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Abstract

We study the interaction between moral suasion and automation in managing resource scarcity.
Using data from smart thermostats during a California heatwave, we exploit a natural ex-
periment involving voluntary conservation requests (Flex Alerts) and a statewide emergency
phone alert. We document three findings. First, standard moral suasion suffers from rapid
habituation. Second, high-salience signals (emergency alerts) reverse this habituation. Third,
and most importantly, we identify a novel complementarity between salience and automa-
tion. High-salience alerts reduce the rate at which users override automated thermostat ad-
justments, tripling the efficacy of demand response technology. These results suggest that ’hu-
man frictions’ limit the scalability of smart technologies, but crisis salience can mitigate these
frictions.
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1 Introduction

When climate-driven extreme events create resource scarcity, policymakers face the dual chal-
lenge of allocating the resource efficiently while minimizing welfare losses. Such challenges arise
in many settings, such as during water scarcity (Wichman et al., 2016; Mahadevan and Shenoy,
2023), floods (Taylor and Druckenmiller, 2022), wildfires (Baylis and Boomhower, 2021), and hur-
ricanes (Deryugina, 2017; Dinerstein et al., 2025; Strömberg, 2007). Electricity markets face an
analogous challenge as climate change brings more extreme heat. Extreme heat increases both the
frequency and intensity of peak electricity demand (Auffhammer et al., 2017), primarily as people
adapt by staying indoors (Zivin and Neidell, 2014) and increasing air conditioning use (Davis and
Gertler, 2015; Barreca et al., 2016). When supply margins are tight, this creates a scarcity where
policymakers must curb electricity consumption strategically to prevent costly blackouts.1

Economists have extensively studied price-based demand response, including dynamic pric-
ing (Blonz, 2022; Fu et al., 2024; Burkhardt et al., 2023; Harding and Sexton, 2017; Ito et al., 2018),
automation (Blonz et al., 2025; Bailey et al., 2025; Bollinger and Hartmann, 2020), and combina-
tions of pricing with information provision (Prest, 2020; Jessoe and Rapson, 2014) to ensure con-
servation when electricity is scarce. However, during high-stakes emergencies, it is not politically
feasible for utilities to impose an immediate and massive price change to reflect the actual scarcity
cost. Instead, utilities resort to voluntary appeals for conservation with mixed evidence on their
effectiveness (Brewer and Crozier, 2025; He and Tanaka, 2023; Holladay et al., 2015).2 These ap-
peals represent a distinct, non-pecuniary instrument, relying on the salience of the message and
behavioral mechanisms such as warm glow (Andreoni, 1989), social pressure (DellaVigna et al.,
2012), or moral payoff of contributing to public goods (Levitt and List, 2007; Ferraro and Price,
2013; Allcott and Kessler, 2019) to induce immediate demand reduction. Yet, while Bailey et al.
(2025) and Blonz et al. (2025) find that automation bypasses human inattention, it is still unclear
how this automation performs alongside moral suasion during an actual emergency.

We study California’s Flex Alert program, a state-wide emergency energy conservation cam-
paign triggered when the California Independent System Operator (CAISO) forecasts critical grid
conditions. Flex Alerts are disseminated through social media, utility communication channels,
and via private email and text for customers who signed up to receive notifications. The Flex
Alerts encourage customers to save electricity, and provide specific guidance to increase thermo-

1 Blackouts can be deadly to individuals with certain health conditions, as Barreca et al. (2016) documents that dif-
fusion of residential air conditioning significantly reduces temperature-related mortality in the US. In other settings,
He and Tanaka (2023) documents that the energy conservation campaign in Japan following a nuclear plant accident
caused an increase in temperature-related mortality.

2 As additional examples, in June 2021, New York City sent an emergency alert requesting customers to con-
serve energy to prevent outages during intense heat. See https://www.nytimes.com/2021/06/30/nyregion/nyc-
energy-alert-heatwave.html (last accessed June 15, 2024). Texas customers also received conservation re-
quests from the Electric Reliability Council of Texas (ERCOT) during the extreme heat waves that struck in
July 2022. See https://www.reuters.com/business/energy/texas-grid-operator-asks-users-conserve-energy-amid-
scorching-heat-2022-07-11/ (last accessed June 15, 2024). In a winter setting, Brewer and Crozier (2025) studied an
emergency request caused by a supply-side energy emergency caused by a fire incident at a natural gas plant in Michi-
gan, which coincides with extreme demand for heating.
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stat settings to above 78°F (25.5°C) during the peak period, and precool to 70°F (21.1°C) before-
hand. Compliance is voluntary and encouraged via appeals to prosocial preferences.

Our empirical strategy exploits a natural field experiment created by a ten-day heatwave that
led to ten consecutive Flex Alerts from August 31 to September 9, 2022. CAISO issued the first
Flex Alert on August 31st at 12:48 p.m. followed by a State of Emergency declaration from the
governor at 3:15 p.m.3 CAISO then announced more Flex Alerts repeatedly each day. As system
stress intensified, the governor issued another conservation request on September 6, followed by
a statewide digital emergency alert sent by the California Office of Emergency Services (CalOES)
to 27 million cell phones—an unusually salient intervention.4 During these ten days, in parallel,
CAISO called several demand response events within the peak period for customers enrolled in
automated demand response programs. This sequence of events provides rich variation in both
policy instruments across households (voluntary conservation vs. automated demand response)
and salience over time (low-salience standard Flex Alerts vs. the high-salience statewide phone
alert).

To measure household responses, we use smart thermostat data from Ecobee’s Donate-Your-
Data program, focusing on cooling setpoints and compressor run-time as our measure of cooling
behavior and energy use. The data allow us to separately identify households participating in
automated demand response, whose thermostats can be adjusted automatically. We compare Cal-
ifornia households to non–demand response households in neighboring states using a difference-
in-differences design. During Flex Alert hours, non-demand response households received only
the moral suasion message, while demand response households also experienced automated set-
point overrides and monetary incentives when demand response events were called. Our findings
highlight the importance of moral suasion in crises and reveal strong interactions between behav-
ioral responses and automated technology.

First, we find that salience plays a central role in voluntary conservation. Standard Flex Alerts
produce modest but fading adjustments in cooling behavior. During the first six days of the Flex
Alert series, households increase cooling setpoints by 0.04°F on average, with a peak increase
of 0.2°F at 7 p.m. This peak response reduces compressor run-time by at most 2 minutes per
hour. Our event study reveals that even these small effects weaken across days. By the third
day, households exhibit clear habituation to repeated low salience requests, which is consistent
with Ito et al. (2018). The statewide phone alert, which provided an abrupt and highly salient
communication of the importance of the energy emergency, generated a sharp and immediate
increase in conservation that reversed habituation. After the alert, cooling setpoints increased
by up to 0.4°F on average, and compressor run time declined by up to 3 minutes per hour, with
reductions beginning earlier at 5 p.m. Elevated salience is therefore a powerful amplifier of moral
suasion (Ferraro and Price, 2013). After the emergency ends, households do not fully return to

3 See California governor’s proclamation of a state of emergency https://www.gov.ca.gov/wp-
content/uploads/2022/08/8.31.22-Heat-Proclamation.pdf.

4 See the Executive Order N-15-22 https://www.gov.ca.gov/wp-content/uploads/2022/09/9.6.22-Labor-Day-Heat-
Event-EO.pdf (last accessed June 15th, 2024).
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baseline behavior, resembling a hysteresis pattern (Costa and Gerard, 2021).
Second, automated demand response (DR) consistently outperforms voluntary conservation.

Across both low salience and high salience periods, households enrolled in automated DR exhibit
substantially larger reductions in cooling demand than households that receive only voluntary
conservation requests. During low salience periods, DR participants increase their cooling set-
points by 0.4°F in response to DR events with peak reductions above 0.5°F in some hours, which
is significantly larger than the response to voluntary appeals. Automated overrides and mone-
tary incentives ensure meaningful reductions even when voluntary conservation is weakened by
habituation or low perceived urgency. These results complement earlier evidence from Califor-
nia’s 2000-01 energy crisis (Reiss and White, 2008) and the later Flex Alert program (Peplinski and
Sanders, 2023) showing that public appeals can reduce consumption at the aggregate level, but
our microdata allow us to observe the behavioral mechanisms that underlie these changes.

Third, salience and automation interact in a complementary way. During standard Flex Alerts,
many DR participants override automated setpoint controls, which reduces the effectiveness of
DR events. When the statewide phone alert increased the salience of the grid emergency, override
behavior declined sharply, and DR participants became much more responsive. Their behavioral
response to DR events increased by more than a factor of three, resulting in reductions in 1.1°F
average reductions in thermostat setpoints and reduced the compressor run times by as much
as 7 minutes per hour at peak. Households appear more willing to retain automated defaults
when blackout risk becomes salient. Prior work examining smart thermostats has found that
people often override energy-efficiency settings, eliminating potential energy savings (Brandon et
al., 2022). The pattern we document reveals a novel mechanism: salience reinforces automation,
which reduces behavioral crowd-out and significantly increases the effectiveness of automated
DR in emergencies.

We estimate that the 2022 Flex Alerts reduced peak electricity demand by 800–1,300 MW and
generated $69.8 million in net welfare gains, primarily by avoiding costly blackouts that would
have affected millions of California customers. To arrive at these welfare estimates, we extend
the framework of Ito et al. (2018) following Brewer (2022) and Brewer and Crozier (2025). In our
model, households choose a baseline cooling setpoint by equating the marginal benefit of ad-
ditional cooling with the marginal cost, given retail electricity prices. Excessive cooling during
emergencies generates welfare losses when the social marginal cost of electricity exceeds the pri-
vate marginal cost reflected in retail prices. Moral suasion helps correct this distortion by impos-
ing a psychological cost that encourages higher setpoints, while automated DR raises the effective
marginal cost of cooling and automatically overrides the baseline setpoint for those who would
otherwise be non-compliers. We translate changes in cooling setpoints to reductions in air condi-
tioning compressor run-time, then scale these household-level reductions to aggregate electricity
demand following the approach in Blonz et al. (2025).

Our welfare calculations reveal three important patterns. First, the demand reductions are
substantial, equivalent to the output of a medium-sized power plant. Second, despite their high
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per-household effectiveness, automated DR programs contributed less than 10 percent of total
reductions because enrollment rates remain low. This implies very high returns to expanding DR
enrollment: even modest increases in participation could generate millions in additional welfare
gains. Third, the primary value of emergency conservation is grid reliability in avoiding blackouts.

This paper makes three primary contributions. First, we identify distinct behavioral dynamics:
habituation, reactivation, and inattention. We build on research examining household responses
to resource scarcity (Deryugina, 2017; Dinerstein et al., 2025) and public appeals for energy conser-
vation (Reiss and White, 2008; He and Tanaka, 2023; Costa and Gerard, 2021). While these studies
show appeals can reduce consumption, our high-frequency data allow us to observe mechanisms
previously unseen in behavioral interventions (Ito et al., 2018; Allcott and Rogers, 2014). We doc-
ument that households habituate rapidly to repeated low-salience requests but ”reactivate” con-
servation when crisis salience increases sharply. Furthermore, we observe post-crisis inattention
resembling hysteresis or default effects (Costa and Gerard, 2021; Fowlie et al., 2021). These insights
deepen our understanding of how households process and respond to emergency communication
under real-time scarcity.

Second, we demonstrate that crisis salience and automation operate as complements during
grid emergencies. Prior research suggests that automated demand response produces larger, more
reliable reductions than manual adjustments (Bollinger and Hartmann, 2020; Bailey et al., 2025;
Blonz et al., 2025). The most similar paper to ours in this literature is Bailey et al. (2025), which
finds that automated DR outperforms active response. However, we document imperfect compli-
ance with automated defaults in high-stakes settings. We extend this literature by showing that
high-salience moral suasion reduces the rate at which users override automated defaults, thereby
tripling the effectiveness of automated demand response. We contribute to the literature on the
interaction between behavior and smart technology (Brandon et al., 2022; Prest, 2020). While prior
work highlights how human interference can limit the scalability of smart technologies (Brandon
et al., 2022), we show that crisis salience mitigates these ”human perils” by reducing override be-
havior, demonstrating that awareness is critical for realizing the full potential of automated DR
during grid emergencies.

Third, we provide a comprehensive welfare analysis of emergency conservation in this setting.
We contribute to the broader literature on communication strategies during energy emergencies
(Brewer and Crozier, 2025; Holladay et al., 2015) and the welfare effects of energy conservation
(Ito et al., 2018; Allcott and Kessler, 2019; Jacob et al., 2023; Bollinger and Hartmann, 2020). The
most closely related work in the energy emergency literature is Brewer and Crozier (2025), which
studies governor requests and phone alerts during a winter energy emergency. We advance this
work by leveraging richer variation in policy instruments (voluntary appeals vs. automated DR),
studying dynamic responses to an emergency spanning multiple days, and by estimating welfare
impacts. Using a framework that links behavioral responses to electricity demand when the social
marginal cost is high, we provide new welfare estimates for both voluntary conservation and
automated DR during grid emergencies.
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The rest of the paper is organized as follows. Section 2 provides background on California
Flex Alerts. Section 3 describes our theoretical model and testable hypothesis. Section 4 details
the data and the empirical strategy, while Section 5 presents our results. Section 6 presents our
welfare analysis. Section 7 discusses policy implications. Section 8 concludes the paper.

