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Abstract

How do schools vary in assigning grades to students for university admissions rel-

ative to a standardized exam regime where teachers have no grading discretion? I

exploit a natural experiment in the United Kingdom during the COVID-19 pandemic,

when teacher-assigned grades replaced in-person standardized A-level exams. I provide

evidence of differing grading policies across schools, shaped by school type and insti-

tutional quality. These policies followed persistent patterns across consecutive years,

though schools with stricter standards in the first year revised them downward in the

second. Within schools, grades were assigned differently by students’ gender, race, and

economic affluence, with patterns varying across school quality tiers. Despite the re-

gressive tendencies between student background and grade improvements, the impact of

grade inflation on application success into selective universities was limited for students

from disadvantaged backgrounds. Overall, the findings highlight how non-standardized

assessments shifted grade distributions but had limited effects on diversifying selective

universities.
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”After the government’s announcement that 2021’s A-levels and GCSEs [exams]

would be cancelled, senior management at NLCS were openly excited at the pos-

sibility of obtaining ’our best grades yet’ and the allure of this idea propelled them

to make decisions that had little integrity, even though they appeared to be within

the rules.”

Anonymous tip from North London Collegiate School

1 Introduction

Policymakers’ decisions over grading regimes shape how students sort across universities,

carrying broader implications for the entire higher-education market. Each grading regime

distinguishes itself by heterogeneity in grading standards, which in turn shapes how different

groups of students gain access to universities of varying selectivity. Previous studies discuss

how changes in students’ final grades trigger responses from both students and universities:

students may adjust their application behavior (Hoxby and Avery (2012), Dynarski et al.

(2022)), while universities may revise their selection criteria (Bleemer (2023), Arcidiacono

et al. (2023)). Furthermore, shifts in student allocation across universities spill over into

adjacent markets, including secondary education (Cullen et al. (2013)) and the labor market

(Chetty et al. (2020), Bleemer (2021), Black et al. (2023)). However, we know little about

the behavioral responses of schools through their grading policies when governments transfer

admission-deciding authority from central exam boards to schools.

I study how schools differ in their grading policies on qualifications used in university ad-

missions by exploiting a natural experiment in the UK where teacher-assigned grades solely

determined admissions outcomes. During the COVID-19 pandemic, the British government

canceled the upcoming centrally graded standardized exams (e.g., A-levels) and relied on

schools to provide replacement grades. With minimal guidance on grading standards or as-

signment procedures, schools exercised broad discretion in determining students’ grades. The
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TAG policy persisted for two consecutive years, but adjustments in applications were limited

because the announcement came after students had completed their A-level coursework and

submitted most university applications. Despite the government’s effort to maintain stability

in the admissions system, the grade distribution shifted sharply upward: the share of top

grades rose by 12 percentage points in 2020 and by 20 percentage points in 2021 relative to

2019. This unintended change substantially and unevenly lowered admission barriers across

the student population.

While the TAG policy transferred grading authority from central exam boards to schools,

universities had limited control over admission decisions. In the British admissions system,

students and universities agree in advance—prior to A-level exams—on the grade conditions

required to secure a place.1 Following the upward shift in the overall grade distribution,

many applicants met their grade conditions, leading to an unprecedented inflow of students

into universities (Figure A2). Admission officers had little ability to manage this surge,

as pre-determined offer contracts required universities to accept all students who met their

grade conditions.

Using administrative data on the universe of A-level entries from nearly 4,000 schools

in the UK, I estimate the grading policies adopted by each school during the pandemic,

and examine their effects on placement outcomes and the resulting compositional shift of

students at universities. I identify grading policies by measuring the gap in final grades

between pandemic cohorts and their immediate pre-pandemic counterparts. However, the

difference in grades could reflect pre-existing trends rather than changes in grading methods.

The historical Comparable Standards approach used by A-level exam boards precludes this

concern, as A-level examiners set grade boundaries to preserve the historical relationship be-

tween students’ prior attainment on the national GCSE exams—taken at age 16—and their

subsequent A-level performance. This calibration keeps the relationship between GCSE per-

formance and A-level outcomes stable over time, so deviations observed during the pandemic

1Students’ A-level outcomes, combined with their pre-submitted ranking of university preferences, me-
chanically determine the final match between applicants and programs.
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reflect changes caused by TAG.

