j. The unit tax is the same as an increase in marginal
costs for every product, so dp0

dτt
=
∑

j
dp0
dcjt

= P0ι, where ι is a vector of ones. Falsification
therefore requires that for some j, with positive probability over observables,

E
[
νt(P

−1
mt − P−1

0t )jP0tι
∣∣wjt, τt

]
̸= 0

↕
E
[
νt(P

−1
mt P0t − I)jι

∣∣wjt, τt
]

̸= 0
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or the elements of the jth row of P−1
mt P0t don’t sum to 1.

Proof of Corollary 4. With the added assumption that either P−1
mt = P−1

0t or dp0
dzt

= 0, the
first term in Equation 4 vanishes; so with zt = νt, under Proposition 2, falsification obtains
if and only if for some j, E

[
∆0jt −∆mjt

∣∣wjt, νt
]
̸= 0 w.p.p., giving the result.

Proof of Corollary 5. With νt fixed, government revenue at unit tax rate τ is R0(τ) =

τ
∑

j sjt(p0t(τ)) + (1 − νt)
∑

j p0t(τ)sjt(p0t(τ)); let Rm(τ) be the predicted revenue under
model m, based on predicted prices pmt(τ). As noted in the text, dpmt

dτ
= 1

νt
Pmtι for ei-

ther model. If Pmtι = P0tι everywhere and model m and the truth give the same prices
at the observed tax rate τ = τt, then they predict the same prices pmt(τ) = p0t(τ) at ev-
ery tax rate, and therefore the same market shares sjt(pmt(τ)) = sjt(p0t(τ)) and revenue
Rm(τ) = R0(τ).

Proof of Corollary 6. With τt fixed, government revenue under ad valorem tax rate ν is
R0(ν) = τt

∑
j sjt(p0t(ν)) + (1 − ν)

∑
j p0t(ν)sjt(p0t(ν)); let Rm(ν) be the predicted revenue

under model m. As noted in the text, for either model, dpmt

dν
= 1

ν
Pmt(∆mt − pmt). If

Pmt(∆mt − pmt) = P0t(∆0t − p0t) whenever pmt = p0t and pmt = p0t at the observed tax rate
ν = νt, then pmt(ν) = p0t(ν) for all tax rates, and the two models therefore predict the same
market shares and revenue at every tax rate.

Appendix B Connecting Falsification and Point Inden-

tification when Models are Nested

The results in Sections 3 and 4 are cast in terms of falsification of a candidate model m, and
we pursue a testing approach in our simulations and application, but the results in the paper
are also useful to inform identification (and thus estimation) exercises. In particular, our
results can guide ex-ante instrument selection to avoid irrelevant instruments for estimation.

Similar to Magnolfi and Sullivan (2022), consider a setting where different candidate
models belong to a parametric class, so that markups can be written as ∆(θ) for a vector of
parameters θ ∈ Θ. In this class of models, falsification proceeds as in our general discussion
in Sections 3 and 4. In particular, a model m corresponding to a parameter value θm, is
falsified by instruments zjt under the general conditions laid out in Proposition 1. Within
the parametric class of nested models, however, we can also discuss the identification of the
true model, characterized by θ0. For any value of θ, let the implied cost be pjt − ∆jt(θ) =

c(wjt; θ) = c̄(wjt; θ)+ωjt(θ). We say that the true model is point identified by the instruments
zjt when E[ωjt(θ)|wjt, zjt] = 0 if and only if θ = θ0. Thus, point identification requires that
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all models m for which θm ̸= θ0 are falsified by the instruments zjt. Conversely, when there
exist a a model m such that θm ̸= θ0 which is not falsified by zjt, θ0 is not point identified
by these instruments. Clearly, instruments that ensure falsification for all incorrect models
in the class are prime candidates to be used for identification and estimation. However,
instruments for which an incorrect model is not falsified would lead to a failure of point
identification.