2 Background

In this section, we provide a brief background on the Flex Alert program in California. A Flex
Alert is issued by CAISO, which manages the high voltage-electricity grids that serve more than
80 percent of California. A Flex Alert calls for consumers to voluntarily conserve electricity when
there is a predicted energy supply shortage, especially if CAISO needs to use reserve to maintain
grid reliability. Flex Alerts are typically issued in the summer when extreme heat puts upward
pressure on electricity consumption. It is typically issued from 4 p.m. to 9 p.m. when solar
generation is declining and the electricity demand remains high.5

(a) Before Flex Alert Infographics (b) During Flex Alert Infographics

Figure 1. Routine Flex Alert recommendation infographics

During a Flex Alert, CAISO notifies the public of the Flex Alert via social media and the web-
sites of CAISO and the utility. Private emails and texts are only sent to households that subscribe
to receive Flex Alert notifications. However, CAISO may sometimes issue an alert with little or
no advance notice.6 CAISO also provides suggested behaviors for conserving electricity during
the Flex Alert hours. These include setting the thermostat to 78°F or higher, avoiding using major
appliances, and turning off unnecessary lights. CAISO also recommends that consumers pre-
cool their house to 70°F and use major appliances during the off-peak period before the Flex Alert
hours. Figure 1a shows the recommended action before a Flex Alert that is typically posted around
noon and Figure 1b shows the recommended action during a Flex Alert that is announced around
4 p.m. These two infographics are tweeted routinely by the Twitter account. Next, we specifically
discuss the ten consecutive days of Flex Alerts that happen in 2022.

5 See https://www.flexalert.org/ for more details (last accessed June 15th, 2024).
6 Most Flex Alerts are announced on the same day, as shown in Appendix Figure A1c.

5

https://www.flexalert.org/


The September 2022 Flex Alerts: During extreme heatwaves that happened from August 31st
to September 9th, 2022, CAISO issued Flex Alerts for ten consecutive days. There are intervals
within the peak period when CAISO also calls a demand response event for demand response
participants. On the seventh day, there is also a phone alert issued by the California Office of
Emergency Services (CalOES), which increases the salience of the Flex Alerts. Studying this Flex
Alert series allows us to measure how households respond to Flex Alerts and demand response
events with different levels of salience. It also allows us to study how households’ responses
evolved in repeated Flex Alerts.

The official Flex Alert Twitter account announced the first statewide Flex Alert of the series
on Wednesday, August 31st, at 12:48 p.m. Later at 3:15 PM, the Governor of California declared a
state of emergency due to the heatwave which is broadcasted statewide, and relayed the voluntary
conservation request to the public.7 The Flex Alerts were then extended based on CAISO’s forecast
of the grid conditions on a daily basis. The average day-ahead market prices during the peak
period have been over 400 $/MWh, with higher price spikes to around 1500 $/MWh between
September 5th and 9th. The real-time market price also experienced an extremely high spike,
nearly reaching 2000 $/MW on September 5th and 6th, reflecting the opportunity cost to CAISO
for procuring marginal electricity generation. Figure A3 shows the trends of high electricity prices
and high risk of outage during these Flex Alerts.

The most critical grid condition occurred on Tuesday, September 6th, 2022. At 5:48 pm, CalOES
sent a phone alert to all mobile phones in California requesting for energy conservation. These
phone alert announcements reach almost all customers, unlike the standard announcements. The
text of the phone alert read “CalOES, Conserve energy now to protect public health and safety.
Extreme heat is straining the state energy grid. Power interruptions may occur unless you take
action. Turn off or reduce nonessential power if health allows, now until 9 p.m.” Media claimed
that the phone alert successfully reduced the total electricity demand by 2,000 MW.8

Figure 2 shows the detailed timeline of the 2022 Flex Alert series. In summary, households
in California can be categorized into demand-response households and non-demand response
(voluntary) households. Throughout this paper, we refer to voluntary and non-demand response
interchangeably. During Flex Alerts hours (the red-highlighted intervals in Figure 2), voluntary
households are treated purely through the moral suasion from Flex Alerts, while demand re-
sponse households additionally receive automation and conservation incentives when a demand
response event is called in parallel with Flex Alerts (the green-highlighted intervals in Figure
2). All households in California received a phone alert on September 6th, which increased the

7 See the Proclamation of a State of Emergency https://www.gov.ca.gov/wp-content/uploads/2022/08/8.31.22-
Heat-Proclamation.pdf (last accessed June 15th, 2024).

8 See https://www.canarymedia.com/articles/grid-edge/californians-saved-the-grid-again-they-should-be-paid-
more-for-it (last accessed June 15th, 2024). It reports that 50,000 Ecobee thermostats voluntarily enrolled in several
utility programs that responded to 37 demand response events across California during the emergency. It also reports
smart thermostat programs/providers, other than Ecobee, that participate in demand reduction, such as Google
Nest, OhmConnect, Leap, and Honeywell. Also see https://www.honeywellhome.com/us/en/demand-response/.
and https://www.ecobee.com/en-us/citizen/top-5-reasons-to-take-advantage-of-community-energy-savings/ (last
accessed June 15th, 2024) for examples of demand response programs offered by thermostat providers.
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Figure 2. Timeline of 2022 Flex Alerts

Note. This figure shows the timeline of the 2022 Flex Alerts series. The blue line shows the maximum outdoor tempera-
ture across California which fluctuates from 90 to 110 degrees. The first Flex Alert is announced at noon on August 31st.
The red dashed vertical lines show when the Flex Alerts notifications were released to the public. The red-highlighted
intervals show when the Flex Alerts were in effect, which are typically from 4 to 9 pm, except for September 5th and
8th. The green-highlighted intervals show when a demand response event is called by CAISO, in parallel with Flex
Alerts. Table A1 and A2 summarize the timing of Flex Alerts and demand response events on each date. Table A3
summarizes the information posted by the Flex Alert Twitter account and its timing in the September 2022 Flex Alerts.

salience of the energy conservation requests.

3 Conceptual Model

This section develops a theoretical model of household thermostat settings in the presence of au-
tomation and moral suasion. Our model extends the model of Ito et al. (2018) to model thermostat
setpoint behavior as in Brewer (2022) and Brewer and Crozier (2025). In our model, households
derive consumption utility from the thermostat setpoint, which incurs a cost of energy consump-
tion. Households choose their preferred baseline thermostat setting ahead of time by equating
the marginal benefits of an additional degree of cooling with the marginal costs due to the retail
price of electricity. During an energy emergency, the social marginal cost of energy consumption
exceeds the retail price of energy, resulting in welfare losses. Households can deviate from their
baseline thermostat setpoint, but if they choose to do so, they incur an inertia cost of taking ac-
tion, similarly to the cost of deviating from a default option as in the “Optimal Defaults” literature
(Choi et al., 2003). We then model how households respond to moral suasion and an automated
demand response program.
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Baseline thermostat setpoint: Our model considers household i choosing the cooling setpoint
Tidh on date d and hour h. We suppress the subscripts i, d, and h to simplify notation. In the first
stage, households choose baseline thermostat settings ahead of time that they program into the
thermostat. The household’s baseline utility function U0 is additively separable in the consump-
tion benefits and the opportunity cost of cooling:

U0(T, p) = u(T) − px(T). (1)

The first component, u(T), denotes utility or comfort from choosing a cooling setpoint. Since
our empirical setting is the summertime, we assume locally that households weakly prefer lower
temperatures (∂u/∂T ≤ 0) and have a concave preference (∂2u/∂T2 <0). Households pay the retail
electricity rate p in dollars per kilowatt hour for the amount of electricity consumed for cooling
x(T) in kilowatt hours. The energy required for cooling is decreasing in thermostat setting so that
(∂x/∂T < 0) and (∂2x/∂T2 ≤ 0).

Households choose a baseline cooling setpoint that solves T0 = arg max {u(T) − px(T)}, which
is characterized by the following first-order condition:

∂u(T0)
∂T

− p
∂x
∂T

= 0. (2)

This baseline thermostat setting T0 is the cooling setpoint the household will have in a normal
non-emergency hour, or during an energy emergency if they do not take conservation action. This
choice may be explicit, such as when a household chooses a schedule that a programmable ther-
mostat acts upon, or it may be implicit in that the household has previously chosen a setpoint that
remains through inertia. In either case, the existing thermostat setpoint serves as a baseline behav-
ior that the household will have to deviate from in the second stage if they wish to respond to any
change in incentives, such as moral suasion or demand response during an energy emergency.

Second stage: In the second stage, we model how households respond to an energy emergency
when there is a conservation appeal from moral suasion and an automated demand response pro-
gram. During an energy emergency, the social marginal cost of electricity rises above the original
retail price of electricity p that determined the household’s baseline thermostat setpoint T0. We
illustrate this case in figure 3, where we plot the household’s marginal willingness to pay for in-
door cooling. The socially optimal thermostat setpoint is at T∗ > T0 during the energy emergency,
leading to a social welfare loss of area A + B + C + D + E if the household maintains the baseline
thermostat setpoint during the energy emergency.

When energy consumption incentives change in the second stage, a household can update its
chosen thermostat setpoint from the baseline setpoint, but it will only do so when the household’s
cost to deviate from its baseline thermostat setting is low enough. We model the choice to deviate
from default behavior so that the household reoptimizes the thermostat setting only when the
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random variable Z > 0. Thus, in the second stage, the thermostat setting is:

T =

T′ if Z > 0

Tde f ault otherwise
(3)

where Tde f ault is the default thermostat setpoint and T′ is the reoptimized thermostat setpoint. The
baseline thermostat setpoint then acts as a default choice if the household does not take action. For
a typical household not enrolled in an automated demand response program, the default thermo-
stat setting is the baseline thermostat setting chosen in the first stage so that Tde f ault = T0. In
contrast, automation overrides the default thermostat setpoint so that Tde f ault = TA. This override
can take advantage of the household’s inertia to bias default behavior in favor of conservation
if TA > T0. The choice to change the thermostat setting is determined by the difficulty for the
household to adjust its thermostat based on both physical costs and informational barriers. For
example, an individual not at home or who does not view a notification has a very high cost of
adjusting a thermostat setpoint either to comply with an emergency appeal or respond to an auto-
mated thermostat override. We describe the components of the inertia variable Z in more formal
detail later in this section.

If the household deviates from the default thermostat setpoint, they will reoptimize their ther-
mostat setpoint. The household’s utility in the second stage U2 is a function of a potentially new
price of energy and the impact of moral suasion:

U2(T, p′, s) = u(T) − p′x(T) − µ(T, s). (4)

This utility function differs from the first stage in two ways. First, p′ is the second stage price,
which may differ from the first stage price if a demand response program compensates households
for reductions in consumption at a rate different from the retail rate, and second µ(T, s) is a moral
payoff term that depends on the household’s chosen thermostat setpoint and salience of moral
suasion s. The moral payoff can be thought of as either a warm glow for conservation (Andreoni,
1989) or a moral cost for consumption (Levitt and List, 2007; Ferraro and Price, 2013) that acts
effectively as a tax on consumption so that ∂µ/∂T > 0. We assume the marginal moral payoff
increases in salience so that ∂2µ/∂T∂s > 0.

If the household deviates from the default thermostat setpoint, they will choose the setpoint
that solves T′ = arg maxT u(T) − p′x(T) − µ(T, s). The first order condition is

∂u(T′)
∂T

− p′
∂x
∂T

− ∂µ

∂T
= 0. (5)

For households that take action, higher emergency prices p′ and stronger moral suasion ∂µ/∂T in-
crease conservation. Pure moral suasion relies solely on the moral cost term, while a pure demand
response program relies solely on the change in price to achieve conservation.

The inertia variable Z determines which households take action and is comprised of the factors

9



that motivate or deter a household from adjusting the thermostat setpoint. We assume that a
household is motivated to take action when the cost of inaction is large due to a high energy price,
strong and salient moral suasion, or a more elastic demand for cooling, which is true when ∆U2 =

U2(T′, p′, s) − U2(Tde f ault, p′, s) is large. In addition, physical costs of adjusting the thermostat and
informational barriers to receiving the emergency conservation request make action less likely,
which we denote by ξ. These costs may include, for example, the cost of adjusting the thermostat
when not at home or the barrier to adjusting the thermostat when an emergency conservation
request is missed. We represent this by denoting Z = Z(∆U2, ξ, s) where ∂Z/∂∆U2 and ∂Z/∂s are
positive and ∂Z/∂ξ is negative.

The characteristics of emergency conservation programs can affect the likelihood households
take action by either affecting the incentives to conserve energy, improving messaging, or affecting
baseline behavior via automation. For example, increasing moral suasion increases ∆U2, making it
more likely a household will respond. Improving the reach of messaging or targeting times when
households are home will increase ξ, also increasing the likelihood a household will respond. Au-
tomation can reduce the likelihood a household takes action if it changes Tde f ault to an automated
setpoint TA that is close enough to the household’s reoptimized T′. Intuitively, the household
may not feel the need to respond if it has the sense that the automated conservation program is
responding. In contrast, if the automated setpoint is too aggressive and decreases comfort too
much, it can encourage the household to take action to reduce conservation.

Hypotheses: We use our theoretical model to characterize the relative average treatment effects
of these conservation programs, which will serve as testable hypotheses in the empirical portion
of the paper. The average treatment effect of an emergency conservation program on thermostat
settings is the average effect for households that take action and those that do not take action:

E[T − T0] = E[T′ − T0|Z > 0]P(Z > 0) + E[Tde f ault − T0|Z ≤ 0]P(Z ≤ 0). (6)

The first term is the difference between the chosen alternative thermostat setting and the baseline
thermostat setting, multiplied by the probability the household takes action, while the second term
is the difference between the default thermostat setting (T0 or alternatively TA for households in
the automated demand response program) and the baseline thermostat setting, multiplied by the
probability of accepting the default thermostat setting.

