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Abstract

We develop an endogenous growth model in which artificial intelligence (AI) and the brain generate
innovation. AI refines existing knowledge into a usable base, and the brain then recombines it into new
ideas. AI’s synthesis of information alleviates the brain’s knowledge burdens but may weaken knowledge
spillovers. Consequently, knowledge creation responds nonmonotonically to AI efficiency: at a modest
level of AI efficiency, innovation slows down despite faster AI growth. Faster AI progress raises long-run
growth, but its effects on research productivity and the R&D labor share are ambiguous. Finally, we
characterize the conditions under which AI makes innovation easier.
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1 Introduction

The similarities and differences between artificial intelligence and the brain have been central to pioneer-
ing work in computer science. For example, the seminal frameworks of the Turing Test (Turing, 1950) and the
von Neumann architecture (Von Neumann and Kurzweil, 1958) emphasize the imitation of brain functions
by computers, laying the foundations for modern computing and artificial intelligence (AI); J. C. R. Licklider,
who introduced the concept of man-computer symbiosis, argued that collaboration between computers and
the brain would drive advances in formalized reasoning, scientific decision-making, and complex situation
management (Licklider, 1960; Campbell-Kelly et al., 2023). Recent advances in AI highlight its connection
to the brain and its implications for economic development. When Geoffrey Hinton, the “Godfather of
AI,” discussed his work on artificial neural networks (ANNs), he stated, “It’s going to be like the Industrial
Revolution—but instead of our physical capabilities, it’s going to exceed our intellectual capabilities” (BBC
News, 2024). However, existing economic studies have rarely examined the implications of AI’s foundational
philosophy—its relationship with the brain—for innovation and growth. Given the recent rapid advances in
AI, we seek to explore the intricate relationships between AI and the brain in the innovation process.

In certain intelligence tasks, AI has already surpassed human capabilities. For example, deep learning
algorithms reduced image-labeling error rates on ImageNet—a dataset developed by Stanford researchers that
comprises over 10 million images—from over 30% in 2010 to less than 5% in 2016, reaching 2.2% by 2017,
significantly outperforming the human error rate of approximately 5% (Brynjolfsson et al., 2018). Further-
more, in tasks involving logical-mathematical intelligence, linguistic intelligence, and natural discriminative
intelligence, employing AI is substantially cheaper than hiring skilled workers (Bao et al., 2024).

However, some scholars contend that AI cannot replicate human-like creativity. Searle (1980) maintains
that intentionality emerges from the causal properties of the brain and cannot be duplicated merely through
the execution of computer programs. Consequently, Searle argues that strong AI, relying solely on programs
without intrinsic causal powers, cannot achieve genuine cognition. Felin and Holweg (2024) argue that AI, as
a data-driven predictive tool, is inherently backward-looking and imitative, lacking the theory-driven causal
reasoning and forward-looking capacities intrinsic to human cognition, thus incapable of generating authentic
novelty or original knowledge. Yao et al. (2024) highlight concerns regarding the potential marginalization
of human creativity resulting from generative AI and analyzes the competitive dynamics and equilibrium
between human- and AI-generated content.

To explore the roles of AI and humans in innovation, we divide the innovation process into two sequential
stages, as illustrated in Figure 1. The first stage involves AI collecting, organizing, and refining vast amounts
of existing knowledge to generate the refined knowledge necessary for innovation. This process aligns with the
ancient philosophy that “simplicity is the ultimate sophistication.” Such a task cannot be accomplished by the
brain alone. On the one hand, the brain is decentralized, and each individual is constrained by physiological
limits that hinder their ability to synthesize, analyze, and organize high-dimensional knowledge. In contrast,
AI, supported by parallel processing chip architectures, is capable of handling these tasks efficiently. On the
other hand, even if the brain could process existing knowledge, its efficiency would be significantly lower,
and relying solely on it to manage vast amounts of information is restrictive.
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Figure 1: The roles of AI and brain in the innovation process of production technology

The second stage centers on the creative thinking of the brain as it builds upon refined knowledge. This
creative capacity distinguishes the brain from AI, ultimately delivering the “final blow” to generate new
production technologies. In this stage, two effects emerge within the processing of refined knowledge in
the brain: knowledge spillovers and knowledge burden. When the amount of refined knowledge is small,
its increase provides more ideas for creative thinking, facilitating innovation—this is known as knowledge
spillovers, as discussed in endogenous growth models such as Romer (1990) and Jones (1995). However,
when the amount of refined knowledge is too large, it burdens the creative thinking of the brain, hindering
innovation. This phenomenon, termed knowledge burden, has been rarely noted in the literature on economic
growth, with Jones (2009, 2010) being one of the few to study it.

We develop an endogenous growth model in which AI technology advances at an exogenous rate.
Despite its simplified structure, the model effectively captures key characteristics of AI and the brain in the
innovation process, enhancing our understanding of AI’s economic impact. Under a general form of the
research productivity function, we obtain several notable findings along the balanced-growth path (BGP).
First, there exists a nonmonotonic response of the refined-knowledge stock to faster AI growth, revealing a
distortion in the translation of collective knowledge into innovation. The endogenous deviation of the refined-
knowledge stock from the brain’s optimal performance level implies a waste of social intelligence: valuable
knowledge remains unexploited, or the informational load exceeds the brain’s capacity. This inefficiency
reflects distorted social resource allocation rather than physiological constraints.

Second, faster AI growth raises long-run growth; yet, its effect on the R&D labor share is ambigu-
ous. When refined knowledge is scarce, AI expands the set of knowledge humans can effectively process,
strengthens spillovers, and boosts research productivity, yielding an R&D labor-saving effect. When refined
knowledge is abundant, marginal spillover gains from AI weaken or reverse, so the R&D labor share increases
in equilibrium.