As an example of a conduct model defined by a continuous parameter, IO economists
often use profit weights as a reduced-form way to model collusion or common ownership
(e.g., Backus et al. (2021)). We illustrate how our framework for understanding falsification
through pass-through can be useful for ex-ante instrument selection for identification and
estimation with two examples based on such profit weights.

Example 8: We remain in the example environment of the paper – two single-product firms
and logit demand. Suppose the two firms compete in quantities a la Cournot, but instead
of maximizing its own profit, each firm maximizes a weighted sum of its own and the other
firm’s profits. Specifically, each firm j chooses quantity sjt to solve

max
sjt

{
sjt(pjt(·)− cjt) + θjs−jt(p−jt(·)− c−jt)

}
where −j refers to the identity of the rival firm. This nests standard Cournot competition
(when θ1 = θ2 = 0) and perfect collusion/joint profit maximization (when θ1 = θ2 = 1), along
with intermediate cases that might be interpreted as “imperfect collusion”. The corresponding
markups under logit demand are

∆WCt(θ) =

[
1−(1−θ1)s2t

αs0t
1−(1−θ2)s1t

αs0t

]
,

with WC standing for the Weighted Cournot model.
For this setting, our falsification framework can be used to show that either cost or

demand side instruments allow point identification of the profit weights θ = (θ1, θ2):

Result 1. If the data are generated by Cournot competition with profit weight equal to
θ = θ0 ∈ [0, 1]2, then either cost side or demand side instruments point identify the true
parameter.

To see this result, we first simplify the first-order conditions and work out the pass-
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through and inverse pass-through matrices

P−1
WCt =

1

s0t

[
1− s2t θ1s2t

θ2s1t 1− s1t

]
and PWCt =

s0t
κWCt

[
1− s1t −θ1s2t
−θ2s1t 1− s2t

]

where κWCt = (1− s1t)(1− s2t)− θ1θ2s1ts2t.
Suppose the true model is weighted Cournot competition with weights θ0 = (θ01, θ02), and

we are interested in falsifying a model of weighted Cournot with misspecified weights θm =

(θm1, θm2) ̸= θ0. Focusing on the off-diagonal terms and dropping constants, we can calculate

P−1
WCmtPWC0t ∝

[
⋆ (θm1 − θ01)s2t(1− s2t)

(θm2 − θ02)s1t(1− s1t) ⋆

]

Thus, if θm1 > θ01, the top-right off-diagonal is always positive, and therefore positive when
its expectation is taken over unobservables; if θm1 < θ01, it’s always negative, hence nega-
tive in expectation. Likewise, if θm2 > θ02, the bottom-right term is always positive, and if
θm2 < θ02 always negative. Thus, if θm ̸= θ0, the matrix [P−1

m P0]
∗ is not diagonal, so under

Corollary 1, any incorrect model within the class is falsified by cost side instruments under
Corollary 1. As for demand side instruments, the profit-weighted Cournot model satisfies
Assumption 7 and logit demand satisfies Assumption 8, so since [P−1

m P0]
∗ is not the identity

matrix, demand side instruments falsify any incorrect model under Corollary 2. As a result,
either type of instrument allows for point identification of θ0. •

Example 9: In the same environment, suppose now that the two firms compete in prices
with profit weights. For simplicity, suppose the two firms’ profit weights are the same, so
each firm j chooses price pjt to solve

max
pjt

{
(pjt − cjt)sjt(pt) + θ(p−jt − c−jt)s−jt(pt)

}
Under logit demand, the two firms’ first-order conditions give the markup function

∆WBt(θ) =


1−(1−θ)s2t

αs0t+α(1−θ
2
)s1ts2t

1−(1−θ)s1t
αs0t+α(1−θ

2
)s1ts2t


with WB standing for the Weighted Bertrand model.

