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Abstract

This paper examines how hospital competition and insurance reimbursement policies shape

the diffusion of medical innovations. Using patient-level data from Taiwan’s drug-eluting stent

(DES) market in the Taipei metropolitan area, we estimate a structural model of hospital behav-

ior that incorporates patient demand alongside hospitals’ endogenous portfolio and pricing de-

cisions. Our analysis reveals a key trade-off: although competition lowers prices, it also weakens

hospitals’ incentives to adopt new technologies. We show that selective contracting—where the

government insurer negotiates exclusive wholesale discounts—can create a “quadruple win” for

consumers, hospitals, participating manufacturers, and the payer, particularly in concentrated

markets where hospitals retain sufficient rents to update their DES portfolios. In contrast, in-

creasing the insurer’s DES-specific reimbursement across all models is most effective in boosting

DES utilization in competitive markets, where high pass-through rates reduce patient payments

though at substantial fiscal cost. As an alternative, a targeted patient coupon program can

improve equity with limited market-wide effects, provided hospitals do not significantly adjust

prices or product offerings in response. Overall, our findings highlight that effective technol-

ogy diffusion policies must account for the strategic behavior of downstream hospitals and the

competitive environments in which they operate.
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1 Introduction

Rising health expenditure poses a critical challenge for economies worldwide, with the diffusion of

new medical technologies as a primary driver of both improved outcomes and rising costs (Chernew

and Newhouse (2011), Chandra and Skinner (2012), Skinner and Staiger (2015), Dunn, Fernando

and Liebman (2023), Dunn, Fernando and Liebman (2024)). This dual impact creates a fundamen-

tal policy trade-off: promoting timely access to valuable innovations while maintaining the sustain-

ability of health spending. While governments employ reimbursement design and market-structure

regulation as the principal levers to navigate this trade-off, the effectiveness of these policies is

not automatic ( Nexon and Ubl (2010), McClellan (2011), Chandra, Flack and Obermeyer (2024))

Their ultimate impact is mediated by the strategic responses of healthcare providers—most notably

hospitals and doctors—who act as the crucial intermediaries between innovation and patient access

(Chandra, Cutler and Song (2011)). Understanding the behavior of these downstream agents is

therefore paramount to designing effective health policy.

As gatekeepers, these intermediaries translate the potential of a new technology into realized

market outcomes. Their strategic choices on whether, when, and at what price to offer new products

are shaped by a complex interplay of economic forces. Operating in local markets, they face

competitive pressures from rival providers, heterogeneous demand from patients, and the specific

constraints and opportunities embedded in reimbursement rules. These forces govern their core

decisions on technology adoption and pricing, which in turn can accelerate or delay diffusion and

ultimately determine the allocation of surplus among patients, providers, manufacturers, and the

public payer.

To investigate intermediary dynamics, we analyze the cardiac stent market in Taipei, Taiwan.

Before bare metal stents (BMS), balloon angioplasty was used to compress arterial plaque, but

this method lacked long-term effectiveness. BMS improved outcomes by keeping arteries open, yet

caused in-stent restenosis in 20–30% of patients due to scar tissue formation. Drug-eluting stents

(DES) addressed this issue by releasing medication to inhibit scar growth, offering superior clinical

benefits at a higher cost (Tu et al. (2007), Kandzari et al. (2017)). Further advancements in DES

technology—-such as the use of stronger alloys (e.g cobalt-chromium), ultrathin struts, and more

biocompatible drugs (e.g. Zotarolimus)—-have significantly reduced the risk of stent thrombosis,
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making newer generations of DES a major improvement over earlier stent models ( Navarese et al.

(2014), Kandzari et al. (2017), Bangalore et al. (2018)).1

This market of analysis operates within the framework of Taiwan’s National Health Insurance

(NHI), a universal coverage system that provides an ideal empirical context for our research. Three

features of this setting are particularly salient. First, the Taipei area is a decentralized, competitive

hospital market where numerous providers make portfolio choices. This allows us to observe a rich

set of strategic decisions as hospitals decide whether to adopt a new manufacturer’s brand or

upgrade an existing one. Second, Taiwan NHI’s “top-up” reimbursement policy creates a stark

financial trade-off for patients: BMS are fully covered and effectively free, while DES require

large out-of-pocket payments in addition to NHI’s base stent reimbursement to hospitals. This

payment policy directly shapes patient demand, constrains hospital pricing and, more importantly,

influences hospitals’ decision to adopt new DES. Third, two system-wide, exogenously timed cuts to

the base stent reimbursement provide valuable shocks to hospital margins, aiding the identification

of supply-side responses.

This rich institutional setting enables us to formalize and investigate our central research ques-

tion: how do market structure and reimbursement design jointly shape hospitals’ technology adop-

tion and pricing decisions, and what are the resulting equilibrium effects on patient welfare, provider

profits, and public spending? Answering this question poses a significant analytical challenge. The

observed market outcomes—prices, technology availability, and patient choices—are equilibria re-

sulting from the interaction of latent patient demand and strategic hospital supply. A hospital’s

incentive to invest in a new technology, for instance, depends on its expectations of patient demand

and the competitive responses of its rivals. To disentangle these interdependent forces and recover

the underlying behavioral and cost parameters, a structural approach is required.

Our analysis proceeds by developing and estimating a structural model of the Taipei DES mar-

ket. We specify a discrete-choice model for patient demand that accommodates rich heterogeneity

1For instance, Navarese et al. (2014) shows that the new generation DES demonstrated a 22% reduction in the
odds of myocardial infarction compared with the old generation devices, without increasing mortality. Among these,
everolimus-eluting stents (EES) significantly lowered the risk of stent thrombosis compared to paclitaxel-eluting
stents (PES). While both generations showed comparable efficacy against restenosis, EES stands out as the safest
option.Bangalore et al. (2018) shows that newer ultrathin-strut drug-eluting stents (DES) reduce target lesion failure
(TLF) by approximately 16% at one year.Kandzari et al. (2017) employs randomized 1,334 patients and found that
the third-generation stent (ultrathin struts, bioresorbable polymer) was superior to the second-generation Xience
stent (thin struts, durable polymer) for the primary endpoint of target lesion failure at 12 months (6.2% vs. 9.6%).
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in preferences for clinical novelty, price, and hospital characteristics, using a mixed logit formula-

tion. On the supply side, we model hospitals as strategic agents in a two-stage quarterly game. In

the first stage, they make a portfolio decision—whether to adopt a new brand, upgrade an existing

one, or maintain the status quo—weighing expected profits against the fixed costs of adjustment.

In the second stage, conditional on the market-wide portfolio configuration, hospitals engage in

Bertrand-Nash pricing competition.

To identify the parameters of this model, we combine a unique set of datasets. The core of our

analysis is built on individual-level inpatient claims, which provide granular information on patient

demographics, clinical conditions, and the specific stent choices made. Crucially, we supplement

these administrative records with a manually collected hospital-model-time panel of the exact out-

of-pocket prices faced by patients. To account for socioeconomic heterogeneity, we merge these files

with township-level data on average household reported taxable income. This fusion of clinical,

pricing, and income data provides the rich empirical foundation necessary to estimate our model.

The model is estimated via simulated maximum likelihood, with a control-function approach

to address the endogeneity of prices. Our demand-side estimates reveal the core tension facing

providers: patients are price-sensitive, particularly those with lower income or greater comorbidity,

but simultaneously place a substantial premium on access to the “newest-generation” technologies.

On the supply side, the estimates for the fixed-cost parameters provide direct evidence on the eco-

nomics of diffusion, confirming that upgrading an existing product line is significantly less costly for

a hospital than adopting an entirely new brand, which rationalizes the observed path of technology

diffusion.

The estimated model provides a rich framework for quantitatively evaluating alternative policy

regimes. We conduct two sets of counterfactual simulations. First, we analyze the interplay of

market structure and patient demand. Simulating equilibria under varying numbers of competing

hospitals reveals a fundamental trade-off: while more intense competition disciplines prices and

benefits consumers, it also erodes hospital profit margins, thereby weakening the incentive to invest

in frontier technologies. We also find that strong patient preferences for “newness” act as a powerful

demand-side pull for innovation, but the distribution of the resulting surplus gains between patients

and hospitals depends critically on the intensity of competition.

Second, we evaluate the effectiveness of alternative reimbursement designs. A supply-side pol-
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icy of selective contracting, in which the NHI leverages its bargaining power to negotiate wholesale

price discounts with specific manufacturers in exchange for exclusive reimbursement, can generate

a “quadruple win”—benefiting consumers, hospitals, participating manufacturers, and the payer.

However, we find that this outcome is most robust in concentrated markets, where exclusive con-

tracts allow hospitals to retain sufficiently large rents to justify upgrading their DES portfolios. In

more competitive markets, by contrast, rent dissipation limits the policy’s leverage.

Increasing the NHI’s DES-specific reimbursement rate (applied uniformly across all DES models)

has the opposite pattern: it is most effective in boosting DES utilization in competitive markets,

where high pass-through rates lead to price reductions but the policy also imposes a substantial

fiscal burden on the insurer.

Alternatively, a demand-side patient coupon targeting low-income individuals can improve eq-

uity with limited market-wide effects, provided the subsidized population is relatively small and

strategic pricing constraints—for instance, hospitals’ inability to charge different prices to different

patients—prevent hospitals from significantly raising prices or altering their portfolios in response.

Taken together, these results underscore that effective policy design must incorporate the equi-

librium responses of downstream intermediaries, who ultimately determine how medical innovations

translate into public value.

1.1 Related Literature

Our research contributes to five main strands of economic literature. First, our work speaks directly

to the classic industrial organization literature on the relationship between market competition and

innovation. While the foundational debate—from Schumpeter (1942) and Arrow (1962) to modern

theoretical and empirical analyses such as Aghion et al. (2005)—has centered on the incentives

for R&D investment at the producer level, we shift the analytical focus to the diffusion of inno-

vations by intermediaries. In our setting, hospitals act as downstream agents who face strategic

trade-offs analogous to those of upstream innovators, including the cannibalization of existing

product lines and business stealing from rivals (Berry and Waldfogel, 1999; Mankiw and Whinston,

1986). By modeling and quantifying these forces at the intermediary level, we show how port-

folio choice—specifically, the discrete decision to adopt a new brand versus upgrade an existing

one—becomes the key strategic margin governing the speed and scope of diffusion.
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Second, we build upon the literature on the diffusion of medical technologies. Prior work has

identified numerous determinants of technology adoption, including intellectual property regimes

(Kyle, 2007), social learning among physicians (Conley and Udry, 2010), and the potential for new

technologies to exacerbate health disparities (Skinner and Staiger, 2015). Our primary contribution

here is to model the hospital, rather than the individual physician, as the key strategic decision-

maker. By structurally modeling the hospital’s portfolio choice, we endogenize the availability of

new technologies to patients at the market level. This framework allows us to distinguish between

the distinct economic considerations of adopting an entirely new brand versus upgrading an existing

one, revealing how patient preferences for “newness” are transmitted through hospital incentives to

shape market-wide diffusion paths, a dynamic also explored in studies of consumer learning (Ching,

Erdem and Keane, 2013; Collard-Wexler, Grennan and Steck, 2024).

Third, our paper contributes to the research on provider responses to reimbursement policies.

A rich body of work has documented a wide range of behavioral responses to payment design,

including patient upcoding (Dafny, 2005), adjustments to treatment intensity (Jin, Lien and Tao,

2025), and quality investment decisions driven by payer mix (Garthwaite, Ody and Starc, 2022).

We highlight a complementary and economically significant channel: the strategic management

of technology portfolios and the associated pricing of new products. Our findings are consistent

with related studies showing that payment policy can either encourage or discourage technology

adoption (Dunn, Fernando and Liebman, 2023, 2024) and affect hospitals’ capacity for capital

investment (Yurukoglu, Liebman and Ridley, 2017). Our unified equilibrium framework advances

this literature by allowing for the joint evaluation of diffusion rates, patient welfare, hospital profits,

and insurer spending, answering the call for such integrated analysis by McClellan et al. (2017).

Fourth, we inform the literature on selective contracting in healthcare. Selective contracting is

a widely studied cost-containment tool, with applications in prescription drug formularies (Duggan

and Morton, 2010; Olssen and Demirer, 2024), provider networks (Sorensen, 2003; Pakes et al.,

2015; Ho and Lee, 2019), and pharmacy benefit management (Starc and Swanson, 2021). The

bulk of this research centers on the trade-off between the lower prices achieved through bargaining

and the potential welfare losses from restricted patient access. We offer a new perspective by

analyzing selective contracting through the lens of innovation diffusion. We demonstrate how

this policy tool can be used not just to contain costs, but to actively steer technology adoption
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and strategically redistribute surplus among patients, providers, and manufacturers, creating the

potential for “quadruple-win” outcomes.