This implies that different emergency conservation programs can act on three margins. On
the intensive margin, features of the program can increase the amount of conservation for peo-
ple who take action E[T′ − T0|Z > 0]. For example, increased moral suasion or a price increase
raises the number of degrees a household will increase the thermostat setpoint for compliers. On
the extensive margin, features of the program can increase or decrease the likelihood a household
takes positive action P(Z > 0). For example, increasing the salience of an emergency conservation
request can independently increase the likelihood a household takes action. Finally, on the passive
margin, automation can increase the baseline level of conservation by changing the default behav-

10



𝑇!"#$!!% − 𝑇

$/∘𝐹

𝑇'

𝜇 + 𝑝′

𝑇( 𝑇)

𝐴 𝐵

𝑝

𝑠𝑜𝑐𝑖𝑎𝑙	𝑀𝐶

𝑇∗

𝐶

𝐷 𝐸

Figure 3. The marginal willingness to pay for cooling, with the baseline thermostat setpoint T0,
conservation thermostat setpoint T′, and automation thermostat setpoint TA.

ior from the baseline level, increasing E[Tde f ault − T0|Z ≤ 0] for non-compliers. This channel will
also affect the probability of taking action as it affects ∆U2.

During the California Flex Alerts, households were exposed to moral suasion of low and high
salience, while another subset of households were additionally exposed to automated demand
response programs that adjusted the thermostat setpoint and provided a monetary incentive to
conserve. We construct two testable hypotheses from our model.

Hypothesis 1: Moral suasion and demand response increase conservation with or without automation
present. Increasing the strength of moral suasion by increasing µ or implementing demand re-
sponse by increasing the price p′ will increase conservation on the intensive margin for compliers
by increasing T′. In addition, this will increase the likelihood that households take action on the
extensive margin by increasing ∆U2. This effect is true either with or without automation. When
the default thermostat setpoint is adjusted using automation, moral suasion and demand response
can result in the household contributing additional effort to conserve more than the automated
level, or it can provide an incentive that prevents the household from overriding the automated
default to return to the baseline thermostat setting.

Figure 3 illustrates this graphically. The household chooses baseline thermostat setting T0

prior to the energy emergency. Moral suasion or demand response increases the cost of cooling,
resulting in choosing T′ if the household takes action. If the household does not take action,
the household’s default thermostat setting is the baseline thermostat setting or the automated
thermostat setting TA. The incentive to adjust the thermostat setpoint depends on ∆U2, which
corresponds to triangle D+ E and is the household’s surplus loss from choosing to not take action.
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Increasing the strength of the moral suasion or demand response incentive will increase D + E,
resulting in a higher likelihood the household exerts effort to respond to the energy emergency.

In the context of the California Flex Alerts, households experience low-salience requests to
increase the thermostat setpoint, followed by high-salience requests. Hypothesis 1 suggests that
when we move from low-salience to high salience moral suasion, we should see increased conser-
vation by California households relative to control households. This salience effect should apply
to non-demand-response and demand-response households. For demand response households,
this hypothesis suggests that some of the increased treatment effect should come via reducing
override behavior.

Hypothesis 2: Automation can increase or decrease conservation, depending on the presence of moral
suasion and demand response. Automation that increases the default thermostat setting increases
E[Tde f ault − T0|Z ≤ 0], increasing conservation for non-compliers. At the same time, automation
reduces ∆U2, which reduces the probability of taking action because the household knows that
automation has reduced the benefits of the costly conservation action. Thus, in the presence of
moral suasion or demand response, automation can crowd out additional conservation effort from
would-be compliers.

In Figure 3, automation overrides the default thermostat setpoint from T0 to TA. If the house-
hold was not going to comply, this results in conservation. At the same time, this reduces the
surplus loss created from inaction by reducing ∆U2 from D + E to D. On the margin this makes
the household less likely to induce effort to change the thermostat setting to T′, crowding out con-
servation behavior. The relative magnitude of these effects is unclear, so automation may serve as
either a substitute or complement to moral suasion and demand response.

The natural experiment we analyze allows us to resolve the theoretically ambiguous predic-
tion within the context of the California Flex Alerts and automated thermostat demand response
program. This hypothesis suggests that the average treatment effect for demand-response and
non-demand-response households will differ. We will evaluate this by estimating distinct treat-
ment effects for households participating and not participating in the automated demand response
program.

4 Data and Empirical Strategy

In this section, we start by describing the data used for the analysis. We then describe our empir-
ical strategy to estimate the effect of the Flex Alerts on the primary outcome variables. First, we
estimate the treatment effect of the standard Flex Alerts and the Flex Alerts after the phone alert
for different periods of the day. Second, we decompose the treatment effect for each hour of the
day. We then estimate the dynamic treatment effect for each subsequent day of the Flex Alerts and
after the conclusion of the Flex Alerts.
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4.1 Data and Descriptive Evidence

Data source We use two primary data sources for this analysis. The first data source is infor-
mation on the timing of Flex Alerts and Demand Response events from CAISO which is available
in the Grid Emergencies History Report and CAISO Today’s Outlook.9 The Grid Emergencies
History Report contains information on when the Flex alert was announced and the starting and
ending hours of the Flex Alert. The CAISO Today’s Outlook contains information on the timing
of the demand response event. We use this information to identify the timing of the Flex Alerts
and demand response events in our data.

The second data source is the smart thermostat data from Ecobee’s Donate-Your-Data (DYD)
program. The data is available at five-minute intervals, containing the household thermostat set-
point (both heating and cooling), indoor temperature measurement from sensors, indoor humidity
levels, number of minutes that the fan was running, movement indicators from sensors, the mode
that the thermostat is on, thermostat event name, and household characteristics. A potential con-
cern is that smart thermostat users may not be representative of the general population; however,
previous research shows that these users have statistically similar characteristics, which rules out
the concern of selection.10 The thermostat event name variable allows us to identify if house-
holds ever received any demand response event in their thermostat. We describe the procedure
in Appendix D. We call these household demand response participants. The data also contains
information on the household, which includes the number of occupants, size, age, and number of
floors of the house, as well as the location of the households at the self-reported city level. We ag-
gregate the data to hourly levels for the analysis in this paper, mainly to reduce noise and increase
computation speed. The data is available from August 1, 2022, to September 25, 2022.

We complement the smart thermostat data with historical hourly weather data obtained from
Visual Crossing.11 The API processes multiple sources of weather data, including the National
Oceanic and Atmospheric Administration (NOAA) Integrated Surface Database (ISD) and Mete-
orological Assimilation Data Ingest System (MADIS) database, which observes historical weather
at multiple weather stations and allows us to observe hourly weather data for a specific location
at a particular hour. The data contains hourly temperature, relative humidity, wind speed, precip-
itation, and cloud cover information. Since we rely on Ecobee’s household self-reported city data
to match observations with the hourly weather data, we exclude households with unidentified or
missing location data.

We limit our sample to households in California and four surrounding states: Arizona, Nevada,
Oregon, and Utah. We use non-demand response households from other states as controls. In our
treatment group, we have non-demand response households and demand response participant

9 See https://www.caiso.com/Documents/Grid-Emergencies-History-Report-1998-Present.pdf (last accessed June
15th 2024).

10 For example, Meier et al. (2019) find that the characteristics of households in the Ecobee sample are comparable
to a sample of households in EIA 2015 Residential Energy Consumption Survey, while Brewer and Crozier (2025) also
shows that early- and late-adopters of smart thermostats respond similarly to conservation requests.

11 See visualcrossing.com/resources/documentation/weather-data/weather-data-documentation for more informa-
tion (last accessed June 15th, 2024).
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Figure 4. Map of households in the final sample

households from California. We exclude household extreme thermostat settings that set their
cooling setpoint below 50 °F and above 104 °F. Our final sample consists of 3,706 control house-
holds, 5,180 California non-demand response households, and 3,274 California demand response
participant households. Figure 4 shows the spatial distribution of the households in the final sam-
ple. For our main analysis, we use data from August 18th to September 9th, 2022, while for the
event study, we extend our sample to include all available data back from August 1st, 2022, to
September 23rd, 2022.

Outcome variables We measure household responses using two primary outcome variables.
The first outcome variable is the thermostat cooling setpoint in degrees Fahrenheit which repre-
sents the household’s preferred indoor temperature. This cooling setpoint can be programmable
—which the household sets to follow a schedule for each hour — or adjusted by the user in real
time. The feature of the smart thermostat allows households to override the setting remotely.
CAISO suggests precooling houses before the peak period and increasing their cooling setpoint
during the peak period. Thus, the change in the household’s cooling setpoint after receiving the
Flex Alert is a measure of the household’s response to the recommendation. The second outcome
variable is the compressor run-time in minutes per hour. We use compressor run-time as a proxy
for electricity consumption for cooling following the literature (Blonz et al., 2025; Fu et al., 2024).
The compressor run-time is the duration the HVAC system runs to cool the house within an hour.
We present our analysis using alternative outcome variables separately in Appendix E and F.
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Figure 5. Hourly mean of outcome variables before and after the Flex Alert

Note. This figure shows the hourly average of the main outcome variables before and after the first Flex Alert an-
nouncements on August 31st, 2022, at 12:48 p.m. using observation ranging from August 18th to September 9th, 2022.
The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak period.

Descriptive evidence Figure 5 shows the hourly mean of the four main outcome variables for
households in California and the controls before and after the treatment. Average households
in California set their cooling setpoint around 77 °F while control households, on average, set
their cooling setpoint around 75 °F. California households receive the Flex Alerts recommendation
while the control households do not. The data show a cooling setpoint response during the peak
period from California households after Flex Alerts. We also observe a change in compressor run-
time pattern in the peak period after the Flex Alerts. We also observe that the hourly trends in
outcomes variables between California and control households are similar before the Flex Alert
events, which motivates our difference-in-differences approach.

4.2 Estimating household responses to Flex Alerts

For our empirical analysis, we employ a generalized difference-in-differences design. The in-
tuition is to compare the outcome of California households to control households, allowing for
different responses for demand response participants when a demand response event is called.

We estimate the effects of Flex Alerts by period of the day, distinguishing low-salience pe-
riods (after the initial Flex Alerts) from high-salience periods (after the statewide phone alert).
Simultaneously, we identify the effect of demand response events using within-household varia-
tion by comparing the demand response participants’ behavior during event hours and non-event
hours within the same Flex Alert window. In doing so, we estimate the following difference-in-
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differences specification.

yidh =
2

∑
k=0

βFA,k (Didh × 1[Perioddh = k]) + δFA (Didh × 1[Perioddh = 1] × 1[DReventidh])

+
2

∑
k=0

βPA,k (Pidh × 1[Perioddh = k]) + δPA (Pidh × 1[Perioddh = 1] × 1[DReventidh])

+ θXidh + αidh + ϵidh, (7)

where yidh is the outcome variable of household i at date d and hour of day h. Didh is a treatment
indicator that equals one for California households at day t and hour of day h after the initial Flex
Alert was issued and before receiving the phone alert. Similarly, Pidh is a treatment indicator that
equals one for California households at hour h of the day after receiving the phone alert. We inter-
act the treatment indicator with indicators for each of the three response periods, 1(Perioddh = k),
capturing separate treatment effects for the period k = {0, 1, 2} which consecutively represents
before-peak, peak, and after-peak period. We define the peak period following CAISO’s definition
of the Flex Alert hours for the day. Specifically for peak periods, we allow for different responses
for demand response participants when they are in a demand response event. To do so, we inter-
act the treatment indicator during the peak period with indicators for when a demand response
event is called, 1[DReventidh], which equals one for demand response participant when a demand
response event is called at date d and hour of day h. The control variables, Xidh, include daily max-
imum outdoor temperature, hourly outdoor temperature, relative humidity, precipitation, wind
speed, and cloud cover.

The combinations of fixed effects, αidh, include hour-of-sample indicators and hour-by-day-of-
week-by-household fixed effects. The hour-of-sample indicator picks up unobserved common
shocks across households. The hour-by-day-of-week-by-household fixed effects absorb unob-
served time-variant characteristics within the household, such as household commuting patterns,
programmable thermostat settings, and their electricity pricing regime.12 The treatment variation
is assigned at the state-hour level, which which necessitates two-way clustering of standard er-
rors, ϵidh, at the state and hour-of-sample level (Abadie et al., 2023). However, since we have only
five states, with a small number of clusters, the cluster-robust standard error estimates may be
biased (Cameron et al., 2008). To overcome this problem, we use Driscoll and Kraay (1998) stan-
dard error that is valid for small clusters and long panels. This inference procedure accounts for
unknown spatial and serial correlations in the treatment by relying on the length of the panel. We
use a bandwidth of 24, which includes 23 lags, allowing the residuals to be auto-correlated within
the past 24 hours.

The identifying assumption underlying the causal interpretation of the difference-in-differences

12 Considering significant households in California are solar rooftop owners, these fixed effects can also capture the
effects of having solar rooftop owners if we assume that the hourly solar production is relatively similar across weeks
in our samples
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approach is that the outcome variables for the treatment and control group will evolve similarly
conditional on the controls and the fixed effects absent of Flex Alerts. Figure 5 provide a graph-
ical evidence of parallel trend from the raw data. We also provide further statistical evidence of
conditional parallel trends in the pre-treatment period from our event study estimates in Section
5.3. Given the set of fixed effects, the average treatment effect on the treated estimates identifies
the difference in the change of the outcome variables using within-household variation before
and after Flex Alert events in a given hour of the day and day of the week relative to the house-
holds in the unaffected state. For example, this specification allows us to compare the difference
between changes in cooling setpoint for a household in California after receiving the Flex Alert
nudges on Monday at 4 p.m. (relative to the same time window the week before) and the change
in thermostat setting for a household in the control states, conditional on the controls.

