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Abstract

The dark figure of crime confounds the true prevalence with enforcement, since detection and crime are

observed only in conjunction. We introduce a novel Maximum Likelihood estimator that simultaneously

estimates probabilities of two latent outcomes - crime and enforcement - using instrumental variables. Iden-

tification relies on exogenous instruments excluded from shifting the probability of crime or enforcement

occurring to disentangle the selective sample from its population. In a corporate cybercrime application

in two Swiss cantons, the reported monthly rates (0.03% and 0.01%) severely mask the true prevalence;

estimated rates are 2.4% to 17.9%, with dark rates exceeding 99%.
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Ganz unbekannt war ja sein Prozess nicht, wenn es auch noch nicht ganz klar war, wer davon wusste und wieviel.1

1 Introduction

The estimation of true criminal activity remains one of the most persistent and fundamental challenges in

empirical economics, law and criminology. The core empirical challenge lies in the fact that official statistics

and observed recorded cases (R) capture only the light figure of crime (C) — a potentially highly selective,

non-random sample of an underlying criminal population. As Biderman and Reiss [1967] argue, “...in exploring

the dark figure of crime, the primary question is not how much of it becomes revealed, but rather what will

be the selective properties of any particular innovation for its illumination.” The resulting gap between the

true prevalence of offenses and observed incidents is known as the Dark Figure of Crime (DFC) (Quételet

[1832]), and quantifying it is essential to accurately measure social harm, formulate effective policies, and

evaluate enforcement (E). The second central empirical obstacle when identifying the DFC, next to selection

bias, is the simultaneity problem: a criminal incident appears in official records (R) only if two independent,

latent events occur concurrently — a criminal act (C) and its enforcement (E) (i.e., detection, prosecution, or

reporting). The observed record is the conjunction R = (C and E). Shifts in observed or recorded crime rates

may, therefore, reflect changes in crime itself, or changes in detection technology, victim reporting propensity, or

law enforcement effort, making it impossible to disentangle the true phenomena from its revelation. As Levitt

[1998] notes “the debate over the validity of reported crime statistics is almost as old as reported crime statistics

themselves,” yet confounding factors remain unresolved.

We address this fundamental identification challenge by proposing a novel structural econometric method

based on Maximum Likelihood Estimation (MLE), which simultaneously estimates the probabilities of two latent

outcomes (C and E). Estimation is operationalized by specifying a likelihood function where the probability

of a recorded incident, Pr(R), is modeled as a product of two probits, one for Pr(C) and one for Pr(E).

Identification of this system hinges on the crucial availability of exogenous instrumental variables (IVs). These

instruments must be strictly excluded from shifting one probability (e.g., Pr(C)) while affecting the other (e.g.,

Pr(E)), thereby providing the exclusion restrictions necessary to separate the contributions of C and E to the

observed record R. This structural approach directly addresses the selection and simultaneity biases that plague

existing estimation methods, like Capture-Recapture (CR) (Ormosi [2014]), Detection Controlled Estimation

(DCE) (Feinstein [1990], Foros [2004]), Difference-In-Difference (Diff-in-Diff) settings (Sovinsky [2022], Heim

et al. [2022]), Hazard Rate (HR) estimation (Bryant and Eckard [1991], Levenstein and Suslow [2008]) or

structural modeling (Craig [1987], Cornwell and Trumbull [1994]).

Section 2 situates our contribution within related work in criminology, economics, empirical legal studies,

epidemiology, and finance, where researchers attempt to infer population sizes from selective samples. Section 3

develops our estimator. In Section 4, we demonstrate the favorable statistical properties of this estimator in

finite samples using simulated data, describing also how to address the bi-convex nature of the product of

two probits to ultimately find the global optimum of the minimization. Section 5 shows the results of our

methodology when run on a comprehensive and unique administrative data of reported cybercrime incidents

experienced by companies in the Swiss Cantons of St. Gallen and Zug between 2016 and 2023, 2024. Cybercrime

1His trial was not entirely unknown, even if it was not yet entirely clear who knew about it and how much. (Kafka [1925], Der
Prozess, Page 130).
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presents an acute challenge for estimation due to strong corporate disincentives for reporting and long detection

lags, exacerbating the DFC problem. The observed monthly reporting rates (0.03% and 0.01%) severely mask

the effective prevalence of cybercrime which we estimate at the company level to be 9.8% to 17.9% and 2.4% to

10.8% in St. Gallen and Zug, respectively. This yields dark rates of 99% in both Cantons. The stability of our

latent prevalence estimates across multiple instrument specifications provides initial empirical support for our

identification strategy. However, as Orsagh [1973] laments “it is undoubtedly true that the quality of the data

available for empirical investigation is unusually poor” when trying to quantify the relation between crime and

enforcement.2 Section 6 concludes.

2 Related Work

The DFC was first introduced by Quételet [1832] and refers to the number of unreported or unregistered criminal

cases. The Dark Rate of Crime (DRC) is the percentage of unknown cases in the population of all cases of crime

(C): DRC = DFC/C. The Light Figure of Crime (LFC) in observable official crime statistics and cases is the

difference between all crime and its dark part (C = DFC+LFC). It is a potentially unrepresentative sample of

criminal activity (Biderman and Reiss [1967]). The extent and reasons for unrecorded crime have been widely

discussed in various contexts (Duffee et al. [2000], MacDonald [2001], Lynch and Addington [2006], Loftin and

McDowall [2010], Mosher et al. [2010], Biderman and Lynch [2012]). The willingness to report a crime case

depends on various factors, including individual characteristics of the victim (Schneider et al. [1975]), economic

factors (MacDonald [2001]), the gravity and type of the crime (Kääriäinen and Sirén [2011]) or opportunity costs

(Tarling and Morris [2010]). Some types of crime may remain unknown even by the victim (cybercrime (IBM

Corporation [2023])) or have no individual victim to report it (e.g., collusion, tax evasion, money laundering,

bribery). Identification of the DFC represents a fundamental challenge in criminology and legal enforcement,

as it distorts statistics on the magnitude of illegal or criminal activity, thus hindering the effective allocation of

resources for law enforcement, prevention, deterrence, and evaluation of legal effectiveness (Skogan [1977]).

Traditional approaches to explain or quantify the DFC analyze discrepancies between official police records

and victimization reports (Messner [1984]). Concerned about possible bias in OLS estimates, Orsagh [1973]

applies the simultaneous equations from the classical demand and supply model to crime and sanctions for

the number of reported crime cases in the 58 Californian counties in the year 1960. He finds a significant

bias in OLS versus two-stage least squares estimation. Nagin [1978] warns of possible identification problems

in the relation between crime and police clearance rates. He estimates a simultaneous model for the relation

between the risk of imprisonment and crime, controlling for imprisonment duration and using prison capacity

as IV, for cross-sectional crime data of 47 US states in 1960. In contrast, Wolpin [1980] estimates a single

equation approach for time-series robbery cases between 1955 and 1971 in California, England and Japan.

He relies on quite strong assumptions, e.g., that the changes in the crime rate do not affect the strength of

deterrence. Cornwell and Trumbull [1994] aim to address heterogeneity and simultaneity issues by controlling

for county-specific characteristics in a panel dataset of North Carolina counties with arrest and offense data.

In addition to two-stage modeling, Wheeler et al. [2011] address spatial dependencies including average crime

rates in neighboring areas as control variable. However, all these approaches do not separate crime from its

enforcement.

2Orsagh [1973], Page 354.
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Craig [1987] explicitly models enforcement (the allocation of police resources) and victim reporting in a

simultaneous model with four equations. He estimates the success of crime deterrence measures for Baltimore

neighborhoods in 1972. Comparing police recorded crimes from the Baltimore police department with reported

and unreported cases in the US National Crime Victimization Survey (NCVS), he finds a significant reporting

bias. To improve the measurement of reporting bias, Levitt [1998] controls for the variation of police resources

per capita in the NCVS. In another approach, he assumes nearly 100% recording rates for murder cases and uses

them as a reference to estimate the rate of unrecorded cases in other subject areas. Also focusing on murder

cases, but for the reason that they are much more costly than other types of crime, Chalfin and McCrary [2018]

analyze the relationship between police resources and violent crime rates. They address measurement errors in

police force data estimating a GMM with two different data sources of police staffing numbers, with crime data

for 242 US cities between 1960 and 2010.

Combining different police surveillance with victim behavior and socio-economic characteristics in geographic

areas, Buil-Gil et al. [2021] present a geographic map showing dark figures of crime based on estimates of small

areas. Based on the Crime Survey for England andWales from 2011 to 2017, they find larger dark figures of crime

in suburban areas than in big cities. However, questionnaire based survey data may suffer itself from various

forms of bias, in particular selection bias in survey participation (Haverkamp [2020]), but also measurement

error from misremembering or misclassification, respondent fatigue, and interviewer effects (Pina-Sánchez et al.

[2023], Fé [2024]). More fundamentally, these approaches assume the difference between surveys and official

records represents the dark figure, but this assumption fails when survey responses themselves are systematically

biased - precisely the problem in contexts like corporate cybercrime where firms have strategic incentives to

under-report even in confidential surveys.

Recognizing these fundamental identification challenges, recent work has turned to partial identification

approaches that provide bounds rather than point estimates under weaker assumptions. Manski and Pepper

[2013] apply partial identification to estimate the deterrent effect of capital punishment on homicides in all US

states, comparing the country-wide abolishment in 1975 with state-individual legalization status in 1977. They

define the legalization status as treatment effect. In addition, they estimate the Difference-in-Difference (Diff-In-

Diff) to compare changes in homicide rate over time in states with and without treatment. Building on Manski

and Pepper [2013] in applying partial identification to criminology, Fé [2024] builds a partial identification

framework to derive upper and lower bounds for victims misreporting crime incidents in the Crime Survey for

England and Wales between 2012 and 2020. His contribution acknowledges non-identification of latent crime

rates without strong assumptions.

DCE estimates the percentage of undetected offenses for a sample of investigated companies (Feinstein

[1990]). In applications to nuclear power plants (Feinstein [1989]) and tax evasion (Feinstein [1991]), each

investigated company is paired with its responsible investigating agency. Feinstein [1990] derives an MLE

function based on two probit equations, one estimating the probability of committing an offense and the other

estimating the probability of detection in the case of an offense, controlling for characteristics of company

and investigating agency. Although the approach has similarities to ours, it is only applicable if the sample

is identifiable. As Feinstein [1990] (Page 245) points out, “the DCE decomposes a single datum, detected

violations, into two disjoint behavioral categories, violation and detection, and it is not initially clear whether

this decomposition can be performed uniquely”. It also strictly requires subjects to be investigated, which is

information most often missing from enforcement records or even a non-existence prerequisite in enforcement
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regimes. Feinstein [1990] therefore only touches on problems with non-random sampling defined in Heckman

[1979]. Foley et al. [2019] identify illegal activities of bitcoin users in measuring the share of transaction with

other illegal users. They adapt DCE for instrumental variables that either affect only the participation in illegal

activity, or its detection, running the model on the population of all bitcoin trades. Their method is most

closely related to our identification strategy, but does not account for repeated recording and requires a review

process identifying illegal activity. The latter is most often not applicable in real data or enforcement regimes

more generally.