Finally, our work contributes to the specific economics of the cardiac stent market. Prior

research in this area has provided valuable insights into the upstream segment of the supply chain,

including hospital–manufacturer price negotiations (Grennan, 2013, 2014; Grennan and Swanson,

2020) and the role of marketing and lobbying in procurement decisions (Bergman, Grennan and

Swanson, 2021, 2022). We complement this body of work by focusing on the downstream market

where patients and hospitals interact. In doing so, we illuminate how hospitals’ strategic portfolio

and pricing decisions ultimately mediate the process by which upstream innovations reach patients

and determine the prices they face.

The rest of the paper is organized as follows. Section 2 describes the background and summarizes

the data in our analysis sample. Section 3 lays out our structural model of patient choice of hospital

and stent type on the demand side and hospitals’ pricing and portfolio management decisions on

the supply side. Section 4 presents our estimates, and Section 5 conducts three counterfactual

simulations to highlight the interplay of market competition, patient willingness to pay for newness,

and government reimbursements for DES. A brief conclusion is offered in Section 6.

2 Data and Institutional Background

This section details the empirical context of our study: the market for cardiac stents in Taiwan.

We begin by outlining the key institutional features of this market, from the underlying clinical

trade-offs between stent technologies to the specific reimbursement policies that shape the economic

incentives of patients and hospitals. We then describe the unique datasets we assemble to analyze

behavior within this setting. Together, this institutional and data foundation provides the necessary

context for the structural model developed in Section 3.

2.1 Institutional Setting: Stent Implantation in Taiwan

The treatment of coronary artery disease encompasses a spectrum of options, ranging from non-

invasive medication to open-heart surgery. Between these extremes, percutaneous coronary in-

tervention (PCI) with stent implantation has become a standard, less invasive procedure. The
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intervention involves inserting a stent—a small, expandable mesh tube—to scaffold a narrowed

artery and restore blood flow. The first generation of these devices, bare-metal stents (BMS), were

effective scaffolds but were limited by high rates of in-stent restenosis, a re-narrowing of the artery

caused by tissue regrowth (Agostoni et al. (2005)) .

To address this limitation, drug-eluting stents (DES) were developed. These devices are coated

with antiproliferative drugs that significantly reduce the risk of restenosis. This clinical benefit,

however, comes with significant economic and medical trade-offs. The drug coating can delay arte-

rial healing, which in early-generation models was associated with a higher risk of stent thrombosis

(blood clot formation) that happened in 20-30% of patients, particularly for older patients or those

with severe comorbidities. Consequently, DES require a longer course of dual antiplatelet therapy

(DAPT) to mitigate this risk (Tu et al. (2007). Kaiser et al. (2010).

Even within drug-eluting stents (DES), notable advancements across generations have signifi-

cantly improved clinical safety and efficacy—an evolution central to the technological “newness”

incorporated into our demand model. The first-generation DES used strong polymers (like pacli-

taxel) to stop scar tissue from forming, but the thick coating irritated the artery, slowed healing,

and slightly increased the risk of dangerous blood clots. Later generation DES improved on this

by using thinner, stronger metals (like cobalt-chromium) and more natural, body-friendly drug

coatings (like zotarolimus), giving the same benefits with much lower risks (Navarese et al. (2014),

Bangalore et al. (2018), Kandzari et al. (2017)).

The healthcare environment in which these clinical decisions are made is defined by Taiwan’s

National Health Insurance (NHI) program. During our study period, the NHI employed a “top-up”

reimbursement model for stents. Under this system, hospitals received a fixed base payment for

any stent procedure, set at a level sufficient to cover the cost of a BMS. This structure created a

powerful set of incentives. For patients, it meant that BMS were effectively free at the point of

care, while the choice of a more advanced DES required a substantial out-of-pocket payment equal

to the difference between the hospital’s posted retail price and the fixed NHI reimbursement. For

hospitals, it created a margin management problem: their profit from a DES procedure depended

on the wholesale price negotiated with manufacturers, the retail price set for patients, and the fixed

NHI payment.

This system was subject to two system-wide reimbursement cuts during our sample period (a
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26% reduction from 27,000 to 19,940 NTD in 2009 and a further 18% in 2012). These centrally

mandated cuts directly compressed hospital revenue per stent usage, providing exogenous variation

that aids in the identification of supply-side responses. The combination of a fixed base payment

and a patient-borne top-up cost makes patients highly sensitive to the posted price, rendering it a

central strategic variable for hospitals competing for demand.

Finally, in contrast to the U.S. healthcare system, most physicians in Taiwan—including cardi-

ologists performing stent implantation—are employed by hospitals. Because detailed information

on hospital compensation structures and physician–patient interactions is unavailable, it is not

feasible to model individual physician selection or the agency relationship between physicians and

patients. Accordingly, throughout the paper we abstract from the role of individual physicians

in hospital pricing and portfolio management. We further assume that patients select the optimal

combination of hospital and stent type to maximize their utility. Although physicians may influence

the final stent choice, several factors suggest that patients play a substantial role in this decision.

Stent implantation is typically an elective procedure; the cost of the procedure itself (except for

the out-of-pocket payment required for DES) is fully covered by the NHI regardless of hospital

choice; and patients can compare out-of-pocket expenses across hospitals and DES models through

the NHI’s website. Together, these conditions foster an environment conducive to price-sensitive

selection of both hospital and stent type.

2.2 Data Sources and Sample Construction

Our empirical analysis relies on a combination of three comprehensive datasets, which together

provide the granular information necessary to identify the parameters of our structural model. The

study population is defined as all patients receiving any stent treatment in the competitive Taipei

metropolitan area, which includes Taipei City, New Taipei City, Keelung City and Yilan County,

from 2007 to 2013.

First, we use individual-level inpatient claims from Taiwan’s National Health Insurance (NHI).

These administrative records contain detailed information on patient demographics, diagnoses (in-

cluding the Charlson Comorbidity Index), and the specific stent model implanted. The presence

of unique patient and hospital identifiers allows us to construct a complete treatment history for

every patient at each hospital in our sample.
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Second, because NHI claims do not capture the out-of-pocket payments that are central to

the patient’s choice problem, we supplement the claims data with a manually collected panel of

hospital-specific DES prices. These data are compiled from public reports on the NHI website.

By imputing these prices for every cardiac stent across all hospitals and quarters, we construct a

hospital-model-time panel of the exact prices faced by patients, which we successfully match to

approximately 90% of the DES procedures in our claims data.2

Third, to properly account for socioeconomic heterogeneity, we augment the claims data with a

measure of patient income. While NHI premiums are based on salary and can serve as an income

proxy, a large portion of our sample consists of retired individuals. We therefore incorporate data

from the Ministry of Finance that report the average annual taxable income per household at the

level of a patient’s township of residence. This measure serves as a robust proxy for a patient’s

economic status, which our demand model uses to explain variation in both price sensitivity and

technology preference.

A final crucial element of our data construction is the systematic tracking of innovation. We

categorize each DES model by its manufacturer and, most importantly, by its generation. As shown

in Table 1, the major manufacturers in our sample introduced multiple DES generations over the

study period. We consolidate near-simultaneous releases with similar technical specifications and

group infrequently used brands into an “Other” category. These product-level data allow us to

define the two key hospital actions in our supply-side model: an adoption (when a hospital first

offers a brand) and an upgrade (when a hospital replaces an existing generation with a newer one).

For all analyses, we assume the basic BMS option is available in every hospital’s portfolio in all

periods.

As detailed in Jin, Lien and Tao (2025), only major and minor teaching hospitals are allowed

to perform PTCA procedures and cardiac stent placements in Taiwan, but the volume of stent

treatment (and subsequent financial implications) vary significantly among hospitals. We limit our

2We imputed cardiac stent prices using NHI-reported data through several steps. First, we obtained DES prices by
type and brand directly from the NHI, covering 44 models across 102 hospitals between December 2006 and November
2013, with an average of 126 reports per hospital. To address missing observations, we calculated quarterly average
prices for each hospital–model combination. Gaps between reports were filled under the assumption that hospitals
maintained the same price between consecutive submissions. In cases where hospitals delayed reporting, we assumed
their initial reported price applied up to four quarters prior to the first submission. This constructed price series
matched 89.99% of DES usage records in the NHI claims data. Further details are provided in the appendix of Jin,
Lien and Tao (2025).
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analysis to hospitals that performed at least 75 PTCA cases and 50 stent cases annually in our

sample period. This is to ensure that our analysis was not driven by hospitals that had few stent

surgeries and thus may not engage in strategic pricing and portfolio management as other hospitals.

In spite of this criterion, we still capture more than 98% of stent cases performed by hospitals in

Taipei area, with 61,645 patient claim records across 20 hospitals in our final data sample.

2.3 Descriptive Evidence and Stylized Facts

The data reveal several key stylized facts about the Taipei DES market. These empirical patterns

motivate the specific features of our structural model, which must be able to rationalize these

observed outcomes.

First, the market is characterized by strong intergenerational substitution. Figure 1 shows

that following the introduction of a new DES generation by a manufacturer, the market share of

the prior generation typically declines sharply. This rapid substitution suggests a powerful latent

demand for technological novelty from patients and physicians, which motivates the inclusion of a

“newest-generation” attribute in our demand model. However, the speed and completeness of these

transitions vary across brands, and newer generations do not always drive out older ones entirely,

suggesting that the preference for newness interacts with brand loyalty, hospital pricing, and other

market frictions.

Second, pricing patterns reflect both frontier competition and adjustment frictions. As shown

in Figure 2, the average patient-paid price for a given brand tends to track the price of its newest

available generation, indicating that the locus of competition is at the technological frontier. At

the same time, we observe substantial price dispersion across brands for clinically similar products.

Even within the same product (by brand and generation), we observe some price dispersion across

hospitals in the same hospital system, suggesting that patient-facing DES price is set by individual

hospitals rather than the headquarter of the hospital system they belong to. We also observe pricing

anomalies, where older generations are sometimes priced higher than newer ones in the market. This

is partly driven by selection, as earlier adopters of the new generation tend to be bigger hospitals

that charged a lower price for the old generation, probably because they can negotiate for a lower

wholesale cost from the manufacturer. This evidence points to significant brand differentiation and,

more importantly, frictions in hospitals’ portfolio and pricing adjustments, motivating a supply-side
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Figure 1: DES Quantity of Different Generations by Brand

model where such adjustments are costly.

Third, the timing of technology adoption and upgrading is highly heterogeneous across hospi-

tals. Figure 3 plots the distribution of delays, measured in quarters from a new product’s market

introduction to its appearance in a hospital’s portfolio. The significant and widely dispersed delays,

which result in a right-skewed distribution, are inconsistent with a frictionless market. This hetero-

geneity is a central feature of the diffusion process and provides strong evidence for the existence of

substantial, hospital-specific fixed costs of adjustment, a key component of our supply-side model.

Finally, summary statistics confirm the powerful role of patient price sensitivity. As shown in

Table 2, despite the clinical advantages of DES, the free BMS option consistently retains more

than 50% of the market in our sample period (2007-2013). The out-of-pocket prices for DES are

substantial, averaging 52,000–65,000 NTD, a figure comparable to the average monthly wage in

Taiwan during this period and almost three times the average reimbursement rate from the NHI.

This underscores the salience of the patient’s cost-sharing burden and motivates our focus on out-

of-pocket price as a primary determinant of demand.

Taken together, these patterns—rapid but incomplete intergenerational substitution, pricing
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Figure 2: Average Price Across Generations

(a) Adoption Delay (b) Upgrade Delay

Figure 3: Distribution of Adoption and Upgrade Delays (in quarters)

that reflects both frontier competition and adjustment frictions, heterogeneous adoption timing,

and persistent price sensitivity—illustrate a market shaped by a complex interplay of forces. A

structural model is therefore necessary to disentangle these mechanisms and to quantify their

impact on hospital strategy, patient welfare, and the diffusion of innovation.
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Table 2: Summary Statistics on Patients’ Stent Usage and Choices

Mean Std. Dev. Min Max

Number of patients per hospital-quarter 108.15 92.29 1 377
Patients using DES 52.56 62.94 1 279
Patients using BMS 56.74 39.90 1 251

Number of hospital-brand choices 90.18 19.19 41 114
Number of brand choices within hospital 4.55 1.39 1 7

Patient-paid prices of DES (1,000 NTD)
Abbott 56.90 7.66 30.66 78.75
Bio Sensor 55.40 7.44 44.36 68.22
Cordis 65.69 3.90 43.31 74.56
Medtronic 57.40 5.95 29.71 67.96
Boston Scientific 52.45 9.52 26.09 72.00
Other 52.22 6.08 32.92 70.05

Percentage of patients using DES (patient-level average) 48.09% 49.96% 0% 100%

3 Model

To formally analyze the diffusion of drug-eluting stents (DES), we develop and estimate a struc-

tural model of the Taipei metropolitan market. The model is designed to capture the equilibrium

interactions among three types of agents: (i) upstream manufacturers, who periodically introduce

new DES generations; (ii) downstream hospitals, which strategically manage their DES portfolios

and set prices; and (iii) patients, who choose a hospital and a stent for treatment.