Finally, we propose a criterion—based on relative elasticities—to assess whether innovation becomes
easier as AI advances. We find that AI makes innovation easier in two regions: a strongly spillover-dominant
region, where AI expands the set of knowledge humans can effectively process enough to realize spillovers
despite selective discarding; and a burden-dominant region, where AI’s second-order burden relief outweighs
its first-order spillover loss. However, in the intermediate region (a weakly spillover-dominant region), AI
makes innovation harder because filtering erodes spillovers more than it eases burden, lowering the returns
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to creative recombination.
Related Literature. Our paper contributes to the literature on the economics of science and innovation. A

notable phenomenon in this field is the decline in research productivity over the past decades. For example,
Bloom et al. (2020) document substantial declines across sectors such as semiconductors, agriculture, and
medicine. Some scholars attribute this decline to the increasing depth and breadth of scientific knowledge.
Jones (2009) presents stylized facts showing that the expansion of knowledge raises cognitive burdens on
researchers, leading to a shift from individual to team-based innovation, prolonged training periods, and
delayed peak productivity. Subsequent studies corroborate the trend of later-life innovation among leading
inventors and scientists (Jones, 2010), and document rising co-authorship in economics as a response
to increasing specialization and knowledge complexity (Jones, 2021; Chen et al., 2025), as well as the
discouraging effect of the knowledge burden on disruptive and novel innovation (Park et al., 2023; Grashof
and Kopka, 2023).1

From a theoretical perspective, Jones (2009) develops an idea-based growth model where innovators
incur rising costs to assimilate frontier knowledge, leading to prolonged education, greater specialization,
and greater reliance on teams. For quantitative analysis, Bloom et al. (2020) propose a simple growth
model that decomposes economic growth into two multiplicative factors: research productivity and the
number of researchers. This model implies that sustained technological progress—and thus economic
growth—requires exponentially increasing R&D investment. In contrast, we develop an endogenous growth
model that explicitly incorporates the knowledge burden. Building on Bloom et al. (2020), we further
decompose research productivity into two components: a negative effect from the knowledge burden and a
positive effect from knowledge spillovers. This tractable framework allows us to examine the effect of AI on
innovation and growth through two distinct channels.

Our study advances growth theory from a broader perspective. Since Romer (1990) introduced an
endogenous growth model based on the nonrivalry of knowledge, subsequent developments—whether in
the expanding-variety framework (e.g., Rivera-Batiz and Romer (1991) and Jones (1995)) or the quality-
ladder framework (e.g., Grossman and Helpman (991a), Grossman and Helpman (1991), and Aghion and
Howitt (1992))—have uniformly assumed purely positive knowledge spillovers. Beyond Jones (2009), who
examines the economic implications of knowledge burden within a growth framework, Xie and Yang (2022,
2025) identify frictions in spatial and intertemporal knowledge spillovers—stemming from underdeveloped
information carrier technologies—as constraints on innovation and growth. In contrast, to the best of our
knowledge, our model is the first to incorporate both knowledge burden and AI into the expanding-variety
framework, thus deepening our understanding of the role of AI in long-term growth.

Our work also contributes to the emerging literature on AI and innovation.2 Among this literature,
1There is also evidence to the contrary. Ando et al. (2025) find that, in U.S. manufacturing, R&D has become more effective

at generating productivity-enhancing ideas; they attribute the decline in productivity growth to rising technological rivalry and
obsolescence.

2In recent years, rapid advances in, and the widespread adoption of AI have spurred growing interest in its economic implications,
including employment (Acemoglu and Restrepo, 2018; Acemoglu et al., 2022; Felten et al., 2023; Sun and Zhang, 2025), finance
(Babina et al., 2024; Cao et al., 2024), risk and regulation (Jones, 2024; Acemoglu and Lensman, 2024), productivity (Noy and
Zhang, 2023; Aghion and Bunel, 2024; Brynjolfsson et al., 2025), economic growth (Aghion et al., 2019; Agrawal et al., 2019; Lu,
2021; Trammell and Korinek, 2023; Bao et al., 2024), and international trade (Goldfarb et al., 2019; Sun and Trefler, 2023).
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empirical studies have linked AI to innovation. Cockburn et al. (2019) documents a rapid shift in the U.S.
toward learning-oriented research since 2009, coinciding with breakthroughs in deep learning for tasks such
as computer vision;3 Babina et al. (2024) show that AI investment promotes firm growth through product
innovation. A few theoretical studies explore the relationship between AI and innovation (Aghion et al.,
2019; Agrawal et al., 2019, 2023, 2024; Gans, 2025). Aghion et al. (2019) examine the role of AI as
a capital input in idea production, its interaction with research labor, and the resulting implications for
economic growth. Agrawal et al. (2019), building on Weitzman (1998), analyze how AI affects search and
combination processes within complex knowledge spaces during innovation. Agrawal et al. (2023, 2024)
model innovation as a two-stage process—combinatorial prediction and hypothesis testing—and use survival
analysis to assess the effects of AI adoption on innovation success probability, search duration, and expected
profits. Gans (2025) argues that AI reshapes research incentives by introducing complementarity between
scientific novelty and decision-making effectiveness, showing that sufficiently advanced AI tools encourage
more novel rather than incremental research. However, the knowledge-burden-easing mechanism through
which AI fosters innovation remains underexplored in theory. This paper seeks to fill that void.

2 The Model

In this section, we describe the model. For simplicity, we assume that AI technology evolves exogenously
at a constant growth rate. Importantly, we incorporate both the advantages and limitations of the brain in
the innovation process. Throughout the paper, we focus on equilibrium outcomes under the Pareto optimal
allocation.