In the specification, we estimate four sets of different coefficients, which allow us to distinguish
heterogeneous average treatment effects on the treated by salience level of Flex Alerts and by
whether or not households are treated with demand response events. Conditional on the controls
and the set of fixed effects, the coefficient βFA,k captures the average treatment effect on California
households of the standard Flex Alerts at period k of the day and the coefficient δFA captures the
difference in the average treatment effect of the standard Flex Alerts between California demand
response participants and California non-demand response households at the peak period of the
day. Likewise, the coefficient βPA,k captures the average treatment effect on California households
of the Flex Alerts after the phone alert at period k of the day, and the coefficient δPA captures
the difference in average treatment effect of the Flex Alerts after the phone alert between Califor-
nia demand response participants and California non-demand response households at the peak
period of the day.

We estimate equation (7) for cooling setpoint and compressor run-time. The specification al-
lows us to identify the treatment effect for each period of the day: during the before-peak period
when the recommendation is to precool, the peak period when the recommendation is to raise the
cooling setpoint, and after-peak period when the recommendation is lifted. If households precool
their house before the Flex Alert hours, we expect the treatment effect on the cooling setpoint to
be negative before the peak period. Meanwhile, if households follow the recommendation to in-
crease their cooling setpoint during the Flex Alert hours, we expect the treatment effect for this
period to be positive. To evaluate the impacts on electricity consumption, we look at the treatment
effects on compressor run-time. We expect the treatment effect to be positive before the peak pe-
riod as a consequence of households following precooling recommendations. In the peak period,
we expect the treatment effect on compressor run-time to be negative, reflecting energy savings.
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4.3 Estimating hourly responses to Flex Alerts

To decompose household hourly response in a Flex Alert day, we estimate the effect of the Flex
Alerts on our outcome variables for each hour of the day using the following specifications.

yidh =
24

∑
h=1

(
βFA,hDidh × 1[Hourh = k]

)
+

24

∑
h=1

δFA,h (Didh × 1[Hourh = k] × 1[DReventidh])

+
24

∑
h=1

(
βPA,hPidh × 1[Hourh = k]

)
+

24

∑
h=1

δPA,h (Pidh × 1[Hourh = k] × 1[DReventidh])

+ θXidh + αidh + ϵidh. (8)

The treatment indicator Didh and Pidh and demand response event indicators 1[DReventidh] are
defined similarly to those in equation (7). We interact the treatment indicator with indicators
for each hour of the day, 1[Hourh = k], capturing separate treatment effects for each hour. We
use a similar set of fixed effects and inference procedure as in equation (7). The coefficient βFA,h

measures the average hourly effect for California households at hour h in a standard Flex Alert
day relative to the control group. Similarly, the coefficient βPA,h measures the average hourly effect
for California households at hour h in Flex Alert days after the phone alert relative to the control
group. The coefficient δFA,h measures the difference in the average hourly effect at hour h between
California demand response participants and California non-demand response households in a
standard Flex Alert day, while δPA,h measures the same effect but for the Flex Alert days after the
phone alert. Note that δFA,h and δPA,h are identified using within household variation in demand
response event timing in the peak period for demand response household, thus, the coefficients
are only identified for the hours in the peak period.

The coefficient estimates of equation (8) characterize households’ hourly response to the Flex
Alert. We expect households to set their cooling setpoint lower before the peak period and increase
their cooling setpoint after 4 p.m. when the Flex Alert hours start. We expect that the salience of
Flex Alerts affects the magnitude of the responses and households’ responsiveness in following
the recommendation. After the largest treatment effect is reached, we expect the effects to diminish
towards the end of the Flex Alert hours.

4.4 Estimating dynamic treatment effect

We estimate the dynamic treatment effect on the main outcome variables for each day using the
following generalized event study specification:

yidh = ∑
t∈[−23,23],t ̸=−1

2

∑
k=0

βtkDitk + ∑
t∈DRdays

δtkDit1 + θXidh + αidh + ϵidh. (9)
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where t is the lead or lag day relative to the first day of the Flex Alerts series (i.e. August 31st,
2022), indicator Ditk equals one for the period k of day t relative to the first day of the Flex Alerts,
and DRdays is the set of days when there is a demand response event called during the peak
period (i.e. DRdays = {−15, 0, 1, 5, 6, 7, 8}). To validate our parallel trend assumption, we extend
the event study sample from a month before to two weeks after the Flex Alert series. To identify
the model, we bin all periods in the first week of August to the 23rd lead period. Even though
there was a Flex Alert on August 17th, 2022, extending the start of the sample beyond the start of
our difference-in-differences sample allows us to look at longer periods of pretrends.13 The event
study includes 22 days of lead coefficients and 24 days of lag coefficients. The lead coefficients
allow us to check for parallel trends in the outcome variables by comparing the evolution of the
outcome variable separately for the before-peak, peak, and after-peak periods relative to the day
before the Flex Alert. On the other hand, the lag coefficient gives us the dynamic treatment effects
for each period of the day throughout and after the ten consecutive days of Flex Alerts. We use
a similar set of fixed effects as in equation (7). To reduce computational run-time, we estimate
equation (9) separately for each of the three periods of the day and use two-way cluster robust
inference at the state and hour-of-sample level.

The coefficient estimates of equation (9) characterize how households respond differently on
each day. Our causal interpretation relies on the conditional parallel trend assumption, thus we
expect the lead coefficient estimates for the period where there are no Flex Alerts to be statistically
zero. Looking at the dynamic treatment effect, in repeated treatment, the household may habituate
in their response to the Flex Alert requests.14 We hypothesize that household responses in the
first few days of the Flex Alert are small due to the low salience of standard Flex Alerts. We
expect a more prominent treatment effect after the customer receives the phone alert from the
CalOES. However, due to potential habituation, we expect the treatment effect to decline in the
days following the phone alert. We also expect that the treatment effect will be higher during the
peak period compared to the before-peak and after-peak periods. In the longer run, repeated Flex
Alerts could lead to households changing their cooling setpoint, which could be a sign of habit
formation. If that is the case, we expect the treatment effect to stay significant even after the Flex
Alerts series ends.

5 Results

5.1 Household responses to Flex Alerts

Table 1 shows the effect of Flex Alert on each outcome variable for the before-peak, peak, and
after-peak periods. The first four rows show the treatment effect of low salience Flex Alerts,

13 Using only difference-in-differences sample period limits our ability to only identify seven lead coefficient since
we have to accumulate the first week of data. Using only difference-in-differences sample period yields quantitatively
similar results as shown in Figure A4.

14 We direct readers to Ito et al. (2018) for a brief review about habituation, dishabituation, and habit formation in
behavioral interventions.
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and the next four rows show the treatment effect of high salience Flex Alerts. The third row,
Peak×1 (DR Event), shows the treatment effect for demand response participants for being in a
demand response event during the peak period.

Table 1. Households Responses to Flex Alert

(1) (2)
Cooling Setpoint Compressor Run-Time

After First Tweet
Before-Peak -0.086∗∗∗ 0.210

(0.021) (0.224)

Peak 0.035 -0.266
(0.029) (0.641)

Peak×1 (DR Event) 0.358∗∗∗ -0.182
(0.120) (0.661)

After-Peak -0.085∗∗∗ 0.736
(0.024) (0.501)

After Phone Alert
Before-Peak 0.001 -0.808

(0.025) (0.627)

Peak 0.304∗∗∗ -0.780
(0.077) (0.658)

Peak×1 (DR Event) 1.069∗∗∗ -1.991∗∗

(0.128) (0.854)

After-Peak 0.043 2.238∗∗

(0.035) (0.993)

Pre-treatment Mean
Before-Peak 76.35 8.41
Peak 76.27 20.31
After-Peak 76.01 12.94

No. of Household 11,807 12,135
Observations 6,342,016 6,632,642

Note. This table reports regression coefficients from difference-in-
differences regression estimated using equation (7). The first panel
show the effect of low salience Flex Alerts, while the second panel
show the effect of high salience Flex Alerts. Each row shows the ef-
fect at different period of the day. The peak period is defined as fol-
lowing CAISO’s Flex Alert hours of the day. Column (1) shows the
effect on the household cooling setpoint in °F. Column (2) shows
the effects on the compressor in minutes per hour. The control vari-
ables include daily maximum temperature, hourly outdoor tem-
perature, outdoor relative humidity, precipitation, wind speed, and
cloud cover. The fixed effects include hour-of-sample indicators
and hour-by-day-of-week-by-household fixed effects. The sample
period is from August 18th to September 9th, 2022. Standard errors
reported follow the Driscoll and Kraay (1998) inference.
∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.

Column 1 shows the treatment effect for cooling setpoint. While standard Flex Alerts elicit
negligible response, the high salience alert triggers a behavioral shift. The combination of high
salience and automated DR generates a treatment effect roughly three times larger than automa-
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tion under low salience. We find no economically meaningful effect of standard Flex Alerts on
cooling setpoints in the first six days in all periods of the day. When a demand response event is
called, the demand response participant increases their setpoint by 0.35 °F. After the phone alert
on the seventh day, we find that households increase their cooling setpoint by 0.3 °F. High salience
triples the effect of demand response events, leading to a 1.1 °F increase in setpoints.

Columns 2 report the treatment effect estimates for compressor run-time. The treatment effect
estimates on compressor run-time during the peak period in both low and salience Flex Alerts
have the expected negative sign but statistically insignificant. The hourly average treatment effect
estimates presented in the next section reveal that while the average treatment effect is not sta-
tistically significant, this is due to the underlying heterogeneity resulting in high variance in the
treatment effect over time. This is also true for the effect of demand response event under low
salience. After the phone alert, demand response participant reduces their compressor run-time
by 2 minutes per hour more when a demand response event is called in the peak period.

5.2 Hourly responses to Flex Alerts

Figure 6 shows the average treatment effects for each hour of the day. Figure 6a reports the hourly
treatment effects on the cooling setpoint. We find that in a standard Flex Alert, households re-
spond highest around 6 to 7 p.m., increasing their thermostat by 0.2 °F higher. Before and after
the peak period, the treatment effect is negative and statistically significant, but the effect size is
modest. After the phone alert, they respond much earlier, increasing their thermostat by 0.4 °F
higher. We find no significant effect on the cooling setpoint before and after the peak period.
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Figure 6. Hourly treatment effect estimates of the Flex Alerts

Note. This figure shows the estimates of the hourly responses to Flex Alert estimated using equation (8). The hour labels
for each coefficient refer to the ending time of each one-hour interval. The dots correspond to the hourly treatment effect
estimates for non-demand response households for the standard Flex Alerts (β̂FA,h) and the Flex Alerts after receiving
the phone alert (β̂PA,h). The highlighted area shows the 95% confidence interval, which follows the Driscoll and Kraay
(1998) inference. The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak period.

Figure 6b shows the hourly treatment effects on compressor run-time. In the standard Flex
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Alerts, the treatment effect is zero after midnight and goes down to about -1 minutes per hour at 7
a.m. The treatment effect then ramps up to about 2 minutes per hour from 1 p.m. to 3 p.m. During
the peak period, the treatment effect dips to the lowest point of -2 minutes per hour between 6
p.m. to 7 p.m. Towards the end of the peak period, the treatment effect goes to zero at the end
of the peak period. After the phone alert, the treatment effect starts at zero after midnight and
then goes down to -3 minutes per hour at 7 a.m. It then ramps up to 2 minutes per hour from 1
p.m. to 3 p.m. but it is not statistically significant. The effect starts to decline in the peak period
to about -2 minutes per hour from 5 p.m. to 7 p.m. The decline in the peak period after the phone
alert is relatively faster and higher than in the standard Flex Alerts indicating a stronger impact on
household electricity consumption. We also find a negative effect on the off-peak period, which
we suspect is due to energy efficiency, considering houses in California have a higher building
code relative to other states.

5.3 Event study estimates

Figure 7 reports the dynamic treatment effect estimates for each period of the day relative to the
day before the first Flex Alert announcement. The day before our difference-in-differences sample,
August 18th, there is a Flex Alert, as shown in Figure 7a. The lead coefficient estimate on the
cooling setpoint for that day is positive and significant.
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Figure 7. Dynamic treatment effect estimates of the Flex Alerts

Note. This figure shows the estimates of the event study regressions using equation (9). The dots correspond to the lead
and lag coefficient estimates for non-demand response households for each day. The highlighted area shows the 95%
confidence interval which is two-way clustered at state and hour-of-sample level. We extend the event study sample
from a month before to two weeks after the Flex Alert series. We present estimates from using only the difference-in-
differences sample period in Figure A4

In general, the lead coefficient estimates within the difference-in-differences sample period
exhibit conditional parallel trends prior to the treatment. The lead coefficient estimates for the
cooling setpoint in Figure 7a is statistically zero. The lead coefficient estimates for the compressor
run-time in Figure 7b are also statistically zero, however, they are more noisy. Concisely, the event

22



study estimates suggest that the conditional parallel trend assumption holds for all periods of the
day, which supports our causal claim.