Given that all five major stent manufacturers in our sample period are foreign to Taiwan (four

are based in the US and one is headquartered in Singapore), their R&D decisions are made in

a global context, and the Taiwanese market is relatively small, we treat the arrival of new DES

generations as an exogenous process. Our analysis therefore focuses on the downstream market

equilibrium. We do not model physicians as separate strategic agents, because they are salaried

hospital employees in Taiwan, which aligns their primary incentives with those of the hospitals.

The model therefore centers on the two key strategic actors in the downstream market—patients

and hospitals—whose interactions are formulated as a sequential game.
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3.1 Patients’ Demand

On the demand side, we specify a discrete-choice model of a patient’s joint selection of a hospital

and a stent. Let i index patients, h hospitals, m stent brands, and t quarters. The choice set for a

patient in quarter t consists of all hospitals in Taipei (h ∈ H) and the specific stent portfolios, Mht,

that they offer. The observable characteristics of each available stent m ∈ Mht include its patient-

paid price, phmt, its generation, ghmt, and an indicator for whether it is a DES (isDESm = 1) or

a BMS (isDESm = 0).3 To capture the value of innovation highlighted in our stylized facts, we

define a variable Newhmt, which equals one if stent m is the newest generation of its brand available

anywhere in the market in quarter t.4 The cost of access is measured by disih, the straight-line

distance between the centroid of the patient’s township of residence and the hospital’s location.

We model this choice under an assumption of full information. This is justified by two key in-

stitutional features: first, the NHI publicly discloses the prices of all DES models at every hospital,

and second, Taiwanese media frequently report on these price differences, reinforcing patient aware-

ness. While we formally model the patient as the decision-maker, we interpret the observed choice

as the outcome of a joint decision process between the patient and their physician. Consistent with

NHI policy, we assume every hospital offers a BMS (m = 0) in every period at zero out-of-pocket

cost to the patient (ph0t = 0), and we normalize its ”newness” attribute to zero (Newh0t = 0).

Patient i’s indirect utility from choosing stent brand m at hospital h in quarter t is specified as:

uihmt = β1iisDESm+β2iNewhmt+β3idisih+β4i(isDESm×disih)+β5iphmt+ξhmt+εihmt ≡ δihmt+εihmt,

(1)

where δihmt represents the mean utility component. The preference parameters βki are patient-

specific, allowing for heterogeneity in tastes for DES status (β1i), newest-generation technology

(β2i), travel distance (β3i), the interaction between DES status and distance (β4i), and price (β5i).

The term ξhmt captures unobserved quality attributes of a hospital-brand combination, part of

which can be decomposed into hospital and manufacturer fixed effects (ξh and ξm). The idiosyn-

cratic error term, εihmt, is assumed to follow a Type I extreme value distribution. The mean utility

3We denote the BMS option as m=0 without distinguishing between different BMS brands. However, BMS offered
by different hospitals are treated as distinct treatment options.

4The definition of New is relative within each brand, because we do not have enough information and expertise
to define generation similarity across brands.
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from the BMS option (m = 0) at hospital h is normalized to the hospital fixed effect, δih0t = ξh.

To capture rich, observable sources of preference heterogeneity, we allow the random coefficients

to vary with patient characteristics:

βki = βk0 + βk1charlsoni + βk2incomei + βk3malei + βk4agei + vki, for k = 1, . . . , 5.

These characteristics include the patient’s health status (Charlson Comorbidity Index), the av-

erage taxable income of their township of residence, their gender, and their age. The vector

vi = (v1i, . . . , v5i) represents unobserved individual-specific taste shocks, which are assumed to

follow a distribution G(·).

Given this mixed logit specification, the probability that patient i chooses stent brand m at

hospital h is:

sihmt(Pt,Mt) =
exp(δihmt)∑

h′∈H
∑

m′∈Mh′t
exp(δih′m′t)

, (2)

where the denominator sums over all available hospital-brand combinations in the market. The

market share for each product is then obtained by integrating these individual choice probabilities

over the joint distribution of observed demographics and unobserved preference shocks:

shmt(Pt,Mt) =

∫∫
sihmt dF (Incomei, Charlsoni,malei, agei) dG(vi). (3)

Price Endogeneity and Instrumental Variables

A primary concern in this specification is that posted prices, phmt, may be endogenous if they

are correlated with unobserved product quality captured in the error term, ξhmt, even after we

control for hospital and manufacturer fixed effects (ξh and ξm). We address this using a control-

function approach. We specify a set of instrumental variables that are correlated with hospital

costs but are plausibly orthogonal to unobserved demand shocks. These instruments include: (i)

quarterly average exchange rates (NTD/USD and NTD/SGD), which affect the import costs of

stents; (ii) historical adoption patterns, such as the number of other hospitals that adopted the

same brand prior to the current period, which may proxy for learning or scale effects in procurement;

and (iii) measures of historical peer adoption of the latest generation, which capture competitive

cost pressures. The control function includes the residual from a first-stage regression of price on
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these instruments and other exogenous covariates. This residual is then included as an additional

regressor in the utility function to purge the endogeneity bias. We carry this residual forward

into all subsequent demand computations, supply-side estimation, and counterfactual analyses; for

any new hospital-brand-time combinations that arise in counterfactuals, we set the residual to zero.

This procedure ensures that price endogeneity is controlled for consistently throughout the analysis.

3.2 Supply Model

The supply side of the market is characterized by the strategic behavior of hospitals, which compete

by adjusting their DES portfolios and setting prices on a quarterly basis. We model this interaction

as a sequential game, which allows us to distinguish between hospitals’ long-run investment decisions

and their short-run pricing conduct. The game unfolds in three stages:

• Stage 1 (Portfolio Adjustment): Hospitals simultaneously choose their technology port-

folios. Each hospital can decide to: (i) adopt a new DES brand not previously offered, (ii)

upgrade an existing brand to its latest generation, or (iii) maintain its current portfolio. This

is the primary investment decision.

• Stage 2 (Pricing Competition): After observing the portfolio choices of all rivals, hospitals

simultaneously set patient-paid prices for all DES models they offer.

• Stage 3 (Patient Choice): Patients observe the available portfolios and prices across all

hospitals and make their treatment choices, as described in the demand model.

The model is solved via backward induction, beginning with the pricing stage.

Stage 2: Hospitals’ Pricing Decisions

In the second stage, given a fixed configuration of hospital portfolios across the market, Mt =

{Mht}, each hospital sets prices for the DES models in its portfolio to maximize its current-period

variable profit. We assume that hospitals engage in Bertrand-Nash pricing competition. The profit
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function for hospital h is:

πh(Mht,Mt) = max
{phmt}m∈Mht

 ∑
m∈Mht,m ̸=0

(phmt + rt − chmt) shmt(Pt,Mt) + 0.2rtsh0t(Pt,Mt)

 ,

(4)

where shmt is the market share of product m at hospital h, rt is the fixed NHI reimbursement

for a stent procedure, and chmt is the hospital’s marginal cost for DES model m. During our

sample period, the NHI lowered rt twice, which we incorporate as raw data. The term (phmt + rt)

represents the total revenue per DES procedure. For the BMS option (m = 0), which is free

to patients, we assume hospitals earn a 20% margin on the reimbursement payment, consistent

with NHI regulations for medical devices and drugs.5. The first-order conditions from this pricing

problem define a system of equations for all hospitals. By inverting this system, we can recover the

implied marginal cost for each DES model offered in the market:

ct = rt + pt + (∆−0t)
−1 (0.2rt∆0t + st) , (5)

where ∆−0t is the matrix of own- and cross-price derivatives of DES shares with respect to DES

prices, and ∆0t is the vector of derivatives of BMS shares with respect to DES prices. These

recovered marginal costs are crucial inputs for the subsequent analysis, as they allow us to compute

the expected profits that drive hospitals’ portfolio decisions in the first stage.

Stage 1: Hospitals’ Portfolio Adjustment Decisions

In the first stage of the game, each hospital chooses its technology portfolio to maximize its total

expected payoff. Based on our empirical observation that hospitals rarely make more than one

portfolio change in a given quarter, we simplify the choice set: a hospital can make at most one

adjustment per period, either adopting one new brand, upgrading one existing brand, or making

no change. The value to hospital h of choosing a new portfolio M ′
ht, given its current portfolio Mht

and the choices of its rivals M′
t, is:

Vht(M
′
ht,Mht,M′

t) = πh(M
′
ht,M′

t)− cMht (Mht,M
′
ht) + vht, (6)

5Under this policy, reimbursement is based on the average input cost across hospitals, with an additional 20%
allocated as hospital profit.
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where πh(·) is the expected variable profit from the second-stage pricing equilibrium, cMht (·) is the

one-time, fixed cost of the portfolio change (either an adoption or an upgrade), and vht is an i.i.d.

Type I extreme value shock private to the hospital.

Although portfolio decisions are inherently dynamic, we model this stage as a static game in

which hospitals maximize current-period profits net of adjustment costs. This simplification is

motivated by three considerations. First, as our descriptive evidence shows, most adoption and

upgrading events occur relatively quickly, typically within one to three quarters of a new product’s

market availability, which limits the salience of long-term strategic waiting. Second, the set of

competing hospitals in our sample is stable, mitigating concerns about strategic portfolio choice

aimed at deterring entry. Third, a fully dynamic model with this many products and firms would

be computationally infeasible, as the state space of all possible portfolio combinations is immense.6

Our static approach is consistent with recent work analyzing complex product-portfolio problems,

such as Wollmann (2018) and Olssen and Demirer (2024).

The probability that hospital h chooses portfolio M ′
ht follows a standard logit form, which we

use as the basis for a maximum likelihood estimator of the parameters of the adoption and upgrade

cost functions.

Prt(M
′
ht|Mht,Mt) =

exp (Vht(M
′
ht,Mht,Mt))∑

M ′∈Aht∪{Mht} exp (Vht(M ′,Mht,Mt))
, (7)

where Aht is the set of all feasible single portfolio adjustments (adoptions or upgrades) for hospital

h at time t.

4 Estimation Results

This section presents the estimation results for both sides of our structural model. We begin with

the demand-side estimates, which reveal rich patterns of patient heterogeneity and provide crucial

insights into how preferences for innovation and price sensitivity shape market outcomes. We then

turn to the supply-side results, showing how hospitals’ strategic decisions regarding technology

adoption and pricing respond to these demand patterns and competitive pressures. Together, these

6For example, if each of the 20 hospitals can choose whether or not to carry each of the 5 major DES brands,
there are (25)20 possible portfolio states, even before accounting for generations.
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estimates provide the foundation for understanding the complex dynamics of medical technology

diffusion in the DES market.

4.1 Demand Estimation

The parameters of the demand model are estimated using detailed, individual-level data on pa-

tient treatment choices. For each patient in a given quarter, the choice set is comprehensive,

encompassing all available Drug-Eluting Stent (DES) and Bare-Metal Stent (BMS) options across

every hospital in the Taipei metropolitan area. The model is specified as a mixed logit, which is

particularly well-suited for this context as it allows for rich, unobserved heterogeneity in patient

preferences alongside heterogeneity based on observable patient characteristics. We estimate the

model parameters via simulated maximum likelihood. Acknowledging that out-of-pocket prices are

endogenous—potentially correlated with unobserved product-hospital quality attributes—we em-

ploy a control-function approach using the instrumental variables detailed in Section 3 to ensure

consistent estimates.

Table 3 presents the estimation results, moving from a standard conditional logit (Column 1) to

our preferred mixed logit specification with a full set of interactions (Column 4). The superior fit

and refined insights from the latter specification confirm the necessity of modeling both observed

and unobserved heterogeneity, which forms the basis for our discussion.

The estimation results for our preferred specification reveal two primary determinants of patient

choice. First, patients are sensitive to out-of-pocket costs, as indicated by the negative and statis-

tically significant mean price coefficient. This price sensitivity represents a significant friction in

the adoption of new technologies. Second, patients exhibit a strong preference for clinical novelty,

evidenced by the large, positive, and significant coefficient on the “newest-generation” status. This

preference for new technology creates a demand-side incentive for hospitals to update their stent

portfolios.

The model further reveals substantial heterogeneity in these preferences across the patient

population. The estimated interaction terms show that price sensitivity is significantly attenuated

for higher-income patients but is more pronounced for patients with greater comorbidity (a higher

Charlson Index). This suggests that the cost of new technology is a more significant consideration

for lower-income and sicker patients. The preference for DES technology over BMS also varies,
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increasing with patient income and age. This observed heterogeneity in preferences is a key feature

of the market, indicating that different patient segments evaluate the trade-off between price and

technology differently.

Finally, additional estimates support the validity of our model specification. The coefficient

on the control-function residual is positive and highly significant, confirming the presence of price

endogeneity and the necessity of our instrumental variable strategy. The coefficient on travel

distance is negative and significant, consistent with geographic competition. The disutility from

travel is larger for sicker and higher-income patients, likely reflecting higher opportunity costs.

These ancillary results are consistent with economic theory and support the robustness of our main

findings.