Estimation methods deriving unknown population sizes from (selective) samples originate most often in life

sciences; populations of animals in a specific geographic area, prevalence and incidence of viruses, and diseases

for a population of potential hosts. The main type of econometric specification are HR models in survival

analyses developed in biomedical studies. Bryant and Eckard [1991] use HR to estimate the detection rates

of cartels uncovered and prosecuted by the Department of Justice (DoJ) for price-fixing conspiracies in the

1980s. Based on the duration of the cartel, they estimate the probability of birth and death, which when

combined provides the probability of a cartel being alive.3 Bryant and Eckard [1991] find the 13-17% detection

probability in a given year for a sample of eventually detected US cartels between 1961 and 1988. Combe et al.

[2008] estimate 12.9-13.3% for EU cartels from 1969 to 2007. The estimated probability of death (which is equal

to one divided by the average duration (Harrington and Wei [2017])), may not be representative of the entire

(unknown) population (Bryant and Eckard [1991], Harrington and Chang [2009], Davies and Ormosi [2012],

and Ormosi [2014]). Other critical features of the econometric models explaining the duration of cartels (HR

models) used so far are the underlying assumptions of (i) constant and (time) independent rates of cartel birth,

death, and detection (Harrington and Chang [2009] and Bos and Harrington [2010]), (ii) homogeneous firms

and industries, and (iii) complete cartels (Günster [2010]). Diff-in-Diff studies aim for, but do not quantify a

reduction in collusive activity effectively, ignoring selection biases as well (Miller [2009], Harrington and Chang

[2015], Hellwig and Hüschelrath [2018], Heim et al. [2022], and Sovinsky [2022]).

Their effect on cartel formation, duration and deterrence is investigated by Motta and Polo [2003], Chen and

Harrington [2007], Harrington [2008], Spagnolo [2008], Miller [2009], Gärtner and Zhou [2012], Harrington [2013],

Chen and Rey [2013], Duso et al. [2014], Harrington and Chang [2015], Hellwig and Hüschelrath [2018], Heim

et al. [2022] and Sovinsky [2022]. Although Diff-in-Diff studies do not quantify a reduction in collusive activity,

studies relying solely on samples of detected cartels base the analysis on information from convictions, ignoring

selection biases. Theoretical studies establish theoretically that firms can use potentially very strategically

leniency applications (selection bias) (Motta and Polo [2003], Harrington [2008], Spagnolo [2008], Harrington

[2013], Chen and Rey [2013], Harrington and Chang [2015]).

CR is the second most prominent method to establish the number of cartels alive, originally developed in

biology (Ormosi [2014]). It compares the proportion of (re)captured animals, but also cartels, of all captured

animals in a defined area relative to the total area over time.4 Rivest and Baillargeon [2014] provide a widely

3The most basic model is λ(t) = limdt→0 Pr(t ≤ T < t + dt|T ≥ t)/dt = f(t)/S(t) = −S′(t)/S(t) where t represents time and
S is the hazard function; the hazard function can also be represented as a cumulative hazard function Λ(t) = − logS(t).

4The capture histories are fitted using a Poisson regression with MLE (McCrea and Morgan [2015]). The most simple repre-
sentation of Capture-Recapture is based on Amstrup et al. [2005]: n = mc/r, where n represents population size, m the number
of animals captured and marked, c the total number of captures during the second visit, and r the number of recaptures on the
second visit. For ecological studies, which often involve temporal processes, the assumption of closure (no births, deaths, or migra-
tion) was relaxed, leading to open population models such as the Cormack-Jolly-Seber model (Rivest and Baillargeon [2014]). For
epidemiological applications, which typically collate individuals from different lists, a seminal advancement was the introduction
of log-linear models (Fienberg [1972]). These models specify expected cell counts in a log-linear form, allowing for interactions
between surveys and forming the basis of most Multiple Systems Estimation applied to epidemiological data.
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used statistical R package for closed and open populations of animals. Chan et al. [2021] extend it for non-

overlapping lists of illegal immigrants in the US. They derive a multiple system estimate for victims of human

trafficking appearing in different victimization surveys during the same time period.

Any of the described estimation methods might suffer from sample selection biases that have not been

adequately addressed (Heckman [1979]). Bellert et al. [2023] show how HR and CRmodels do not derive unbiased

and consistent estimators because samples of illegal activity might not be representative of its population. All

methods discussed do not adhere to random sampling. CR inspires our approach as we explicitly control for being

previously recorded. We expand upon CR with structural equation modeling using instrumental variables, while

Foley et al. [2019] expand DCE with IVs. We also explicitly model treatment (crime) and potential selection

(discovery), which is an analogy to estimating Local Average Treatment Effect (LATE) (Imbens and Angrist

[1994]). Our method expands LATE by deriving latent outcome variables of crime and its revelation, which are

affected by treatment and compliance. This process simultaneously identifies unobserved probabilities of crime

(C) and enforcement (E). It also addresses selection and simultaneity biases by using instrumental variables to

identify groups of compliers who act according to their group. These subjects comply, they take the treatment

when assigned to treatment and abstain when assigned to the control group. It nets the effect of a treatment

on compliers neglecting non-compliers. Our method relies on a combination of several methodologies (i.e.,

CR, LATE, simultaneous equation modeling including IVs) to address the main problem of previous attempts;

neglecting selection (i.e., CR, DCE, HR), measuring indirect effects (i.e., Diff-In-Diff) or bounds (i.e., partial

identification).

Cybercrime presents particularly acute challenges for dark figure estimation. Unlike traditional crimes,

cyberattacks often go undetected for extended periods (IBM Corporation [2023] reports 207 days average de-

tection time), and even detected incidents face strong disincentives for reporting due to reputational concerns.

In a survey by Keeper Security [2023], 48% of the participants stated that the incidents were not reported to

the authorities and 41% that the incidents were not even reported internally. August et al. [2024] investigate

the conditions that motivate companies to report cyber incidents and disclose information about cybersecurity.

Cybercrime statistics are particularly affected by over- or under-reporting (Anderson et al. [2013]). The number

of reported cybercrime cases is steadily increasing due to digital innovation and a shift of activities to the digital

space (Wu et al. [2023] gives a general overview of recent studies). Cloud services, mobile devices, and social

networks create new vulnerabilities, with online property crime averaging around 50% of worldwide property

crime (Anderson et al. [2019]). Global damage estimates range from $1 trillion (McAfee [2020]) to $3 trillion

(Herjavec [2019]) annually. Prevalence estimates use victim surveys (Reep-van den Bergh and Junger [2018],

Accenture [2019], Hiscox [2022], ISACA [2023]) and predictive Hawkes and Machine Learning models (Bessy-

Roland et al. [2021], Elluri et al. [2023]). The US DoJ estimates that only 15% of cyber incidents are reported

(US Department of Justice [2015]). Applying our estimation method to Swiss cybercrime, we estimate that the

true monthly prevalence rates are 9.8% to 17.9% and 2.4% to 10.8% for cyber incidents on companies in the

Swiss cantons of St Gallen and Zug, while the monthly reporting rates are only 0.03% and 0.01% respectively,

implying monthly detection rates of only 0.10% to 0.17% and 0.28% to 0.43%.
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3 Estimating Dark Figures

The basis for law enforcement is the sample of observed recorded cases (R), with a recording R = 1 for every

observation. However, for an illegal offense to be recorded, two conditions must be met

• a criminal incident takes place (C)

• there is a possibility of enforcement (E)

Observing a criminal incident (R) in reality is the conjunction of the incident occurring (C) and being detected,

prosecuted, and convicted (enforcement (E) of crime (C)), which is R = C · E. Consequently, we explicitly

model the observation of a crime (R) as the multiplication of the two latent outcomes of the crime (C) and its

enforcement (E), which we simultaneously estimate.

Denote an incident recorded by the same individual as R, then Rprev is the same subject involved in an

offense recorded in a previous period. Both recording variables are binary; individuals record an incident or

not. Both Rprev and R are observed. The interval between Rprev and R is defined and depends on the concrete

application. With the assumption that former participation has an (unknown) influence on present events, we

let Rprev affect both C and E. The observed variable R takes the value 1 for an individual in a certain period

of time if at least one illegal event is recorded and 0 otherwise. In contrast, Feinstein [1990] explicitly models

Bayes [1958] using Heckman [1979], but therefore requires whether an entity is investigated. Instead, we run

our method on the entire population of potential perpetrators or victims without identification of selection.

Note also that we do not require making assumptions about the sign or magnitude of the relations between

instruments and previously reporting on the latent variables we aim to estimate. These will be the outcome of

the estimate. We exclusively require instruments to be exogenous to the latent variable that they should not

affect. We do not assume structure here. However, we assume that there are no Type II errors, that is, no

falsely recorded incidents.

Traditional methods fail because they only account for reported cases (R = 1, C = 1, E = 1), and not

for the large number of unobserved cases (R = 0 and either C = 0 or E = 0). In the dual-process logic used

in the simultaneous two-probit model, a recorded observation is R = C · E, which requires the conjunction of

both latent variables. On the one hand, individuals are subject to crime with a probability P (C) consisting of

a conditional mean of crime (c), an instrument affecting the probability of crime occurring (Z), the impact of

the instrument (φ) and the impact of having been previously recorded (η), with c, φ, η ∈ R. On the other hand,

individuals are subject to the enforcement of crime with a probability P (E) consisting of a conditional mean of

the enforcement of the crime (d), an instrument that affects the probability of the enforcement occurring (W ),

the impact of the instrument (ξ) and having been subject to previous recordings (α), with d, ξ, α ∈ R. The

probability of crime enforcement must be independent of the probability of committing or experiencing a crime

and vice versa (i.e., strict exogeneity); instrumental variables must identify either the likelihood of a crime or its

enforcement to disentangle the sample from its population. The instrumental variable describing the probability

of crime enforcement might consist of legislation (law creation), the judiciary (law interpretation), and actual

enforcement (law execution).5 Criminal activity depends on behavioral factors, gains and punishment, and the

legal system in turn. In Section 5, we show concrete examples of instruments that affect the probability of being

subject to cybercrime or the propensity to report a cyber incident at the firm level in Switzerland.

5Becker [1968] was the first of very many to analyze the interplay between crime, punishment and the cost for society. His
contributions offer guidance on instrumental variable choice determining the enforcement of crime.
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W : IV Affecting Crime Enforcement
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Figure 1: DGP of Crime and its Enforcement

The Directed Acyclic Graph (DAG) in Figure 1 describes the relationship of the Data Generating Process

(DGP) of illegal offenses and their enforcement (Pearl [1995]). The weighted directed arrows indicate the order

and direction of the relation between the observed variables (Z, W , Rprev, R) and the unobserved variables (E,

C). The size of the weights is unknown and is observed as a vector of unobserved parameters θ = [c, φ, η, d,

ξ, α], which we want to estimate. The core relationship we model remains Pr(R = 1) = Pr(C = 1) ·Pr(E = 1),

which we specify as Equations 1 to 3 to summarize the DGP, with v, e ∼ N (0, 1):

C = I{v < c+ φ · Z + η ·Rprev} (1)

E = I{e < d+ ξ ·W + α ·Rprev} (2)

C · E = R (3)

The estimated models provide the weights and thus derive the direction and magnitude of the relationships

between observed variables (Z, W , Rprev, R) and unobserved latent variables to be identified (E,C). In

addition, we derive the coefficients (φ, η, ξ, α) and the constants (c, d) by estimating the system of equations.