We find suggestive evidence that households habituate to the standard Flex Alerts. Focusing
on the peak period, we find the largest treatment effect on the cooling setpoint of 0.1 °F during
the peak period on the first and second day. This effect then goes to zero after the third day.
The no-effect results are not surprising, and there are several explanations. First, the salience of
Twitter posts can be considered weak in delivering the conservation request to households. The
second possible explanation is habituation which causes households to be less responsive when
Flex Alert is repeated, which is documented in other energy settings (Ito et al., 2018; Allcott and
Rogers, 2014). Lastly, September 3rd to 5th coincides with Labor Day weekend; households likely
spent more time at home and may have been less willing to adjust cooling setpoints. The dynamic
treatment effect estimates for compressor run-time are noisy and mostly insignificant, but they
move in the opposite direction to the cooling setpoint estimates, as we hypothesized. The highest
reduction of 5 minutes per hour of compressor run-time happens on the last day of the series.

The phone alert increases the salience of the Flex Alerts, making it more effective in getting
the household to act. The day the phone alert is sent, the dynamic treatment effect goes up to
around 0.4 °F during the peak period. The treatment effect declined slightly on the eighth day
and then continued to increase to around 0.5 °F on the last day of the Flex Alerts series. These
higher treatment effects in the peak period stay until the end of the Flex Alert series, indicating a
more persistent treatment effect from the phone alert. This is suggestive evidence that households
dishabituate when the phone alert is sent. In contrast to Ito et al. (2018), we find that households
do not habituate to the repeated Flex Alerts after the phone alert. We suspect that the phone alert
makes households internalize the value of following the Flex Alerts recommendation.

After the end of the Flex Alerts, we observe a lasting change in the household cooling setpoint,
even though there is no longer a grid emergency. The treatment effect on the cooling setpoint
for California households stayed around 0.4 °F higher for almost two weeks after the Flex Alerts
series ended. Even though the pattern resemble hysteresis phenomenon as in Costa and Gerard
(2021), event study estimates in Figure A9a indicates that indoor temperature return to baseline
levels which suggest more of inattention or default effect (Fowlie et al., 2021). The treatment effect
on the compressor run-time evolved around zero after the Flex Alerts series ended.

5.4 Extensive margin responses

We construct alternative outcome variables to measure the extensive margin responses of the
households, that is, how the households are changing the mode of cooling in response to the
Flex Alerts. The first outcome is whether or not the thermostat is on hold. The second outcome is
whether or not the cooling setpoint is below 70°F, which measures compliance with the precooling
recommendation. The third outcome is whether or not the cooling setpoint is above 78°F, which
measures compliance with the peak period recommendation. The fourth outcome is whether or
not the household turns its cooling system off. The household can turn their cooling system off by
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setting the HVAC mode to heat or off. This outcome measures how likely households are to turn
off their cooling system during the Flex Alerts. We present these results in Appendix F.

In standard Flex Alerts, we find no meaningful effect on the proportion of cooling systems put
on hold. We also find no significant effect on the proportion of people with a cooling setpoint
less than 70 °F throughout the day. During the peak hour, we find that 0.7 percent of households
change their cooling to above 78 °F. We find that households turn off their cooling system less on
Flex Alert days; however, during the peak period, more than one percent of households turn off
their cooling system. For demand response participant, we find that they are 1.5 percent less likely
to put their thermostat on hold in the peak hour.

After the phone alert, we find no economically meaningful effect on the proportion of cooling
systems put on hold and on the proportion of households with cooling setpoint less than 70 °F.
During the peak period, we find 3 percent of households changed their cooling setpoint above
78 °F. The effect on the proportion of households turning off the cooling system stays the same
as in standard Flex Alerts. After the phone alert, demand response participant, are 5 percent less
likely to put their thermostat on hold during the peak period and 10 percent more likely to change
their cooling setpoint to above 78 °F. Increase salience cause demand response participant to be
less likely to reverse the automated override in a demand response event. Enrolling in a demand
response program makes the override a default option when there is a demand response event.

5.5 Comparing the effect of Flex Alerts and demand response event

In this section, we present the effect of being a demand response event. Demand response partici-
pants in our setting receive both moral suasion via the Flex Alerts and monetary incentives when
a demand response event is called. In addition to that, the household also allows the demand re-
sponse provider to adjust their thermostat cooling setpoint directly, often known as Air Condition-
ing (AC) load control during a demand response event (The Brattle Group, 2024). These demand
response participants can override the determined cooling setpoint if households prefer comfort
over monetary incentives from a demand response event. The feature of smart thermostats allows
automated response to a demand response event, which lowers the effort that households use to
comply with a request.

We find that a demand response event is a more effective nudge compared to the Flex Alerts.
Our difference-in-differences estimates show that the treatment effect of being in a demand re-
sponse event within a Flex Alerts is ten times the effect of Flex Alerts. Increased salience of con-
servation requests through phone alerts also increases the effect of being in a demand response
event, which is three times the effect of Flex Alerts with the phone alert.

Figure 8 shows the effect of the demand response event for the demand response participant.
We find that typically in the first hour of an event, demand response participants exhibit a pre-
cooling behavior and start conserving after the first hour. The treatment effect on cooling setpoint
is more persistent within these intervals. In the standard Flex Alerts, a demand response success-
fully increases the cooling setpoint by up to 0.5 °F that lasts for three hours. After the phone alert,
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Figure 8. Hourly treatment effect estimates of demand response event

Note. This figure shows the effect of the demand response event for demand response household estimated using
equation (8). These coefficients are only identified during demand response events. The hour labels for each coefficient
refer to the ending time of each one-hour interval. The dots correspond to the hourly effect of being in a demand
response event for demands response households during the standard Flex Alerts (δ̂FA,h) and the Flex Alerts after
receiving the phone alert (δ̂PA,h). The highlighted area shows the 95% confidence interval, which follows the Driscoll
and Kraay (1998) inference. The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak
period.

it increases the cooling setpoint by up to 1.3 °F, which declines slightly to 1 °F increase at the end
of the peak period. The reduction of compressor run-time from demand response event in the
standard Flex Alert is up to 3 minutes per hour during the peak period. After the phone alert, the
reduction is up to 7 minutes per hour during the peak period.

On a per-household basis, the Flex Alerts, even with an increased salience, yield lower re-
sponses compared to the demand response event. However, according to EIA From 861, in 2022,
the number of residential households enrolled in a demand response program in California was
505,116 households, which is about four percent of residential customers. These low enrollments
might limit the potential of utilizing only demand response households to save the grid during a
Flex Alert. Although the effectiveness of the Flex Alert for non-demand response households is
lower, the potential energy saving might be significant in aggregate.

6 Welfare Analysis

6.1 Reduction in electricity consumption

The main goal of the Flex Alert recommended cooling setpoint during the before-peak and peak
periods is to adjust household electricity consumption for cooling, shifting the electricity con-
sumption from the peak period to the before-peak period when scarcity of generation capacity is
not an issue. In this section, we estimate the total demand reductions achieved through the Flex
Alerts and demand response event.
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Figure 9. Hourly aggregate demand reduction

Note. This figure shows the hourly aggregate demand reduction from cooling in the standard Flex Alerts and after
the phone alert which is computed following Blonz et al. (2025) using previous results from estimating equation (8)
for compressor run-time. Figure 9a shows the demand reduction from non-demand response households and demand
response participants, while figure 9b shows only the demand reduction from demand response participants. The
dots correspond to the estimated hourly average demand reduction. The highlighted area shows the 95% confidence
interval of the hourly average demand reduction. The hour labels for each estimate refer to the ending time of each
one-hour interval. The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak period.

We follow Blonz et al. (2025) to convert the hourly average treatment effect on the compressor
run-time to an average reduction in electricity consumption for a household, which is detailed
in Appendix C. From our results in Section 5.2, the reduction of compressor run-time for non-
demand response household after the phone alert ranges from 2 to 4 minutes per hour, which
translates to 0.084 to 0.168 kW per household. For demand response household after the phone
alert with the additional effect of being in demand response event, the reduction ranges from 3
to 7 minutes per hour, which is equivalent 0.126 to 0.294 kW per household.15 To scale the per-
household estimates to aggregate impacts, we assume the total number of residential customers
to be 13,550,586 households according to the total number of households in California in the 2022
American Community Survey 1-year Estimates. We then assume that 72 percent of households in
California own an AC following 2022 Residential Energy Consumption Survey (EIA, 2020). This
leaves us with approximately 9.75 million households. We assume 505,116 households, about
5% of AC owners, to be demand response participants, and the rest are non-demand response
households.

Figure 9 reports the aggregate demand reduction for cooling realized by non-demand response
households and demand response participants during the standard Flex Alert and phone alert
treatment. In the standard Flex Alert during the peak period, the estimated aggregate demand
reduction reached almost 800 MW of electricity between 6 p.m. and 7 p.m. The demand response

15 This number is slightly lower but comparable to the estimates from the SDGE ACSDA Evaluation a pilot study on
SDGE customer who have smart thermostat, of which the average impact per household during September 7th, 8th,
and 9th are consecutively 0.43, 0.36, and 0.25 kW per household. See the Demand Side Analytics (2023) (last accessed
June 15th, 2024)
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participant contributes up to 60 MW during these periods, a modest amount compared to the
non-demand response household. After the phone alert treatment, the estimated aggregate de-
mand reduction is significantly higher, reaching more than 1,300 MW, of which around 140 MW
is contributed by demand response participants. These estimates suggest that non-demand re-
sponse households contribute significantly to the aggregate demand reduction, even though their
response is much smaller individually than demand response participants. The highest demand
reduction happens between 5 and 6 p.m. in both treatments. Our aggregate impact estimates be-
tween 5 and 6 p.m. after the phone alert is more than half of the reported reduction of 2,000 MW
from CAISO on September 6th. This suggests that household cooling behavior response plays a
substantial role in reducing the total electricity demand.

6.2 Welfare simulation method

We examine the welfare effects of the Flex Alerts and demand response events that are aimed at
reducing electricity consumption during grid emergencies in California. To estimate the welfare
impact, we return to our model of thermostat settings developed in Section 3. Based on our model
prediction, there are welfare implications of voluntary requests. When the social marginal cost
of electricity is very high, electricity consumption for cooling can result in welfare losses because
the retail rate is low. When households are treated via moral suasion, they incur an additional
opportunity cost of cooling that can be interpreted as a moral cost, which causes the household
to increase its cooling setting. If the moral suasion helps to reduce the gap between the retail and
wholesale price of electricity, it is welfare improving. However, when the retail rate is already
higher or close to the social marginal cost of electricity. In that case, conservation is unneces-
sary, and moral suasion to conserve electricity could result in a welfare loss. To operationalize this
model, we need empirical estimates of private and social costs per degree Fahrenheit and assump-
tions on the shape of demand for cooling. We evaluate the welfare impact for each period of the
day during the ten days of Flex Alerts.

For this analysis, we assume the hourly marginal cost of electricity to be the hourly average
real-time wholesale price across the trading zone in CAISO. This gives a lower-bound estimate
of welfare.16 We take the average values of the real-time wholesale price for each period of the
day during the ten days of Flex Alerts as the social marginal cost of electricity in our welfare
simulation. We also assume the baseline price of electricity to be 26 cents/kWh, the average re-
tail electricity price in California in August and September 2022 (EIA, 2022). To capture the true
scarcity value during grid stress., we follow Jacob et al. (2023) and incorporate the value of lost
load into welfare gain only during the peak period when demand reduction could avoid potential
blackouts. To compute welfare gain from avoided blackout, we multiply the demand reduction by
the value of lost load of $4,300/MWh for California following Brown and Muehlenbachs (2024).

16 Using wholesale electricity price could underestimate the value of demand reduction. Previous studies use capacity
payment price (Boomhower and Davis, 2020), avoided cost of future power plant investment (Blonz, 2022) because in
the long-run, regulators set a minimum reserve margin to reduce the risk of electricity shortage through a resource
adequacy process (Joskow and Tirole, 2007).

27



First, we convert the price of electricity to the price of cooling following our assumption on
the linear relationship between electricity consumption and compressor run-time. We do this by
estimating the marginal effect of cooling setpoint on compressor run-time γ = ∂κ

∂T from our data
in the pre-treatment period. In estimating this, we use the same set of control variables and fixed
effects as in equation (7). Thus, the relationship between the social marginal cost of electricity c
and retail electricity price p, and the value of lost load (VoLL) in per kWh to their cooling price
equivalent in per one °F of lower cooling setpoint is given by

pT = −0.0417 p γ, (10)

cT
dk = −0.0417 cdk γ, (11)

VoLLT
dk =

−0.0417 VoLL γ if k = {Peak},

0 if k = {Before-Peak, After-Peak}.
(12)

Note that the baseline retail cooling price is fixed, while the social marginal cost of cooling and the
value of lost load vary by date and period of the day.

Next, we consider the quasi-linear utility function in equation (4). For household i at date
d and period k, we model demand for cooling setpoints using a semi-log specification: Tidk =

αT
idk + βT

dkDidk + εT
idk ln pT, where Didk = 1 if the household receives moral suasion, pT is the cooling

price, and εT
idk is the cooling price semi-elasticity. We estimate the parameters βT

dk which is the effect
of Flex Alert on the cooling setpoint from our event study in Section 5.3. We compute the cooling
price semi-elasticity εT

idk by assuming an electricity price elasticity ε of - 0.1 following Ito et al.
(2018), Ito (2014) and Wolak (2011) using the following equation

εT
idk =

κ0
idk
γ

ε, (13)

where the κ0
idk is the household baseline compressor run-time, i.e., the average compressor run-

time for the period of the day k of at the same day of the week from the pre-treatment period.17 We
assume the demand response event enters the household utility through a change in price from
pT to pT,DR and the effect of the demand response event on the cooling setpoint for the demand
response participant is δT

dk, which we get from our event study estimates.18

17 Following our linear assumption on the relationship between electricity consumption, x, and compressor run-time,
κ, we obtain

εT =
∂T

∂ ln pT =
∂T

∂ ln x
∂ ln x
∂ ln p

∂ ln p
∂ ln pT =

x
∂x
∂T

ε =
κ

γ
ε

We get our estimates of γ from estimating the marginal effect of cooling setpoint on compressor run-time from a linear
specification. An alternative way of computing the cooling price semi-elasticity depends on our assumption of the form
of relationship between compressor run time and cooling setpoint.