Implications for Innovation Diffusion

The demand estimates reveal two key insights for innovation diffusion. First, the substantial price

sensitivity (with own-price elasticities generally ranging from -3 to -1, see Appendix C for details)

means that high out-of-pocket costs can significantly limit adoption of new technologies, even when

patients value innovation. Second, the strong preference for newest-generation stents creates power-

ful incentives for hospitals to invest in technology upgrades, but the distribution of these preferences

across patient types suggests that the benefits of innovation may not be equally accessible to all

patients. To quantify the value patients place on innovation, we calculate their willingness to pay

(WTP) and willingness to travel (WTT) for newest-generation stents. For an average patient, these

are substantial, at approximately 5,690 NTD and 5.03 kilometers, respectively (see Appendix B for

calculation details). These values underscore the powerful market incentives for hospitals to invest

in the latest technologies.

4.2 Supply Estimation

Supply-side estimation proceeds in two steps. First, we recover hospital–brand–quarter marginal

costs by inverting the Bertrand–Nash first-order conditions using the Column (4) demand estimates.

Second, we estimate fixed costs of portfolio adjustment—adoption of new brands and upgrades of

existing lines—using a discrete-choice framework fit to observed portfolio changes. These primitives

discipline the counterfactuals on pricing and diffusion.

22



T
ab

le
3:

D
em

an
d
E
st
im

at
io
n
R
es
u
lt
s

V
ar
ia
b
le

(1
)

(2
)

(3
)

(4
)

V
ar
ia
b
le

(1
)

(2
)

(3
)

(4
)

C
lo
gi
t
1

C
lo
gi
t
2

M
ix
lo
g
it
1

M
ix
lo
g
it
2

C
lo
g
it

1
C
lo
g
it
2

M
ix
lo
g
it

1
M
ix
lo
g
it

2

P
ri
ce

E
ff
ec
ts

P
ri
ce

-0
.0
09

∗∗
∗ (
0.
00
1)

-0
.0
26

∗∗
∗ (
0.
00
4)

-0
.0
3
6∗

∗∗
(0
.0
0
2)

-0
.0
25

∗∗
∗ (
0
.0
0
5)

D
E
S
In
d
ic
a
to
r
E
ff
ec
ts

P
ri
ce

×
C
h
ar
ls
on

-0
.0
04

∗∗
∗ (
0.
00
1)

-0
.0
0
4∗

∗∗
(0
.0
0
1)

D
E
S
In
d
ic
a
to
r

-1
.1
63

∗∗
∗ (
0
.0
56
)

-0
.2
3
2
(0
.2
6
2
)

0
.6
2
0
∗∗

∗ (
0
.0
9
7
)

-0
.2
9
7
(0
.2
9
5
)

P
ri
ce

×
In
co
m
e

0.
00
5
∗∗

∗ (
0.
00
2)

0
.0
0
4∗
(0
.0
02
)

D
E
S
×

C
h
ar
ls
o
n

-0
.1
0
6
∗∗
(0
.0
4
3
)

-0
.1
0
9∗

∗ (
0
.0
4
9
)

P
ri
ce

×
M
al
e

-0
.0
04

∗∗
∗ (
0.
00
1)

-0
.0
04

∗∗
(0
.0
02
)

D
E
S
×

In
co
m
e

0
.4
6
2
∗∗

∗ (
0
.1
0
8
)

0
.5
3
8∗

∗∗
(0
.1
2
5
)

P
ri
ce

×
A
ge

-0
.0
01

∗∗
∗ (
0.
00
0)

-0
.0
0
1∗

∗∗
(0
.0
00
)

D
E
S
×

M
al
e

0
.0
9
7
(0
.0
8
6
)

0
.0
9
0
(0
.0
9
7
)

N
ew

es
t
G
en

er
a
ti
o
n
E
ff
ec
ts

D
E
S
×

A
g
e

0
.0
5
7∗

∗ (
0
.0
0
3
)

0
.0
5
7
∗ (
0
.0
0
3
)

N
ew

es
t
G
en
er
at
io
n

0.
31
8
∗∗

∗
0.
65
9∗

∗∗
(0
.1
42
)

0.
47
0
∗∗

∗ (
0.
02
1
)

0.
6
36

∗∗
∗ (
0
.1
43
)

D
E
S
In
te
ra
ct
io
n
w
it
h
D
is
ta
n
ce

N
ew

es
t
G
en

×
C
h
ar
ls
on

-0
.0
27
(0
.0
26
)

-0
.0
29
(0
.0
26
)

D
E
S
×

D
is
ta
n
ce

0.
0
02

∗∗
∗ (
0
.0
0
0)

-0
.0
0
3∗

∗ (
0
.0
0
1
)

0
.0
0
1
∗∗

∗ (
0
.0
0
0
)

-0
.0
0
4∗

∗∗
(0
.0
0
1
)

N
ew

es
t
G
en

×
In
co
m
e

-0
.1
88

∗∗
∗ (
0.
06
1)

-0
.1
7
5∗

∗∗
(0
.0
63
)

D
E
S
×

D
is
t
×

C
h
ar
ls
on

0
.0
0
0
∗ (
0
.0
0
0
)

0
.0
0
0∗
(0
.0
0
0
)

N
ew

es
t
G
en

×
M
al
e

0.
03
8(
0.
05
0)

0
.0
4
0(
0
.0
50
)

D
E
S
×

D
is
t
×

In
co
m
e

0
.0
0
5∗

∗∗
(0
.0
0
1
)

0
.0
0
6∗

∗∗
(0
.0
0
1
)

N
ew

es
t
G
en

×
A
ge

-0
.0
00
(0
.0
02
)

0.
0
01
(0
.0
02
)

D
E
S
×

D
is
t
×

M
al
e

0
.0
0
1∗

∗∗
(0
.0
0
0
)

0
.0
0
1∗

∗∗
(0
.0
0
0
)

D
is
ta
n
ce

E
ff
ec
ts

D
E
S
×

D
is
t
×

A
ge

0
.0
0
0
(0
.0
0
0
)

0
.0
0
0
(0
.0
0
0
)

D
is
ta
n
ce

-0
.0
72

∗∗
∗ (
0.
00
0)

-0
.0
61

∗∗
∗ (
0.
00
5)

-0
.1
0
5∗

∗∗
(0
.0
01
)

-0
.0
88

∗∗
∗ (
0
.0
0
5)

C
o
n
tr
o
l
F
u
n
ct
io
n

D
is
ta
n
ce

×
C
h
ar
ls
on

-0
.0
06

∗∗
∗ (
0.
00
1)

-0
.0
07

∗∗
∗ (
0.
0
01
)

C
on

tr
o
l
F
u
n
ct
io
n
R
es
id
u
al

0.
01
0∗

∗∗
(0
.0
2
0)

0
.0
3
7∗

∗∗
(0
.0
0
2
)

0
.0
3
7∗

∗∗
(0
.0
0
2
)

0
.0
3
7
∗∗

∗ (
0
.0
0
2
)

D
is
ta
n
ce

×
In
co
m
e

-0
.0
26

∗∗
∗ (
0.
00
3)

-0
.0
1
2
∗∗

∗ (
0.
00
3
)

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
s
o
f
R
a
n
d
o
m

C
oe
ffi
ci
en

ts

D
is
ta
n
ce

×
M
al
e

-0
.0
02
(0
.0
01
)

-0
.0
02
(0
.0
02
)

S
D

P
ri
ce

-0
.0
0
0
(0
.0
0
2
)

-0
.0
0
0
(0
.0
0
2
)

D
is
ta
n
ce

×
A
ge

-0
.0
00
(0
.0
00
)

0.
00
0
(0
.0
00
)

S
D

D
E
S
In
d
ic
at
or

0
.1
0
0
(0
.1
4
8
)

0
.1
2
4
(0
.1
7
1
)

S
D

N
ew

es
t
G
en
er
a
ti
on

-0
.1
4
1
(0
.1
4
2
)

-0
.1
6
0
(0
.1
4
7
)

S
D

D
is
ta
n
ce

0
.0
7
3∗

∗∗
(0
.0
0
1
)

0
.0
7
2
∗∗

∗ (
0
.0
0
1
)

H
os
p
it
al

F
E

Y
es

Y
es

Y
es

Y
es

M
a
n
u
fa
ct
u
re
r
F
E

Y
es

Y
es

Y
es

Y
es

N
55
79
8
61

5
5
7
9
8
6
1

5
5
7
9
8
6
1

5
5
7
9
8
6
1

L
og
-l
ik
el
ih
o
o
d

-2
.4
5e
+
05

-2
.2
8
e+

0
5

-2
.2
9
e+

0
5

-2
.2
8
e+

0
5

S
ta
n
d
a
rd

er
ro
rs

in
p
a
re
n
th
es
es
.

∗
p
<

0
.1
,
∗∗

p
<

0
.0
5
,
∗∗

∗
p
<

0
.0
1

23



This two-step approach is standard in empirical IO studies of differentiated products. The

inversion step uses the estimated demand elasticities to map observed prices and shares into im-

plied marginal costs under the assumed pricing game, thereby separating preference-driven demand

variation from cost-driven supply behavior. The second step models portfolio modification as ad-

justment over time along the extensive margin. While we do not fully solve a dynamic program,

the discrete-choice specification captures state dependence via observed portfolio composition and

fixed effects and provides a tractable representation of adjustment costs that is sufficient for the

counterfactual exercises below.

Recovering Marginal Costs

Using the demand estimates from Column (4) of Table 3, we recover marginal costs by inverting the

first-order conditions from hospitals’ pricing decisions. Under Bertrand–Nash competition, these

conditions imply

ct = rt + pt + (∆−0t)
−1

(
0.2 rt∆0t + st

)
,

where pt stacks hospital–brand DES prices, rt is the reimbursement vector, and st denotes DES

market shares. The matrix ∆−0t contains own- and cross-price derivatives of DES shares with

respect to DES prices, while ∆0t collects the derivatives of BMS shares with respect to DES prices,

both evaluated at observed prices and demand parameters. We compute these derivatives from

the mixed-logit estimates using simulation draws and the control-function residuals retained from

demand.

Operationally, we construct ∆−0t and ∆0t at the hospital–brand level each quarter, invert

∆−0t using a numerically stable routine with Tikhonov regularization for near-singular systems,

and obtain implied marginal costs ct. We drop cells with predicted shares below 10−5 to avoid

numerical artifacts; results are insensitive to thresholds between 10−6 and 10−4. For hospital–

brand–quarter combinations not observed in the data but required for counterfactuals, we impute

marginal costs via a linear model with hospital, brand, and quarter fixed effects fit on the recovered

ct.

Recovered costs indicate modest cross-manufacturer dispersion around 50,000 NTD per unit

(Cordis highest at 58,000; “Other” lowest at 45,000). Costs decline from roughly 55,000 NTD in
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2008 to 45,000 NTD in 2012, consistent with the 2009 reimbursement cut and intensified entry.

Major teaching hospitals face lower marginal costs (48,000 NTD) than minor teaching hospitals

(50,000 NTD), consistent with scale and bargaining power in procurement.

Adoption and Upgrade Cost Estimation

The second step of our supply-side estimation quantifies the fixed costs that hospitals incur when

adjusting their DES portfolios. We model the hospital’s decision to adopt a new brand or upgrade an

existing one as a discrete choice, where the cost of each action is a function of hospital characteristics,

current portfolio composition, and broader market conditions. The model includes an unobserved

cost component assumed to follow a Type I extreme value distribution.

We estimate the structural parameters of the cost function via maximum likelihood, using the

observed sequence of hospital portfolio choices. This approach allows for a flexible specification

that includes a rich set of fixed effects to control for unobserved, time-invariant heterogeneity at

the brand, year, and hospital levels. As a robustness check on the importance of these controls,

we evaluated a sequence of specifications: a model with only the 11 core covariates yields a log-

likelihood of -228.643; successively adding brand, year, and finally hospital fixed effects improves the

fit to -215, -195, and -170, respectively. The material gains at each step confirm that unobserved

heterogeneity is a key feature of the data and that its inclusion is critical for obtaining reliable

cost estimates. While alternative estimation approaches for portfolio-adjustment models exist,

such as moment-inequality estimators, they are computationally infeasible in our setting. With 73

parameters in our full specification, evaluating the necessary inequality conditions would require

exploring a parameter space of intractable dimensionality (e.g., 1073 combinations for a coarse 10-

point grid search). Our MLE approach is therefore the most viable strategy that accommodates

the institutional richness of the market.

Table 4 reports the parameter estimates from our preferred specification with a full set of

fixed effects. The results indicate the presence of both economies and diseconomies of scope. The

negative and significant coefficient on portfolio size in both the adoption and upgrade cost func-

tions (-9.371 and -2.627, respectively) implies substantial economies of scope; hospitals with larger

existing portfolios face lower incremental costs for both adding new product lines and upgrading ex-

isting ones. In contrast, the positive and significant coefficient on the number of newest-generation
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Table 4: Adoption and Upgrade Cost Estimates

Specification 1 Specification 2

Variable Est. Std. Err. Est. Std. Err.