2.1 Economic Environment

The representative consumer. The economy consists of a constant mass 𝐿 > 0 of homogeneous con-
sumers who supply labor inelastically. Each consumer has standard constant relative risk aversion (CRRA)
preferences. By choosing the consumption path 𝑐(𝑡) for 𝑡 ∈ (0,∞), a representative consumer maximizes
her discounted lifetime utility ∫ ∞

0
𝑒−𝜌𝑡

𝑐(𝑡)1−𝛾 − 1
1 − 𝛾

𝑑𝑡, (1)

where 𝜌 > 0 is the subjective discount rate, 𝛾 > 0 is the coefficient of relative risk aversion, and 𝑐(𝑡) denotes
per capita consumption.

Final goods producers. The final good market is perfectly competitive. At time 𝑡, the production function
for the final good is

𝑌 (𝑡) = 𝑧(𝑡) (1 − 𝑠(𝑡))𝐿, (2)

3Cockburn et al. (2019) argue that among the three key AI trajectories—robotics, symbolic systems, and deep learning—only
deep learning, due to its general-purpose nature, is likely to transform the innovation process; symbolic systems have stagnated with
limited future relevance, and robotics, while capable of substituting for labor, is unlikely to fundamentally reshape innovation.
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where𝑌 (𝑡) denotes the total output of the final good in the economy, 𝑧(𝑡) represents the production technology,
and 𝑠(𝑡) ∈ (0, 1) indicates the fraction of labor allocated to R&D for production technology. Thus, 1− 𝑠(𝑡) is
the fraction of labor allocated to final good production. As a result, the final good output per capita, defined
as 𝑦(𝑡) ≡ 𝑌 (𝑡)/𝐿, is given by 𝑧(𝑡) (1 − 𝑠(𝑡)).

Production technology. As a downstream technology, the advancement of production technology depends
on AI technology, R&D labor input, and the existing knowledge base. At time 𝑡, the stock of production
knowledge, 𝑁𝑧 (𝑡), depends on the level of production technology, 𝑧(𝑡), as follows:

𝑁𝑧 (𝑡) = 𝑑𝑧(𝑡)𝜈 , (3)

where 𝑑 > 0 captures the strength, and 𝜈 ∈ (0, 1] governs the scale effect in converting production technology
into knowledge stock.

The brain typically filters knowledge to enable thought. Licklider (1960) argues that approximately 85%
of his “thinking” time is spent on clerical or mechanical tasks that prepare for actual thinking, decision-
making, or learning, including searching, calculating, plotting, transforming, determining the logical or
dynamic consequences of a set of assumptions or hypotheses, and preparing the way for a decision or
an insight. The renowned communication theorist Marshall McLuhan distinguishes hot from cool media,
defining hot media as high definition (the state of being well filled with data), thereby limiting audience
participation (McLuhan, 1994). He argues that high-definition experiences must be forgotten, censored, and
cooled before they can be assimilated. The censorship is crucial for learning; without it, unfiltered exposure
to shocks would result in mental collapse. Motivated by these insights, we formalize innovation as a two-stage
process. The first stage involves AI technology 𝐴(𝑡) processing the stock of production knowledge 𝑁𝑧 (𝑡) to
generate refined knowledge 𝑥(𝑡). This process is represented as

𝑥(𝑡) = ℎ (𝑁𝑧 (𝑡), 𝐴(𝑡)) ≡
𝑁𝑧 (𝑡)
𝐴(𝑡) , (4)

where the function ℎ(·, ·) satisfies 𝜕ℎ(𝑁𝑧 , 𝐴)/𝜕𝑁𝑧 > 0 and 𝜕ℎ(𝑁𝑧 , 𝐴)/𝜕𝐴 < 0. To make the model tractable,
we define this function as ℎ(𝑁𝑧 , 𝐴) ≡ 𝑁𝑧/𝐴 throughout the paper.

The second stage involves R&D labor expanding the frontier of innovative possibilities in production
technology. This process is expressed as:

¤𝑧(𝑡)
𝑧(𝑡) = 𝑓 (𝑥(𝑡))︸  ︷︷  ︸

research productivity

× 𝑠(𝑡)𝐿︸︷︷︸
number of researchers

, (5)

where the function 𝑓 (·) captures the contribution of each brain to technological innovation. Here, 𝑓 (𝑥) and
𝑠𝐿 correspond respectively to research productivity and the number of researchers, similar to the formulation
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in Bloom et al. (2020). We specify the function 𝑓 (·) as follows:

𝑓 (𝑥(𝑡)) = 𝐹0 exp
(
−𝑏

[
ln

𝑥(𝑡)
𝑥0

]2

︸           ︷︷           ︸
knowledge burden

+ 𝑎 ln
𝑥(𝑡)
𝑥0︸    ︷︷    ︸

knowledge spillovers

)
, (6)

where 𝐹0 > 0 is a scale constant, 𝑎 > 0 parameterizes knowledge spillovers, 𝑏 > 0 captures the knowledge
burden, and 𝑥0 > 0 is a reference level used to normalize 𝑥(𝑡). We can readily observe the following
properties of the function 𝑓 (·):

lim
𝑥→0+

𝑓 (𝑥) = 0, lim
𝑥→+∞

𝑓 (𝑥) = 0,
𝜕 𝑓 (𝑥)
𝜕𝑥

> 0 for 𝑥 < 𝑥,
𝜕 𝑓 (𝑥)
𝜕𝑥

< 0 for 𝑥 > 𝑥,

where 𝑥 ≡ 𝑥0 exp( 𝑎
2𝑏 ) is the threshold at which the monotonicity of the function changes and can be

interpreted as the stock of refined knowledge at which the brain operates at optimal performance. Thus, 𝑓 (𝑥)
is inverted-U in 𝑥, shaped by knowledge spillovers (positive) and knowledge burden (negative).

AI technology. AI technology is upstream in the innovation process, as shown in Figure 1. As noted
above, AI technology progresses exogenously at a constant rate 𝑚 > 0. Thus, at time 𝑡, the level of AI
technology is:

𝐴(𝑡) = 𝐴(0) exp(𝑚𝑡), (7)

where 𝐴(0) > 0 is the initial level of AI technology. This setup is sufficient to explore the core mechanisms
by which AI technology and the brain influence innovation and growth.