I provide three sets of new results. First, I find substantial heterogeneity in how schools

loosened their grading policies, with higher degrees of inflation concentrated in privately

funded schools and schools with historically lower average performance on standardized

A-level exams. I find a nearly 13-percentage-point gap in the assignment of top grades

between schools in the bottom 10th percentile of quality and those in the top 10th percentile.

However, this gap hides the real intensity of grade inflation across schools, since students at

high-performing schools already had higher baseline chances of receiving top grades. After

accounting for the limited headroom in raising grades across schools, inflation proved larger

among high-performing schools than elsewhere. Additionally, I find that privately funded

institutions (e.g. Independent schools) exhibited greater grade inflation across all levels of

school quality by significantly inflating grades in the second year, suggesting that private

institutions rapidly learned about and took advantage of the new environment. Most schools

maintained similar levels of grading policies across the two consecutive years, but I observe

a downward revision of grading standards in 2021 among schools that had stricter grading

policies in the first year.

Secondly, I find that schools’ grading policies incorporated students’ academic prepared-

ness, demographic characteristics, and household affluence, with the magnitude of these

effects differing across subject areas. I find that cross-schools differences in grading poli-

cies were largely explained by grading patterns in non-quantitative subject areas, where the

subject content naturally relied on graders’ discretion for assessment. Turning to grading

patterns within a course in 2020, I find that academically well-prepared students received

higher grades, as did whites and females students, and those with parents in higher-paying

occupations.2 Overall, the expansion of grades widened attainment gaps within classrooms,

but the extent of this widening depended on students’ demographic and economic advan-

2I also find similar results on student affluence and demographics for 2021, however such results could be
influenced by the learning loss due to school closures and remote learning during COVID.
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tage—factors that teachers, consciously or not, incorporated into their grading.

Thirdly, I show that grading policies increased students’ likelihood of admission and

shifted the composition of university cohorts away from their pre-pandemic mix. The varia-

tion in grading leniency across schools generated uneven flows of students from schools into

universities: students from more leniently graded schools were significantly more likely to

secure places at their top-choice universities than those from stricter schools. In particu-

lar, grading policies at independent schools disproportionately improved the placement rate

of their students compared with those of academically similar students at publicly funded

schools. Turning to university composition, looser grading policies reduced the average aca-

demic preparedness, parental income level, and other demographic indicators of incoming

cohorts. A 10 percent increase in cohort size lowered the average GCSE Mathematics and

English Literature scores of entrants by 0.5 and 0.4 standard deviations, respectively, and

decreased the average parental income score by 0.18 standard deviations. These effects

were strongest at selective universities, where larger and more heterogeneous applicant pools

amplified the compositional shifts among admitted students.

My results contribute to the broader literature on how admission policies shape the com-

position of students across universities. Previous studies have examined how external inter-

ventions can expand access for students from underrepresented backgrounds to more selective

institutions (Dynarski (2003),Arcidiacono (2005),Epple et al. (2006), Bettinger et al. (2012),

Hoxby and Avery (2012), Bleemer (2021), Dynarski et al. (2022),Chetty et al. (2023), Dessein

et al. (2025)). The COVID-19 pandemic created an unintended opportunity to examine how

the removal of standardized testing changed university composition. My results provide the

first documentation of this episode. I find that, at least in the UK, the policy narrowed the

qualification gap between students from contrasting backgrounds, but had limited effects on

the upward mobility of disadvantaged students into more selective universities. The grading

regime change mainly benefited students with lower baseline probabilities of admission who

nonetheless applied to selective institutions and were accepted. Consequently, the average
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academic preparedness of entrants declined at selective institutions, while diversity increased

along other dimensions such as socioeconomic status and parental income.

My results also contribute to the literature on grade inflation in teacher-assessed (non-

standardized) evaluations. Many educational institutions show a persistent upward drift in

students’ average grades, which weakens employers’ and admissions officers’ ability to distin-

guish candidates by academic competence (Bar et al. (2009), Bleemer (2020), Denning et al.

(2023), Denning et al. (2022)). I document a deterioration in aggregate grading standards

over the two consecutive pandemic years, consistent with theories suggesting that graders

strategically adjust to others’ grading decisions, thereby depreciating the informational value

of grades as a signal (Chan et al. (2007), Rojstaczer and Healy (2012), Bleemer (2020)). I

extend this literature by showing that inflation in the first year shaped inflation in the next:

schools that graded more strictly initially tended to relax their standards, while those with

looser grading maintained their approach.