Having been recorded in a previous stage (Rprev) is observed and essential to isolate C from E, assigning their

respective shares (Equations 1 and 2). To simultaneously estimate the system of Equations 1 to 3, we derive the

maximum likelihood function in Equation 4 with the cumulative distribution function of the standard normal

distribution (Φ) as link function. The latter transforms the models of latent variables into probabilities. Given

that the latent variable C is binary, taking the expectation E[C] over the population is exactly equivalent to

calculating the probability of a crime occurring (Pr(C = 1)). Consequently, the system of equations yields

the estimated mean latent prevalence of crime, often referred to as the expected crime rate, or alternatively,

the probability that a crime occurred. Based on Equations 1 to 3, we estimate the likelihood of the values of

unknown parameters given the observed variables (Equation 4). Minimizing the negative log-likelihood delivers

the estimated parameter vector θ̂ (Equation 5); the directions and weights of the DGP (θ =[c, φ, η, d, ξ, α])
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shown in Figure 1:

L (θ) =
∏
obs

(Φ(c+ φ · Z + η ·Rprev) (4)

· Φ(d+ ξ ·W + α ·Rprev))
I{R=1}

· (1− Φ(c+ φ · Z + η ·Rprev)

· Φ(d+ ξ ·W + α ·Rprev))
I{R=0}

θ̂ =argmin
θ

− lnL (θ) (5)

The MLE objective function L (θ) in Equation 4 is the product of the two probit functions shown in Equa-

tions 1 and 2. The left hand side of both equations is unknown (Crime and its Enforcement), but the product

of both is observed (Recorded Crime). This product results in a non-linear objective function without closed

form solution. Therefore, we solve the MLE using numerical optimization. This is done iteratively, starting

from an initially arbitrary vector θ̂1, seeking the convergence of a sequence {θ̂n}. In the resulting estimates, the

score function should be zero on average, with the log-likelihood gradient being S(θ̂) = ∂logL(θ̂, data)/∂θ̂ ≈ 0.

To ensure a global minimum, the Hessian in the resulting estimates has to be a positive definite non-singular

matrix, with all Eigenvalues above zero, to compute standard errors and confidence intervals from its inverse.

MLE enjoys statistical consistency bounds when specified well and convexity conditions apply. It delivers

consistent, asymptotically unbiased and asymptotically efficient estimates (Davidson and MacKinnon [2004]).

These conditions include continuity of the normal Cumulative Distribution Function (CDF), identification of

parameters (i.e., different parameters lead to different distributions), and compactness of the parameter space.

Our objective function is suitable for optimization with the Newman-Raphson method. We choose the Broyden,

Fletcher, Goldfarb and Shanno (BFGS) algorithm to derive θ̂ (Broyden [1970], Fletcher [1970], Goldfarb [1970],

Shanno [1970]). BFGS is a robust numerical approach for non-linear unconstrained optimization problems. As

a quasi-Newton method, it approximates the Hessian iteratively instead of calculating it.6 With the estimated

parameters in θ̂, we reconstruct the estimated probabilities of Ê and Ĉ for each observation, with C being our

latent variable of interest. The average of Ĉ gives the estimated percentage of observed and unobserved crimes.

Subtracting the number of observed incidents from the number of estimated ones yields the DFC.

While the objective function is locally convex near the maximum likelihood estimate as shown by a positive

definite Hessian, the overall likelihood surface is non-convex due to the product structure of the probabilities

and the non-linear probit link function. Fixing the parameters of one probit, the remaining problem is quasi-

convex. This means that the optimization problem satisfies a property that is weaker than bi-convexity. It

requires careful optimization with multiple starting values to ensure that the global optimum is found. The

number of optimization rounds with different initial parameter values depends on the concrete application. The

global optimum is determined from the rounds with the converging algorithm. In the resulting local optimum,

the gradient must be near zero and the hessian must be non-singular. Several equal solutions show the same

smallest objective value. They represent the global minimum, if all alternative solutions have substantially

higher objective values and also higher condition numbers. The condition number κ of the hessian matrix is

6For robustness checks, we estimate parameters for the simulated data additionally with both the Nelder-Mead (Nelder and Mead
[1965]) and Conjugate Gradient algorithms (Fletcher and Reeves [1964]). All of them produce similar results in the simulation
(available on request), with BFGS being the fastest, which is important for applications with a large number of observations
(Nocedal and Wright [2006]).
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a measure of ill conditioning. If the Hessian is positive definite, κ can be calculated as the ratio of its largest

to its smallest Eigenvalue (Todd [1950]). We use it in addition to the objective value to compare different

optimization results.

For enforcement, the relevance and exclusion restriction assumptions regarding the instrumental variables

have to hold. We assume that the instrumental variable Z is relevant and affects crime (Equation 1), but

must not affect enforcement. In analogy, we assume that instrument W is relevant and affects E (Equation 2),

but must not affect C. If C and E were observed, we could check the rank condition to ensure instrument

relevance. Further, we could check the order condition to test the exclusion restriction; number of omitted

exogenous variables ≥ number of endogenous variables. These two assumptions cannot be tested, because the

left-hand side of Equations 1 and 2 is unknown. The assumptions rely on the underlying economic theory. To

assess the plausibility of these restrictions, we calculate the Lagrange Multiplier statistics (LM), a hypothesis

test for parameter restrictions violations. For both exclusions restrictions we estimate the unrestricted model

allowing cross-effects. First, we add the instrument used in the second equation to the first equation, changing

Equation 1 to Equation 6. Second, we add the instrument used in the first equation to the second equation,

changing Equation 2 to Equation 7 and optimize them separately.

C = I{v < c+ φ · Z + ρC ·W + η ·Rprev} (6)

E = I{e < d+ ξ ·W + ρE · Z + α ·Rprev} (7)

The LM for each restriction is

LM = ∇T
θu V̂∇θu/n (8)

where n is the sample size and ∇θu is the gradient of the objective function optimized for the unrestricted vector

θu = [θ, ρ]. V̂ is the estimated asymptotic variance covariance matrix of the estimated restricted parameter

vector θ̂. Since the LM converges to a χ2 distribution with 1 degree of freedom (one restricted parameter), the

critical value for the 5% Level is z = 6.63 (Breusch and Pagan [1980]). If LM < z, we cannot reject the Null

Hypothesis that the additional parameter ρ is zero, which provides evidence for the exclusion restriction.

4 Simulating Dark Figures

To evaluate and demonstrate the performance of our method, we simulate data for a population of potential

subjects of crime of one million (n = 1′000′000 observations), which are in one of three possible states: (i)

not subject to crime and, therefore, by definition not observed (C = 0, R = 0), (ii) subject to crime and

observed (C = 1, R = 1), (iii) subject to crime but not observed (C = 1, R = 0). Note that the last state

constitutes the dark figure which is unobserved in reality. Note also that this excludes the possibility of Type

II Errors (C = 0, R = 1), which possibly exist in law enforcement. The DAG in Figure 1 describes the DGP.

Some individuals have previously experienced crimes (Rprev = 1). In addition, we arbitrarily set the following

parameters at θ = [c = .4, φ = .3, η = −.2, d = .5, ξ = .4, α = .2]. The effect η of Rprev on C is set negative,

assuming that individuals take preventive measures after being subject to crime. For each observation, we let

the instruments Z and W independently take values ∈ {0, 1, 2}, following a Binomial Distribution with two
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trials and probability 0.5. Rprev is simulated as Rprev = I{u < 0}, with u ∼ N (0, 1). Inserting the parameters

and simulated variables in Equations 1 and 2 generates values for C and E. Equation 3 generates values for

R. This DGP delivers ground-truth data for n observations with recorded incident, unrecorded incident, or

without incident (Figure 1).

We optimize the objective function (Equation 4) on the synthetic data. To find the global optimum, we run

20 optimization rounds with randomly set initial parameters and select converging solutions with the lowest

objective value. Appendix Table 16 lists all results sorted by objective value. The nine results with the same

lowest value (up to 7 digits) have equal estimated coefficients (up to 2 digits) and condition number around

695. All other results have larger objective values and a singular Hessian. Their condition number is either very

large (> 4e17) or not defined. For the result with the lowest objective value, Table 1 shows in columns 3 to 6 the

estimated coefficient, its standard deviation and the resulting Confidence Interval (CI) at 95%. Column 2 shows

the simulation set parameters to facilitate comparison. Rows 1 to 3 of Table 1 provide the estimation results

for the probit that estimates the effect of the instrument Z and was recorded in a previous period (Rprev) on

crime (C). Rows 4 to 6 show the results for the probit estimating the effect of the instrument W and Rprev on

E (Figure 1).

Table 1: Crime Simulated and Estimated Parameters in Simulation

Simulation Estimate SE 95% CI

Constant on Crime (ĉ) 0.4 0.4223 0.0163 (0.3903 0.4543)
IV on Crime (φ̂) 0.3 0.3049 0.0060 (0.2932 0.3166)
Rprev on Crime (η̂) -0.2 -0.2094 0.0113 (-0.2314 -0.1873)

Constant on Enforcement (d̂) 0.5 0.4759 0.0152 (0.4462 0.5056)

IV on Enforcement (ξ̂) 0.4 0.3878 0.0122 (0.3638 0.4117)
Rprev on Enforcement (α̂) 0.2 0.2030 0.0139 (0.1757 0.2303)

Ê (Enforcement estimated on θ̂) 0.82958 0.8229 0.0738 (0.6829 0.9271)

Ĉ (Crime estimated on θ̂) 0.72050 0.7273 0.0781 (0.5843 0.8490)

N 1′000′000

This table shows for one million observations (n = 1′000′000) the parameter values set in
the simulation, the estimated parameters, their standard errors and CI.

Table 1 confirms that our novel method describes the DGP of dark figure estimation well (Figure 1). The

estimated coefficients are within two standard deviations (67%) at most. In addition to the estimated param-

eters, Table 1 shows the simulated values for enforcement (E) and crime (C) in the last two rows. Applying

Equations 1 and 2 to every observation in the simulated data provides the distribution of probabilities for E and

C. The mean of the simulation and the estimate of E are 83.0% and 82.3%, respectively. For the probability

of C the means are even closer (72.1% and 72.7%). Table 2 shows the condition number (κ) for the resulting

hessian matrix. For both exclusion restriction assumptions, we calculate the LM statistics for the unrestricted

model. Both LMC and LME are below the critical value of z = 6.63 (Section 3), with corresponding p-values.

We cannot reject the Null Hypothesis that an additional parameter in the unrestricted models is zero, giving

evidence for the exclusion restrictions. The confidence intervals and condition numbers decrease (i) in increasing

numbers of observations (consistency), (ii) in higher rates of recorded cases (R) and (iii) more points of support

of the instrumental variables (W and Z). Appendix Figure 4 shows the distribution of all estimated parameters

for 1’000 simulations.7

7Simulation code written in R is publicly available at Bellert [2025] to facilitate replication and application by other researchers.
We provide a description (README) on how to reproduce the simulation and amend it, to generate basic statistics, estimate the
hidden population, and calculate the dark rate. Also in Bellert [2025], we provide an Online Appendix with additional results and
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Table 2: Evaluation of Results (Simulation)

Condition Number κ LMC pC LME pE

694.72 0.7315 0.3924 8e-8 0.9998

This table shows for the estimates in Table 1 the condi-
tion number and the Lagrange Multiplier statistics with
p-values for the unrestricted Equations 6 and 7.