While we obtain identification in Weighted Cournot, irrespective of the value of θ0 and of
other observables, in the case of Weighted Bertrand, results are more nuanced. For a given
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Figure 6: CDF of [P−1
mt P0t]12 for Betrand Profit Weight Models

This figure plots distributions of [P−1
mt P0t]12 over realizations of (s1t, s2t) for three different values of (θ0, θm).

true value of θ0 and a given misspecified model θm ̸= θ0, the off-diagonal terms of the matrix
P−1
m P0 can be either positive or negative, but are not typically zero; and the diagonal terms

can be greater than or less than 1, but are not typically equal to either 1 or to each other.
This means there are realizations of observables (wt, zt) for which [P−1

m P0]
⋆ could in principle

be diagonal, but it won’t typically be – for example, because some off-diagonal element of
P−1
mt P0t varies continuously and could take either sign, so its expectation being exactly zero

requires a non-generic distribution of unobservables. Still, falsification could in principle fail,
and therefore identification could fail as well.

To illustrate this possibility, we compute the top-right off-diagonal term, [P−1
m P0]12, for a

large sample of uniform draws of (s1t, s2t), and display the resulting distribution in Figure 6
for three representative pairs of true and misspecified models (θ0, θm). While the distributions
all have support that includes 0, the distributions are continuous, so getting a conditional
expectation E([P−1

mt P0t]12) = 0 would only hold for a non-generic set of observables.
We can also examine the value of the off-diagonal term at each point in the simplex of

realizations of market shares (s1t, s2t). In each panel of Figure 7, we do so for three pairs
of θ0 and θm such that θm − θ0 = 0.1. For each realization on the simplex, we indicate the
value of [P−1

m P0]12 with color gradients – darker orange indicates negative values that are
larger in magnitude and darker purple indicates positive values that are larger in magnitude.
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Figure 7: Values of [P−1
mt P0t]12 for Realizations of Market Shares in Bertrand Profit Weight Models

This figure plots magnitudes of [P−1
mt P0t]12 over the simplex of (s1t, s2t) for three different values of (θ0, θm).

Darker purple (orange) shading indicates more positive (negative) values. Black indicates a zero value.

The points where [P−1
m P0]12 = 0 are indicated in black. Immediately, one sees that for

the vast majority of realizations of shares, [P−1
m P0]12 > 0. In fact, [P−1

m P0]12 is always
positive whenever the market share of both products is below 0.6. For an empirically relevant
example, take the setting in Miller and Weinberg (2017). There, the outside option is defined
in such a way that the market share of any product is less than 0.5 in all markets. In that
case, the average of [P−1

m P0]12 is positive in all three panels, and falsification of the wrong
profit weight is possible with cost or demand side instruments.

As in the previous example, the conduct models satisfy Assumption 7 and the demand
system satisfies Assumption 8, so [P−1

m P0]
∗ being non-diagonal suffices for falsification of

the wrong model. Thus, for either cost or demand side instruments, point identification is
not theoretically guaranteed for a particular realization of observables; but with variation
in observables, seems virtually guaranteed, as the knife-edge result of positive and negative
values of [P−1

m P0]12 cancelling out in expectation seems impossible across different realizations
of observables. •
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Appendix C Markup Assumption

Assumption 7 holds naturally for a wide range of models where firms choose actions to
maximize profits. We suppress the market index t and suppose for simplicity that products
i = 1 through f are sold by the same firm, and that the firm chooses a set of actions {ai}fi=1

to maximize profits,
max

{ai},i∈f

∑
i∈f

(pi(a)− ci)si(a)

where prices p(·) and market shares s(·) are determined by the actions taken by all firms.
First-order conditions are then

f∑
i=1

∂pi
∂aj

si +

f∑
i=1

(pi − ci)
∂si
∂aj

= 0

or 

∂s1
∂a1

∂s2
∂a1

· · · ∂sf
∂a1

∂s1
∂a2

∂s2
∂a2

· · · ∂sf
∂a2

...
...

...
...