Resource constraint. The two resources involved are labor and the final good. The labor constraint has
been implicitly accounted for by allocating 1 − 𝑠(𝑡) of labor to the final good production. Thus, the only
remaining resource constraint is the final good constraint:

𝑐(𝑡)𝐿 = 𝑌 (𝑡). (8)

2.2 Pareto Optimal Problem

The dynamic optimization problem of a social planner is:

max
{𝑐,𝑠,𝑥,𝑧}

∫ ∞

0
𝑒−𝜌𝑡

𝑐(𝑡)1−𝛾 − 1
1 − 𝛾

𝑑𝑡, (9)

subject to

𝑐(𝑡) = 𝑧(𝑡) (1 − 𝑠(𝑡)), (10)

𝑥(𝑡) = 𝑑𝑧(𝑡)𝜈
𝐴(𝑡) , (11)

¤𝑧(𝑡) = 𝑧(𝑡)𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)), (12)
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Here, the combination of equations (2) and (8) leads to equation (10), equation (11) follows from equations
(3) and (11), and equation (12) is the equivalent transformation of equation (5). Thus, the current-value
Hamiltonian of this maximization problem can be expressed as

H(𝑠, 𝑧, 𝜆) = [𝑧(𝑡) (1 − 𝑠(𝑡))]1−𝛾 − 1
1 − 𝛾

+ 𝜆(𝑡)𝑧(𝑡)𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)), (13)

where 𝑥(𝑡) = 𝑑𝑧 (𝑡 )𝜈
𝐴(𝑡 ) , 𝐴(𝑡) grows exogenously as in equation (7), and 𝜆(𝑡) is the current-value costate variable.

We explicitly incorporate 𝑓 (𝑥(𝑡)) as defined in equation (6) below.

3 Equilibrium Analysis

In the model, the balanced growth path (BGP) equilibrium is defined as one in which the growth rates
of per capita consumption, production technology, and per capita output of the final good converge to the
same constant value, the labor allocation between final good production and R&D for production technology
approaches constant ratios, and the stock of refined knowledge tends to a constant value. Throughout the
paper, 𝑔𝑘 denotes the growth rate of any variable 𝑘 , and 𝑘∗ denotes the equilibrium value of any variable 𝑘 .
We also define 𝜀(𝑥∗) := 𝑓 ′ (𝑥∗ )𝑥∗

𝑓 (𝑥∗ ) as the elasticity of research productivity with respect to refined knowledge.
To ensure the existence of the BGP equilibrium and the tractability of the model, we impose the following

assumptions on the model parameters. Throughout the subsequent analysis, the following assumptions are
always maintained.

Assumption 1. 𝑓 (𝑥𝑚𝑖𝑛) ≥ 𝑚
𝜈𝐿

where 𝑥𝑚𝑖𝑛 ≡ 𝑥0 exp( 𝑎
2𝑏 − 𝜌+(𝛾−1)𝑚/𝜈

2𝑏𝑚 ).

Assumption 2. 𝜌𝜈 > 𝑚 and min{𝑎, 2
√

2
√
𝑏} > 𝜌

𝑚
+ 𝛾

𝜈
.

Next, we analyze the BGP equilibrium results, as outlined in the following propositions. All proofs are
provided in the Appendix.

Proposition 1. There exists a unique BGP equilibrium such that 𝑔∗𝑐 = 𝑔∗𝑧 = 𝑔∗𝑦 = 𝑚
𝜈

and 𝑠∗ = 𝑚
𝐿𝜈 𝑓 (𝑥∗ ) , where

𝑥∗ solves 𝑚
𝜈
= 1

𝛾
[𝐿 𝑓 (𝑥∗) + 𝑚𝜀(𝑥∗) − 𝜌].

Proposition 1 demonstrates that the model admits a unique BGP equilibrium. Specifically, the BGP
growth rates of per capita consumption, production technology, and per capita output are identical at ≡ 𝑚/𝜈,
determined by the AI technology progress rate 𝑚 and the parameter 𝜈 (which captures the scale effect of
converting production technology into knowledge). Faster AI progress supports faster growth in productive
knowledge, consistent with the BGP equilibrium in which the refined knowledge stock remains constant. In
the absence of sufficiently rapid AI advances, the accumulation of productive knowledge cannot be effectively
converted into the creative-thinking stage and hence into technological progress. Moreover, a straightforward
observation is that, in BGP equilibrium, AI progress not only determines economic growth but also governs
labor allocation and the accumulation of refined knowledge. Here, although the form of 𝑓 (𝑥∗) is unspecified
thus far, important insights follow from the equilibrium equality 𝑚/𝜈 = [𝐿 𝑓 (𝑥∗) +𝑚𝜀(𝑥∗) − 𝜌]/𝛾 for solving
𝑥∗.
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Proposition 2. When 𝑥∗ < 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ), the equilibrium stock of refined knowledge, 𝑥∗, is increasing in
the AI growth rate 𝑚. When 𝑥∗ > 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ), 𝑥∗ is decreasing in 𝑚.

Proposition 2 characterizes how the equilibrium stock of refined knowledge, 𝑥∗, responds to changes
in the AI growth rate, 𝑚. When 𝑥∗ is sufficiently low, accelerated progress in AI technology increases the
equilibrium stock of refined knowledge in the second stage of the innovation process—the creative thinking
stage—and thus enhances research productivity (since 𝑥∗ lies in the region where knowledge spillovers
dominate, i.e., 𝑥∗ < 𝑥). In contrast, when 𝑥∗ is sufficiently high, faster AI progress reduces the equilibrium
stock of refined knowledge. In particular, when 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ) < 𝑥∗ < 𝑥, additional refined knowledge
remains physiologically productive, but AI-accelerated refinement selectively filters and discards information,
weakening knowledge spillovers and underutilizing the brain’s capacity for creative recombination. Once
marginal spillovers decline sufficiently, the social planner optimally reduces the stock of refined knowledge
even before cognitive performance reaches its physiological peak. Overall, the nonmonotonic response
of the equilibrium refined-knowledge stock to faster AI growth reflects a distortion in the translation of
collective knowledge into innovation. The endogenous wedge from the optimal level of brain performance
𝑥—which faster AI growth need not eliminate—implies a waste of social intelligence: potentially useful
knowledge remains unexploited, or the knowledge burden outpaces the brain’s capacity. This waste stems
from a distortion in social resource allocation rather than physiological limits.