5 Dark Rates of Cybercrime in the Cantons St Gallen and Zug

We estimate the percentage of unreported cybercrime incidents on companies, using a sample of reported

incidents in the Swiss Cantons St Gallen (2016-2023) and Zug (2016-2024). Companies are potential victims of

cybercrime attacks (C) and we define the incentive for the company to report as enforcement of crime (E); the

higher the incentive to report translates into more recordings of crime independent of whether more crime was

committed.

Cybercrime is a novel area of enforcement with the Budapest Cybercrime Convention (Council of Europe

[2001]), signed by Switzerland only in 2001, defining cybercrime as “action directed against the confidentiality,

integrity and availability of computer systems, networks and computer data, as well as the misuse of such

systems, networks and data.”8 In Switzerland, digital or cybercrime enters the country-wide criminal statistics

records for the first time in 2020. Cantons St. Gallen and Zug publish the first statistic on cybercrime cases in

2020 and 2017, respectively. We focus only on cyber incidents affecting companies, which cover mostly cyber

fraud, but also all other categories. In Switzerland, offenses with a digital crime component per year increased

significantly by 80% from 24’398 recorded cases in 2020 to 43’839 in 2023. The major part of cybercrime

concerns economic cybercrime, with a share of 84% in 2020 increasing to 92% in 2023 (Swiss Federal Statistical

Office [2024b]). This rise is shown to be representative for phenomena internationally, with the dark rate of

cybercrime described as “not all digital offenses are reported to the police, even if they were correctly identified

by the victims or company” (Swiss Federal Office of Justice [2024]).

The frequency and severity of cybercrime depend on socioeconomic, political, and technological factors,

as well as technology standards, data handling, and prevention methods (Solano and Reinoso Peinado [2017]).

Studies find positive correlations between company size and cyberattack frequency (Paoli et al. [2018], Isenhardt

et al. [2022]). Additional cybercrime drivers include remote work arrangements (FINMA [2020a]), technological

innovations such as GPT-3 (ETCISO [2024]) or cryptocurrencies (August et al. [2025]), economic crises such as

COVID-19 (Naidoo [2020], Panda Security [2020], FINMA [2020b]) and geopolitical events such as the Russian

attack on Ukraine (National Cybersecurity Centre [2023], CyberPeace Institute [2024]). Table 3 lists possible

IV (Z) that influence the probability of cybercrime incidents in Swiss companies.

Factors that affect the incentive to report a cybercrime incident (enforcement E) include government reg-

ulations and facilitation measures. In 2016, the EU established the Directive for the Security of Network and

Information Systems (NIS1), including a reporting obligation in case of a cyber incident for operators of essen-

figures.
8We rely on the definition provided by the Swiss Federal Statistical Office. The term cybercrime covers all offenses with a digital

component, i.e., committed in telecommunication (networks), particularly on the internet (Swiss Federal Statistical Office [2021]).
Swiss Federal Statistical Office [2023b] defines 29 different offenses with 33 possible types of modus operandi as cybercrime. Offense
types are defined by the respective Articles in Swiss Criminal Code (SCC), with fraud (Article 146) accounting for the majority of
cases (53% in 2023), followed by computer fraud (Article 147) with 17%, money laundering (Article 305bis) with 9%, pornography
(Article 197) with 6% and the unauthorized obtaining of data (Article 143) with 4%. Modus operandi can be categorized in
economic cybercrime (92.4% in 2023), cyber sexual crimes (6%) and cyber damage to reputation and unfair practices (1.7%) (Swiss
Federal Statistical Office [2023a]).
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Table 3: Determinants of Cyber Crime (C)

Instrument Z Start (to End) Date Description

Covid 2020-03-16 (to 2022-04-01) Covid-19 Lockdown / Home Office Recommendation (CH)
Ukraine 2022-02-24 Russian Attack on Ukraine
ChatGPT 2022-11-30 Introduction ChatGPT (GPT-3)
GPT-4 2023-03-14 Introduction GPT-4
N Emp 2025 Number of Employees
Mid Sized 2025 Number of Employees ≥ 50
Large Sized 2025 Number of Employees ≥ 250
Retail 2025 Retail Trade (NACE 47)
Online 2025 Retail via Mail Order Houses or Internet (NACE 47.91)

The variable Covid is 1 for all months between the start of the official Covid-19 lockdown in Switzerland
(Swiss Federal Council [2020]) and the final end of the home office recommendation (Swiss Federal Council
[2022a]). All other shocks in Z are 1 for all time periods after the shocks, and 0 before. The number of
employees (N Emp) could be used as an approximation of the firm size. However, we use categories of firm
size instead, to not combine continuous with binary variables. We include information on the economic
activities of the company as instruments. Retail firms (1 if NACE Code starts with 47, else 0) and online
stores (1 if NACE Code is 4791, else 0) (European Commission [2008]) are overrepresented in our specific
sample, as they are particularly often victims of cyber fraud (Table 5 and 6, and Appendix Table 31. The
variables we included are in italics.

tial services such as electricity, transport, health, drinking water, financial services and digital service providers

(European Union [2016a]). NIS1 was adopted by the Member States in May 2018.9

In Switzerland, the Data Protection Act (DSG) came into force in 1992 and regulates the processing of

personal data. Only since the revised version in September 2023 does it contain Article 24, which obliges

companies processing personal data of natural persons to report breaches of data security to the Federal Data

Protection and Information Commissioner (FDPIC) (Swiss Federal Council [2023a]).10

Liability companies (AG) are subject to certain disclosure requirements to their shareholders (Article 697

of the Swiss Code of Obligations).11 Companies incorporated on the Swiss Stock Exchange (SIX) are required

to disclose price sensitive information (SIX Exchange Regulation AG [2024]). According to Mathys [2021], this

might include cyber incidents.12

Independent of reporting obligations, all persons and legal entities in Switzerland affected by a cyber incident

are encouraged to report the incident (National Cybersecurity Centre [2024]). Reporting cyber incidents does

not necessarily lead to its prosecution, requiring the involvement of a law enforcement agency. To bring charges,

it is additionally necessary to file a complaint with the cantonal police bureau (Kantonspolizei (KAPO)). In

Switzerland, the police are organized on a decentralized basis. The police forces in the individual cantons

use different software systems and are independently responsible for recording, analyzing and documenting the

complaints.13 Table 4 lists possible IV (W ) that affect the proneness of companies in Switzerland to report a

cyber incident.

There is a third category of factors that influence both cybercrime and reporting, such as corporate gover-

9Extending the scope of NIS1 to medium-sized enterprises and new sectors like food, chemistry and electronics and harmonizing
reporting obligations, NIS2 came into force in 2022 and had to be adopted by the member states until October 2024 (European
Union [2022]). Both NIS affect Swiss companies when they engage in the EEA.

10In the European Union, the European General Data Protection Regulation (DSGVO) entered into force in May 2018 with the
aim of protecting data of natural persons (European Union [2016b]). In Switzerland, it affects all companies that trade within the
European Economic Area (EEA). Article 33 DSGVO requires Swiss companies that process personal data of natural persons to
report breaches of data security to the supervisory authority of each EU Member State whenever a person is affected by a data
breach (Federal Data Protection and Information Commissioner [2018]). In addition, the Swiss Parliament decided in September
2023 to introduce a reporting obligation for cyberattacks on critical infrastructure as amendment to the Information Security Act
(ISA); enacted in April 2025 (Federal Office for Cybersecurity [2025]).

11In addition, Article 29 (2) FINMA [2024] requires companies under FINMA supervision to report any “incident that is of sub-
stantial importance to the supervision,” affecting financial institutions, insurance companies and stock exchange trading platforms.

12In comparison, the US Securities and Exchange Commission (SEC) implemented stricter disclosure rules in July 2023, obliging
publicly traded companies to disclose any material cybersecurity breach (US Securities and Exchange Commission [2023]).

13To facilitate complaints, several cantonal polices offer the online tool Swiss epolice for minor offenses, including three types of
cybercrime (Polizeitechnik und Informatik Schweiz [2023]).
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Table 4: Determinants of Reporting (E)

Instrument W Date Entering in Force Description

NIS1 2018-05-09 EU reporting critical infrastructure
DSGVO 2018-05-25 EU reporting companies
ePolice SG 2023-06-01 SG online crime reporting
ePolice ZG 2023-07-04 ZG online crime reporting
DSG 2023-09-01 CH reporting companies (DSG Article 24)
NIS2 2024-10-18 EU strengthening of NIS1
ISA 2025-04-01 CH reporting critical infrastructure
AG 2025 If legal form is Limited Company (AG) 1, else 0
Listed 2025 If company is listed on the stock exchange 1, else 0
Not Virtual 2025 If no indication for virtual office 1, else 0
Not Canton 2025 If company is registered in other canton 1, else 0

This table gives an overview of changes in EU and Swiss law affecting the probability that
companies report cybercrime incidents in Switzerland. Additionally, we add several firm char-
acteristics as instruments: limited companies (AG) and stock market listed firms (Listed) are
subject to stricter regulatory provisions. Furthermore, we add information on the indication
that the company is only registered as virtual office, which is mostly relevant for Canton Zug. A
significant number of incidents are reported by companies that are not registered in the canton
where they reported, while (by construction of our sample) all companies that never report are
registered in the respective canton. Adding being registered in another canton (Not Canton)
as an instrument addresses this issue (Tables 5, 6 and Appendix Table 31). The variables we
included are in italics.

nance, which may indicate higher reporting propensity while also correlating with greater security investments

(Higgs et al. [2016], Amir et al. [2018]). Taking into account time and previous reporting (Rprev), we explicitly

allow for companies being generally more prone to report due to good governance (Amir et al. [2018]) while

also facing a higher probability of being the victim of cybercrime. Our method allows for both factors to be at

work simultaneously, accommodating the possibility that firms at high risk invest more in preventive measures

(decreasing the probability of a second cyber incident), as well as the possibility that firms with prior cybercrime

experience show greater propensity to report subsequent incidents (Kamiya et al. [2021], see also Ormosi [2014]

for Capture-Recapture).

We employ incidents of crime, provided by the Cantonal Police Bureau St Gallen and the Police of Zug, which

contain a digital component, i.e., the Article SCC joined with modus operandi defining cybercrime by the Federal

Statistical Office.14 We limit the analysis to companies with a Unique Enterprise Identification (UID) (Swiss

Federal Council [2022b]), registered in the publicly accessible database Orbis (Moody’s Analytics [2024]). As our

empirical strategy requires the universe of companies that are potentially and eventually subject to cybercrime,

we link the incidents to all companies legally incorporated in both cantons. Also from Orbis, we retrieve the

number of employees, leaving out observations with zero registered employees. We also retrieve the legal form

of incorporation (liability company (AG), limited liability company (GmbH), sole proprietorship, association,

etc. (Swiss Federal Council [2023b])) and if the company is listed on the stock market. We anonymize the data

and add indicator variables for additional instruments capturing the external shocks affecting cybercrime (Z)

and the reporting thereof (W ) (Tables 3 and 4). We also add the variable Rprev, which is 1 for a company and

month if the company has already reported a previous event in the last 365 days.