∂s1
∂af

∂s2
∂af

· · · ∂sf
∂af





p1 − c1

p2 − c2

...

pf − cf


= −



∑
i∈f si

∂pi
∂a1

∑
i∈f si

∂pi
∂a2

...

∑
i∈f si

∂pi
∂af


Stacking across firms, we then get[

Ω⊙
[
∂s

∂a

]′]
∆ = −

[
Ω⊙

[
∂p

∂a

]′]
s

where Ω is the ownership matrix,36 and therefore

∆ = −
[
Ω⊙

[
∂s

∂a

]′]−1 [
Ω⊙

[
∂p

∂a

]′]
s

Note that the right-hand side has no room for costs or product characteristics to enter
directly – it’s all just ownership structure and the way that firm actions a map to market
outcomes (p, s), which depends on the demand system.

(Within this more general model, Bertrand is just the special case where firms choose
36This is defined as Ωij = 1 if products i and j are sold by the same firm, and zero otherwise.
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prices, so p(a) = a and therefore ∂p
∂a

= I; and Cournot is the special case where firms choose
quantities so s(a) = a and ∂s

∂a
= I. Here we’re being more general about what exactly firms

are choosing, and therefore what exactly they’re assuming other firms are holding fixed while
they optimize.)

This assumption also holds if firms maximize any weighted sum of their own profits, other
firms’ profits, and consumer surplus (or total welfare). Suppose the firm selling product j
maximizes

J∑
i=1

γji(pi − ci)si + λjCS

where γji is the weight the firm puts on the profits from product i (whether or not i is one
of the same firm’s products) and CS is consumer surplus. The first-order condition with
respect to action aj is then

J∑
i=1

γji
∂pi
∂aj

si +
J∑
i=1

γji(pi − ci)
∂si
∂aj

− λjsj = 0

or, stacking and rearranging,

∆ =

[
Γ⊙

[
∂s

∂a

]′]−1 [
Λ− Γ⊙

[
∂p

∂a

]′]
s

where Γ is a matrix of the γji terms and Λ is a diagonal matrix of the λj terms. Once again,
the right-hand side contains only constants and features of the demand system, not costs or
product characteristics.

Finally, consider a market with some first-movers and some second-movers. To avoid
getting bogged down in notation, we show the result for two single-product firms facing
general demand, but the intuition is the same more generally. Conditional on the action
a1 chosen by the first-mover, the second-mover chooses a2 to maximize (p2 − c2)s2, giving
first-order condition

(p2 − c2)
∂s2
∂a2

+
∂p2
∂a2

s2 = 0

Defining F (a1, a2) as the left-hand side, then, a2 is implicitly defined as a function of a1 as
the solution to F (a1, a2) = 0, so by the implicit function theorem,

a′2(a1) = −
∂F
∂a1
∂F
∂a2

= −
∂p2
∂a1

∂s2
∂a2

+ (p2 − c2)
∂
2
s2

∂a2∂a1
+ ∂

2
p2

∂a1∂a2
s2 +

∂p2
∂a2

∂s2
∂a1

∂p2
∂a2

∂s2
∂a2

+ (p2 − c2)
∂
2
s2

∂a
2
2

+ ∂
2
p2

∂a
2
2

s2 +
∂p2
∂a2

∂s2
∂a2
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We can go a step further, rewriting firm 2’s first-order condition as p2 − c2 = −∂p2
∂a2
s2

/
∂s2
∂a2

and plugging that into the expression for a′2, to emphasize that a2 depends only on features
of the demand system (how p and s respond to a) and therefore not directly on costs. The
first-mover’s problem is

max(p1(a1, a2(a1))− c1)s1(a1, a2(a1))

with first-order condition

∂p1
∂a1

s1 +
∂p1
∂a2

a′2s1 + (p1 − c1)
∂s1
∂a1

+ (p1 − c1)
∂s1
∂a2

a′2 = 0

whence

p1 − c1 = −
∂p1
∂a1
s1 +

∂p1
∂a2
a′2s1

∂s1
∂a1

+ ∂s1
∂a2
a′2

We therefore have both firms’ markups pj − cj as functions of the demand system, with no
place for marginal costs or product characteristics to enter directly. If we had infinite pa-
tience, we could make this same argument for the general model of many multi-product firms
with some first- and some second-movers, and by induction, with more than two “rounds” of
actions.