Adoption Cost
Portfolio size -9.213 1.3269 -9.3706 1.3306
No. of hospitals using same brand/20 7.3858 5.8832
No. of hospitals using the latest same brand/20 -7.6596 4.1622
No. of latest generation within own portfolio 4.5766 1.1429 4.4923 1.0971

Upgrade Cost
Portfolio size -2.5913 0.6946 -2.6266 0.7244
No. of hospitals using same brand/20 4.4148 7.8712
No. of hospitals using the latest same brand/20 3.1591 2.4551
No. of latest generation within own portfolio 2.5763 0.4771 2.5751 0.4918
Duration of current generation -0.0069 0.0732
Duration of newest gen since introduction -0.8143 0.4963
Duration of newest gen since introduction, sq 0.0498 0.0302

Brand FE Yes Yes
Year FE Yes Yes
Hospital FE Yes Yes

Likelihood -174.843 -170.373

stents already in the portfolio (4.492 for adoption; 2.575 for upgrade) points to diseconomies of

scope, suggesting increasing marginal costs as a hospital’s portfolio becomes more technologically

advanced.

To translate these parameters into economically meaningful magnitudes, we compute the im-

plied distribution of fixed costs. The median fixed cost for adopting a new brand is estimated to

be 5.30 million NTD, with an interquartile range of 1.11 to 8.84 million NTD. The cost to up-

grade an existing product line is considerably lower, with a median of 1.50 million NTD and an

interquartile range of 0.59 to 2.89 million NTD. This significant cost differential provides a clear

economic explanation for the empirical pattern wherein hospitals are more inclined to incrementally

upgrade their existing technology portfolios than to adopt products from entirely new manufac-

turers. The magnitude of these costs underscores that portfolio adjustments represent significant

strategic investments for hospitals.
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Model Validation and Fit

To validate the supply-side model, we assess its ability to replicate key patterns of technology

adoption and upgrading observed in the data. A well-fitting model should capture not only the

cross-sectional distribution of portfolio adjustments across different product lines but also the ag-

gregate dynamics of diffusion over time. We conduct two validation exercises corresponding to

these criteria.

First, we examine the model’s cross-sectional fit by comparing the actual number of adoption

and upgrade events for each manufacturer with the model-imputed counterparts. The imputed

values are calculated by summing the model-predicted probabilities of each event across all hos-

pitals and quarters. Table 5 presents this comparison. The model demonstrates a high degree of

accuracy, closely matching the actual event counts for most major brands (e.g., Abbott, Bio Sensor,

Medtronic). While minor deviations exist—such as a slight overprediction of adoptions for Cordis

and a slight underprediction of upgrades for Boston Scientific—the overall correspondence confirms

that the model successfully captures the salient features of cross-brand heterogeneity in portfolio

adjustments.

Second, we assess the model’s ability to reproduce the temporal patterns of diffusion. Figure 4

plots the actual and imputed time series for the total number of adoptions and upgrades per quarter.

The figure shows that the model tracks the historical evolution of these events remarkably well,

capturing both the timing and the intensity of portfolio adjustments over the sample period. The

close alignment between the imputed and actual series provides strong evidence that the model’s

underlying parameters are well-identified and that it adequately represents the dynamic incentives

facing hospitals.

Taken together, the results from these validation exercises indicate that the estimated model

successfully replicates both the cross-sectional and time-series dimensions of hospital portfolio de-

cisions. This provides confidence in the model’s structural integrity and supports its use for con-

ducting meaningful counterfactual policy simulations.

The recovered marginal costs, summarized graphically in Figure 5, provide a final, detailed view

of the underlying cost structure of the market. The distribution of costs by manufacturer (panel

a) reveals a market average of approximately 50,000 NTD, with modest but systematic variation
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Table 5: Imputed vs. Actual Adoption and Upgrade Occurrences

Abbott Bio Sensor Cordis Medtronic Other Boston Sci.

Actual adoptions 19 15 3 17 15 0
Imputed adoptions 19 15 5 17 15 0

Actual upgrades 14 13 11 45 0 13
Imputed upgrades 14 13 10 36 0 9

Actual no-change 153 77 65 145 51 82
Imputed no-change 153 79 64 157 54 88

Note: Imputed statistics sum predicted probabilities across all hospitals for each DES brand. “No-change” refers to
instances with no portfolio modification when at least one adjustment option was feasible.
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Figure 4: Imputed vs. Actual Frequency of Adoption and Upgrade Over Time

Note: “Imputed” is the sum of model-predicted probabilities of hospitals’ adoptions and upgrades in each quarter;
“Actual” is the observed count.

across firms. The temporal trend (panel c) shows a clear decline in average marginal costs for DES

from approximately 55,000 NTD in 2008 to 45,000 NTD in 2012. This trend is consistent with

the effects of increased competition from new entrants and a reimbursement policy change in 2009,

both of which likely increased hospitals’ bargaining power with upstream suppliers. Furthermore,

the cost differential between major and minor teaching hospitals (panel d) confirms the presence

of scale or bargaining advantages, providing a direct economic rationale for the observation that

larger institutions are often the earliest adopters of new technologies.

Collectively, the demand and supply-side estimates illuminate the central economic forces that

jointly shape market outcomes in this industry. On the demand side, a strong patient preference

for technological novelty creates a significant commercial incentive for hospitals to offer the lat-
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Figure 5: Summary of Recovered Marginal Costs

est products. However, this is counterbalanced by substantial price sensitivity, which acts as a

considerable barrier to access, particularly for lower-income and clinically more vulnerable patient

populations.

These findings set the stage for our counterfactual analysis. The tension between patient demand

for innovation and the price sensitivity that limits access, combined with the strategic investment

decisions of hospitals facing significant adoption costs, raises important questions about market

performance and policy design. The next section uses our estimated structural model to evaluate

how alternative market structures and policy interventions could better align private incentives

with social welfare in the context of medical technology diffusion.

5 Counterfactual Simulations

The continuous introduction of new DES models by upstream manufacturers presents a funda-

mental economic challenge: determining whether market mechanisms provide sufficient incentives
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for downstream adoption while maintaining affordable patient access. Our counterfactual simu-

lations leverage the structural estimates to decompose the diffusion process and quantify welfare

implications. This analysis reveals how the interaction between market structure and policy design

determines both the pace of technological progress and its distributional consequences.

Our approach proceeds in two complementary dimensions. First, we examine how varying

degrees of market concentration interact with heterogeneous patient preferences for innovation

to shape equilibrium outcomes, revealing a fundamental tension between competitive pricing and

investment incentives. Second, we evaluate alternative reimbursement mechanisms—ranging from

supply-side selective contracting to demand-side patient subsidies—quantifying their differential

impacts on technology diffusion, public expenditure, and the distribution of surplus among market

participants.

5.1 Market Competition and Patient Demand

The canonical industrial organization question regarding the competition-innovation nexus (Aghion

et al., 2005) takes on a distinct character in markets where innovation diffusion operates through

intermediaries. In our setting, hospitals function as gatekeepers whose portfolio choices determine

both the availability and pricing of new technologies. This intermediation creates a fundamental

tension: while competition enhances patient access through lower prices and expanded aggregate

choice, it simultaneously erodes the quasi-rents that incentivize individual hospitals to adopt costly

innovations. Furthermore, the transmission of patient preferences into market outcomes is not

uniform; as we show, market structure mediates how demand shocks are distributed, determining

whether changes in valuation are passed through to consumers or captured by intermediaries.

Market Structure and Equilibrium Outcomes

To quantify the relationship between market concentration and technology diffusion, we simulate

equilibria under alternative competitive environments. We consider three scenarios that span the

empirically relevant range: a highly concentrated duopoly (N = 2), an intermediate case with mod-

erate competition (N = 10), and the baseline competitive market observed in our data (N = 20).

For scenarios with reduced hospital counts, we randomly select the corresponding number of hos-

pitals from our sample and compute equilibria using the iterative best-response algorithm detailed
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in Appendix A. Results represent averages across ten independent draws to ensure robustness.7

Table 6: Counterfactual 1: Market Competition Effects on DES Market Outcomes

Measure N=2 N=10 N=20

Panel A: Quarterly Market Outcomes

Consumer surplus (million NTD) 60.81 138.00 175.84
Average patient-paid DES price (thousand NTD) 70.13 59.83 57.10
Hospital profit (per hospital, million NTD) 21.30 4.59 2.72
DES price elasticity −2.40 −2.19 −2.13
Government subsidy (million NTD) 43.97 43.97 43.97
Subsidy allocated to DES 16.38 19.69 20.79

Social surplus (CS + profit - subsidy) (million NTD) 59.45 139.90 186.29
DES utilization rate (%) 38.08 45.92 48.26

Panel B: Technology Adoption and Patient Access

Portfolio modification probability per hospital:
Overall (%) 43.69 35.61 36.34
Adoption (%) 27.01 25.86 25.75
Upgrade (%) 33.92 23.36 24.23

Hospital-level DES combinations 4.32 4.20 4.25
With newest generation 3.58 3.39 3.41

Proportion of newest-generation options (%) 82.87 80.68 80.42
Patients receiving newest-generation DES (%) 34.48 41.71 44.43

Table 6 presents the equilibrium implications of market structure. To mitigate potential errors

from random draws, we repeat the simulation 10 times for the N = 2 and N = 10 scenarios and

report the average outcomes; for the N = 20 case, we simulate the unique market configuration

comprising all observed hospitals. Panel A demonstrates the expected pro-competitive effects

on pricing and consumer welfare: moving from duopoly to the full competitive market reduces

average DES prices by approximately 19% (from 70.13 to 57.10 thousand NTD) while nearly tripling

consumer surplus (from 60.81 to 175.84 million NTD). These magnitudes align with the substantial

price elasticities documented in our demand estimates, confirming that market power translates

directly into higher patient costs.

The producer-side outcomes reveal a distinct monotonic decline in profitability, contrasting with

7Our treatment of unobserved demand shocks in counterfactual scenarios follows a conservative approach. For
hospital-manufacturer-quarter combinations observed in the data, we retain the control-function residuals from our
demand estimation. For new combinations arising endogenously in the simulation (e.g., when a hospital adopts a
previously unoffered brand), we examined both zero residuals and imputation via a triple fixed-effects specification.
The qualitative patterns and quantitative magnitudes prove remarkably stable across these alternatives, with key
outcomes differing by less than 1%. We report results based on the zero-residual specification for transparency.
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the inverted-U patterns often predicted in theoretical models where volume expansion initially off-

sets margin compression. Hospital profits fall precipitously from 21.30 million NTD under duopoly

to 2.72 million NTD in the fully competitive market. This trajectory indicates that the price erosion

effect dominates the volume expansion effect as competition intensifies. Consequently, total social

surplus—defined as consumer surplus plus hospital profits minus government subsidies—increases

monotonically with competition, driven largely by the substantial gains in consumer welfare that

outweigh the reduction in producer rents.

Panel B reveals the critical interplay between competition and innovation diffusion. The prob-

ability of portfolio modification—encompassing both new brand adoption and existing brand up-

grades—declines from 43.7% in duopoly to approximately 36% in more competitive markets. This

pattern reflects the erosion of innovation rents: in more competitive environments, the quasi-rents

from offering differentiated technologies are competed away, weakening the profit incentive for costly

adoption. However, this reduction in hospital-level churning does not translate into reduced pa-

tient access. Instead, the proportion of patients receiving newest-generation DES exhibits a robust

upward trend, rising from 34.5% under duopoly to 44.4% in the competitive market. This occurs

partly because competition lowers DES prices, and partly because having more hospitals in the

market increases consumers’ hospital-brand choices, even though each hospital offers a smaller and

less up-to-date DES portfolio.

This result challenges the conventional view of a “central tension” where market power is

necessary to fund diffusion. While competition indeed erodes hospitals’ incentives to invest in

portfolio updates (the “incentive effect”), it simultaneously enhances affordability through lower

prices (the “access effect”). The data reveal that in this setting, the access effect dominates:

the lower prices in competitive markets enable a broader segment of patients to access frontier

technologies, more than compensating for the reduced frequency of hospital portfolio updates.

Thus, competition fosters both affordability and the widespread adoption of frontier technologies.

Figure 6 decomposes these equilibrium patterns into their constituent mechanisms. Panel (a)

captures the first-order welfare effects: consumer surplus rises monotonically with competition due

to price reductions, while per-hospital profits decline sharply. The steepest price declines occur in

the transition from duopoly to moderate competition, with diminishing effects thereafter. Panels (b)

through (d) trace the innovation dynamics that underlie our main results. Panel (b) demonstrates
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Figure 6: Market Summary for Various Number of Hospitals

that overall DES utilization and access to newest-generation technologies increase substantially

with competition, particularly in the transition from oligopoly to moderate competition (N < 8).

Beyond this threshold, the marginal impact of additional competitors on patient access diminishes.