Finally, my results contribute to the large empirical literature on grading biases. Pre-

vious literature has documented grading bias across demographic groups, including gender

(Lavy (2009), Carlana (2019)), ethnicity (Burgess and Greaves (2013), Botelho et al. (2015),

Alesina et al. (2024)), economic affluence (Hanna and Linden (2012)), and classroom be-

havior (Ferman and Fontes (2022), Diamond and Persson (2016)). My results support most

of the findings, as schools’ grading policies favored female, white, and economically affluent

students more than others. My paper provides empirical evidence that grading biases across

student groups vary across schools according to their institutional features. Earlier work on

school governance and misreporting by Figlio and Lucas (2004) and Neal and Schanzenbach

(2008) shows that private institutions and schools near accountability thresholds tend to

misreport student grades. My paper highlights how institutional features of schools shape

grading biases across different student groups, deepening our understanding of how such

biases arise.

The paper is organized as follows: Section 2 provides the institutional background of the

5



higher education system in the UK as well as the details of the policy set in place during the

pandemic. Section 3 describes the data source I use in the analysis. Section 4 presents the

empirical model and discuss the validity of the estimates along with the institutional details.

Section 5 presents the results. Section 6 discuss the results with the literature. Section 7

concludes with policy discussions.

2 UK’s higher education system and the TAG policy

2.1 A-Levels

A-levels are the terminal, standardized qualifications taken at the end of upper-secondary

education (age 16–18) and form the principal basis for university admission (Figure 1).

Applicants may apply to up to five courses via UCAS, typically by a January deadline;

because the examinations are held after applications close, applications are supported by

teacher-predicted grades. Universities then issue conditional offers (usually by May) that

specify the grades required for admission. Applicants nominate a firm and an insurance

choice; these choices establish the binding order in which offers are accepted.

Final placement is determined by the centrally awarded A-level grades. A-level scripts are

marked by examination boards: markers are blind to candidates’ identities and to application

information, and letter grades are assigned according to standardised grade boundaries.

Once actual results are released in August, UCAS assigns students according to the ranking

they submitted and the conditions of the conditional offers (the firm choice is accepted if its

conditions are met; otherwise the insurance choice may be used; failing both, the student can

enter Clearing). Because grading and placement follow this centralised, rule-based procedure,

teachers and schools have no formal discretion over the final marks or over the contractual

placement outcome.

A-level scripts are marked centrally by examination boards; markers are blind to can-

didates’ identities and demographic attributes. Letter grades are awarded according to

6



grade boundaries that examiners set annually. Those boundaries are calibrated with refer-

ence to historical performance and other standardisation procedures so that the difficulty

of achieving a given grade is broadly comparable across years. We confirm this property

empirically by predicting A-level attainment from pre-treatment observables (here, GCSE

mathematics and English) and comparing the conditional expectation of A-level outcomes

across non-COVID years (Figure 2): visual inspection of binned conditional expectation

functions, pooled regressions with year × predicted-score interactions, and formal equiva-

lence tests within narrow predicted-score bins reveal no meaningful shifts in the conditional

means. Complementary checks — subject-by-exam-board splits — produce the same con-

clusion, supporting the claim that, conditional on prior attainment, A-level outcomes are

stable across non-COVID cohorts.

Subject choice and course provision vary across the system. There are well over 100

distinct A-level subjects, and schools and sixth-form colleges decide which subjects to offer

according to local demand and resources. Some pupils remain at their secondary school for

sixth-form study, while others transfer to separate sixth-form or further-education colleges;

this spatial and institutional dispersion affects which subjects pupils can take. Universities

often specify required subjects for particular courses, and highly selective institutions tend

to favour so-called “facilitating” subjects; independent schools frequently encourage uptake

of these subjects and invest in resources (e.g. specialised equipment and teaching) to support

them.

2.2 University application system in the UK

The UK uses a centralised admissions system (UCAS) to match applicants to university

courses. Applicants may apply to up to five courses through UCAS; universities reply—typically

before students sit their A-levels—with acceptances, rejections, or conditional offers that

specify the grades required for admission. After receiving offers, applicants must choose two

to keep: a firm choice and an insurance choice, and withdraw any remaining offers. These
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ranked choices determine allocation once actual A-level results are released: if the firm offer’s

conditions are met the firm place is confirmed, otherwise the insurance offer may be used;

failing both, the applicant may enter Clearing to seek an alternative place.