Proposition 3. The proportion of labor allocated to the R&D sector decreases with the growth rate of AI
technology if 𝑥∗ < 𝑥0 exp( 𝑎

2𝑏 − 𝑚
𝜌
) and increases if 𝑥∗ > 𝑥0 exp( 𝑎

2𝑏 − 𝑚
𝜌
).

Proposition 3 has two implications. First, when the equilibrium stock of refined knowledge required for
the brain’s creative thinking is sufficiently low (i.e., 𝑥min < 𝑥∗ < 𝑥0 exp( 𝑎

2𝑏 − 𝑚
𝜌
)), faster AI growth expands

the amount of knowledge that humans can process during innovation. This increases the equilibrium refined-
knowledge stock and strengthens knowledge spillovers, thereby significantly raising research productivity
and generating R&D labor-saving effects (note that Assumption 2 implies 𝑥0 exp( 𝑎

2𝑏 −
𝑚
𝜌
) < 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 )).

Second, when the marginal knowledge spillovers induced by faster AI growth are weak for 𝑥0 exp( 𝑎
2𝑏 −

𝑚
𝜌
) <

𝑥∗ < 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ), decline for 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ) < 𝑥∗ < 𝑥, or when faster AI growth primarily alleviates the
knowledge burden for 𝑥 < 𝑥∗ < 𝑥max, the social planner allocates a higher fraction of labor to R&D to offset
lower research productivity or insufficient marginal gains in research productivity.

In summary, the growth effect of AI technology is always positive because its knowledge-burden-
alleviating effect is of higher order than its adverse effect on knowledge spillovers. However, the effects of
faster AI growth on research productivity (i.e., the performance of the brain’s creative thinking) and on the
fraction of labor allocated to R&D are ambiguous, since AI technology may induce selective knowledge
discarding (thereby weakening knowledge spillovers) or instead alleviate the knowledge burden.

3.1 Is Innovation Getting Easier?

As AI technology advances, does innovation become easier? To evaluate it, we propose a criterion based
on relative elasticities:

𝜀𝑔∗,𝑚 ≡ 𝜕𝑔∗/𝑔∗
𝜕𝑚/𝑚 > 𝜀𝑠∗,𝑚 ≡ 𝜕𝑠∗/𝑠∗

𝜕𝑚/𝑚 , (14)

9



where 𝜀𝑔∗,𝑚 represents the elasticity of 𝑔∗ with respect to 𝑚, and 𝜀𝑠∗,𝑚 represents the elasticity of 𝑠∗ with
respect to 𝑚. The relation 𝑔∗ = 𝑓 (𝑥∗) × 𝑠∗𝐿 implies that 𝜀𝑔∗,𝑚 − 𝜀𝑠∗,𝑚 corresponds to the elasticity of
research productivity with respect to 𝑚. The criterion that AI technology makes innovation easier can also
be equivalently interpreted as the elasticity of research productivity 𝑓 (𝑥∗) with respect to 𝑚 being positive.
Thus, we obtain the following proposition.

Proposition 4. AI technology makes innovation easier (i.e., 𝜀𝑔∗,𝑚 > 𝜀𝑠∗,𝑚) if 𝑥∗ < 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ) or 𝑥∗ > 𝑥

holds; AI technology makes innovation harder (i.e., 𝜀𝑔∗,𝑚 < 𝜀𝑠∗,𝑚) if 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ) < 𝑥∗ < 𝑥.

Proposition 4 characterizes the conditions under which AI technology makes innovation easier. Whether
AI facilitates innovation depends on both (i) the relative importance of the knowledge burden versus knowl-
edge spillovers for research productivity and (ii) how the equilibrium stock of refined knowledge responds
to faster AI growth. We identify two cases in which AI makes innovation easier. First, when knowledge
spillovers substantially dominate the knowledge burden (i.e., 𝑥min < 𝑥∗ < 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 )), faster AI growth
enables humans to process more knowledge, thereby allowing these spillovers to be realized despite selective
knowledge discarding. Second, when the knowledge burden dominates spillovers (i.e., 𝑥 < 𝑥∗ < 𝑥max), faster
AI growth reduces the knowledge burden through a second-order channel; this higher-order relief dominates
the first-order spillover loss.

In contrast, when 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ) < 𝑥∗ < 𝑥0 exp( 𝑎
2𝑏 ), the knowledge-burden relief from faster AI growth

is insufficient to offset the substantial weakening of knowledge spillovers; thus, faster AI progress makes
innovation harder. The intuition is that AI diminishes knowledge spillovers significantly—due to the selective
discarding of knowledge—relative to its effect in easing the knowledge burden during the innovation process.
To understand how such a scenario may occur, consider the idea of cross-industry innovation, where solutions
developed in one industry have historically been found to be useful in other industries. For example, groove
patterns initially designed for space shuttle runways were later utilized for highways to improve traction
and reduce hydroplaning and accidents. While humans may exchange information and share “wasteful"
knowledge in the R&D process, AI tools may discard information they deem obsolete, as AI tools in
corporate R&D are often highly specialized or proprietary. In turn, as AI technology progresses and AI
usage increases, serendipitous cross-industry innovation will be harder if knowledge and insights from other
fields are overlooked or discarded during the innovation process.