Appendix D Simulation Details

We provide further details on the simulation environment used in Section 6. Using the
simulation class in PyBLP (Conlon and Gortmaker (2020)), we simulate data for 50,000
markets. In each market t, the number of products Jt is a randomly chosen integer between
two to ten, leaving us with 319,719 observations in the sample. Each product j is produced
by a single product firm.

For demand, we adopt a simple logit framework, in line with our falsification examples.
Consumer i gets indirect utility of consuming product j in market t given by:

uijt = xjtβ + αpjt + ξjt + ϵijt

where xjt is a vector containing a constant and two observed product characteristics (x1jt
and x2jt), pjt is the price of the product, and ξjt and ϵijt are unobservable shocks at the
product-market and the individual product market level, respectively. The utility of the
outside option is normalized to ui0t = ϵi0t. We draw each observed product characteristic
x1jt and x2jt independently from the uniform distribution U(0, 3), while ϵijt is assumed to
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be distributed Type I extreme value. The distribution of the unobserved demand shocks
ξjt is discussed below. The mean taste parameters β are set as β = [1, 2, 1] while the price
parameter α = −0.5.

On the supply side, we assume that the marginal cost of producing product j in market
t is cjt = wjtγ + ω0jt where where wjt is a vector containing a constant and two observed
cost shifters (w1jt and w2jt) which are excluded from demand. Marginal cost also depends
on ω0jt the true unobserved cost shock. As with the product characteristics, we draw each
observed cost shifter w1jt and w2jt independently from the uniform distribution U(0, 3). We
adopt the default in PyBLP by drawing the unobserved demand and cost shocks ξjt and ω0jt

from a mean zero bivariate normal distribution with variances of 1 and a correlation of 0.9.
We set γ = [3, 0.5, 1.5]. For simplicity, the market size is normalized to one for all t. The
government levies both a unit tax (τt) and an ad valorem tax (vt) on all products in market
t. The unit tax is remitted by the firms while consumers remit the ad valorem tax. We draw
the unit tax in each market from the uniform distribution U(1, 2) while the ad valorem tax
in each market is drawn from the uniform distribution U(0, 0.2). We assume that the true
model of conduct is Keystone pricing, whereby firms set tax exclusive prices as twice their
marginal cost, or νtpjt = 2cjt + 2τt.

Appendix E Summary of IV Relevance in Examples

To help the reader, we now summarize the takeaways from the examples in the paper. Recall
that we consider a stylized environment with two single-product firms, logit demand, and no
unobservable variation in demand and cost. In the following table, for select combinations
of true and alternative model, we indicate which of the sources of variation considered in the
examples will permit falsification (✓), and which ones will not (×).

True Tested Cost Side Demand Side Unit Tax Ad Valorem Tax

Bertrand

Keystone ✓ ✓ ✓ ✓

Cournot ✓ ✓ ✓ ✓

MC Pricing ✓ ✓ ✓ ✓

Cournot
Keystone × ✓ ✓ ✓

MC Pricing × ✓ ✓ ✓

Keystone MC Pricing × × ✓ ×
∆0t = ζ0t ∆mt = ζmt × × × ✓
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Appendix F Additional Details: Data and Demand

F.1 Data Cleaning and Description

Table 4 summarizes the main data cleaning steps for our transaction-level data. We then
take the cleaned transaction-level data and aggregate to the product-market level.