2.3 The British Education Sector for Higher Education

The UK has on average 3,300 university programs per year, matching with on average 570,000

students per a year. 3,500 secondary schools provide students with education to prepare for

exams.

British secondary schools are mostly run publicly. 93% of students participate in pub-

lic schools and only 7% in private schools ((Table A1)). Private schools, equally known

as independent schools, run mainly on tuition collected from their pupils’ parents. Past

literature documents that attendants of independent schools are often children with rich

parents. Henseke et al (2021) finds that 92 percent of the students attending independent

schools belong to households in the top 10th decile group of the income distribution. 90% of

the students in independent schools proceed to higher education after graduation, with 4%

attending Oxford of Cambridge and 52% attending one of the top 25th ranked universities.

Students from independent schools apply to better universities more than students from pub-

lic schools. Almost 85% of the students apply to at least one university of the Russell group,

while 45% of the students from public schools apply. Independent school students apply less

to lower-tier schools than students from public schools. Almost 40% of the students apply to

lower-tier schools, while 80% of the students from public schools apply to at least one lower

tier school. Independent school students receive more offer of admission from Russell Group

schools than public schools. 80% of students from independent schools receive at least one

offer from a Russell Group school.

There are multiple types of public school in the UK higher education sector (Table A1).

The most common type of schools are academy schools that consists of 35% of the total

number of schools. Academy schools provide education to pupils living within their local
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authority jurisdiction. As an exception, grammar schools select students based on their

performance on a previous national exam (year 11 ).

2.4 COVID-19 pandemic

The COVID-19 pandemic led the UK authorities to cancel in-person A-level examinations

and substitute centrally-marked exams with teacher-based assessments. For the 2020 cohort

this change was announced on 18 March 2020, and for the 2021 cohort on 6 January 2021.

In place of externally marked scripts, teachers were asked to submit centre-assessed grades

for their pupils, drawing on their knowledge of each student and the student’s prior class-

room performance and exam history. Exam boards instructed centres to review and, where

necessary, lower implausibly high submissions before finalising their returns; nonetheless, the

grades submitted by schools frequently stood as the final awards and were used in place of

the usual centrally-marked A-level marks.

Crucially, both announcements came after applications had been submitted and universi-

ties had issued responses (acceptances, rejections, conditional offers or unconditional offers).

The teacher-based grades therefore stood in for the usual, centrally-awarded A-level marks

used to satisfy conditional offers and determine final placements. At that point universities

had little practical means to control the incoming cohort — their main lever was to tighten

conditional offers (raise grade requirements) but many institutions were reluctant to do so

for fear of deterring applicants during the pandemic. Importantly, students had already

nominated a firm and an insurance choice before teachers assigned centre-assessed grades,

so final placements followed the pre-submitted ranking together with the teacher-submitted

grades rather than any subsequent adjustment by schools or universities.

2.5 Consequence of the method change

The immediate consequence of the method change was substantial grade inflation (Figure 1).

The share of students awarded A* or A rose by roughly 12 percentage points in 2020 and
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by about 20 percentage points in 2021 relative to pre-pandemic cohorts. Importantly, the

shift was not confined to the top tail: the entire grade distribution moved (see Figure 1),

with noticeable changes across middle and lower bands (C–E) as well as at A/A*. In short,

teacher-based assessment redistributed mass across multiple grade bands rather than merely

increasing top grades.

Those inflated grades translated directly into larger incoming cohorts because universities

were obliged to honour conditional offers for students who met the stated requirements. Fig-

ures A2 and A2a document this over-acceptance in both 2020 and 2021. The expansion was

concentrated among more selective programmes: the most competitive programmes—those

with low pre-pandemic acceptance rates—experienced the largest proportional increases in

cohort size, with some programmes almost doubling intake despite their typically small pre-

pandemic capacities.

Figure A2a shows that a substantial part of the expansion came from students being

placed at their firm choice. In particular, programmes that lay below the 30th percentile of

pre-pandemic acceptance rates increased their intake by more than twice the pre-pandemic

average, indicating that the grade shifts interacted with the existing selectivity hierarchy to

produce outsized growth at the top end of the market.