3.2 Further Discussion

Figure 2 summarizes the scenarios described in Propositions 3 and 4.4 A key insight is that whether AI
progress makes innovation harder or easier need not induce a monotonic change in the R&D labor share.
When the equilibrium stock of refined knowledge is very low, faster AI growth raises this stock and facilitates
innovation; yet because the increase in research productivity exceeds the increase in the AI growth rate, the
marginal value of R&D labor can be lower than that of labor in the production of final goods, reducing
the R&D labor share. Outside this region, once the equilibrium stock of refined knowledge is sufficiently

4The equilibrium in Figure 2 is characterized by 𝑏 < 1
2

(
𝜌

𝑚
+ 𝛾−1

𝜈

)
𝜌

𝑚
. If instead 𝑏 > 1

2

(
𝜌

𝑚
+ 𝛾−1

𝜈

)
𝜌

𝑚
, which implies 𝑥 < 𝑥min,

then 𝑑𝑠∗/𝑑𝑚 < 0 always holds. We, therefore, focus on the former case.
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𝑥min 𝑥max

𝑥max𝑥min

ҧ𝑥

෤𝑥 ො𝑥

R&D labor share declines 

with the AI growth rate

(i.e, 𝑑𝑠∗/𝑑𝑚<0)

R&D labor share rises

with the AI growth rate

(i.e, 𝑑𝑠∗/𝑑𝑚>0)

AI technology makes

innovation easier

(i.e, 𝜀𝑔∗,𝑚 > 𝜀𝑠∗,𝑚)

AI technology makes

innovation easier

(i.e, 𝜀𝑔∗,𝑚 > 𝜀𝑠∗,𝑚)

AI technology makes

innovation harder

(i.e, 𝜀𝑔∗,𝑚 < 𝜀𝑠∗,𝑚)

optimal level of

brain performance

Figure 2: Effects of AI Technological Progress on R&D Performance over Different Ranges of 𝑥∗

Notes: For convenience, we provide new definitions: 𝑥 ≡ 𝑥0 exp
(
𝑎

2𝑏 − 𝑚
𝜌

)
and 𝑥 ≡ 𝑥0 exp

( 𝑎−𝛾/𝜈
2𝑏

)
.

high, allocating a higher fraction of labor to R&D becomes more profitable regardless of whether AI makes
innovation harder or easier.

4 Conclusion

In this paper, we incorporate the mechanism through which AI alleviates the knowledge burden—thus
fostering innovation and growth—into an endogenous growth framework. We decompose research produc-
tivity, as characterized in Bloom et al. (2020), into two components: (positive) knowledge spillovers and
(negative) knowledge burdens. This approach enriches the micro mechanism of technological innovation in
the AI era. In our model, the innovation process consists of two sequential stages: AI-driven refinement of
existing knowledge and human creative thinking. This structure enables a theoretical assessment of whether
innovation becomes easier. Our analysis delivers three takeaways. First, faster AI growth raises the growth
rate of per capita consumption (analogous to production technology) and increases the fraction of labor
allocated to R&D. Second, the equilibrium stock of refined knowledge may fall short of the level required
for optimal brain performance, leading to a waste of social intelligence. This arises because, while faster
AI growth mitigates the brain’s knowledge burden, it also diminishes knowledge spillovers by selectively
discarding information. Third, AI makes innovation easier (or harder) when the relative degree of knowledge
spillovers to knowledge burden is sufficiently high (or low). Future research may examine decentralized
economies to assess the impact of AI on market failures and the design of optimal government policies. AI
may also facilitate the second-stage creative thinking proposed in this paper, and its micro mechanisms merit
further analysis.
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Appendix: Proofs

We introduce some notation that will simplify the analysis in the following proofs. Let 𝑢(𝑡) := ln 𝑥 (𝑡 )
𝑥0

,
𝜓(𝑢(𝑡)) := 𝑎𝑢(𝑡) − 𝑏[𝑢(𝑡)]2, and F (𝑢(𝑡)) := 𝐹0 exp[𝜓(𝑢(𝑡))]. That is, we can rewrite 𝑓 (𝑥(𝑡)) as F (𝑢(𝑡)).
Note that the mapping between 𝑥∗ and 𝑢∗ is bijective and strictly increasing. Assumption 1 can also be
restated as

Assumption 1′. F (𝑢𝑚𝑖𝑛) ≥ 𝑚
𝜈𝐿

where 𝑢𝑚𝑖𝑛 = 𝑎
2𝑏 − 𝜌+(𝛾−1)𝑚/𝜈

2𝑏𝑚 .

Finally, we can rewrite the elasticity of research productivity with respect to refined knowledge as
E(𝑢(𝑡)) := 𝑎 − 2𝑏𝑢(𝑡).

A Proof of Proposition 1

Proof. The social planner’s maximization problem, characterized by the current-value Hamiltonian in equa-
tion (13), implies that the time paths of 𝑠(𝑡), 𝑧(𝑡), and 𝜆(𝑡) must satisfy the following first-order necessary
conditions:

H𝑠 (𝑠, 𝑧, 𝜆) = −𝑧(𝑡) [𝑧(𝑡) (1 − 𝑠(𝑡))]−𝛾 + 𝜆(𝑡)𝑧(𝑡)𝐿 𝑓 (𝑥(𝑡)) = 0, (O1)

H𝑧 (𝑠, 𝑧, 𝜆) = (1 − 𝑠(𝑡)) [𝑧(𝑡) (1 − 𝑠(𝑡))]−𝛾 + 𝜆(𝑡)𝑠(𝑡)𝐿 [ 𝑓 (𝑥(𝑡)) + 𝜈 𝑓 ′(𝑥(𝑡))𝑥(𝑡)] = 𝜌𝜆(𝑡) − ¤𝜆(𝑡), (O2)

¤𝑧(𝑡) = H𝜆(𝑠, 𝑧, 𝜆) = 𝑧(𝑡)𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)). (O3)