Panel (c) highlights the role of competition in the aggregate expansion of patient access to DES

technology. While the number of hospitals increases the total variety of choices available to pa-

tients—driving the rise in overall usage—the average availability of newest-generation models at

the hospital level declines. This discrepancy confirms that, while competition dampens individual

hospitals’ incentives to adopt and upgrade, it ensures wider patient access to DES in aggregate.

Panel (d) illustrates the decline in hospitals’ portfolio modification probabilities, consistent with

the theoretical prediction that competition reduces the payoff from adoption and upgrades. No-
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tably, this competitive dampening effect is most pronounced in concentrated markets (N < 8),

with incentives stabilizing as the market becomes more fragmented. Crucially, this decline does not

prevent the aggregate expansion of patient access to frontier technologies. Together, these panels

illustrate how market structure fundamentally shapes not just the price and quantity of medical

technology, but its vintage and quality distribution across the patient population.

The Role of Patient Preferences for Innovation

The preceding analysis held demand parameters fixed while varying market structure. We now

examine the complementary question: how do patient preferences for technological novelty shape

equilibrium outcomes across different competitive environments? This question has immediate

policy relevance, as information campaigns or quality reporting initiatives could potentially shift

the salience of innovation attributes in patient decision-making.

To isolate this mechanism, we conduct counterfactual simulations that scale the estimated

preference parameter for newest-generation technology by a factor ζ. We consider two scenarios:

setting ζ = 2 doubles patients’ marginal utility from accessing frontier innovations, while ζ = 0.5

halves it relative to the baseline (ζ = 1). This variation allows us to trace how both stronger and

weaker demand-side pull for innovation propagates through the market equilibrium across our three

competitive scenarios.

Table 7 reveals how heightened patient preferences for innovation fundamentally reshape mar-

ket equilibria, with effects that vary systematically across competitive environments. The results

demonstrate that while stronger demand for novelty universally accelerates diffusion, the distri-

bution of resulting surplus—and crucially, the affordability of innovation—depends critically on

market structure.

Panel A quantifies the demand-side impacts. Doubling patients’ preference for technological

novelty (ζ = 2) substantially increases both overall DES utilization and access to frontier tech-

nologies across all market structures. The effects are particularly striking for newest-generation

adoption: even in the highly competitive baseline market (N = 20), utilization of newest-generation

DES rises from 44.4% to 55.6%. Conversely, attenuating these preferences (ζ = 0.5) reduces utiliza-

tion to 39.1% in the same setting. These shifts in innovation access translate directly into consumer

surplus changes, though the magnitude varies with competition—consumers in more competitive
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Table 7: Market Outcomes Under Alternative Patient Newness Preferences

N=2 Hospitals N=10 Hospitals N=20 Hospitals

Newness Preference Factor (ζ) 0.5 1 (Baseline) 2 0.5 1 (Baseline) 2 0.5 1 (Baseline) 2

Panel A: Patient and Product Outcomes

Consumer Surplus (million NTD) 57.06 60.81 69.63 132.69 138.00 151.14 169.99 175.84 189.99
DES Utilization Rate (%) 34.37% 38.08% 45.86% 41.25% 45.92% 55.86% 43.29% 48.26% 58.54%
Newest-Generation DES Utilization Rate (%) 30.27% 34.48% 43.66% 36.69% 41.71% 52.89% 39.10% 44.43% 55.62%
Avg. DES Models Available per Hospital 4.23 4.25 4.29 4.09 4.10 4.14 4.17 4.17 4.19

Avg. Newest-Gen. Models per Hospital 3.30 3.35 3.52 3.08 3.09 3.18 3.15 3.15 3.19

Panel B: Hospital Outcomes

Hospital Profit (million NTD) 19.20 21.30 26.27 4.27 4.59 5.29 2.57 2.72 3.04
Social Surplus (million NTD) 51.49 59.45 78.19 131.39 139.90 160.07 177.50 186.29 206.80
Avg. Patient-Paid Price (thousand NTD) 68.71 70.13 73.39 59.51 59.83 60.61 57.03 57.10 57.31

Hospital Portfolio Modification Rate (%) 42.27% 43.69% 48.02% 35.40% 35.61% 37.50% 36.34% 36.34% 36.87%

Panel C: NHI Subsidy Outcomes

Total Subsidy (million NTD) 43.97 43.97 43.97 43.97 43.97 43.97 43.97 43.97 43.97
Subsidy Allocated to DES (million NTD) 14.75 16.38 19.78 17.65 19.69 24.06 18.61 20.79 25.33

Notes: “Hospital Portfolio Modification Rate” represents the frequency of adoption or upgrade events per hospital
among hospitals where such modifications were feasible. ζ = 1 corresponds to the estimated preference; ζ = 2
doubles the marginal utility from the newest generation relative to the previous generation within the same brand;
ζ = 0.5 halves this marginal utility. All outcomes are averaged across simulations. Units are New Taiwan Dollars
(NTD).

markets capture a larger share of the value created (or lost) by preference shocks.

The supply-side responses documented in Panel B reveal how hospitals strategically adapt to

innovation demand. Stronger preferences (ζ = 2) increase portfolio modification rates (rising from

43.7% to 48.0% in the duopoly case), confirming that demand-pull mechanisms can partially offset

the innovation-dampening effects of competition. Conversely, weaker preferences (ζ = 0.5) lead to

a slight reduction in modification activity in concentrated markets (falling to 42.3%) while leaving

competitive markets unchanged. However, pricing responses diverge sharply by market structure.

In concentrated markets (N = 2), hospitals exploit enhanced willingness-to-pay by raising prices

substantially (from 70.13 to 73.39 thousand NTD), effectively extracting rents. Conversely, when

preferences are weaker (ζ = 0.5), duopolists are forced to lower prices (to 68.71 thousand NTD).

In contrast, competitive market prices remain essentially flat regardless of the preference shock

(ranging only from 57.03 to 57.31 thousand NTD), indicating that competition forces complete

pass-through of value to consumers.

Panel C illuminates an important fiscal externality of innovation preferences. While total gov-

ernment expenditure remains fixed by design, the allocation shifts dramatically toward DES as

utilization increases. The share of subsidies flowing to DES rises by approximately 20% across

all market structures when preferences double, highlighting how demand-side factors can reshape
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public spending patterns even under budget-neutral policies.

These findings synthesize into a crucial insight for policy design: patient preferences for inno-

vation create powerful diffusion incentives, but without sufficient competition, these preferences

may paradoxically enable price increases that offset the welfare gains from better technology. This

fundamental tension—between harnessing demand-pull innovation incentives and maintaining af-

fordability—motivates our examination of targeted reimbursement mechanisms that could better

align private incentives with social objectives.

5.2 Alternative Reimbursement Designs for Enhanced Innovation Diffusion

Our preceding analyses reveal a fundamental tension in the market for medical innovation. Neither

competitive forces nor patient demand alone can achieve both rapid technological diffusion and

broad affordability. Competition reduces prices but weakens hospitals’ incentives to invest in new

technologies, while strong patient preferences for innovation accelerate adoption but enable price

increases in concentrated markets. This inherent trade-off suggests an important role for targeted

policy interventions that better align private incentives with social welfare objectives.

We evaluate three policy instruments, each operating through a distinct economic channel.

The first adjusts DES-specific reimbursement rates, decoupling them from the BMS benchmark

to directly influence provider margins and pricing decisions. The second employs selective con-

tracting, where the insurer negotiates wholesale discounts with specific manufacturers in exchange

for exclusive reimbursement eligibility. The third introduces targeted patient subsidies that re-

duce out-of-pocket costs for vulnerable populations without disrupting market pricing mechanisms.

These interventions offer different combinations of benefits and costs across three key dimensions:

innovation diffusion, fiscal burden, and distributional equity.

Figure 7 illustrates the payment flows under each policy design, with arrows representing finan-

cial transfers among market participants. Solid lines indicate baseline payments while dashed lines

mark policy-induced changes. Red arrows denote BMS-related payments and blue arrows represent

DES-specific transfers.

Panel (a) shows the status quo arrangement where the NHI provides a uniform reimbursement

rt calibrated to BMS costs. Hospitals charge patients an additional top-up fee for DES to cover the

cost differential. While this design controls public spending, it creates substantial out-of-pocket
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Figure 7: Comparison of Alternative NHI Reimbursement Designs

burdens that may inefficiently limit access to innovation.

Panel (b) depicts the DES-specific reimbursement policy, which introduces a multiplicative

factor rd applied only to DES procedures, yielding a reimbursement of rd · rt. When rd > 1, the

enhanced payment reduces the coverage gap, enabling hospitals to lower patient prices.

Panel (c) illustrates selective contracting, where the NHI negotiates directly with chosen man-

ufacturers to secure wholesale discounts (captured by rc < 1) in exchange for exclusive reimburse-

ment eligibility. This approach reduces hospitals’ input costs for contracted brands, potentially

lowering patient prices while steering demand toward selected products. The exclusivity require-

ment transforms the competitive landscape by creating a two-tier market of reimbursable and

non-reimbursable technologies.

Panel (d) shows the patient coupon program, which provides direct subsidies to eligible patients

(such as those in the lowest income decile) when they choose DES. Unlike supply-side interventions,

this approach preserves market pricing while selectively reducing financial barriers for targeted

populations. The program’s effectiveness depends on how hospitals respond strategically to the

demand shift from subsidized patients.

Alternative Design #1: Alternative DES Reimbursement Rate

The simplest policy intervention adjusts the reimbursement rate for DES independently from BMS.

We parameterize this through a multiplicative factor rd applied to DES procedures, resulting in a
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reimbursement of rd · rt for DES while maintaining rt for BMS. This approach allows policymakers

to directly control the subsidy level for innovation, with rd < 1 reducing support and rd > 1

enhancing coverage.

Table 8 presents market outcomes under two alternative reimbursement regimes: doubling the

DES payment (rd = 2) and halving it (rd = 0.5). The results reveal a symmetric but heterogeneous

pass-through of reimbursement shocks. In competitive markets (N = 20), doubling the reimburse-

ment lowers patient prices by 35% (from 57.1 to 37.0 thousand NTD), driving a 17 percentage point

surge in utilization. In contrast, duopolists capture a larger share of the subsidy, reducing prices

by only 20% and limiting the utilization gain to 12 percentage points. Conversely, halving the

reimbursement forces hospitals to raise copayments by approximately 17% in competitive markets,

contracting utilization by 8 percentage points. This symmetry confirms that hospitals function as

effective pass-through entities that transmit policy-induced cost shocks to patients through price

adjustments, especially in a competitive market.

Welfare outcomes exhibit a sharp trade-off between fiscal efficiency and patient access. While

subsidy expansion (rd = 2) generates broad surplus gains, it inflates NHI expenditure by over

50%. In contrast, the reimbursement cut (rd = 0.5) yields 20% fiscal savings but constrains

access. Notably, portfolio modification rates remain relatively stable under the cut (falling only

0.3 percentage points), suggesting that adoption fixed costs generate portfolio inertia, rendering

technology supply less elastic than pricing to reimbursement changes.

Alternative Design #2: Selective Contracting

Selective contracting leverages the insurer’s bargaining power to negotiate favorable terms with

specific manufacturers. Unlike the broad reimbursement adjustment examined above, this approach

targets specific products and manufacturers, potentially achieving more efficient outcomes through

market segmentation. This mechanism, common in pharmaceutical benefit management, combines

exclusive reimbursement with negotiated discounts. We examine whether it can simultaneously

reduce patient costs, maintain adoption incentives, satisfy manufacturer participation constraints,

and control public spending.

We model selective contracting through two complementary instruments. First, the NHI nego-

tiates wholesale discounts with chosen manufacturers—in our simulations, the two market leaders
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Table 8: Market Outcomes Under Alternative DES Reimbursement Factors (rd)

N=2 Hospitals N=10 Hospitals N=20 Hospitals

DES Reimbursement Factor 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

Panel A: Patient and Product Outcomes

Consumer Surplus (million NTD) 55.44 60.81 73.78 129.71 138.00 159.75 166.69 175.84 200.08
DES Utilization Rate (%) 32.53 38.08 49.66 38.22 45.92 62.06 40.04 48.26 65.25
Newest-Gen DES Rate (%) 29.49 34.48 45.31 34.70 41.71 56.79 36.76 44.43 60.52

Avg DES Models per Hospital 4.27 4.32 4.35 4.18 4.20 4.21 4.24 4.25 4.26
Avg Newest-Gen Models per Hospital 3.56 3.58 3.69 3.39 3.39 3.41 3.43 3.41 3.43

Panel B: Hospital Profit and Pricing

Hospital Profit (million NTD) 17.96 21.30 29.56 4.06 4.59 5.76 2.49 2.72 3.23
Avg Patient-Paid Price (thousand NTD) 77.30 70.13 56.22 69.33 59.83 40.73 67.13 57.10 36.98

Portfolio Modification Rate (%) 42.80 43.70 45.30 35.50 35.60 35.90 36.60 36.30 36.90

Panel C: Government Subsidy

Total Subsidy (million NTD) 37.04 43.97 65.62 35.86 43.97 71.02 35.44 43.97 72.52
Subsidy Allocated to DES (million NTD) 3.82 9.09 24.15 4.24 10.26 27.96 4.45 10.78 29.64

Social Surplus (million NTD) 54.31 59.45 67.28 134.44 139.90 146.31 181.05 186.29 192.13

Notes: The table compares outcomes for rd = 1 (baseline) and rd = 2 (doubled DES reimbursement). Consumer
Surplus, Hospital Profit, Total NHI Subsidy, and DES-Specific NHI Subsidy are reported in millions of NTD;
Average Patient-Paid Price is in thousands of NTD; usage rates and portfolio modification probabilities are
percentages. Aggregate choices represent the total number of hospital-product combinations offered in the market.