3 Data

I use administrative data on university application in the UK (UCAS) to recover the grade

distribution of students with detailed demographic information of the students and basic

attributes of schools.

The UCAS data includes the A-level grade that applicants submitted to the university,

as well as the student background information. As UCAS is the single centralized clearing

house of university applications in the UK, UCAS handles the content of the application, in-

cluding the A-level grades as well the other qualification that the applicant submits including
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their GCSE scores, their AS level scores, and third party qualifications as the International

Baccalaureate. In addition to the qualifications, applicants also submit their background

demographics information such as their gender, race, socio economic status, and the in-

come deprivation index scores of their residential area. Students also submit their school

of attendance in addition to the governance type of the school. My dataset covers 2007 to

2021.

The UCAS dataset covers a wide range of qualifications, including the grades that uni-

versities use for filtering applicants into acceptance, as well as the record of the applicants

past qualifications. Many universities in the UK request basic academic certifications from

their applicants despite not using the results of the past qualification for deciding the reply

to the applicants.

Despite some universities and students match outside of the UCAS system, a majority of

students use the UCAS system to apply to universities. The UCAS system also manages the

match between foreign students and British universities. As many British universities accept

the use of internationally recognized standardized exam as certificates for acceptance, the

UCAS data also includes applications from foreign applicants as well as their demographics

and their grades in the foreign exams.

Lastly, the UCAS data also includes application related information, namely their firm/insurance

choice, as well as their acceptance.

Although the UCAS data covers the entire university applicant that used UCAS to apply

to university, their coverage is not comprehensive of the entire A-levels exam outcome as a

subset of students do not apply to university, therefore the students grade is missing from

the UCAS data.
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4 Empirical Model

4.1 Empirical Specification and Estimation

I estimate the changes in grade assignment patterns between the pandemic and non-pandemic

years through a binary choice model. Namely, I estimate

Yi,j,k,t = 1{Y ∗
i,j,k,t ≥ 0}.

Y ∗
i,j,k,t = αj + Xiη + γk +

∑
τ∈{2020,2021}

Dτ × (∆αj,τ + Xi∆ητ + ∆γk,τ ) , (1)

where i denotes a student, j denotes the school, k denotes the exam subject, and t denotes

a year. The outcome variable Yi,j,k,t is a binary variable for student i’s exam outcome at year

t measuring if he/she received a top grade (A or A*). αj is the school fixed effects. Xi is a

vector of student level controls (Previous scores in a national standardized exam (GCSE),

gender, race, and socio-economic group). Dτ is a dummy variable for the treatment indicator,

which distinguishes between both 2020 and 2021. ∆αj,τ ,∆ητ ,∆γk,τ measures the coefficient

on the interaction term between the school fixed effect and the treatment year indicator.

Equation (1) identifies the causal effect of the grading method across various student

backgrounds by measuring the difference in the probability in receiving a top grade between

academically and demographically similar students that both attended the same school but

varied only in their year in taking the A-levels. For regression of Equation (1) to identify the

causal effect, one must assure that no unobserved factors are influencing the difference in

the final grade between the pair of students. A primary concern is differences in underlying

trends in the academic performance of students a school, which would confound the treatment

effect with the unobserved trend (E[ℓi,j,k,t|Xt<2020] = E[ℓi,j,k,t′ |Xt′<2020])).

I control for the unobserved trends across schools and various student backgrounds in

their performance in the A-level before the pandemic by leveraging the deterministic grading
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system of the A-level in the pre-pandemic periods. To avoid fluctuating grading standards

across cohorts, the grade boundaries for the A-levels are centrally determined by a statistical

relationship between the test-takers grades in their national standardized test results that all

UK students take when entering secondary school (the GCSE ). Namely, the central graders

set the grade boundaries so that the expected probability of a student to receive a certain

grades is preserved to be constant in any years.

To establish the stationarity of the overall grade distribution of the A-levels before the

pandemic years, I conduct a series of stationarity tests. I first estimate the conditional

mean probability of a student receiving an top grade (A or A*) by estimating the following

equation.

Yi,t = β0 +
tmax∑

τ=tmin
τ ̸=t0

βτ 1{t = τ}+X ′
iγ + εi,t,

β denotes the conditional average probability of a student to achieve an A or A* in their

A-level exams.