Table 4: Data Sample Cleaning Steps

Resulting

Step Sample Restriction Sample Size Revenue ($)

0 Original 74,427,564 1,213,615,962

1 Keep usable products 53,883,838 813,353,991

2 Drop package size ̸= inventory usable weight 53,791,104 809,548,311

3 Keep 1 and 3.5 g package sizes 34,418,816 490,387,068

4 Drop first 15 days of
establishment’s sales

34,286,246 488,555,343

5 Keep retail prices
wholesale prices ∈ [1, 5] 34,170,796 486,487,909

6 Keep weight ≤ 10 g 34,139,758 482,017,967

Table reports all steps to clean transaction-level data and their effect on sample size.

Table 5 provides descriptive statistics for the main variables in our database.

Table 5: Summary Statistics

Mean SD Min P25 Median P75 Max

Price (per gram, tax inclusive) 11.04 3.05 4.54 9.00 10.89 12.86 21.07

Price (per gram, tax exclusive) 7.61 2.18 3.11 6.18 7.48 8.85 15.60

Shares (percent) 0.38 0.90 0.00 0.02 0.08 0.34 39.06

Wholesale Price (per gram) 3.60 0.91 1.50 3.00 3.58 4.09 6.50

Size 2.19 1.25 1.00 1.00 1.00 3.50 3.50

THC 5.37 7.90 0.00 0.53 0.99 6.80 62.66

CBD 0.42 1.56 0.00 0.00 0.09 0.22 36.93

Rival Products 443.67 571.17 1.00 60.00 196.00 499.00 2109.00

Firms by Market 13.80 15.55 2.00 3.00 7.00 16.00 51.00

Processors by Market 111.09 76.46 1.00 49.00 91.00 149.00 316.00

Local Tax Rate 0.089 0.007 0.070 0.085 0.088 0.095 0.103

Observations 153,936

This table reports summary statistics for the main variables in our database.
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F.2 Demand Estimation

We provide here further details on the demand system introduced in Section 7.2. In our
demand system, each consumer i receives utility from product j in market t according to
the indirect utility:

uijt = xjtβi + αipjt + Fr(j) + Fℓ(j) + Fm(t) + ξjt + ζit + (1− ρ)ϵijt

where xj includes a constant, package size, THC and CBD (and their values squared), and
the log of the number of products offered in the store; we include this variable to capture
variation in shelf space across stores. The variable pjt is the price of product j in market
t, and Fr(j), Fℓ(j), Fm(t) denote fixed effects for the retailer selling product j, the processor
producing product j, and the year-month of the retail transaction respectively. Consumer
preferences for characteristics (βi = β̄ + β̃ × Incomei) and price (αi = ᾱ + α̃ × Incomei)
vary with individual level income. ξjt and ζit + (1 − ρ)ϵijt are unobservable shocks at the
product-market and the individual product market level, respectively. Following the nested
logit structure for our choice of nesting all inside goods together, ϵijt is distributed Type 1
Extreme Value, and ζit is distributed according to the conjugate distribution (Cardell (1997)).
To close the model we normalize consumer i’s utility from the outside option as ui0t = ϵi0t.
Given this utility specification, market shares sjt as a function of observables, unobservables
and parameters take on the standard form (Berry, Levinsohn, and Pakes (1995); Grigolon
and Verboven (2014)).

Identification and Estimation: The identifying assumption for our demand model is
that, for a vector of demand instruments zdjt, the moment condition E[ξjtz

d
jt] = 0. We

construct several demand instruments. We first construct the number of products sold at
competing dispensaries in market t to help identify ρ. Following Gandhi and Houde (2023)
we also interact this instrument with the mean income in the market to help identify income
interaction parameters. We further construct BLP-style instruments to capture the closeness
of products in the product space. Specifically, in a market, we sum the amount of THC and
CBD both for products within a given store and also for products in all other stores. We
also include exogenous own cost shifters including the amount of rainfall and temperature
in the region of production and their lags.

Because we do not take a stance on conduct, we perform demand estimation without
using any supply-side moments.37 However, we specify in Section 7.3 a menu of candidate
models of conduct which includes Keystone pricing, Bertrand, and marginal cost pricing.