Abbott and Medtronic—reducing hospital input costs to rc · chmt where rc < 1 represents the

discount factor. Second, the NHI grants exclusive reimbursement eligibility to contracted brands,

effectively creating a two-tier market where non-contracted DES become out-of-network products

that patients must fully finance.

Table 9 presents outcomes under a representative selective contracting arrangement combining a

50% wholesale discount (rc = 0.5) with baseline reimbursement rates (rd = 1). The policy alleviates

the double marginalization distortion, enabling a “quadruple win.” In competitive markets (N =

20), hospitals exhibit high pass-through of input cost reductions, lowering patient prices by 41%

(from 56,110 to 33,130 NTD) and expanding DES utilization by 16 percentage points (from 41.8%

to 57.3%).

Crucially, the impact on innovation incentives is mediated by market competition. In the

duopoly setting, selective contracting boosts hospital rents and thus catalyzes a surge in portfolio

updating for targeted brands (rising from 25.5% to 41.2%). In contrast, competitive markets

see only a modest increase (from 18.2% to 19.1%), as intense price competition erodes the profit

margin. This suggests that selective contracting is most effective at stimulating innovation diffusion
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in markets where intermediaries possess significant market power.

This mechanism stands in sharp contrast to the DES reimbursement policy (Alternative Design

#1), where competitive markets amplified policy effectiveness because high pass-through lowered

patient prices, directly stimulating demand. In selective contracts, however, high pass-through

dilutes the policy’s leverage. In competitive markets (N = 20), intense rivalry forces hospitals

to pass through the bulk of the wholesale discount to patients, leaving the hospital’s own profit

margin largely unchanged. Consequently, the financial incentive to incur the fixed costs of portfolio

restructuring is weak. In contrast, hospitals in concentrated markets (N = 2) possess sufficient

market power to retain a larger share of the discount as profit. This “profit retention” effect

dramatically increases the margin on contracted products, creating a powerful internal incentive

for duopolists to update their DES portfolios.

The overall welfare effects confirm the efficiency of selective contracting. Consumer surplus rises

by 11% in the N = 20 market due to lower prices and expanded access. Hospitals profit from wider

margins on higher volumes, as the wholesale discounts exceed the pass-through to patients. The

government maintains budget neutrality, as negotiated discounts offset volume growth. Finally,

contracted manufacturers benefit from dramatic market share gains that more than compensate

for per-unit price reductions.

Table 9: Market Outcomes under Selective Contracting Policy Designs

N=2 Hospitals N=10 Hospitals N=20 Hospitals

Reimbursement factor (rd) 1 (Targeted) 1 (Targeted) 1 (Targeted) 1 (Targeted) 1 (Targeted) 1 (Targeted)
Cost factor (rc) 1 (Targeted) 0.5 (Targeted) 1 (Targeted) 0.5 (Targeted) 1 (Targeted) 0.5 (Targeted)

Consumer-related:
Consumer Surplus (million NTD) 59.20 73.15 131.48 149.36 168.52 187.65
% of DES usage 36.37% 49.35% 39.95% 54.97% 41.77% 57.29%
% of patients using newest generation 32.43% 45.61% 35.82% 49.21% 38.14% 52.09%

Hospital-related:
Profit (million NTD) 14.70 22.28 4.13 5.17 2.54 2.99
Avg. Patient-Paid Price (thousand NTD) 70.46 51.12 65.30 43.15 63.00 40.32

Targeted DES 64.41 45.34 58.38 35.99 56.11 33.13
Non-targeted DES 84.99 90.53 80.50 81.88 78.31 78.89

NHI-related:
Subsidy (million NTD) 33.72 36.67 33.34 36.23 33.25 36.24

Targeted DES 10.93 18.54 11.73 19.96 12.34 20.84
BMS 22.79 18.13 21.60 16.27 20.92 15.41

Market Structure & Dynamics:
Total hospital-model DES choices 2301 2327 11329 11392 2292 2303

w/ newest generation 1907 1964 9139 9212 1852 1860
Portfolio Modification Probability per Hospital 19.02% 20.74% 15.07% 15.49% 15.53% 15.73%

Targeted DES 25.53% 41.18% 17.42% 18.93% 18.24% 19.07%
Non-targeted DES 14.52% 11.41% 13.26% 13.03% 13.46% 13.29%
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Table 10: Preferred Direction of Policy Parameters

NHI Consumers Hospitals Manufacturers

Cost Factor, rc Lower Lower Lower Mid-range
Reimbursement Factor, rd Lower Higher Higher Higher

Building on these results, Table 10 summarizes directional preferences over the two policy

parameters—rc (the wholesale cost factor for targeted DES) and rd (the reimbursement factor

for targeted DES)—for each stakeholder. The NHI, seeking to curb expenditure, prefers lower rc

(greater negotiated discounts) and lower rd (smaller per-case payments). Consumers prefer lower rc

to reduce prices through pass-through and higher rd to increase coverage and reduce out-of-pocket

payments. Hospitals, driven by margins, also favor lower rc and higher rd.

The sharpest conflict is over rd: the insurer’s cost-minimizing preference for a lower reimburse-

ment opposes the preferences of consumers and hospitals. By contrast, preferences over rc are

more aligned—everyone benefits from lower input costs—though the division of the gains between

patients and hospitals depends on competitive conditions and pricing conduct.

For selective contracting to be feasible, targeted manufacturers must also prefer participation

over the status quo. Although their costs are unobserved, their revenue under selective contracting

reflects a trade-off between price and volume: deeper discounts reduce per-unit revenue but increase

quantity via exclusivity and lower patient prices. Because market share expands when non-targeted

brands are excluded, the revenue effect of rc is generally non-monotonic. Manufacturers often prefer

an interior discount that balances volume gains against price cuts.8

To characterize the joint effects of the policy levers, we simulate outcomes on a grid with

rd ∈ [0.1, 1] and rc ∈ [0.1, 1] (using increments of 0.1 for both rc and rd shown in the figures).

The left column of Figure 8 plots iso-curves for three outcomes—consumer surplus, total NHI

expenditure, and the share using the newest-generation DES—for markets withN = 2, N = 10, and

N = 20. The right column of Figure 8 plots the iso-revenue curves for targeted DES manufacturers,

in the three market structures respectively, with the red line representing these manufacturers’

revenue under the status quo.

8In practice, the NHI could operationalize this scheme by announcing coverage for a limited set of DES brands
and inviting manufacturers to bid on rc. The participation constraint we study is a necessary condition; an auction
mechanism could further improve the NHI’s terms.
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(f) Manufacturer for N = 20

Figure 8: Policy Outcomes under Selective Contracting: Varying (rc, rd)

Consistent with Table 10, consumer surplus increases when reimbursement is more generous

(higher rd) and wholesale costs are lower (lower rc), corresponding to the upper-left regions of
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each panel. Total NHI spending falls as both levers are tightened (lower-left). Using the status

quo (N=2 in Table 6) as a benchmark, the contour lines identify policy combinations that weakly

improve patient and hospital outcomes while keeping NHI expenditure at or below baseline. In

the N = 2 market (Figure 8(a)), the status-quo reference values are consumer surplus of 60.8

million NTD, newest-DES use of 34.5%, and total NHI expenditure of 44.0 million NTD. Regions

to the “north-west” of the consumer-surplus and newest-DES iso-curves and to the “south-west” of

the 44.0 million NTD expenditure iso-curve yield improvements for patients and hospitals without

higher public spending. This feasible area must be further restricted to the “north-east” of the red

iso-revenue curve in Figure 8(b), so that the targeted manufacturers have incentives to accept the

selective contract. All in all, the feasible area corresponds to the upper right of the red real line

and the upper left of the green and blue dashed lines in Figure 8(b).

Similar patterns are obtained in the N = 10 and N = 20 markets (Figures 8(c)–(f)), though

with a notable difference: the feasible “quadruple-win” region shrinks as competition increases.

In the N = 2 market, the policy effectively leverages the substantial exclusivity rents available

to duopolists, allowing a broad range of (rc, rd) combinations to improve outcomes. In contrast,

competitive markets (N = 10, 20) have already dissipated much of the rent that the policy seeks

to redistribute. Consequently, achieving the same simultaneous improvement for all stakeholders

requires a more precise—and often more restrictive—calibration of reimbursement and discount

rates.

Alternative Design #3: Patient Coupon Program

Alternative Design #3 shifts focus from supply-side incentives to demand-side constraints. Unlike

reimbursement adjustments or selective contracting—which operate through hospital margins—this

intervention directly subsidizes the effective price of adoption for financially vulnerable patients.

We model a means-tested program providing 36,000 NTD coupons (rcoupon = 0.6) to the lowest

income decile, applicable exclusively for DES. By reducing out-of-pocket costs without altering

NHI reimbursement, this design preserves market pricing mechanisms while selectively expanding

access.

Figure 9 highlights the steep socioeconomic gradient in technology access. Under the status quo

(N = 20), DES utilization rises monotonically with income, creating a 17.5 percentage point gap
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Figure 9: Distribution of Income and DES Uptake under the Status Quo (N=20)

between the lowest decile (41.7%) and the top 5% (59.2%). This divergence stems from the high

price sensitivity of low-income patients, for whom the co-payment represents a binding constraint,

effectively decoupling clinical need from technology adoption.

Table 11 reports the equilibrium impact. The coupon effectively compresses the utilization gap:

adoption among the targeted decile surges by ∼28% (to 50.8% in N = 20), nearly converging with

the median patient’s utilization. Crucially, this gain is achieved with minimal distortion to the

broader market; utilization rates for ineligible patients remain stable, indicating effective market

segmentation.

The invariance of equilibrium prices reveals a critical strategic constraint. Since hospitals must

set uniform list prices, they face a trade-off: raising prices to extract surplus from subsidized

patients would cannibalize demand from the price-elastic, non-subsidized majority. Given that the

subsidized group comprises only 10% of the market, the optimal strategy dictates price stability,

with hospitals absorbing the demand shock rather than re-optimizing margins.

Innovation incentives remain similarly muted. The localized demand expansion, while mean-

ingful for equity, generates insufficient residual profit to justify altering technology portfolios along

the extensive margin. The fixed costs of adoption act as a barrier that this targeted subsidy cannot

breach. Thus, while the coupon enhances static allocative efficiency, it lacks the leverage to shift

dynamic investment thresholds.

Fiscally, the program is highly efficient. Total government expenditure increases by only the
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Table 11: Market Outcomes of the Patient Coupon Program

N = 2 Hospitals N = 10 Hospitals N = 20 Hospitals
Coupon Value Factor (rcoupon) 0 0.6 0 0.6 0 0.6

Patient-Related Outcomes:
Consumer Surplus (million NTD) 63.27 64.27 138.06 139.17 175.84 177.05
Hospital-Related Outcomes:
Hospital Profit (million NTD) 33.62 33.99 45.49 46.14 54.38 54.99
Avg. Patient-Paid Price (thousand NTD) 66.65 66.67 59.77 59.79 57.10 57.10
Portfolio Modification Rate (%) 19.16% 19.16% 15.03% 15.04% 15.26% 15.26%
DES Usage Rate (%):
Low-Income Patients 33.52% 43.93% 37.44% 48.24% 39.76% 50.81%
Other Patients 41.03% 41.02% 46.92% 46.91% 49.21% 49.23%

NHI-Related Outcomes:
NHI Hospital Reimbursement (million NTD) 43.97 43.97 43.97 43.97 43.97 43.97
Total Coupon Cost (million NTD) 0.00 3.45 0.00 3.79 0.00 3.99
Total NHI Expenditure (million NTD) 43.97 47.42 43.97 47.76 43.97 47.96

Notes: The table compares outcomes with no patient coupon (rcoupon = 0, status quo) versus a coupon program
(rcoupon = 0.6). Eligible low-income patients (lowest 10% decile) receive a coupon valued at 0.6× 60k = 36k NTD,
which directly offsets out-of-pocket payment for DES. Consumer Surplus, Hospital Profit, NHI Hospital
Reimbursement, Total Coupon Cost, and Total NHI Expenditure are in millions of NTD; Avg. Patient-Paid Price is
in thousands of NTD; Portfolio Modification and DES Usage Rates are percentages.

direct coupon costs (∼3.5–4.0 million NTD), representing less than 10% of baseline spending. This

targeted approach minimizes leakage to infra-marginal consumers, though its inability to stimulate

broader market-wide innovation highlights the limits of purely demand-side remedies.