Table 5 provides an overview on the sample of cyber incidents on companies reported in St Gallen (Upper

Panel) and Zug (Lower Panel). For St Gallen, there are 1’285 reported incidents between 2016 and 2023, an

average of 161 incidents per year for a population of, on average, 38’443 registered companies per year, or 0.03%

of reported incidents per company and month. In comparison, in Zug, we have only 360 reported incidents

14From the Police of Zug, we receive the following list of SCC Articles and modus operandi used for the Swiss Police Crime
Statistics (2023); Articles SCC 143, 144bis, 146, 147, 156, 160, 162, 173, 174, 177, 179, 180, 181, 187, 197, 198, 239, 251, 252,
261bis, 305bis, 320, 321, combined with digital modus operandi starting with 6 and modus operandi 5501300.
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between 2016 and 2024; an average of only 40 for a population of 36’747 registered companies per year or

0.01% reported cases per company and month. Out of the reported incidents, several (with a maximum of 134)

incidents are reported by the same company.15 Basis for our estimation is the whole population of registered (in

Orbis database) companies build as a panel data set over all years and months, which makes a total of 3’690’564

and 3’968’712 observations for St Gallen and Zug, respectively. Summary statistics on this monthly firm level

are shown in Appendix Table 31.

The mean number of employees (N Emp) for reported incidents is 928 for St Gallen and 387 for Zug,

while on firm level, the average number of employees (as average of the yearly reported values in Orbis) is 283

and 427. The large difference between incident level and firm level in St Gallen is due to one very large firm

reporting multiple incidents, skewing the distribution. However, the average company registered in St Gallen

and Zug has only 12 and 13 employees, respectively. Most companies registered in St Gallen have only one

employee, while most in Zug have four employees. This makes the distribution of N Emp highly skewed with

a standard deviation of 542 and 678, respectively. We differentiate companies by size, following the OECD

definition (OECD [2024]), with small companies having less than 50 employees, medium-sized companies have

50 to 249 employees and large enterprises employ 250 or more employees. We suspect that companies with

many employees tend to experience cyber incidents more often and use Mid Sized and Large Sized as part of

our instruments affecting cybercrime.

Of all incidents, 77% and 81% are reported by a limited company (AG). However, the share of AG in the

population of all registered companies is only 34% and 55% in St Gallen and Zug, respectively. In St Gallen,

the share of AG in the sample of reporting firms (68%) is twice as large as in the population, while in Zug it

is only 1.5 times as large (79%). Of all reporting companies in St Gallen, 0.56% are stock market listed firms

(Listed), compared to 0.38% of reporting companies in Zug. This is a large share compared to all registered

firms, where only 0.03% and 0.08% are stock market listed in St Gallen and Zug, respectively. Again, the share

of stock market listed firms reporting in St Gallen is much larger compared to the population than in Zug.

Companies with corporation type AG and Listed firms tend to have much more reported incidents. Assuming

this is due to stricter reporting rules and disclosure obligations makes both variables a plausible instrumental

variable for the incentive to report (enforcement E).

On average, 0.0001 incidents are reported per company and month in Canton Zug. This is only around

one third of the Canton St Gallen reporting 0.0003 cases per company and month. The rate of companies per

capita is more than three times higher in the Canton Zug (0.3 with a total number of inhabitants of 130’000 in

2023) compared to the Canton St Gallen or entire Switzerland more broadly (around 0.08, with a total number

of inhabitants in St Gallen of 535’000 in 2023 (Swiss Federal Office of Justice [2024], Swiss Federal Statistical

Office [2024a])). However, the number of incorporated companies is almost identical. A main reason explaining

the low incident rate, the large rate of companies per capita and the differences in number of employees, share of

AG and share of Listed companies could be the possible existence of virtual offices in Canton Zug. The Canton

Zug is known for facilitating company incorporation (Carbó and Regenass [2021], Domizilagentur [2024]). To

account for this phenomenon, we add an additional variable Not Virtual, which is 1 if a company is not suspected

to be a virtual office, and 0 if the following criterion applies: the company has only one employee and is either

registered in an address that is shared with more than 100 other firms, or has “c/o” in its address which is

15Table 6 shows summary statistics on firm level for the 539 different reporting companies in St Gallen (Upper Panel) and the
260 reporting companies in Zug (Lower Panel).

15



shared with at least one more firm. We suspect that only 0.7% of all companies registered in St Gallen are

virtual offices, but 18% of all companies in Zug. Confirming our restriction, all companies reporting a cyber

incident are Not Virtual=1.

Analyzing our sample of reporting companies, we notice that only 50% and 71% of them are also registered

in the canton where they reported an incident. Around 16% and 12% are registered in Canton Zurich, the

rest are registered in other cantons with smaller percentages. Of all reporting companies, 7% and 14% have

reported in both cantons. Therefore, the population of all companies experiencing cyber events in one canton

is the group of all companies that trade in this canton. Unfortunately, this data is not available. We use the

population of all registered companies as a proxy for the population of companies exposed to cybercrime. From

Orbis we get the statistical classification of economic activities (NACE (European Commission [2008])) of all

registered companies. Of all incidents reported in St Gallen and Zug, 42% and 23% are reported by retail

companies (Retail). A share of 13% and 7% is reported by online stores (Online). In contrast, the share of

retail companies in the registered population is only 8% and 4% for St Gallen and Zug, respectively, while the

share of online stores in the population is only 0.9% and 0.6%.

Dividing the sample of reporting firms into companies registered in the reporting canton and those registered

in another canton shows for St Gallen a share of 14% in retail stores and 3% online stores for the former group,

but 43% retail and 14% online stores for the latter group. For Zug, we get 6% in retail stores and 2% online

stores for companies registered in Zug, versus 39% and 11% for companies registered elsewhere. This suggests

that a large proportion of incidents are caused by major retailers, including some online retailers. The group

of reporting firms that are registered elsewhere is also more prone to multiple reports by the same firm.16

Reporting (R) and having reported in a previous time period (Rprev) are binary variables being 0 most often.

Rprev takes the value 1 during the 12 months following a reported incident. Both variables show a large standard

deviation relative to their means.

Table 5: Summary Statistics Sample of Cybercrime Incidents

Mean Median SD Min Max Skew Obs

Year 2019.6023 2019 2.26 2016 2023 0.05 1’285
N Emp 928.4887 4 9’369.37 1 106’622 11.10 1’285
Mid Sized 0.2389 0 0.43 0 1 1.22 1’285
Large Sized 0.0272 0 0.16 0 1 5.80 1’285
Online 0.1323 0 0.34 0 1 2.17 1’285
Retail 0.4163 0 0.49 0 1 0.34 1’285
AG 0.7696 1 0.42 0 1 -1.28 1’285
Listed 0.0086 0 0.09 0 1 10.66 1’285
Not Virtual 0.0000 0 0 0 0 1’285
Not Canton 0.7424 1 0.44 0 1 -1.11 1’285

Mean Median SD Min Max Skew Obs

Year 2020.5444 2021 2.43 2016 2024 -0.14 360
N Emp 387.1667 4 5’157.63 1 96’793 18.18 360
Mid Sized 0.2056 0 0.40 0 1 1.45 360
Large Sized 0.0306 0 0.17 0 1 5.43 360
Online 0.0667 0 0.25 0 1 3.46 360
Retail 0.2333 0 0.42 0 1 1.26 360
AG 0.8056 1 0.40 0 1 -1.54 360
Listed 0.0028 0 0.05 0 1 18.82 360
Not Virtual 0.0000 0 0 0 0 360
Not Canton 0.4028 0 0.49 0 1 0.39 360

This table shows the summary statistics on incident level for Canton St Gallen
(Upper Panel) and Canton Zug (Lower Panel).

16Appendix Tables 29 and 30.
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Figure 2: Registered Firms and Reported Cybercrime Cases on Firms in Canton St Gallen
Note: This figure illustrates the difference over time in number of employees and share of AG between the
population of all registered companies (Left Panel) and the sample of reported incidents (Right Panel) in
Canton St Gallen.
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Figure 3: Registered Firms and Reported Cybercrime Cases on Firms in Canton Zug
This figure illustrates the difference over time in number of employees and share of AG between the population
of all registered companies (Left Panel) and the sample of reported incidents (Right Panel) in Canton Zug.

Figures 2 and 3 illustrate the difference in number of employees and share of AG between the population of

all registered companies and the sample of reported incidents. The left panel of both figures shows all registered

companies in St Gallen from 2016 to 2023 and Zug from 2016 to 2024, respectively. The number of registered

companies increases over the sample horizon from 36’759 to 41’916 for St Gallen and from 32’922 to 41’939 for

Zug. Differentiating companies by size, most companies in both cantons are small companies with less than 50

employees. The black line indicates the number of companies with the legal form AG, which shows a slightly

decreasing share of all firms of 0.34 to 0.32 for St Gallen and 0.57 to 0.53 for Zug, respectively. The right panel

of both Figures 2 and 3 shows the number of all incidents reported by companies for the same time interval

as the left panel. There is a significant increase in reported cases starting with an increase from 78 in 2016 to

almost 148 in 2023 for St Gallen and from 17 reported cases in 2016 to 46 in 2024 for Zug. Focusing on company
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size and reporting, we observe for both cantons that the share of medium and large enterprises is much higher

in the sample of reported cases than in the population of all registered companies. In analogy to the left panel,

the black line indicates companies with the legal form AG. Although 34% of all Canton St Gallen companies

are incorporated as AG, the reported sample shows a much higher share of, on average, 77%. In Canton Zug,

55% of all companies have the legal form AG, but in the sample of reported cases the share of AGs is 81%

on average. Figures 2 and 3 show that company size could be a good instrument for the likelihood of a cyber

incident, while we use AG as instrument for enforcement.

Table 6: Cybercrime Reporting Firms in St Gallen and Zug

Mean Median SD Min Max Skew Obs

Mean(N Emp) 283.1437 4 4’659.54 1 106’370.5 22.02 539
Mid Sized 0.1725 0 0.38 0 1.0 1.73 539
Large Sized 0.0148 0 0.12 0 1.0 8 539
Online 0.0872 0 0.28 0 1 2.92 539
Retail 0.2839 0 0.45 0 1 0.96 539
AG 0.6827 1 0.47 0 1 -0.78 539
Listed 0.0056 0 0.07 0 1 13.25 539
Not Virtual 0.0000 0 0 0 0.0 539
Not Canton 0.4991 0 0.50 0 1.0 0 539

Mean Median SD Min Max Skew Obs

Mean(N Emp) 426.8436 4 6’006.57 1 96’793 15.88 260
Mid Sized 0.1615 0.0 0.37 0 1 1.83 260
Large Sized 0.0231 0.0 0.15 0 1 6.32 260
Online 0.0423 0 0.20 0 1 4.52 260
Retail 0.1538 0 0.36 0 1 1.91 260
AG 0.7885 1 0.41 0 1 -1.40 260
Listed 0.0038 0 0.06 0 1 15.94 260
Not Virtual 0.0000 0.0 0 0 0 260
Not Canton 0.2885 0.0 0.45 0 1 0.93 260

This table shows the summary statistics on firm level for companies reporting inci-
dents in Canton St Gallen (Upper Panel) and Canton Zug (Lower Panel).