The transversality condition is lim𝑡→∞ [exp(−𝜌𝑡)𝜆(𝑡)𝑧(𝑡)] = 0.
To prepare for the equilibrium analysis, we rearrange the above conditions as follows. First, when

expressed in growth rates, equation (O1) yields

−𝛾
[
𝑔𝑧 (𝑡) +

−¤𝑠(𝑡)
1 − 𝑠(𝑡)

]
= 𝑔𝜆(𝑡) +

¤𝑓 (𝑥(𝑡))
𝑓 (𝑥(𝑡)) . (O4)

Equation (O1) also implies

[𝑧(𝑡) (1 − 𝑠(𝑡))]−𝛾
𝜆(𝑡) = 𝐿 𝑓 (𝑥(𝑡)). (O5)

Second, incorporating equation (O5) into equation (O2) gives

𝐿 𝑓 (𝑥(𝑡)) + 𝜈𝑠(𝑡)𝐿 𝑓 ′(𝑥(𝑡))𝑥(𝑡) = 𝜌 − 𝑔𝜆(𝑡). (O6)

Third, equation (O3) directly implies

𝑔𝑧 (𝑡) = 𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)). (O7)

Next, we determine the BGP equilibrium. Recall the definition of the BGP equilibrium. As 𝑡 → ∞, 𝑥(𝑡)
converges to a constant value 𝑥∗. Therefore, equation (11) implies 𝑔∗𝑧 = 𝑚

𝜈
. In the BGP equilibrium, the

O1



fraction of labor allocated to R&D tend to a constant value 𝑠∗, which, by condition (10), implies 𝑔∗𝑐 = 𝑔∗𝑧 .
Since 𝑦(𝑡) = 𝑧(𝑡) (1 − 𝑠(𝑡)), it follows that 𝑔∗𝑦 = 𝑔∗𝑧 . Taking into account equation (O4) in BGP equilibrium,
we obtain: 𝑔∗𝑐 = 𝑔∗𝑧 = 𝑔∗𝑦 = 𝑚

𝜈
and 𝑔∗

𝜆
= − 𝛾𝑚

𝜈
. It follows immediately that 𝑔∗ ≡ 𝑔∗𝑐 = 𝑔∗𝑧 = 𝑔∗𝑦 increases in

𝑚. Thus, condition (O7) yields the fraction of labor allocated to the R&D sector in the BGP equilibrium as
𝑠∗ = 𝑚

𝐿𝜈 𝑓 (𝑥∗ ) . Moreover, substituting the full expressions for 𝑠∗ and 𝑔∗𝜅 into equation (O6) yields

𝑚

𝜈
=

1
𝛾
[𝐿 𝑓 (𝑥∗) + 𝑚𝜀(𝑥∗) − 𝜌] . (O8)

Thus, once 𝑥∗ is obtained from this equation, all equilibrium outcomes are determined. It remains to prove
that equation (O8) admits at least one solution for 𝑥∗.

We further define 𝑥𝑙 := min{𝑥 | 𝑓 (𝑥) = 𝑚
𝐿𝜈

} and 𝑥max := max{𝑥 | 𝑓 (𝑥) = 𝑚
𝐿𝜈

}. To ensure that 𝑠∗

lies within (0, 1), it must hold that 𝑓 (𝑥∗) > 𝑚
𝐿𝜈

, or equivalently, 𝐿F (𝑢∗) > 𝑚/𝜈. This condition implies
𝑥𝑙 < 𝑥∗ < 𝑥max, or equivalently, 𝑢𝑙 < 𝑢∗ < 𝑢ℎ, where 𝑢𝑙 = 𝑢(𝑥𝑙) and 𝑢ℎ = 𝑢(𝑥max). The existence of 𝑥∗ is
equivalent to that of 𝑢∗, as the mapping between them is bijective and strictly increasing. Equation (O8) can
be rewritten as

𝐿F (𝑢∗) = −𝑚E(𝑢∗) + 𝛾𝑚/𝜈 + 𝜌. (O9)

Consider that in the equation, the left-hand side 𝐻 (𝑢∗) := 𝐿F (𝑢∗) is inverted-U in 𝑢∗, whereas the right-hand
side ℎ(𝑢∗) := −𝑚E(𝑢∗) + 𝛾𝑚/𝜈 + 𝜌 is linear and strictly increasing in 𝑢∗. It follows that the intersection of
ℎ(𝑢∗) with 𝑚/𝜈 occurs at 𝑢min (Assumption 2 ensures that 𝑢min > 0). By Assumption 1′, F (𝑢min) > 𝑚

𝐿𝜈
.

Thus, the intersection of 𝐻 (𝑢∗) and ℎ(𝑢∗) lies above 𝑚/𝜈 on the vertical axis and within (𝑢min, 𝑢
ℎ) on the

horizontal axis. Hence, there exists a unique 𝑢∗ satisfying equation (O9), and consequently, a unique 𝑥∗

satisfying equation (O8). □

B Proof of Proposition 2

Proof. As established in the proof of Proposition 1, equation (O9) holds in equilibrium. We have that

𝑢min =
𝑎

2𝑏
−

𝜌

𝑚
+ 𝛾−1

𝜈

2𝑏
< 𝑢∗ < 𝑢ℎ =

𝑎

2𝑏
+

√︂
𝑎2 − 4𝑏 ln

(
𝑚
𝜈

1
𝐿𝐹0

)
2𝑏

.

Let 𝜙 := 𝐿F (𝑢∗) + 𝑚E(𝑢∗) − 𝛾𝑚/𝜈 − 𝜌 = 0. By the implicit function theorem, we have 𝑑𝑢∗

𝑑𝑚
= − 𝜕𝜙

𝜕𝑚

/
𝜕𝜙

𝜕𝑢∗

where the partial derivatives are

𝜕𝜙

𝜕𝑚
= (𝑎 − 2𝑏𝑢∗) − 𝛾/𝜈 and

𝜕𝜙

𝜕𝑢∗
= 𝐿𝐹0 exp(𝑎𝑢∗ − 𝑏𝑢∗2) (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚.