6 Conclusion

This paper examines how hospital intermediaries shape the diffusion of medical innovations in Tai-

wan’s drug-eluting stent market. Our structural analysis reveals that market forces alone cannot

resolve the fundamental trade-off between static efficiency and dynamic adoption. While com-

petition effectively disciplines prices, it simultaneously erodes the surplus required to incentivize

hospitals to adopt frontier technologies. Conversely, concentrated markets facilitate technology

diffusion through rent extraction but at the cost of higher prices and reduced consumer surplus.

Our counterfactual simulations demonstrate that selective contracting offers a promising path-

way to resolve this tension. By leveraging exclusivity to align manufacturer and hospital incentives,

this policy can achieve a “quadruple-win”—benefiting patients, hospitals, contracted manufactur-

ers, and the government. However, the feasibility of such outcomes is contingent on market struc-
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ture: the parameter space for a “quadruple-win” shrinks significantly in competitive markets, where

the scarcity of exclusivity rents limits the policy’s leverage. This finding underscores that vertical

coordination mechanisms are most effective when they can reallocate existing rents rather than

trying to create them from scratch.

Complementary interventions reveal distinct limitations. Targeted patient coupons effectively

mitigate socioeconomic disparities in access without distorting market prices, yet they fail to stim-

ulate broader technology adoption (the extensive margin) due to the high fixed costs of portfolio

modification. Similarly, reimbursement rate adjustments across all DES models exhibit heteroge-

neous pass-through, with competitive markets responding more elastically than concentrated ones.

These results highlight that no single instrument is a panacea; optimal policy requires a portfolio

approach that matches instruments to specific market frictions.

These findings have broader implications for healthcare markets where intermediaries control

technology access. Traditional policy approaches focusing solely on upstream R&D incentives or

downstream competition prove insufficient when hospitals act as strategic gatekeepers. Effective

policy must recognize this intermediation role and align hospital incentives with social objectives.

Future research should explore several extensions: incorporating dynamic considerations of how

current adoption affects future innovation by manufacturers, examining heterogeneous hospital

objectives beyond profit maximization, and testing the generalizability across different medical

technologies and healthcare systems. As healthcare costs continue rising globally, understanding

how intermediaries influence the diffusion-affordability trade-off becomes increasingly critical for

policy design.
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Appendix A Details on Equilibrium Computation

This appendix details the computational procedure for counterfactual equilibria. The algorithm

solves a two-stage game each period: hospitals first adjust portfolios, then compete in prices. This

sequential structure captures the distinction between long-run technology investments and short-

run pricing decisions.

Let Mht denote hospital h’s portfolio in period t, Mt the market-wide portfolio profile, and

P(Mt) the Nash equilibrium prices given portfolios. Hospital payoffs are πht(·) net of variable

costs, with fixed adjustment costs C(Mht,Mh,t−1) for portfolio changes. The algorithm proceeds

via iterated best responses until convergence, as detailed in Algorithm 1.

Algorithm 1 (Counterfactual Equilibrium Simulation).

1. Initialization for period t. At the beginning of period t, each hospital observes the simulated

portfolios and prices from period t− 1. For the initial iteration (s = 0), set each hospital h’s

portfolio equal to its previous-period portfolio:

M
(0)
ht = Mh,t−1.

2. Iterative best responses in portfolios. For iteration s ≥ 1, consider hospitals sequentially.

For a given hospital h, take other hospitals’ portfolios from iteration s−1, denoted by M(s−1)
t ,

and evaluate each feasible portfolio M for h by:

(a) Solving the pricing subproblem given the candidate profile
(
M,M(s−1)

t

)
to obtain the

vector of equilibrium prices

P
(
M,M(s−1)

t

)
.

(b) Computing hospital h’s operating payoff at those prices,

πht

(
M,P

(
M,M(s−1)

t

)
;M(s−1)

t

)
.
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(c) Subtracting the fixed adjustment cost relative to period t− 1 to form net payoff,

πht

(
M,P

(
M,M(s−1)

t

)
;M(s−1)

t

)
− C

(
M,Mh,t−1

)
.

Update hospital h’s portfolio to the maximizer,

M
(s)
ht ∈ argmax

M

{
πht

(
M,P

(
M,M(s−1)

t

)
;M(s−1)

t

)
− C

(
M,Mh,t−1

)}
.

After all hospitals have updated in iteration s, denote the resulting portfolio profile by M(s)
t .

If M(s)
t = M(s−1)

t , declare convergence for period t and proceed. Otherwise, continue to

iteration s+ 1.

3. Finalize the period-t outcome. The converged profile Mt and the associated equilibrium

prices P(Mt) constitute the simulated market outcome for period t.

4. Advance to period t+1. Use Mt as the starting point for period t+1 and repeat the steps

above until the final period.

When the best-response procedure cycles rather than converging, we randomly select from the

cycling portfolios as the equilibrium outcome. To ensure robustness, we average results across five

independent simulation runs with varying initial conditions.

Appendix B Willingness to Pay and Willingness to Travel Calcu-

lation

This appendix quantifies patients’ valuation of technological innovation through willingness to pay

(WTP) and willingness to travel (WTT) measures. Using our demand estimates, we translate the

utility gain from accessing newest-generation technology into monetary and distance equivalents

that inform the welfare analysis in the main text.

Following standard discrete choice theory, WTP for the newest-generation attribute equals the

ratio of its marginal utility to the marginal utility of income (negative of the price coefficient):

WTPnewest,i = −β2i
β5i
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where β2i captures patient i’s preference for newest-generation technology and β5i is the price

sensitivity parameter. Both coefficients vary with patient characteristics through the interaction

terms estimated in Table 3, Column 4.

For the average patient in our sample, we compute WTP by evaluating these coefficients at the

sample means (Charlson Index: 0.915, Income category: 1.007, Male: 0.766, Age: 65.304):

WTPavg = − 0.636 + (−0.029× 0.915) + (−0.175× 1.007) + (0.040× 0.766) + (0.001× 65.304)

−0.025 + (−0.004× 0.915) + (0.004× 1.007) + (−0.004× 0.766) + (−0.001× 65.304)

(8)

This calculation yields a WTP of approximately 5.69 thousand NTD, indicating that the typical

patient values access to the newest generation at nearly 10% of the average DES price.

Analogously, WTT measures the additional distance a patient would travel to access newest-

generation technology:

WTTnewest,i = −β2i
β3i

where β3i represents the disutility from travel distance. At sample means:

WTTavg = − 0.636 + (−0.029× 0.915) + (−0.175× 1.007) + (0.040× 0.766) + (0.001× 65.304)

−0.095 + (0.005× 0.915) + (0.026× 1.007) + (−0.009× 0.766) + (0.0001× 65.304)

(9)

This yields approximately 5.03 kilometers, a substantial distance given the dense hospital network

in the Taipei metropolitan area.

These valuations reveal strong patient preferences for innovation that create powerful adoption

incentives on the supply side. The magnitude of these preferences helps explain why hospitals

invest in costly portfolio upgrades despite the fixed costs documented in our supply estimates, and

why selective contracting policies that restrict access to certain innovations generate substantial

welfare losses for excluded patients.

Appendix C Demand Elasticity Calculation

This appendix details the methodology for computing demand elasticities and documents the sub-

stantial heterogeneity that shapes our welfare conclusions. We derive individual-specific own-price

elasticities for each DES alternative using the mixed logit parameter estimates reported in Table 3.
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Given our linear price specification in the utility function, the own-price elasticity for individual

i considering product j at time t takes the standard logit form:

ηijt = βp
i · pjt · (1− P̂ijt) (10)

where pjt denotes the out-of-pocket payment in thousand NTD, P̂ijt represents the predicted choice

probability from our demand model, and βp
i captures the individual-specific price sensitivity incor-

porating observed heterogeneity:

βp
i = βp

0 + βp
1 · Charlsoni + βp

2 · Incomei + βp
3 ·Malei + βp

4 ·Agei (11)

The empirical distribution of calculated elasticities demonstrates uniformly elastic demand

throughout the market. As illustrated in Figure A.1, individual elasticity values cluster primarily

within the −3 to −1 range, with the mode occurring around −2. Such pronounced price responsive-

ness stems from the significant co-payments required under Taiwan’s supplementary reimbursement

framework, where patients bear the incremental cost above the base reimbursement rate.

Substantial heterogeneity emerges along both product and patient dimensions. Table A.1 reveals

systematic variation across manufacturers, with Cordis products exhibiting markedly higher price

sensitivity (mean elasticity of −2.31) relative to established market leaders such as Abbott and

Medtronic (both approximating−2.0). These differential elasticity patterns illuminate why selective

contracting arrangements generate asymmetric welfare effects across manufacturers, with higher-

elasticity brands experiencing more pronounced quantity responses to exclusion.

Patient-level heterogeneity proves even more striking. The comprehensive evidence in Tables

A.2, A.3, and A.4 establishes clear gradients in price responsiveness: elasticity magnitudes in-

crease monotonically with comorbidity burden (Charlson Index) and patient age, while exhibit-

ing a strong negative correlation with income level. Most notably, patients in the lowest income

decile display price sensitivities approximately 50% greater than their highest-income counterparts,

highlighting the distributional burden imposed by the current cost-sharing arrangement. This sys-

tematic heterogeneity in price response provides the economic foundation for understanding how

carefully designed targeted interventions—whether through selective contracting or patient-specific
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Notes: The histogram shows the distribution of individual patient-level own-price elasticities for
DES. Most elasticity estimates fall within the -3 to -1 range, centered around a mean of
approximately -2, and the distribution is fairly symmetric.

subsidies—can simultaneously enhance allocative efficiency and improve equity outcomes, as our

counterfactual analyses demonstrate.

Beyond brand-level differences, the analysis reveals systematic variations in price sensitivity

correlated with patient-specific characteristics. As detailed in Tables A.2, A.3, and A.4, patients

with greater health burdens, those with lower incomes, males, and older individuals tend to exhibit

more elastic demand. Specifically, Table A.2 shows a clear positive relationship between the Charl-

son Comorbidity Index and the magnitude of price elasticity, indicating that patients with more

comorbidities are more responsive to price changes. Similarly, Table A.3 demonstrates that patients

in lower income brackets are, on average, more price-sensitive than their higher-income counter-

parts. Finally, Table A.4 indicates that males exhibit slightly higher price sensitivity compared

to females, and that price elasticity tends to increase with patient age. These demographic and

health-related patterns in price responsiveness are important for understanding the distributional

consequences of pricing and reimbursement policies.
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Table A.1: Elasticity by Brand

Brand Mean Elasticity Std. Dev. Count

Abbott -1.998 0.376 7,206
Bio Sensor -1.964 0.365 2,002
Cordis -2.306 0.313 3,004
Medtronic -2.021 0.298 9,083
OTHER -1.873 0.302 2,404
Boston Scientific -1.861 0.395 5,662

Notes: The table reports mean own-price elasticity, standard deviation, and observation counts
for each DES brand. Cordis exhibits the highest average price sensitivity (mean elasticity of
-2.306), while Boston Scientific and OTHER have the least sensitive demand on average.

Table A.2: Elasticity by Charlson Index

Charlson Index Mean Elasticity Count

0 -1.840 11,766
1 -2.038 13,000
2 -2.243 3,700
3 -2.422 681
4 -2.577 162
5 -2.736 52

Notes: The table shows mean own-price elasticity and patient counts grouped by Charlson
Comorbidity Index. Price sensitivity increases monotonically with the Charlson Index, indicating
that patients with more comorbidities are more responsive to price changes.

Table A.3: Elasticity by Income Category

Income Category Mean Elasticity Count

1 (Lowest) -2.106 2,164
2 -2.077 2,540
3 -2.061 2,599
4 -2.038 3,098
5 -2.032 3,042
6 -2.000 3,017
7 -2.024 3,044
8 -1.947 3,000
9 -1.897 3,287
10 (Highest) -1.876 3,570

Notes: This table presents mean own-price elasticity and patient counts across ten income
categories. Patients in the lowest income category exhibit the highest price sensitivity (elasticity
of -2.106), with a general trend of decreasing sensitivity as income rises.
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Table A.4: Elasticity by Gender and Age Quartile

Panel A: By Gender

Gender Mean Elasticity Count

Female -1.910 6,758
Male -2.024 22,603

Panel B: By Age Quartile

Age Group Mean Elasticity Count

Quartile 1 -1.893 7,026
Quartile 2 -1.966 7,891
Quartile 3 -2.035 7,760
Quartile 4 -2.103 6,684

Notes: Panel A reports mean elasticity by gender, showing males (-2.024) are slightly more
price-sensitive than females (-1.910). Panel B shows mean elasticity by age quartile, indicating
that price sensitivity increases with age, with the oldest quartile being the most price-sensitive
(-2.103).
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