Table 7: Registered Firms (Not Reporting) in St Gallen and Zug

Mean Median SD Min Max Skew Obs

Mean(N Emp) 6.6692 1 103.25 1 12’110.67 101.79 53’401
Mid Sized 0.0134 0 0.12 0 1 8.46 53’401
Large Sized 0.0004 0 0.02 0 1 50.40 53’401
Online 0.0104 0 0.10 0 1 9.64 53’401
Retail 0.0897 0 0.29 0 1 2.87 53’401
AG 0.2885 0 0.45 0 1 0.93 53’401
Listed 0.0002 0 0.01 0 1 73.05 53’401
Not Virtual -0.0075 0 0.09 -1 0 -11.39 53’401
Not Canton 0.0000 0 0 0 0 53’401

Mean Median SD Min Max Skew Obs

Mean(N Emp) 8.4026 1 385.81 1 74’794.20 163.01 55’139
Mid Sized 0.0113 0 0.11 0 1 9.24 55’139
Large Sized 0.0004 0 0.02 0 1 50.03 55’139
Online 0.0061 0 0.08 0 1 12.73 55’139
Retail 0.0416 0 0.20 0 1 4.59 55’139
AG 0.5203 1 0.50 0 1 -0.08 55’139
Listed 0.0006 0 0.02 0 1 40.23 55’139
Not Virtual -0.1953 0 0.40 -1 0 -1.54 55’139
Not Canton 0.0000 0 0 0 0 55’139

This table shows the summary statistics on firm level for companies that do not report
any incidents, but are registered in Canton St Gallen (Upper Panel) and Canton Zug
(Lower Panel).

To select instrumental variables for the estimations, we rely on economic reasoning to justify the relevance
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condition. However, for a final decision on the instruments, we run the estimator to check that the gradient

in the estimated parameters is close to zero and the Hessian is non-singular. Between the models that meet

the above conditions, we compare the significance and confidence intervals of the estimated coefficients together

with the condition number.

We build the instruments for St Gallen and Zug as follows:

Model I (9)

IV on Crime: Z = Covid+Online+ Retail

IV on Enforcement: W = AG+DSG+ Listed

+NIS1+Not Virtual+Not Canton

Model II (10)

IV on Crime: Z = Covid+ Large Sized

+Mid Sized+Online+ Retail

IV on Enforcement: W = AG+DSG+ Listed

+NIS1+Not Virtual+Not Canton

The instrument for victim of cybercrime (Z) consists of 1 for the periods when Switzerland was mostly in

home office (2020-03-16 until 2022-02-17). In addition, we add 1 if the reporting company is in retail trade, plus

1 if it is also an online store. As alternative Model II, we include company size as part of the instrument (1 for

companies with at least 50 employees plus 1 for companies with at least 250 employees). The instrument for

enforcement (W ) consists of the legal form (1 for AG), the listing status (1 for stock market listed firm) and the

two policy shock variables EU NIS1 and CH DSG. With the EU regulation entering into force in 2018, it affects

71% and 76% of the sample period observations. The second policy shock (CH DSG) accounts for 3.4% of the

sample in St Gallen, as DSG is only enacted at the end of the sample horizon in September 2023, and 15.7%

in Zug due to the larger sample period. The introduction of DSG, as well as the later policies NIS 2 and ISA

might have a considerable effect on reporting in a later stage. Future research should focus on the introduction

of these laws. We add −1 if there is an indication that the company is registered solely as a virtual office, plus

1 if the company is registered in a canton different from the one where the incident was reported.17

To derive the number of companies that might have been subject to cybercrime in St Gallen and Zug

between 2016 and 2023, 2024, respectively, we run the method on the universe of companies with very few ever

reporting an incident. The method shows to be sufficiently flexible to capture this real-world phenomenon.

Note that the coefficients show the real-life effects of the instruments and reporting previously on enforcement

and on being subject to cybercrime. As in the simulation in Section 3, we run 20 optimization rounds for

each model and canton with randomly set initial parameters (Appendix Tables 17 to 20). Although only 25%

(Model I and Model II ZG) and 10% (Model II SG) of the runs converge to the best solution found, this

solution is consistently superior to the alternative runs, confirming it as the global maximum likelihood. The

low convergence rate reflects the complex geometry of the likelihood surface rather than uncertainty about the

17A correlation table of observed instruments and reporting variables is provided in Appendix Tables 22 to 25.
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optimum.

Tables 8 and 9 provide the 95% confidence intervals for all estimators (Figure 1) for Models I and II. The first

three rows of Tables 8 and 9 show the results for the probit estimating the effect of the instrument measuring

the likelihood of cybercrime (Z) and reporting in a previous period (Rprev) on cyber incidents (C). Rows 4 to

6 show the corresponding results for the effects of the instrument (W ) and previously reporting on enforcement

(E). The parameter η (the effect of previously reporting on cybercrime) is not significant for Model I on Zug

data. This might be due to the low correlations between instrument and cybercrime (Appendix Tables 22 to

25). The estimated coefficients for all other instruments and control variables are significantly different from

zero. They also show the same positive direction and nearly identical magnitude across models and cantons.

The last two rows of Tables 8 and 9 list the estimated values for enforcement of a cyber incident (Ê) and for

the percentage of cybercrime (Ĉ), both calculated with the estimated parameters (θ̂). For Model I, we estimate

that 17.85% of all companies incorporated in Canton St Gallen have been subject to a cyber incident on average

per month. Given that only 0.03% of all companies per month reported an incident, we find a detection rate

for cybercrime of 0.17%, which corresponds to a dark rate of 99.83%. For Canton Zug, we estimate with Model

I that 9.79% of all incorporated companies have been subject to a cyber incident per month. Given that only

0.01% of all companies reported an incident, we find that the dark rate of cybercrime is 99.90%. This dark

figure is quite considerable, but to be interpreted with caution as not all estimates are significant.

For Model II, we estimate 10.76% and 2.35% of companies are victim of cyber incidents per month in St

Gallen and Zug, respectively. This corresponds to a dark rate of 99.72% and 99.57%, respectively. Cantonal

police bureaus support this finding with unpublished reports based on questionnaire data.

In Appendix Tables 14 and 15, we show results of the evaluation tests as in Section 4. For the estimator

applied to the data of both St Gallen and Zug, the condition number is around 10 times higher than that

of the simulated data, signaling lower estimation accuracy, but lower than the inferior solutions with local

optima, which have condition numbers between e5 and e19. However, with LM statistics for the unrestricted

models between 31 and 145, we fail to give evidence for the Null Hypothesis that the additional parameter

is zero. Consequently, estimates should be regarded with caution. Although we have carefully selected the

instruments, extended data including all Swiss cantons and especially cases reported directly to the Swiss

National Cybersecurity Centre could greatly improve relevance and exogeneity.

6 Discussion

We propose a novel structural econometric methodology to solve the three persistent empirical problems that

plague traditional estimation methods when estimating the dark figure of crime. First, there might be structural

error in detection data and official statistics, leading to substantial under-policing and social welfare losses

(Levitt [1998], Chalfin and McCrary [2018]); measurement error in crime data constitutes a non-random noise

term. Our method therefore proposes and relies on the use of actual recorded incidents and not aggregated

data of illegal activity. Second, the light figure of recorded crime is a potentially highly selective, non-random

sample of the underlying population of criminal offenses (Biderman and Reiss [1967]). Traditional sample

selection methods based on Heckman [1979] do not account for simultaneous selection by an offender to offend,

an enforcer to identify, and/or a victim to report the offense. Feinstein [1990]’s DCE solves this problem

only partially for law enforcement areas where one knows whether an offender or victim is part of a screening
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Table 8: Estimated Parameters Cybercrime Cantons St Gallen and Zug (Model I)

St Gallen Zug
Lower Upper Lower Upper

Constant on Crime (ĉ) (-1.4723 -0.9523) (-2.3732 -0.5812)
IV on Crime (φ̂) (0.5383 0.8148) (0.2302 0.8351)
Rprev on Crime (η̂) (1.0380 2.6736) (-0.0838 2.8188)

Constant on Enforcement (d̂) (-4.0838 -3.8381) (-4.2484 -3.3839)

IV on Enforcement (ξ̂) (0.5337 0.6078) (0.3174 0.4504)
Rprev on Enforcement (α̂) (0.7421 1.0530) (0.3530 1.4737)

Ê (Enforcement estimated on θ̂) (0.0000 0.0024) (0.0001 0.0039)

Ĉ (Cybercrime estimated on θ̂) (0.1127 0.5560) (0.0698 0.1724)

N 3’690’564 3’968’712

Z (IV on Crime): Covid + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual + Not Canton

This table shows for Model I the confidence intervals of the estimated parameters
in Equations 1 and 2 for St Gallen and Zug. The confidence intervals show the
same direction and almost identical magnitude across model and canton. With
the exception of φ for Zug (change of sign), all parameters are significant.

Table 9: Estimated Parameters Cybercrime Cantons St Gallen and Zug (Model II)

St Gallen Zug
Lower Upper Lower Upper

Constant on Crime (ĉ) (-1.8050 -1.3647) (-2.7721 -1.6117)
IV on Crime (φ̂) (0.5734 0.7977) (0.3392 0.6365)
Rprev on Crime (η̂) (1.3078 2.8928) (0.4392 2.5059)

Constant on Enforcement (d̂) (-3.9336 -3.6693) (-3.8600 -3.0343)

IV on Enforcement (ξ̂) (0.5303 0.6034) (0.3539 0.5058)
Rprev on Enforcement (α̂) (0.5856 0.9013) (0.0244 1.1763)

Ê (Enforcement estimated on θ̂) (0.0001 0.0038) (0.0003 0.0155)

Ĉ (Cybercrime estimated on θ̂) (0.0565 0.4154) (0.0142 0.0442)

N 3’690’564 3’968’712

Z (IV on Crime): Mid Sized + Large Sized + Covid + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual + Not Canton

This table shows for Model II the confidence intervals of the estimated parameters
in Equations 1 and 2 for St Gallen and Zug. The confidence intervals show the same
direction and almost identical magnitude across model and canton. All parameters
are significant (no change of sign).

process or has been subject to an investigation. Finally, the simultaneity problem summarizes the empirical

core obstacle of a criminal incident appearing in records iff two independent conditions are met concurrently:

• a criminal incident takes place (C)

• there is a possibility of enforcement (E).

We simultaneously run two structural probits with IVs that separate the conjoint Pr(R) modeled as R = C·E.

Identification hinges on exogenous IVs that are strictly excluded from shifting Pr(C) or Pr(E), thus providing

the exclusion restrictions necessary to separate the contributions of C and E to the observed record R. The

validity of the method and its assumed DGP in simulated data demonstrate the method’s favorable statistical

properties in finite samples. The simultaneous estimation requires finding the global optimum of a weakly

bi-convex product of two probits. Identification hinges explicitly on the quality of the instruments, which poses

a first limitation. The methodology uncovers the true population of subjects exposed to crime, demonstrating

reliable convergence even when faced with extremely sparse reporting.
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We are happy to see others using our novel method and that our empirical application confirms the critical

policy relevance of quantifying the dark figure in the domain of cybercrime. The observed monthly reporting

rates (0.03% and 0.01%) in the Cantons of St Gallen and Zug severely mask the true prevalence; estimated true

prevalence rates of 2.4% to 17.9% yield dark rates exceeding 99%. The stability of our latent prevalence estimates

across multiple instrument specifications provides initial empirical support for the identifying assumptions.

However, the Lagrange Multiplier tests suggest that the exclusion restrictions may not hold perfectly, indicating

that our point estimates should be interpreted with appropriate caution.