37See Appendix I of Duarte et al. (2024) for a comparison of sequential and simultaneous approach to
conduct testing.
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The set of instruments specified above includes shifters of prices (e.g., own cost shifters) that
will be relevant under any conduct model in our menu including Keystone and marginal cost
pricing.

Table 6: Demand Estimates

(1) Logit-OLS (2) Logit-2SLS (3) RCNL

coef s.e. coef s.e coef s.e

Price (in $) -0.102 (0.002) -0.283 (0.042) -0.455 (0.066)

Package Size (= 3.5 oz) 0.441 (0.007) 0.335 (0.025) 0.110 (0.048)

THC 0.077 (0.003) 0.062 (0.005) 0.027 (0.007)

THC Squared -0.003 (0.000) -0.003 (0.000) -0.001 (0.000)

CBD -0.095 (0.009) -0.084 (0.009) -0.046 (0.010)

CBD Squared -0.002 (0.001) -0.002 (0.001) -0.002 (0.000)

Log Number Own Products -0.021 (0.016) 0.001 (0.017) 0.115 (0.027)

Constant -5.791 (0.061)

ρ 0.282 (0.059)

Income × Constant -0.005 (0.003)

Income × Price 0.004 (0.002)

Median Own Price Elasticity -1.113 -3.079 -6.451

Median Aggregate Price Elasticity -0.796 -2.192 -3.324

Diversion to outside option 0.603 0.603 0.434

Retailer FE Yes Yes Yes

Processor FE Yes Yes Yes

Year-Month FE Yes Yes Yes

Demand estimates for a logit model of demand obtained from OLS estimation are reported in column 1 and
2SLS estimation are reported in column 2. Column 3 reports estimates for the full RCNL demand model.
Income is measured in $100,000. n = 187, 499.

Results: Results for demand estimation are reported in Table 6. For reference, we also
report, in Columns 1 and 2, estimates from a simple logit model. In Column 1, we estimate
the model with ordinary least squares. In Column 2, we estimate the model via 2SLS, using
the same instruments as in the main specification. The reduction in the price coefficient
between Columns 1 and 2, indicates the presence of endogeneity not controlled for by the
fixed effects. Column 3 reports estimates of the full demand model. Compared to columns
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1 and 2, the full model yields a more elastic demand system with diversion to the outside
option that departs from logit.

Appendix G Robustness Checks

We present here additional robustness results for our empirical application.

G.1 Robustness to Box-Cox Transformations of Income

Following Miravete et al. (2024) we incorporate in our demand system a more flexible spec-
ification of income effects by adopting a Box-Cox transformation. Specifically, we allow
consumer i’s price sensitivity parameter αi to depend on a nonlinear transformation of in-
come (yi), so that

αi = ᾱ + α̃× yλ−1
i . (6)

Our main specification corresponds to λ = 2. In principle, λ could be estimated as an
additional parameter of the demand system. Because we lack the variation to credibly
identify λ in our empirical environment, here we consider the robustness of our testing
results to re-estimating our demand system for calibrated values of λ ∈ {0, 0.5, 1.5}. Table
7 reports demand estimates (in Panel A), and corresponding test results (in Panel B) for
the three values of λ. While the nonlinear transformation of income makes a difference for
some features of the demand system, test results are consistent with our main specification
in Section 7, and strongly support Keystone as the better fitting model.
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Table 7: Robustness to Box-Cox Transformations of Income in Demand

RCNL Box Cox

λ = 0 λ = 0.5 λ = 1.5

Price (in $) -0.40 -0.399 -0.45

(0.041) (0.042) (0.070)

Package Size (= 3.5 oz) 0.098 0.094 0.097

(0.043) (0.044) (0.044)

THC 0.025 0.024 0.025

(0.007) (0.007) (0.007)

THC Squared -0.001 -0.001 -0.001

(0.000) (0.000) (0.000)

CBD -0.043 -0.043 -0.044

(0.009) (0.009) (0.010)