18 The marginal effect of being in a demand response event on the cooling setpoint is

δT
dk = εT

dk ln
pT,DR

dk
pT ⇔ pT,DR

dk = pT exp
Ä

δT
dk/εT

dk

ä
⇒ pT,DR

dk − pT = pT
Ä

exp
Ä

δT
dk/εT

dk

ä
− 1
ä

.

28



We derive the welfare effect of Flex Alerts and demand response events in detail in Appendix
G. Table 2 summarizes these welfare effects. As explained in Section 3, the welfare effect depends
on the relative gap between social marginal cost and retail price. Change in producer surplus
arises from the change in electricity consumption from receiving the Flex Alerts and being in a
demand response event, which is going to cost the producer if the social marginal cost is higher
than the retail price. Changes in consumer surplus arise from changes in cooling setpoint, which is
going to incur household disutility from experiencing a higher cooling setpoint. The total welfare
change is the sum of the change in producer surplus and the change in consumer surplus, which,
on the net, could be positive or negative.

Table 2. Welfare effects of Flex Alerts and Demand Response Event

Welfare Effects

Flex Alerts

Change in Producer Surplus ∆PSMoral,dk =


βT

dk(cT
dk − pT) if cT

dk ≥ pT ,

−βT
dk(pT − cT

dk) if cT
dk < pT .

Change in Consumer Surplus ∆CSMoral,dk =


− 1

2 (βT
dk)2 pT

εT
dk

if βT
dk ≥ 0,

1
2 (βT

dk)2 pT

εT
dk

if βT
dk < 0.

Total Welfare Change ∆WMoral,dk = ∆PSMoral,dk + ∆CSMoral,dk

Demand Response Event

Change in Producer Surplus ∆PSDR,dk =


δT

dk(pT,DR
dk − pT) if pT,DR

dk ≥ pT ,

−δT
dk(pT − pT,DR

dk ) if pT,DR
dk < pT .

Change in Consumer Surplus ∆CSDR,dk =


− 1

2 (δT
dk)2 pT

εT
dk

if δT
dk ≥ 0,

1
2 (δT

dk)2 pT

εT
dk

if δT
dk < 0.

Total Welfare Change ∆WDR,dk = ∆PSDR,dk + ∆CSDR,dk

Value of Lost Load

Gain from Avoided Outage in Peak Period ∆VoLLMoral,dk = βT
dkVoLLT

∆VoLLDR,dk = δT
dkVoLLT

To summarize, we perform the following procedure to simulate the welfare effect of the Flex
Alerts and demand response event:

1. We estimate ”βT
dk and”δT

dk from our empirical analysis in Section 5.3.
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2. We resample i from California households and simulate the welfare effect 1,000 times. For
each iteration, we perform the following steps:

(a) We draw the βT
dk and δT

dk from the distribution of β̂T
dk and δ̂T

dk for each period of the
day in the series.

(b) We estimate the marginal effect of cooling setpoint on compressor run-time (∂κ/∂T)
using data from the pre-treatment period.

(c) For each date d and period of the day k in the series, we compute

i. Cooling price pT and social marginal cost of cooling cT
dk using equation (10) and

(11),

ii. Cooling price semi elasticity εT
dk using equation (13), and

iii. The welfare effect ∆WMoral,dk, ∆WDR,dk and its associated gain from avoided outage
∆VoLL using Table 2.

3. From the bootstrap, we collect our estimates of the welfare effect and its confidence interval
and compute the aggregate welfare effect.

6.3 Welfare impact of Flex Alerts

We find that households’ semi-elasticity for cooling setpoints ranges from 0.2 to 0.59. The inter-
pretation of these estimates is that 100% of the price increase will increase the household cooling
setpoint by 0.2 to 0.59 °F. We find that households are more elastic during the peak period as
shown in Figure A5. Our estimates are comparable in magnitude to semi-elasticity estimates for
winter heating from stated preference, which is in the range of -0.31 to -0.97 (Brewer, 2023).

Figure 10 presents our welfare effect estimates. Figure 10a shows the change in total welfare
by day. Detailed change in producer and consumer surplus are given in Figure A6a to A6b. In the
first six days, we find no significant change in producer surplus and consumer surplus during the
peak period as household cooling setpoint response is very small during the peak period. From
September 3rd to 5th, 2022, we find positive but modest producer surplus gain in the before-
peak period as households reduced cooling setpoint when it is profitable for the utility to deliver
more electricity. Consumers also gain utility from cooler setpoints during this period without
experiencing a change in total cost due to the moral subsidy from precooling recommendation,
resulting in a positive consumer surplus gain.

During the peak period on September 6th, 2022, when the social marginal cost of electricity is
very high, the salient phone alert successfully induces conservation from cooling. The producer
surplus increases significantly by about $4 million as massive conservation is realized. How-
ever, by responding to the conservation requests, households experienced disutility from having
a higher cooling setpoint, which resulted in about $1 million loss in consumer surplus. From
September 7th until the end of the series, this loss in consumer surplus grew to about $2 million
as households increase their cooling setpoint even higher during the peak period. As the social

30



Total ∆W + VoLL:   69.8 M$

0

5

10

15

20

C
ha

ng
e 

in
 W

el
fa

re
 (M

$)

Start of
Standard
Flex Alert
Treatment

Start of
Phone
Alert

Treatment

0 1 2 3 4 5 6 7 8 9
Day since First Day of Flex Alert

Before-Peak
Peak
After-Peak

(a) Change in Total Welfare by Day

$1.9M
$1.9M $0.1M

$10.8M

$4.3M

$56.7M

$-0.2M
$-0.5M $-0.5M

$-4.7M

$14.5M

$55.3M

-10M

0M

10M

20M

30M

40M

50M

60M
2022USD

Low Salience Flex Alerts
(Aug 31 until Phone Alert)

High Salience Flex Alerts
(After Phone Alert)

CS
Off-

Peak

PS
Off-

Peak

CS
Peak

PS
Peak

VoLL Total
Welfare

Gain

CS
Off-

Peak

PS
Off-

Peak

CS
Peak

PS
Peak

VoLL Total
Welfare

Gain

Welfare Effect Breakdown

(b) Overall Welfare Effect

Figure 10. Simulated welfare effect of Flex Alerts

marginal cost of electricity is relatively lower than on September 6th, the producer surplus gain in
this period is modest and not enough to compensate for the loss in consumer surplus.

Figure 10b provide a detailed breakdown of the welfare effect from low salience and high
salience Flex Alerts. Over the ten-day period, the Flex Alerts results in a total producer surplus
gain of $5.7 million and a total consumer surplus loss of $3.5 million. Taking into account the
additional benefit of $67.5 million from the avoided outage, the net welfare effect of Flex Alerts
is $69.8 million. On a standard Flex Alert, the average welfare gain is $2.3 million per day, while
after the phone alert, this welfare gain increases to $14 million per day. This estimate is robust
to conservative assumptions regarding blackout probability. Even if the probability of an outage
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were only 50%, the net benefits would remain positive and substantial.

7 Policy Implications

To assess the effectiveness of Flex Alerts, we compare our findings with previous research. Ear-
lier studies show that governor’s requests during grid emergencies reduced heating setpoints by
1.1°F and fan run-time by 1.47 minutes per hour (Brewer and Crozier, 2025), while time-of-use
pricing increased cooling setpoints by 1.04 °F and reduced compressor run-time by 3.2 minutes
per hour (Fu et al., 2024). Time-of-use pricing combined with automated cooling schedules in-
creased setpoints by 1.7°F and reduced compressor run-time by 7.3 minutes per hour (Blonz et al.,
2025).

Our results indicate that standard Flex Alerts have minimal impact on cooling behavior, with
no significant effect on setpoints or compressor run-time during peak periods. Only after a phone
alert did households increase cooling setpoints by an average of 0.3°F, reducing compressor run-
time by 1 minute per hour, significantly less effective than time-of-use pricing or automation. Our
analysis identifies the phone alert as the primary channel that increases the salience of Flex Alert
rather than the governor request.19 While highly effective, high-salience alerts are a finite resource
best reserved for critical conditions considering the potential habituation trade-off.

We also observed household habituation to consecutive Flex Alerts, decreasing their effec-
tiveness after the third day. In consecutive grid emergencies, scheduling sufficient time between
requests to counter habituation as recommended by Ito et al. (2018) is not feasible. While in-
corporating phone alerts successfully increased the magnitude of the response, with households
showing increasing engagement over time, this approach is not sustainable for every Flex Alert.
Rather than the current approach where customers need to sign up to receive Flex Alert notifi-
cations, enrolling customers in utility-issued Flex Alert notifications by default could provide a
low-cost alternative to ensure conservation requests reach more households. As documented by
Fowlie et al. (2021) in other setting, the use of default provision to mitigate future grid emergencies
is justified by the positive welfare implication.

For demand response participants, we observe more substantial effects. With low salience,
demand response events increased cooling setpoints by 0.5°F and reduced compressor run-time
by up to 3 minutes per hour. After the phone alert, these effects more than doubled: setpoints
increased by up to 1.3F, and compressor run-time decreased by up to 7 minutes per hour. This
suggests that combining moral suasion with automation yields effectiveness comparable to time-
of-use pricing (Fu et al., 2024) and its combination with automation (Blonz et al., 2025; Prest,
2020). Our findings demonstrate the complementary between demand response programs and
moral suasion. Demand response participants responded more robustly when automation was

19 On the first day of the series, the California governor issued a state of emergency, which includes a conservation
request. Our estimates suggest that the effect only lasts hours and does not last until the next day. On September
6th, the governor made another request via an executive order with a phone alert, similar to the request in Michigan
(Brewer and Crozier, 2025), which resulted in a higher and more persistent response.
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combined with moral appeals, providing new evidence for the effectiveness of this combined
approach. As energy systems increasingly incorporate smart technology, opportunities for auto-
mated demand-side management will expand. 20

Despite lower per-household responses to Flex Alerts compared to demand response events,
their aggregate impact remains significant. When both programs operated simultaneously, de-
mand response participants contributed only about 10% of total demand reduction. Our welfare
analysis shows that these combined efforts generated a net welfare gain of $69.8 million during
the ten-day period, with Flex Alerts increasing producer surplus during peak periods when social
marginal costs were high and generating benefits from avoided outage.

Although demand response events generate stronger per-household responses, their aggre-
gate impact remains modest due to low enrollment rates. Currently, demand response participa-
tion among smart thermostat users in California is just above 25%. Our estimates suggest that
enrolling all 1.9 million smart thermostat owners could yield a demand reduction of 600 MW
from cooling behavior alone. Increasing participation through both higher enrollment of existing
smart thermostat users and automatic enrollment of new adopters could substantially improve
conservation efforts during grid emergencies.

8 Conclusion

Our findings reveal that smart technology is not a perfect substitute for human attention. In fact,
we show they are complements during high-statkes grid emergency: high salience appeals re-
inforce compliance with automated demand response. We leverage high-frequency smart ther-
mostat data from Ecobee’s Donate-Your-Data program with a total of 6.6 million household-hour
observations across California and surrounding states. Utilizing a natural experiment created by
ten consecutive Flex Alert days during an extreme heat wave in September 2022, we employ a
generalized difference-in-differences research design to estimate the causal effect of Flex Alerts
and automated demand response on household cooling behavior.

We find that Flex Alerts, even with phone alerts are less salient nudge of household cool-
ing behavior compared to other voluntary requests using thermostat reference point (Brewer and
Crozier, 2025) and time-of-use pricing (Fu et al., 2024; Blonz et al., 2025). Non-demand response
households exhibit minimal changes in cooling behavior under standard Flex Alerts, with the
treatment effects becoming statistically significant only after the issuance of a widespread phone
alert on September 6th, 2022. Being in a demand response event is more effective in changing
household cooling behavior. Specifically, our findings highlight that demand response partici-
pants who receive automated thermostat override in a demand response event exhibit more sub-
stantial and timely changes in their cooling behavior. This finding underscores the effectiveness
of combining moral suasion with automated demand response in grid emergency management.

20 Utilities also increasingly use behind-the-meter storage to provide reliability services, see
https://www.utilitydive.com/news/pge-tesla-launch-program-to-use-customers-powerwall-batteries-to-tackle/
(last accessed June 15th, 2024).
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Moreover, this study documents the dynamic effects of repeated conservation requests. Our
estimates indicate a quick habituation to standard Flex Alerts, with treatment effects diminishing
after the third day. However, the phone alert on the seventh day of the series resulted in a signif-
icant increase in conservation efforts, with a continued increase in response through subsequent
days. In contrast to previous literature on habituation, we do not observe household habituation
to repeated Flex Alerts after the phone alert. Following the conclusion of the Flex Alert series,
we find a permanent effect on household cooling setpoint that lasted for two weeks, even though
there is no longer a grid emergency.