O2



Thus, we obtain

𝑑𝑢∗

𝑑𝑚
=

2𝑏
(
𝑢∗ − 𝑎−𝛾/𝜈

2𝑏

)
𝐿𝐹0 exp(𝑎𝑢∗ − 𝑏𝑢∗2) (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚

.

Using the equilibrium condition from (O9), the derivative becomes

𝑑𝑢∗

𝑑𝑚
=

2𝑏
(
𝑢∗ − 𝑎−𝛾/𝜈

2𝑏

)
−4𝑏2𝑚𝑢∗2 + 2𝑏(2𝑎𝑚 − 𝛾𝑚/𝜈 − 𝜌)𝑢∗ + [𝑚(𝑎𝛾/𝜈 − 𝑎2 − 2𝑏) + 𝑎𝜌]

. (O10)

Next, we examine the sign of 𝑑𝑢∗

𝑑𝑚
. First, it is evident that if 𝑢∗ >

𝑎−𝛾/𝜈
2𝑏 , the numerator is positive;

otherwise, it is negative. Second, the denominator remains strictly negative because 2
√

2
√
𝑏 >

𝛾

𝜈
+ 𝜌

𝑚
in

Assumption 2. Thus, we can conclude that: if 𝑎−𝛾/𝜈
2𝑏 < 𝑢∗ < 𝑢ℎ, there is 𝑑𝑢∗

𝑑𝑚
< 0; if 𝑢min < 𝑢∗ <

𝑎−𝛾/𝜈
2𝑏 ,

there is 𝑑𝑢∗

𝑑𝑚
> 0. Moreover, since 𝑢∗ = ln( 𝑥∗

𝑥0
), it follows that

𝑑𝑢∗

𝑑𝑚
=

1
𝑥∗︸︷︷︸
>0

𝑑𝑥∗

𝑑𝑚
, (O11)

which implies 𝑠𝑖𝑔𝑛
{
𝑑𝑥∗

𝑑𝑚

}
= 𝑠𝑖𝑔𝑛

{
𝑑𝑢∗

𝑑𝑚

}
, establishing the result. □

C Proof of Proposition 3

Proof. Based on the expression of 𝑠∗ in BGP equilibrium, we obtain

𝑑𝑠∗

𝑑𝑚
=

1
𝐿𝜈 𝑓 (𝑥∗)︸    ︷︷    ︸

>0

©­­­­­«
1 − 𝑚

𝑓 ′(𝑥∗)
𝑓 (𝑥∗)

𝑑𝑥∗

𝑑𝑚︸               ︷︷               ︸
=E𝑠∗ ,𝑚

ª®®®®®¬
< 0 ⇐⇒ E𝑠∗,𝑚 < 0.

We have

E𝑠∗,𝑚 = 1 − 𝑚E(𝑢∗) 𝑑𝑢
∗

𝑑𝑚

= 1 −
𝑚E(𝑢∗) ( 𝛾

𝜈
− (𝑎 − 2𝑏𝑢∗))

𝐿𝐹0 exp[𝑎𝑢∗ − 𝑏𝑢∗2] (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚

= 1 −
𝑚E(𝑢∗) ( 𝛾

𝜈
− E(𝑢∗))

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗)

=
E(𝑢∗) (𝐿F (𝑢∗) + 𝑚E(𝑢∗) − 𝛾𝑚

𝜈
) + 𝑚E′(𝑢∗)

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗)

=
𝜌E(𝑢∗) + 𝑚E′(𝑢∗)

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗)
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where the first line follows from the proof of Proposition 4 and the last equality comes from (O9). Therefore,

𝑑𝑠∗

𝑑𝑚
< 0 ⇐⇒ 𝜌E(𝑢∗) + 𝑚E′(𝑢∗)

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗) < 0.

We know the denominator is negative (recall the proof of Proposition 2), so 𝑑𝑠∗

𝑑𝑚
< 0 ⇐⇒ 𝑢∗ < 𝑎

2𝑏 −
𝑚
𝜌
. □

D Proof of Proposition 4

Proof. Recall the equilibrium results: 𝑔∗ = 𝑚
𝜈

and 𝑠∗ = 𝑚
𝐿𝜈 𝑓 (𝑥∗ ) . The definitions of elasticities imply:

𝜀𝑔∗,𝑚 = 1 and 𝜀𝑠∗,𝑚 = 1 − 𝑚
𝑓 ′(𝑥∗)
𝑓 (𝑥∗)

𝑑𝑥∗

𝑑𝑚
= 1 − 𝑚E(𝑢∗) 𝑑𝑢

∗

𝑑𝑚
.

where the last equality follows from (O11). We have

Δ𝐸 := 𝜀𝑔∗,𝑚 − 𝜀𝑠∗,𝑚

= 𝑚E(𝑢∗) 𝑑𝑢
∗

𝑑𝑚

=
𝑚(𝑎 − 2𝑏𝑢∗) ( 𝛾

𝜈
− (𝑎 − 2𝑏𝑢∗))

𝐿𝐹0 exp[𝑎𝑢∗ − 𝑏𝑢∗2] (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚

where the last equality uses (O10). Therefore,

𝑠𝑖𝑔𝑛{Δ𝐸} = 𝑠𝑖𝑔𝑛{E(𝑢∗)} × 𝑠𝑖𝑔𝑛

{ 𝑑𝑢∗
𝑑𝑚

}
which gives us Δ𝐸 > 0 if 𝑢∗ < 𝑎−𝛾/𝜈

2𝑏 or 𝑢∗ > 𝑢̂. Otherwise, Δ𝐸 < 0. □
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