Figure 2 plots the conditional average probabilities from 2015 to 2021. The difference

in the conditional average probabilities is statistically insignificant. The difference between

mean probability of obtaining top grades (A/A*) between 2015 to 2018 are statistically

insignificant from 2019, but increases to 0.5 in the logit model coefficient in in 2020 and 7.0

in 20213. I show how the average probability in receiving top grade is constant up until 2019

for each school types that composes the overall estimate (Figure 3) are all similar to the

probability to the predicted levels in 2019.

Another potential threat to identification is how the student difference in student compo-

sition between the grading method change and before is not affected by the announcement

of the policy. Namely, students changing school of attendance just for the pandemic years

would confound the treatment effects with difference in compositions of students within a

school across years (E[ℓi,j,k,t|Xt<2020] = E[ℓi,j,k,t′ |Xt′<2020]). Any sorting of students across

3The slight increase in the probability of receiving top grades in 2019 is driven by the rescalling of the
GCSE scores that was conducted in 2017.
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schools due to the pandemic is strongly implausible due to the unpredictability of the pan-

demic, as the students had already made their decisions on which schools to attend to prepare

for their A-levels. Table A1 tests for the difference across cohort characteristics between a

pandemic year and a non-pandemic year and finds no significant difference between cohort

characteristics for both years.

Although Equation (1) is robust to underlying pre-trends and unobserved differences in

students characteristics across the treatment dummy, the final concern is that teachers may

take into account how students suffered in their learning experiences during the pandemic

into their grading. Past literature ( Diamond and Persson (2016) , Ferman and Fontes

(2022)) documents how teachers may take into account the exam taking conditions of the

students into the students final grades. The learning disruption is less of a concern for the

2020 samples in my setup as these students had already finished most of their preparation

for the exams, and teachers had immense experience with teaching the students before the

pandemic occurred. To establish that the estimated changes in grades for 2020 is largely due

to grading method changes, I conduct a series of place-bo tests on the results of standardized

foreign exams conducted during the pandemic years. Many UK higher education institutions

allow students to use standardized foreign exams outside the A-level qualifications to allow

foreign students to study at their universities. ?? reports the difference in the average grades

of the non-A-level standardized tests for 2020 against 2019, and it confirms that the learning

loss for the 2020 year cohort was minimal.

However, I can not strongly reject the possibility that the learning loss’s for the 2021

cohorts may confound the effect of grading change with disruptions in the learning environ-

ments due to the shutdown during the pandemic year. Especially, the cross school differences

in grading policies may reflect the differences in learning environment disruptions, as schools

may differed in their ability to compensate for the lack of in-person classes by providing

online courses. Despite the caveats for the school level difference in grading policies, I claim

that the student level estimates are less prone to differences in learning losses across de-
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mographic groups. Equation (1) estimates the differences across demographic groups by

comparing across students sharing the same subject course.

Estimation I estimate the parameters by searching for the set of estimates that maximizes

the joint likelihood function of the observed dependent variable (e.g. students achieving A

or A*). The joint likelihood function is expressed as the following;

L(θ) =
∏
i,j,k,t

[
F (zi,j,k,t)

Yi,j,k,t [1− F (zi,j,k,t)]
1−Yi,j,k,t

]
,

where,

zi,j,k,t = αj +Xiη + γk +
∑

τ∈{2020,2021}

Dτ (∆αj,τ +Xi∆ητ +∆γk,τ ) ,

and F denotes the cumulative density function of the logistic function. I estimate the

parameters that maximize the logged function;

ℓ(θ) =
∑
i,j,k,t

Yi,j,k,t logF (zi,j,k,t) + (1− Yi,j,k,t) log [1− F (zi,j,k,t)] .

I take an empirical Bayes approach (Walters (2024), ?) to correct for the estimation

noise related to the school fixed effects αj,∆αj. I assume that the school effects are drawn

from a common distribution with separate variance parameters.

αj ∼ N (0, σ2
α), ∆αj,τ ∼ N (0, σ2

∆α,τ )

σ2
α, σ

2
∆α,τ ) measures the variance of the common distribution. Following ? and ? I correct

the school level estimators with the following formula;

α̂EB
j =

σ̂2
α

σ̂2
α + ŜE(α̂j) 2

α̂j, ∆̂α
EB

j,τ =
σ̂2
∆α,τ

σ̂2
∆α,τ + ŜE(∆̂αj,τ ) 2

∆̂αj,τ ,

σ̂2
∆α,τ denotes the estimate of the variance of the common distribution, which I calculate as
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the following.