Our welfare analysis highlights the substantial aggregate impact on demand reaching 1,300
MW in the peak period in these Flex Alert series. This series of Flex Alerts resulted in a welfare
gain of $69.8 million. Notably, the phone alert increases the maximum welfare gain by more than
six times. Despite the more pronounced individual responses from demand response events, our
analysis reveals that the majority of savings are attributable to non-demand response households
due to the low proportion of demand response enrollment.

By providing granular evidence on household-level responses to conservation requests and
documenting the cooling behavior mechanisms, the study offers valuable insights for policymak-
ers in dealing with grid emergencies. First, even though the phone alert successfully increases the
salience of voluntary requests, frequent use is unsustainable due to habituation. Instead, enrolling
households in Flex Alert notification by default from utility could be a way to increase salience.
Second, there is an incentive for the utility to increase available demand response resources by
promoting the adoption of smart technology and enrollment in demand response programs. With
climate change driving more frequent and severe weather events and, consequently, higher peak
electricity demand, the insights provided by this research are important for the development of
more effective demand response strategies.
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Appendix

A Additional tables

Table A1. Summary of the Flex Alerts timing

Date Start of peak End of peak

Wednesday, August 31, 2022 4 p.m. 9 p.m.
Thursday, September 1, 2022 4 p.m. 9 p.m.
Friday, September 2, 2022 4 p.m. 9 p.m.
Saturday, September 3, 2022 4 p.m. 9 p.m.
Sunday, September 4, 2022 4 p.m. 9 p.m.
Monday, September 5, 2022 4 p.m. 10 p.m.
Tuesday, September 6, 2022 4 p.m. 9 p.m.
Wednesday, September 7, 2022 4 p.m. 9 p.m.
Thursday, September 8, 2022 3 p.m. 10 p.m.
Friday, September 9, 2022 4 p.m. 9 p.m.

Source: CAISO’s Grid Emergencies History Report.

Table A2. Summary of the demand response event timing

Date Start of event End of event Demand response treatment

Wednesday, August 31, 2022 7:25 p.m. 7:40 p.m. 7-8 p.m.
Thursday, September 1, 2022 5:00 p.m. 8:25 p.m. 5-9 p.m.
Monday, September 5, 2022 6:40 p.m. 8:20 p.m. 6-9 p.m.
Tuesday, September 6, 2022 4:10 p.m. 9:05 p.m. 4-9 p.m.
Wednesday, September 7, 2022 4:10 p.m. 8:55 p.m. 4-9 p.m.
Thursday, September 8, 2022 5:05 p.m. 8:15 p.m. 5-9 p.m.

Note. We define an hour with at least 15 minutes of demand response event within the hour
as treated with demand response. Source: CAISO’s Today’s Outlook.

Table A3. Summary of the September 2022 Flex Alert events

Date Time posted Announcement

Wednesday, August 31, 2022 12:48 p.m. Flex Alert issued
Wednesday, August 31, 2022 5:40 p.m. Flex Alert extended
Thursday, September 1, 2022 4:23 p.m. Flex Alert extended
Saturday, September 3, 2022 8:21 a.m. Flex Alert issued
Saturday, September 3, 2022 4:03 p.m. Flex Alert extended
Sunday, September 4, 2022 5:05 p.m. Flex Alert extended
Monday, September 5, 2022 4:28 p.m. Flex Alert extended
Tuesday, September 6, 2022 9:10 p.m. Flex Alert extended
Wednesday, September 7, 2022 9:12 p.m. Flex Alert extended
Thursday, September 8, 2022 10:00 p.m. Flex Alert extended

Source: @flexalert Twitter account posts.
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B Additional figures

(a) Number of Events by Year (b) Number of Events by Month

(c) Number of Events by Timing of An-
nouncement

Figure A1. Trends in Flex Alert events from 2015 to 2022

(a) Flex Alert announcement (b) Mobile Phone Alert.
Source: https://laist.com

Figure A2. Example of Flex Alert Notification
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(c) Power Outage

Figure A3. Electricity market condition in California during the September 2022 Flex Alert

Note. Panel A and B show the extremely high wholesale electricity prices during the peak period from August 31st
to September 9th both in the day-ahead and real-time market in CAISO NP15 Zone. On the customer side, Panel C
documents that households in California also experienced significantly more power outages during the peak period of
September 5th and September 6th, with more than 70,000 customers affected.
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(c) Compressor run-time
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Figure A4. Dynamic treatment effects of Flex Alert using difference-in-differences sample

Note. This figure shows the estimates of the event study regressions using equation (9) using only the difference-in-
differences sample period. The dots correspond to the lead and lag coefficient estimates for non-demand response
households for each day. The highlighted area shows the 95% confidence interval which is two-way clustered at state
and hour-of-sample level.
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Figure A5. Cooling price semi-elasticity during the Flex Alerts
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Figure A6. Detailed welfare effect of Flex Alerts
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C Detail on energy conversion calculation

Since we do not observe the characteristics of each household’s cooling system, we adopt similar
engineering assumptions as Blonz et al. (2025) and assume that electricity consumed for cooling,
x(T), is a linear function of air conditioner compressor run-time, κ(T). We assume a residential cen-
tral air conditioner in the southern region following Appendix A of EIA Updated Buildings Sector
Appliance and Equipment Costs and Efficiencies, with a Unit Capacity Ratio (UCR) of 36,000 BTU
per hour per unit with a typical Seasonal Energy Efficiency Ratio (SEER) of 14.4 BTU per W per
hour. Equation (A1) shows the energy conversion calculations to convert compressor run-time,
κ, in minutes per hour per household, to electricity consumption for cooling per household, x in
kWh per household per hour.

x(kWh/HH.hour) = κ(min/hour) × UCR (BTU/hour · HH)
SEER (BTU/W · hour)

× 1 hour
60 min

× 10−3 kW
W

= κ(min/hour) × 0.0417(kWh/HH · min). (A1)

We also need estimates of changes in demand for cooling in MW per HH. Thus, we convert
our treatment effect on compressor run-time, in minutes per hour per household, to electricity
consumption for cooling per household, in MW per household. The following equivalent version
of the equation (A1) shows the energy conversion calculations.

∆Demandith(MW/HH) = β̂κ
ith(min/hour) × UCR (BTU/hour · HH)

SEER (BTU/W · hour)

× 1 hour
60 min

× 10−6 MW
W

= β̂κ
ith(min/hourr) × 0.0000417(MWh/HH · min). (A2)

One minute per hour of compressor run-time in our data translates to an electricity consump-
tion of 0.042 kW per household. For convenience, we also define the cooling price in dollars per
one additional °F of lower cooling setpoint as pT = p ∂x

∂T .21 We also use ∂x
∂T to convert the social

marginal cost of electricity to the social marginal cost of cooling.

21 Our linear assumption allows us to obtain ∂x
∂T which reflects the energy efficiency of the household from the data

by directly estimating the marginal effect of cooling setpoint, T, on compressor run-time, κ.
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D Identifying demand response event from Ecobee data

Using the thermostat event name variable in the Ecobee data, we identified several demand re-
sponse event names. First, we identify a general demand response event name that contains De-
mand Response (”DR”) and Precooling (”PC” or ”PRC”), which is a common term in AC load
control.22 The second one is the California Public Utility Commission pilot Power Saver Rewards
Program that started in May 2022.23 Participating customers receive a bill credit of $2 per kWh of
electricity savings in a Flex Alert during our sample period. The program incurs no penalty for the
household when they are enrolled and decide not to respond to emergency requests. Third, we
identify program names from SDGE, they are AC Saver DA (”ACSDA”), Bring Your Own Ther-
mostat (”BYOT”), and Reduce Your Use (”RYU”).24 Lastly, we also identify a demand response
event name from Portland General Electric of which they collaborate with PGE.25

E Results for alternative outcome variables

We look at two alternative outcome variables: the indoor temperatures of the home in °F and the
fan run-time in minutes per hour. We use the indoor temperature as a measure of the comfort level
of the household. The change in indoor temperature is an estimate of the household’s opportunity
cost for following the Flex Alerts recommendation. The fan run-time is the duration that the fan
is running to circulate the air in the house within an hour.

Figure 5 shows the hourly mean of the two alternative outcome variables for households in
California and the controls before and after the treatment. California households, on average,
experience higher indoor temperatures during Flex Alerts. We also observe a change in fan run-
time pattern in the peak period after the Flex Alerts, similar to those of compressor run-time.

We also estimate equation (7) for indoor temperature and fan run-time. Following the Flex
Alert recommendation, we expect that the treatment effect on realized indoor temperature to be
positive during the peak period. For the fan run-time, we expect the treatment effect to be the
same as the compressor run-time, considering how an HVAC system works.

Table 1 shows the effect of Flex Alert on indoor temperature and fan run-time for the before-

22 For example, in Minnesota, Xcel Energy enrolled more than 50% of their residential customer to volun-
tary AC load control. See Docket No. E002/RP-19-368 Appendix G1 of Minnesota Public Utility Commission
https://www.edockets.state.mn.us/edockets/searchDocuments.do?method=showPoup&documentId=10FBAE6B-
0000-C040-8C1D-CC55491FE76D&documentTitle=20197-154051-03 (last accessed June 15th, 2024).

23 See https://www.cpuc.ca.gov/ (last accessed June 15th, 2024). This program is managed by the three private
utilities: Southern California Edison (SCE), San Diego Gas & Electric (SDGE), and PG&E.

24 The SDGE ACSDA Evaluation reported around 17,000 SDGE customers participated in this program in
2022. See the https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/demand-
response/demand-response-workshops/2023-load-impact-protocol-workshops/20230501-sdge-acsda–drmec.pdf (last
accessed June 15th, 2024). Meanwhile, the RYU programs named the demand response event a RYU day; this pro-
gram applies to residential customers enrolled in a time-of-use rate. See https://www.sdge.com/residential/pricing-
plans/about-our-pricing-plans/whenmatters(last accessed June 15th, 2024).

25 See https://portlandgeneral.com/smart-thermostat-enrollment for more information (last accessed June 15th,
2024). They call the demand response event a Peak Time Event when they will adjust the household cooling setpoint
by 1 to 3 degrees higher than the previous setpoint.
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Figure A7. Hourly mean of indoor temperature and fan run-time before and after the Flex Alert

Note. This figure shows the hourly mean of the indoor temperature and fan run-time before and after the first Flex
Alert announcements on August 31st, 2022, at 12:48 p.m. using observation ranging from August 18th to September
9th, 2022. The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak period.

peak, peak, and after-peak periods. Column 1 shows the treatment effect estimates for the indoor
temperature. On Flex Alert days, California households experience higher indoor temperatures
than on normal days. In standard Flex Alerts, even though the treatment effect on the cooling
setpoint is small, households experience 0.33 to 0.42 °F higher indoor temperatures throughout
the day. Demand response participants experience 0.2 °F higher indoor temperatures during a
demand response event. After the phone alerts, households experience 0.67 to 0.98 °F higher
indoor temperatures throughout the day, while the demand response participant experiences 0.62
°F higher indoor temperatures in a demand response event. Higher indoor temperature is not
solely related to the cooling setpoint; rather, it is affected by the physics of the cooling system. As
the outdoor temperature for California households during a Flex Alert is extremely high, with a
relatively similar cooling setpoint, it is harder for the system to achieve the target temperature.
Some households might also turn off their systems rather than increase the cooling setpoint. As
shown in Table A5 relative to before the peak period, about two to four percent more households
are turning off their cooling system during the peak period. After the phone alert, the treatment
effect on indoor temperature is also positive throughout the day and higher compared to the
treatment effects in the standard Flex Alerts. Comparing the magnitude of response during the
peak period for both treatments, the estimates suggest that households experience an even higher
indoor temperature after the phone alert compared to when they receive standard Flex Alerts
announcements.

Columns 2 report the treatment effect estimates for fan run-time. The coefficient estimates for
the fan run time are relatively similar to the coefficient estimates for compressor run-time in Table
1 for the before-peak and peak periods but have a smaller effect size. We suspect this is due to
the recommendation to turn the cooling system off but keep the fan on during the peak period to
keep the air circulation.
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Table A4. Households Responses to Flex Alert
(1) (2)

Indoor Temperature Fan Run-Time

After First Tweet
Before-Peak 0.312∗∗∗ 0.565∗∗

(0.104) (0.239)

Peak 0.374∗∗∗ 0.232
(0.092) (0.608)

Peak×1 (DR Event) 0.143∗ 0.056
(0.082) (0.642)

After-Peak 0.239∗∗∗ 1.206∗∗

(0.077) (0.495)

After Phone Alert
Before-Peak 0.877∗∗∗ -0.366

(0.166) (0.625)

Peak 0.761∗∗∗ -0.317
(0.142) (0.653)

Peak×1 (DR Event) 0.565∗∗∗ -1.906∗∗

(0.131) (0.874)

After-Peak 0.565∗∗∗ 2.597∗∗

(0.106) (1.125)

Pre-treatment Mean
Before-Peak 74.87 12.64
Peak 76.47 23.34
After-Peak 75.44 16.74

No. of Household 11,821 12,135
Observations 6,377,563 6,632,642

Note. This table reports regression coefficients from
difference-in-differences regression estimated using equation
(7) on the alternative outcome variables. The first panel show
the effect of low salience Flex Alerts, while the second panel
show the effect of high salience Flex Alerts. Each row shows
the effect at different period of the day. The peak period is
defined as following CAISO’s Flex Alert hours of the day.
Column (1) shows the effect on indoor temperature in °F.
Column (3) shows the effect on fan run-time in minutes per
hour. The control variables include daily maximum temper-
ature, outdoor temperature, outdoor relative humidity, pre-
cipitation, wind speed, and cloud cover. The fixed effects
include hour-of-sample indicators and hour-by-day-of-week-
by-household fixed effects. The sample period is from August
18th to September 9th, 2022. Standard errors reported follow
the Driscoll and Kraay (1998) inference.
∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.