Despite its strong performance in simulations, the current specification has several limitations that guide

future research. The model does not adequately address time, which is crucial for accurately incorporating

policy shocks as instruments. Explicitly incorporating time could improve the quality and consistency of the

instruments. The model may be susceptible to omitted variable bias. Introducing variables covering information

sensitivity or R&D intensity may improve the explanation of why a company is subject to crime (C). Including

features on profitability, reputation, or corporate governance can strengthen the instruments for enforcement

(E). Future research should extend the data to include other Swiss cantons (e.g., ePolice activation) or use the

sample of reported incidents from the Federal Office of the Police (Fedpol). Identifying the country of origin of

the incident could provide a crucial instrument in explaining the probability of cyber incidents (Pr(C)). Future

work with richer instrument sets may further strengthen identification.
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MAG. Eidgenössische Finanzmarktaufsicht.

25

https://doi.org/10.2307/2601005


FINMA. 2020b. New Cyber Supervisory Approach and Guidance. Eidgenössische Finanzmark-
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A Additional Estimated Models

Table 10: Estimated Parameters Cybercrime Cantons St Gallen and Zug (Model III)

St Gallen Zug
Lower Upper Lower Upper

Constant on Crime (ĉ) (-3.4539 -2.8455) (-4.0010 -3.7799)
IV on Crime (φ̂) (0.2088 0.2781) (0.1266 0.1655)
Rprev on Crime (η̂) (2.1848 3.2685) (1.0008 2.1779)

Constant on Enforcement (d̂) (-2.3977 -1.4127) (-1.4390 -0.6813)

IV on Enforcement (ξ̂) (0.1379 0.2407) (0.2966 1.4059)
Rprev on Enforcement (α̂) (-0.4373 0.5471) (-1.8563 0.3711)

Ê (Enforcement estimated on θ̂) (0.0284 0.0634) (0.1445 0.9324)

Ĉ (Cybercrime estimated on θ̂) (0.0008 0.0206) (0.0001 0.0004)

N 3’690’564 3’968’712

Z (IV on Crime): Ln(N Emp) + Covid + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual

This table shows for an additional Model III the confidence intervals of the
estimated parameters in Equations 1 and 2 for St Gallen and Zug. The confi-
dence intervals show the same direction and almost identical magnitude across
model and canton. With the exception of α for Zug (change of sign), all pa-
rameters are significant.

Table 11: Estimated Parameters Cybercrime Cantons St Gallen and Zug (Model IV)

St Gallen Zug
Lower Upper Lower Upper

Constant on Crime (ĉ) (-2.2151 -1.8087) (-3.1929 -2.1612)
IV on Crime (φ̂) (0.2707 0.3682) (0.1570 0.2763)
Rprev on Crime (η̂) (1.5235 3.7571) (0.9748 3.6283)

Constant on Enforcement (d̂) (-3.7372 -3.4322) (-3.5717 -2.5880)

IV on Enforcement (ξ̂) (0.4552 0.5278) (0.2931 0.4467)
Rprev on Enforcement (α̂) (0.5090 0.8510) (-0.4517 0.8486)

Ê (Enforcement estimated on θ̂) (0.0002 0.0046) (0.0010 0.0244)

Ĉ (Cybercrime estimated on θ̂) (0.0221 0.2889) (0.0037 0.0305)

N 3’690’564 3’968’712

Z (IV on Crime): Ln(N Emp) + Covid + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual + Not Canton

This table shows for an additional Model IV the confidence intervals of the esti-
mated parameters in Equations 1 and 2 for St Gallen and Zug. The confidence
intervals show the same direction and almost identical magnitude across model
and canton. With the exception of α for Zug (change of sign), all parameters are
significant.
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Table 12: Estimated Parameters Cybercrime Cantons St Gallen and Zug (Model V)

St Gallen Zug
Lower Upper Lower Upper

Constant on Crime (ĉ) (-2.4941 -1.6498) (-3.7464 -3.4873)
IV on Crime (φ̂) (0.3470 0.5467) (0.1385 0.2448)
Rprev on Crime (η̂) (1.4511 2.7542) (1.2198 1.8599)

Constant on Enforcement (d̂) (-3.2544 -2.5938) (-1.8626 -1.2700)

IV on Enforcement (ξ̂) (0.2552 0.3509) (0.5287 1.3147)
Rprev on Enforcement (α̂) (0.5499 1.2171) (-1.0193 1.1251)

Ê (Enforcement estimated on θ̂) (0.0017 0.0102) (0.0586 0.8847)

Ĉ (Cybercrime estimated on θ̂) (0.0191 0.1193) (0.0001 0.0003)

N 3’690’564 3’968’712

Z (IV on Crime): Covid + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual

This table shows for an additional Model V the confidence intervals of the
estimated parameters in Equations 1 and 2 for St Gallen and Zug. The confi-
dence intervals show the same direction and almost identical magnitude across
model and canton. With the exception of α for Zug (change of sign), all pa-
rameters are significant.
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B Additional Results

Figure 4: Bootstrapping estimated Parameters for 1000 Simulations
Note: This figure shows the distribution of all estimated parameters in 1000 simulations with 100’000 obser-
vations each. We show the confidence intervals below in each subplot, with the lower and upper bounds (thin
blue vertical lines). The estimated mean is in the middle of the distribution (blue vertical line in the middle).
The simulated (true) value is the green line.
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Table 13: Parameter Estimations Cantons St Gallen and Zug

St Gallen Zug
Model I Model II Model I Model II

Constant on Crime (ĉ) −1.2123∗∗∗ −1.5848∗∗∗ −1.4772∗∗ −2.1919∗∗∗

(0.1327) (0.1123) (0.4571) (0.2960)

IV on Crime (φ̂) 0.6765∗∗∗ 0.6856∗∗∗ 0.5327∗∗∗ 0.4879∗∗∗

(0.0705) (0.0572) (0.1543) (0.0758)

Rprev on Crime (η̂) 1.8558∗∗∗ 2.1003∗∗∗ 1.3675 1.4725∗∗

(0.4172) (0.4043) (0.7405) (0.5272)

Constant on Enforcement (d̂) −3.9609∗∗∗ −3.8014∗∗∗ −3.8162∗∗∗ −3.4472∗∗∗

(0.0627) (0.0674) (0.2205) (0.2106)

IV on Enforcement (ξ̂) 0.5708∗∗∗ 0.5668∗∗∗ 0.3839∗∗∗ 0.4299∗∗∗

(0.0189) (0.0187) (0.0339) (0.0387)

Rprev on Enforcement (α̂) 0.8975∗∗∗ 0.7435∗∗∗ 0.9133∗∗ 0.6003∗

(0.0793) (0.0805) (0.2859) (0.2939)

Ê (Enforcement Estimated on θ̂) 0.0011 0.0016 0.0008 0.0033
(0.0034) (0.0039) (0.0013) (0.0040)

Ĉ (Cybercrime Estimated on θ̂) 0.1785 0.1076 0.0979 0.0235
(0.1108) (0.0917) (0.0549) (0.0218)

Observations 3′690′564 3′690′564 3′968′712 3′968′712

Note: Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *, respectively.

Model I

Z (IV on Crime): Covid + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual + Not Canton

Model II

Z (IV on Crime): Covid + Mid Sized + Large Sized + Online + Retail

W (IV on Enforcement): AG + DSG + Listed + NIS1 + Not Virtual + Not Canton

(Variable Values and Range see Table 31)

Table 14: Evaluation of Results (Model I)

Canton κ LMC pC LME pE

SG 7484.806 105.8112 0 93.33228 0
ZG 13505.54 31.40451 0 28.92275 1e-07

Z: Covid + Online + Retail

W : AG + DSG + Listed + NIS1 + Not Virtual Not Canton

This table shows for the estimates in Table 13 the condition
number and the Lagrange Multiplier statistics with p-values
for the unrestricted Equations 6 and 7.

Table 15: Evaluation Values (Model II)

Canton κ LMC pC LME pE

SG 6650.83 116.9504 0 84.80163 0
ZG 6080.90 145.2108 0 1e-7 0.9998

Z: Covid + Mid Sized + Large Sized + Online + Retail

W : AG + DSG + Listed + NIS1 + Not Virtual Not Canton

This table shows for the estimates in Table 13 the condition
number and the Lagrange Multiplier statistics with p-values
for the unrestricted Equations 6 and 7.
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D Correlation Tables

Table 21: Correlation Matrix Simulation

Rprev R Z W

Rprev (Recorded earlier Period) 1
R (Recorded) -0.0193 1
Z (IV affecting Crime) -0.0013 0.1179 1
W (IV affecting Enforcement) 0.0025 0.1021 0.0008 1

This table shows the correlation matrix of the simulated values for
1 million observations (Section 4). It indicates that there is no
collinearity between Z and W , which requires strict exogeneity in
theory. By construction, R correlates with W and Z in the simula-
tion. Note that in our simulation, no observed variables experience
a high level of correlation.

Table 22: Correlation Cybercrime Canton St Gallen (Model
I)

Rprev R Z W

Rprev (Recorded earlier Period) 1
R (Recorded) 0.1113 1
Z (IV affecting Crime) 0.0378 0.0139 1
W (IV affecting Enforcement) 0.0703 0.0269 0.1385 1

This table shows the correlation between the observed variables
for cybercrime used for estimation in canton St Gallen (Model I):
policy shock for cybercrime (W ), external shock for reporting (Z),
reporting in earlier time period (Rprev) and reporting (R).

Table 23: Correlation Cybercrime Canton St Gallen (Model
II)

Rprev R Z W

Rprev (Recorded earlier Period) 1
R (Recorded) 0.1113 1
Z (IV affecting Crime) 0.0558 0.0208 1
W (IV affecting Enforcement) 0.0703 0.0269 0.1569 1

This table shows the correlation between the observed variables
for cybercrime used for estimation in canton St Gallen (Model II):
policy shock for cybercrime (W ), external shock for reporting (Z),
reporting in earlier time period (Rprev) and reporting (R).

Table 24: Correlation Cybercrime Canton Zug (Model I)

Rprev R Z W

Rprev (Recorded earlier Period) 1
R (Recorded) 0.0427 1
Z (IV affecting Crime) 0.0158 0.0050 1
W (IV affecting Enforcement) 0.0261 0.0097 0.0259 1

This table shows the correlation between the observed variables
for cybercrime used for estimation in canton Zug (Model I): policy
shock for cybercrime (W ), external shock for reporting (Z), report-
ing in earlier time period (Rprev) and reporting (R).
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Table 25: Correlation Cybercrime Canton Zug (Model II)

Rprev R Z W

Rprev (Recorded earlier Period) 1
R (Recorded) 0.0427 1
Z (IV affecting Crime) 0.0270 0.0090 1
W (IV affecting Enforcement) 0.0261 0.0097 0.041 1

This table shows the correlation between the observed variables
for cybercrime used for estimation in canton Zug (Model II): pol-
icy shock for cybercrime (W ), external shock for reporting (Z),
reporting in earlier time period (Rprev) and reporting (R).