CBD Squared -0.002 -0.002 -0.002

(0.001) (0.001) (0.001)

Log Number Own Products 0.135 0.132 0.127

(0.026) (0.026) (0.027)

ρ 0.342 0.336 0.322

(0.053) (0.054) (0.058)

Income × Constant -0.00 -0.001 -0.003

(0.001) (0.002) (0.004)

Income × Price 0.076 -0.073 0.004

(0.416) (0.184) (0.005)

Median Own Price Elasticity -6.562 -6.696 -6.626

Median Aggregate Price Elasticity -3.071 -3.165 -3.229

Diversion to outside option 0.424 0.428 0.437

Retailer FE Yes Yes Yes

Processor FE Yes Yes Yes

Year - Month FE Yes Yes Yes

Panel B: Testing Results: Bertrand vs. Keystone, Tax Instruments

TRV 13.317 13.309 13.273

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 63.067 61.849 57.562

† † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧

Panel A reports demand estimates for a Box Cox transformation of income (measured in $100,000). Columns
1-4 correspond to different calibrated values of the λ parameter in Equation (6). Panel B reports, for each
value of λ, the RV test statistics TRV and the effective F -statistic (Duarte et al., 2024) for testing Bertrand
versus Keystone with ad valorem tax instruments. A positive RV test statistic suggests a better fit of
Keystone. The symbol ∗ ∗ ∗ indicates rejection of the null of equal fit 0.01 confidence level. The symbols
† † † and ∧∧∧ indicated that F is above the appropriate critical values for worst-case size below 0.075, and
best-case power above 0.95, respectively. Both TRV and the F -statistics account for two-step estimation
error and clustering at the market level. n = 187, 499.
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G.2 Robustness of Test Results to Alternative Cost Specifications

We consider the robustness of our testing results in Table 3 to alternative specifications of
marginal cost. Results are reported in Table 8. Panel A reproduces the specification in the
main text. Panels B and C include package size indicators, and consider alternative specifi-
cations of fixed effects in marginal cost. For all specifications, our preferred tax instruments
are strong for size and power, and conclude for superior fit of the Keystone model. Different
specifications of marginal cost affect the variation that is available for testing conduct. In
particular, the specifications in Panels B and C incorporate both geographic and time fixed
effects, thus absorbing considerable variation. This weakens instruments, especially RC and
PC. Despite these additional hurdles, whenever the null is rejected, the test always rejects
in favor of Keystone.

Table 8: Test Results for Different Levels of Fixed Effects

Instruments:

Statistic Tax RC PC WP

Panel A: Product Fixed Effects

TRV 13.39 4.52 9.88 16.79

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 40.6 2.2 15.6 1,591.6

† † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧ † † † ∧ ∧∧

Panel B: Retailer, Processor, and Year-Month Fixed Effects

TRV 2.39 -0.90 2.24 9.98

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 4.2 0.5 1.4 4,912.6

† † † ∧ ∧∧ † † † † † † ∧ ∧∧ † † † ∧ ∧∧

Panel C: Retailer, and Year-Month Fixed Effects

TRV 2.74 -0.77 2.45 27.35

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

F 4.1 0.5 1.4 3,232.1

† † † ∧ ∧∧ † † † † † † ∧ ∧ † † † ∧ ∧∧

The table reports, for each set of instruments, the RV test statistics TRV and the effective F -statistic (Duarte
et al., 2024) for testing Bertrand versus Keystone. Different panels correspond to different levels of fixed effects in
marginal cost. A positive RV test statistic suggests a better fit of Keystone. The symbol ∗ ∗ ∗ indicates rejection
of the null of equal fit 0.01 confidence level. The symbols ††† and ∧∧∧ indicated that F is below the appropriate
critical values for worst-case size below 0.075, and best-case power above 0.95, respectively. Both TRV and the
F -statistics account for two-step estimation error and clustering at the market level. n = 187, 499.
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