Figure A8 shows the average treatment effects for each hour of the day on indoor temperature
and fan run-time. Figure A8a reports the hourly treatment effects on the indoor temperature.
After the initial Flex Alert announcement, the treatment effect is positive throughout the day with
the highest effect of about 0.5 °F between 8 a.m. to 12 p.m. After 12 pm, the effect goes down and
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Figure A8. Hourly treatment effect estimates of the Flex Alerts

Note. This figure shows the estimates of the hourly responses to Flex Alert estimated using equation (8). The hour labels
for each coefficient refer to the ending time of each one-hour interval. The dots correspond to the hourly treatment effect
estimates for non-demand response households for the standard Flex Alerts (β̂FA,h) and the Flex Alerts after receiving
the phone alert (β̂PA,h). The highlighted area shows the 95% confidence interval, which follows the Driscoll and Kraay
(1998) inference. The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak period.

ramps up slowly and reaches its peak at the end of the peak period. The treatment effect after
the phone alert is higher throughout the day compared to the standard Flex Alert treatment. We
observe a similar treatment effect pattern after the phone alert, a higher treatment effect of about
1.3 °F is observed between 8 a.m. and 9 a.m. The treatment effect ramps by a small amount at the
end of the peak period at about 0.8 °F higher.

The hourly treatment effects on the fan run-time shown in Figure A8b have a similar hourly
pattern as the compressor run-time in Figure 6b. However, the treatment effect on fan run-time
during the peak period is not significant. This indicates that households might turn off the cooling
system but keep their fan on during the peak period to keep the air circulation, which is shown
by the treatment effects on the indicator for turning off the cooling system shown in Table A5.

The lead coefficient estimates on indoor temperature shown in Figure A9a also evolve around
zero prior to treatment. The lead coefficient estimates for fan run-time in Figure A9b are also sta-
tistically zero, however, they are more noisy. The dynamic treatment effect for indoor temperature
steadily increased and peaked on the seventh day. Even though the cooling setpoint response is
minimal since the outdoor temperature is high during the peak period, households still experi-
ence 1 °F higher indoor temperature during the weekend as shown in Figure A9a. Looking at the
indoor temperature, the treatment effect is going down after two weeks. We suspect this is due to
the accumulation of cooler outdoor temperature exposure over time and the energy efficiency of
the home.

Figure A10 shows the effect of demand response on indoor temperature and fan run-time. In
a demand response event, demand response participants experience up to 0.4 °F higher indoor
temperature during the peak period. After the phone alert, the treatment effect is higher, up to 0.9
°F higher indoor temperature during the peak period. The fan run-time reduction from demand
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Figure A9. Dynamic treatment effect estimates of the Flex Alerts

Note. This figure shows the estimates of the event study regressions using equation (9). The dots correspond to the lead
and lag coefficient estimates for non-demand response households for each day. The highlighted area shows the 95%
confidence interval which is two-way clustered at state and hour-of-sample level. We extend the event study sample
from a month before to two weeks after the Flex Alert series. We present estimates from using only the difference-in-
differences sample period in Figure A4.

response is of similar magnitude as the compressor run-time reduction.

F Results for extensive margin responses

Figure A7 shows the hourly mean of the binary alternative outcome variables for households in
California and the controls before and after the treatment within the sample periods. We clearly
see a different pattern during the peak period from California households after Flex Alerts for all
alternative outcomes, except for the precooling indicator. The trends in the outcome variables for
control groups after Flex Alerts are similar to those before the Flex Alert events, which are ideal
characteristics for a control group in a difference-in-difference approach.

We also estimate equation (7) for the alternative outcome variables. An increase in the prob-
ability that the event variables are on hold means households override their scheduled settings
more. During Flex Alert days, there could be many reasons households are overriding their sched-
ule, one of which could be discomfort or setting their cooling setpoint to follow the Flex Alert
recommendation. An increase in the probability that households set their cooling setpoint below
70 °F means that households are following the recommendation to precool their house. So, we ex-
pect the sign of the second binary outcome variable to be positive before peak periods. Similarly,
an increase in the probability that households set their cooling setpoint above 78 °F means that
households are following the recommendation to increase their thermostat setting during peak
periods. Hence, we expect the sign of the coefficient for the third binary outcome variable to be
positive during the peak period. Suppose households think that turning off the cooling system
is a way to conserve more energy and thus help the grids. In that case, we expect an increase in
the probability that households turn their cooling system off during peak periods relative to the
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Figure A10. Hourly treatment effect estimates of demand response event

Note. This figure shows the effect of the demand response event for demand response household estimated using
equation (8). These coefficients are only identified during demand response events. The hour labels for each coefficient
refer to the ending time of each one-hour interval. The dots correspond to the hourly effect of being in a demand
response event for demands response households during the standard Flex Alerts (δ̂FA,h) and the Flex Alerts after
receiving the phone alert (δ̂PA,h). The highlighted area shows the 95% confidence interval, which follows the Driscoll
and Kraay (1998) inference. The two vertical lines at 4 p.m. and 9 p.m. show the typical start and end of the peak
period.

non-peak period within Flex Alert days.
Table A5 shows the effect of Flex Alert on the alternative outcome variables for the before-peak,

peak, and after-peak periods. Column 1 shows the effect of the treatments on the percentage of
households overriding their scheduled thermostat settings. After the first announcement of the
Flex Alert, only less than one percent of the households override their schedule in the before-peak
and peak periods. After the phone alert treatment, there is a positive effect, but it is not significant.
In both of the treatments, the effect on the number of people who put their schedule on hold is
minimal. This rules out putting the schedule on hold as the mechanism through which household
change their cooling setpoint.

Columns 2 and 3 show the treatment effects on the compliance of the precooling setpoint for
the before-peak period and the Flex Alert setpoint for the peak period. After the first announce-
ment of the Flex Alert, the effect on compliance with precooling before the peak period is below
one percent, while there is no significant effect on compliance with the Flex Alert in the peak
period. After the phone alert, there is zero effect on compliance with the precooling before the
peak period. In the peak period, there are 2.6 percent more households who set their cooling
setpoint above 78 °F. These estimates reveal that there are no significant changes in the number
of household precooling before the Flex Alert hours. Contrasting the salient of the two different
treatments, the effect on compliance with the peak period target setpoint is higher after the phone
alert compared to the standard Flex Alert announcement.

Column 4 shows the treatment effect on whether or not households turn their cooling system
off. In both of the treatments, in all periods of the day, the sign is negative; this indicates that
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Figure A11. Hourly mean of binary outcomes variables before and after the Flex Alert
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Table A5. Extensive Margin of Households Response to Flex Alert

(1) (2) (3) (4)
1 (On Hold) 1

(
Cool. Setpoint ≤ 70°

)
1
(
Cool. Setpoint ≥ 78°

)
1
(
Cooling Off

)
After First Tweet

Before-Peak 0.008∗∗∗ 0.002∗∗∗ -0.009∗∗∗ -0.036∗∗∗

(0.003) (0.001) (0.002) (0.004)

Peak 0.005 0.001 0.007∗∗∗ -0.024∗∗∗

(0.004) (0.001) (0.003) (0.004)

Peak×1 (DR Event) -0.015 -0.006∗∗∗ 0.033∗∗∗ -0.020∗∗∗

(0.013) (0.002) (0.013) (0.007)

After-Peak 0.003 0.001 -0.011∗∗∗ -0.039∗∗∗

(0.002) (0.001) (0.003) (0.004)

After Phone Alert
Before-Peak 0.007∗ -0.002 -0.006∗∗ -0.045∗∗∗

(0.004) (0.001) (0.003) (0.004)

Peak -0.003 -0.003∗∗ 0.031∗∗∗ -0.022∗∗∗

(0.009) (0.002) (0.006) (0.004)

Peak×1 (DR Event) -0.051∗∗∗ -0.011∗∗∗ 0.107∗∗∗ -0.026∗∗∗

(0.017) (0.002) (0.012) (0.005)

After-Peak 0.000 -0.000 -0.003 -0.042∗∗∗

(0.005) (0.001) (0.004) (0.006)

Pre-treatment Mean
Before-Peak 0.21 0.08 0.41 0.23
Peak 0.25 0.07 0.39 0.20
After-Peak 0.24 0.10 0.38 0.22

No. of Household 12,135 12,135 12,135 12,135
Observations 6,632,642 6,632,642 6,632,642 6,632,642

Note. This table reports regression coefficients from difference-in-differences regression estimated using equa-
tion (7) on the four alternative binary outcome variables. The first panel show the effect of low salience Flex
Alerts, while the second panel show the effect of high salience Flex Alerts. Each row shows the effect at differ-
ent period of the day. The peak period is defined as following CAISO’s Flex Alert hours of the day. Column
(1) shows the change in the proportion of households who override their scheduled setting. Column (2) shows
the change in the proportion of households who comply with the precooling recommendation. Column (3)
shows the change in the proportion of households who comply with the peak period recommendation. Col-
umn (4) shows the change in the proportion of households who turn off their cooling system. The control
variables include daily maximum temperature, outdoor temperature, outdoor relative humidity, precipitation,
wind speed, and cloud cover. The fixed effects include hour-of-sample indicators and hour-by-day-of-week-
by-household fixed effects. The sample period is from August 18th to September 9th, 2022. Standard errors
reported follow the Driscoll and Kraay (1998) inference.
∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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during a Flex Alert, an additional two to four percent of the households turn on their cooling
system. After the initial Flex Alert announcement, there are 3.3 and 2.5 percent fewer people
turning off their cooling system before the peak period and during the peak period consecutively.
Similar behavior is observed after the phone alert, there are 4 and 2.3 percent fewer people turning
off their cooling system before the peak period and during the peak period consecutively. Within
a Flex Alert day, less than one percent of households turn the cooling off during the peak period
relative to the before-peak period.

G Detailed welfare effect derivation

In this section, we formalize the welfare effect that we show in Figure 3 in Section 3 using a linear-
log demand parameterization in a similar fashion to Ito et al. (2018) and Allcott and Kessler (2019).
Consider households with baseline cooling setpoint T0

idk = αT
idk + εT

idk ln pT. When households
receive moral suasion, the cooling setpoint becomes T′

idk = αT
idk + βT

dk + εT
idk ln pT. The average

change in producer surplus (PS) for period k in date d of the Flex Alert series depends on the gap
between social cost and retail price, which is given by

∆PSMoral,dk =
∫ T′

T0
cT

dk − pT(T) dT ≈


βT

dk(cT
dk − pT) if cT

dk ≥ pT,

−βT
dk(pT − cT) if cT

dk < pT.

The average change in consumer surplus (CS) for period k in date d of the Flex Alert series is given
by

∆CSMoral,dk =
∫ T′

T0
pT(T) dT ≈


− 1

2
(βT

dk)2

∂T/∂pT = − 1
2 (βT

dk)2 pT

εT
dk

if βT
dk ≥ 0,

1
2

(βT
dk)2

∂T/∂pT = 1
2 (βT

dk)2 pT

εT
dk

if βT
dk < 0.

The average total welfare effect of Flex Alerts is then given by the sum of the change in producer
surplus and consumer surplus for period k in date d of the series, i.e. ∆WMoral = ∆PSMoral +

∆CSMoral.
Now, consider demand response households who receive both moral suasion and monetary

incentives via demand response events. When households receive monetary incentives, they re-
ceive a price adjustment. We do not observe the price change. Instead, we observe the hour when
the demand response event is called by CAISO within the peak period. We use our estimates on
the effect of being in a demand response event on the cooling setpoint, δT

dk. We then infer the effec-
tive price for demand response households, pT,DR, from these estimates. When demand response
households receive moral suasion, the cooling setpoint becomes T′

idk = αT
idk + βT

dk + εT
idk ln pT.

When demand response households receive moral suasion and monetary incentives, the cool-
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ing setpoint becomes TDR
idk = αT

idk + βT
dk + εT

idk ln pT,DR. The additional change in producer surplus
(PS) for period k in date d of the Flex Alert when a demand response event is called is given by

∆PSDR,dk =
∫ TDR

T′
cT

dk − pT(T) dT ≈


δT

dk(pT,DR − pT) if pT,DR ≥ pT,

−δT
dk(pT − pT,DR) if pT,DR < pT.

The average change in consumer surplus (CS) for period k in date d of the series is given by

∆CSDR,dk =
∫ TDR

T′
pT(T) dT ≈


− 1

2
(δT

dk)2

∂T/∂pT = − 1
2 (δT

dk)2 pT

εT
dk

if δT
dk ≥ 0,

1
2

(δT
dk)2

∂T/∂pT = 1
2 (δT

dk)2 pT

εT
dk

if δT
dk < 0.

The total welfare effect of the demand response event is then given by the sum of the change in
producer surplus and consumer surplus for for period k in date d of the events, i.e. ∆WDR,dk =

∆PSDR,dk + ∆CSDR,dk.
The total welfare effect for period k in date d of the series is given by

∆WAggregate,dk =N × ∆WMoral,dk + NDR × 1(DRevent,dk) × ∆WDR,

where N is the total number of households in California, and NDR is the total number of demand
response participants.
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