Table 26: Correlation Matrix Cybercrime Canton SG

Rprev R N Emp Covid Online Retail AG Listed NIS1 DSG Not V Not C

Rprev 1 0.1113 0.0387 -0.0005 0.0577 0.0461 0.0375 0.0298 0.0054 0.0002 0.0040 0.3443
R 0.1113 1 0.0294 0.0011 0.0235 0.0178 0.0136 0.0100 0.0025 0.0007 0.0014 0.1328
N Emp 0.0387 0.0294 1 -0.0013 -0.0012 -0.0024 0.0058 0.1400 -0.0010 -0.0004 0.0017 0.0795
Covid -0.0005 0.0011 -0.0013 1 0.0059 0.0025 -0.0161 -0.0001 0.6230 0.1909 0.0017 -0.0027
Online 0.0577 0.0235 -0.0012 0.0059 1 0.3127 -0.0357 -0.0017 0.0045 0.0028 0.0021 0.1155
Retail 0.0461 0.0178 -0.0024 0.0025 0.3127 1 -0.0881 -0.0054 0.0016 0.0020 0.0171 0.1024
AG 0.0375 0.0136 0.0058 -0.0161 -0.0357 -0.0881 1 0.0220 -0.0111 -0.0057 -0.0390 0.0654
Listed 0.0298 0.0100 0.1400 -0.0001 -0.0017 -0.0054 0.0220 1 0.0000 -0.0001 0.0015 0.0519
NIS1 0.0054 0.0025 -0.0010 0.6230 0.0045 0.0016 -0.0111 0.0000 1 0.1190 0.0020 -0.0016
DSG 0.0002 0.0007 -0.0004 0.1909 0.0028 0.0020 -0.0057 -0.0001 0.1190 1 0.0000 -0.0011
Not Virtual 0.0040 0.0014 0.0017 0.0017 0.0021 0.0171 -0.0390 0.0015 0.0020 0.0000 1 0.0069
Not Canton 0.3443 0.1328 0.0795 -0.0027 0.1155 0.1024 0.0654 0.0519 -0.0016 -0.0011 0.0069 1

This table shows the correlation between all used observed variables for cybercrime in Canton St Gallen.

Table 27: Correlation Matrix Cybercrime Canton ZG

Rprev R N Emp Covid Online Retail AG Listed NIS1 DSG Not V Not C

Rprev 1 0.0427 0.0182 -0.0007 0.0207 0.0249 0.0148 0.0028 0.0014 -0.0032 0.0142 0.2378
R 0.0427 1 0.0053 0.0006 0.0074 0.0089 0.0047 0.0007 0.0016 0.0006 0.0044 0.0797
N Emp 0.0182 0.0053 1 -0.0021 -0.0010 -0.0007 0.0032 0.1789 -0.0012 -0.0013 0.0083 0.1016
Covid -0.0007 0.0006 -0.0021 1 0.0039 0.0088 -0.0217 0.0014 0.6441 0.3806 -0.0233 -0.0022
Online 0.0207 0.0074 -0.0010 0.0039 1 0.3693 -0.0376 -0.0021 0.0031 0.0029 -0.0089 0.0632
Retail 0.0249 0.0089 -0.0007 0.0088 0.3693 1 -0.0811 -0.0006 0.0071 0.0076 0.0096 0.0793
AG 0.0148 0.0047 0.0032 -0.0217 -0.0376 -0.0811 1 0.0246 -0.0179 -0.0146 -0.0100 0.0265
Listed 0.0028 0.0007 0.1789 0.0014 -0.0021 -0.0006 0.0246 1 0.0017 0.0003 0.0038 -0.0012
NIS1 0.0014 0.0016 -0.0012 0.6441 0.0031 0.0071 -0.0179 0.0017 1 0.2451 -0.0194 -0.0015
DSG -0.0032 0.0006 -0.0013 0.3806 0.0029 0.0076 -0.0146 0.0003 0.2451 1 -0.0168 -0.0020
Not Virtual 0.0142 0.0044 0.0083 -0.0233 -0.0089 0.0096 -0.0100 0.0038 -0.0194 -0.0168 1 0.0211
Not Canton 0.2378 0.0797 0.1016 -0.0022 0.0632 0.0793 0.0265 -0.0012 -0.0015 -0.0020 0.0211 1

This table shows the correlation between all used observed variables for cybercrime in Canton Zug.
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E Additional Summary Statistics

Table 28: Summary Statistics Simulated Data

Mean Median SD Min Max Skew Obs

Z (IV affecting Crime) 0.9986 1 0.71 0 2 0 1’000’000
W (IV affecting Enforcement) 1.0009 1 0.71 0 2 0.00 1’000’000
Rprev (Recorded earlier period) 0.5005 1 0.50 0 1 0.00 1’000’000
R (Recorded) 0.5976 1 0.49 0 1 -0.40 1’000’000
E (Enforcement) 0.8306 1 0.38 0 1 -1.76 1’000’000
C (Crime) 0.7205 1 0.45 0 1 -0.98 1’000’000

This table provides summary statistics for the simulated variables. Here, both instruments, Z
and W , independently take the binomial distributed values for 0, 1 and 2 as set in the simulation.
Around 72% of all entities simulated in the population are subject to crime (C). About 83%
of the entities experience high detection effort / reporting incentive (E). This gives a rate of
recorded crime R = C ·E of nearly 60%. Around 50% of all entities have been recorded in crime
in a previous time period (Rprev).

Table 29: Summary Statistics Sample of Cybercrime Reporting Firms Canton St Gallen, registered in St Gallen
(Upper Panel) and registered in other canton (Lower Panel)

Mean Median SD Min Max Skew Obs

Mean(N Emp) 49.6770 4 358.58 1 5820.8 15.48 270
Mid Sized 0.1296 0.0 0.34 0 1.0 2.19 270
Large Sized 0.0074 0.0 0.09 0 1.0 11.43 270
Retail 0.1407 0 0.35 0 1 2.05 270
Online 0.0333 0 0.18 0 1 5.17 270
Not Virtual 0.0000 0.0 0 0 0.0 270
AG 0.6667 1 0.47 0 1 -0.70 270
Listed 0 0 0 0 0 270
Not Canton 0.0000 0.0 0 0 0.0 270

Mean Median SD Min Max Skew Obs

Mean(N Emp) 517.4782 4 6583.73 1 106370.5 15.53 269
Mid Sized 0.2156 0 0.41 0 1.0 1.38 269
Large Sized 0.0223 0 0.15 0 1.0 6.43 269
Retail 0.4275 0 0.50 0 1 0.29 269
Online 0.1413 0 0.35 0 1 2.05 269
Not Virtual 0.0000 0 0 0 0.0 269
AG 0.6989 1 0.46 0 1 -0.86 269
Listed 0.0112 0 0.11 0 1 9.26 269
Not Canton 1.0000 1 0 1 1.0 269

This table provides summary statistics for the companies reporting cybercrime in
Canton St Gallen. The Upper Panel shows the reporting companies registered in
Canton St Gallen, the Lower Panel shows reporting companies registered in another
canton.
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Table 30: Summary Statistics Sample of Cybercrime Reporting Firms Canton Zug, registered in Zug (Upper
Panel) and registered in other canton (Lower Panel)

Mean Median SD Min Max Skew Obs

Mean(N Emp) 27.6342 4 109.10 1 1’340 9.93 185
Mid Sized 0.1081 0 0.31 0 1 2.50 185
Large Sized 0.0108 0 0.10 0 1 9.38 185
Retail 0.0595 0 0.24 0 1 3.70 185
Online 0.0162 0 0.13 0 1 7.60 185
AG 0.7676 1 0.42 0 1 -1.26 185
Listed 0.0054 0 0.07 0 1 13.38 185
Not Virtual 0.0000 0 0 0 0 185
Not Canton 0.0000 0 0 0 0 185

Mean Median SD Min Max Skew Obs

Mean(N Emp) 1’411.5600 15 11’174.31 1 96’793 8.29 75
Mid Sized 0.2933 0 0.46 0 1 0.89 75
Large Sized 0.0533 0 0.23 0 1 3.90 75
Retail 0.3867 0 0.49 0 1 0.46 75
Online 0.1067 0 0.31 0 1 2.50 75
AG 0.8400 1 0.37 0 1 -1.82 75
Listed 0 0 0 0 0 75
Not Virtual 0.0000 0 0 0 0 75
Not Canton 1.0000 1 0 1 1 75

This table provides summary statistics for the companies reporting cybercrime in
Canton Zug. The Upper Panel shows the reporting companies registered in Canton
Zug, the Lower Panel shows reporting companies registered in another canton.
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Table 31: Summary Statistics Cybercrime Population Canton St Gallen and Zug

Mean Median SD Min Max Skew Obs

Year 2019.6 2020 2.30 2016 2023 -0.07 3’690’564
R 0.0003 0 0.02 0 1 61.41 3’690’564
Rprev 0.0023 0 0.05 0 1 20.74 3’690’564
N Emp 11.7716 1 542.24 1 106’622 172.09 3’690’564
Mid Sized 0.0192 0.0 0.14 0 1 7.01 3’690’564
Large Sized 0.0006 0.0 0.02 0 1 40.85 3’690’564
Covid 0.2456 0 0.43 0 1 1.18 3’690’564
Retail 0.0849 0 0.28 0 1 2.98 3’690’564
Online 0.0090 0 0.09 0 1 10.41 3’690’564
AG 0.3368 0 0.47 0 1 0.69 3’690’564
Listed 0.0003 0 0.02 0 1 55.99 3’690’564
DSG 0.0341 0 0.18 0 1 5.14 3’690’564
NIS1 0.7137 1 0.45 0 1 -0.95 3’690’564
Not Virtual -0.0069 0 0.08 -1 0 -11.95 3’690’564
Not Canton 0.0068 0 0.08 0 1 12.05 3’690’564
Both Cantons 0.0009 0 0.03 0 1 33.40 3’690’564

Mean Median SD Min Max Skew Obs

Year 2020.2 2020 2.59 2016 2024 -0.10 3’968’712
R 0.0001 0 0.01 0 1 108.03 3’968’712
Rprev 0.0009 0 0.03 0 1 33.51 3’968’712
N Emp 12.8076 4 678.09 1 106’622 127.73 3’968’712
Mid Sized 0.0150 0 0.12 0 1 7.99 3968712
Large Sized 0.0006 0 0.02 0 1 40.83 3968712
Covid 0.2158 0 0.41 0 1 1.38 3’968’712
Retail 0.0392 0 0.19 0 1 4.75 3’968’712
Online 0.0055 0 0.07 0 1 13.34 3’968’712
AG 0.5493 1 0.50 0 1 -0.20 3’968’712
Listed 0.0008 0 0.03 0 1 35.83 3’968’712
DSG 0.1574 0 0.36 0 1 1.88 3’968’712
NIS1 0.7565 1 0.43 0 1 -1.20 3’968’712
Not Virtual -0.1847 0 0.39 -1 0 -1.62 3’968’712
Not Canton 0.0020 0 0.04 0 1 22.54 3’968’712
Both Cantons 0.0009 0 0.03 0 1 32.67 3’968’712

This table provides summary statistics for the population of all firms per month in-
corporated in Canton St Gallen (Upper Panel) and Zug (Lower Panel). It is a total of
3’690’564 firm months aggregated from 2015 to 2023 for St Gallen and 3’968’712 from
2016 to 2024 for Zug. It describes the data we use to estimate the monthly dark figure
of cyberattacks. On average, firms employ 12 workers with with the same largest firm
having 106’622 employees in both cantons. However, most companies in St Gallen
have only one employee, and four employees in Zug. This makes the distribution of
the number of employees highly skewed with a standard deviation of 542 and 678,
respectively. Out of all companies incorporated in St Gallen, only 0.03% report per
month. The monthly reporting rate in Zug is only half as high, at 0.01%. Reporting
(R) is a binary variable being 0 most often. Relatively to reporting in a previous
period (Rprev), a large share reports at least one more time in a later stage.
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