σ̂2
∆α,τ = max

{
0, Varj

(
∆̂αj,τ

)
− SE

(
∆̂αj,τ

)2}
.

ŜE(∆̂αj,τ )
2 measures the estimated sampling variance of the school fixed effects4.

School Specific grading pattern of students Equation (1) estimates the grading pattens

across demographic groups by estimating the average difference in students tendency to

receiving a top grade over schools. I extend the model into Equation (2) so that I estimate

grading patterns across demographic groups seperatly for each schools. Namely I augment

the interaction term Xi∆ητ so that the treatment response to observed demographics is

school-specific. Let G index a set of demographic groups (e.g. gender, race, SES bins) and

denote by di,g the indicator (or normalized score) for student i belonging to group g ∈ G.

I replace the common demographic treatment vector ∆ητ with school-by-group parameters

{∆ηg,j,τ : g ∈ G, j ∈ J } and write the latent index as

zi,j,k,t = αj +Xiη + γk +
∑

τ∈{2020,2021}

Dτ

(
∆αj,τ +

∑
g∈G

di,g ∆ηg,j,τ + ∆γk,τ

)
, (2)

so that the treatment effect on students in demographic group g at school j in year τ is

captured by ∆ηg,j,τ . The binary outcome and likelihood remain as in the main specification

with F the logistic CDF.

Because the number of school–group parameters can be large and some school–group cells

have few observations, I impose a hierarchical (partial-pooling) prior on the school–specific

demographic effects and estimate this empirically (empirical Bayes). Concretely,

∆ηg,j,τ ∼ N
(
µg,τ , σ

2
g,τ

)
, µg,τ ∈ R, σ2

g,τ ≥ 0,

4I solve for the estimates that maximizes the likelihood function with a quasi-Newton approach. As the
sample size and the number of parameters is large, a standard Newton-Raphson solver does not scale well,
as the calculation of the Hessian matrix takes time. Instead the L-BFGS method, which is a quasi-Newton
approach, approximates the Hessian using past information that reduces the computation time significantly
(?). I derive the standard errors of the estimates by clustering at the school year level.
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so that estimates for small or noisy cells are shrunk toward the group-level mean µg,τ . The

empirical Bayes shrinkage estimator has the closed form (posterior mean under Gaussian

approximations)

∆̂η
EB

g,j,τ = wg,j,τ ∆̂ηg,j,τ +
(
1− wg,j,τ

)
µ̂g,τ , wg,j,τ =

σ̂2
g,τ

σ̂2
g,τ + ŜE

(
∆̂ηg,j,τ

)2 ,
where ∆̂ηg,j,τ and ŜE(∆̂ηg,j,τ ) are the raw (maximum likelihood) estimates and their sampling

standard errors, and µ̂g,τ , σ̂
2
g,τ are estimated from the cross-school empirical distribution. As

before, I estimate the variance component by the usual nonnegative deconvolution

σ̂2
g,τ = max

{
0, Varj

(
∆̂ηg,j,τ

)
− SE

(
∆̂ηg,j,τ

)2}
.

4.2 Discussion on the empirical model

My model is similar to the approach used by Jacob and Levitt (2003) Neal and Schanzenbach

(2008) and Dee et al. (2019) in which researcher leverage the sudden change in grading

policies and use the discrepancy between the predicted grades and the actual grades to

measure the grading bias5. The magnitudes in the grade discrepancies are averaged over

students with different demographics groups and the differences in their magnitudes are

used to assess the demographic group that the teacher favors more than others.

I extend the pre-existing framework for detecting grading biases to schools, which has

been left undone in the literature. Schools often do not share common standardized tests

that allows researchers to compare the grading bias across schools. As the number of schools

in the UK is nearly 4000, I use the methods from the large scale inference literature (Efron

(2010)Walters (2024)) to obtain precise estimates about the grading bias of schools. The

high-dimension statistics literature documents how maximum-likelihood estimators in such

setting often fails to precisely estimate each parameters due to the large number of statistical

5Other papers uses grading systems in which teachers provide grades on the students along side a exter-
nally graded exams (Lavy (2009)Lavy and Sand (2018), Ferman and Fontes (2022)).
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test a single regression conducts, and suggests improving the statistical power of individual

tests by combining the multiple tests to improve the statistical power of each individual

test6. I use the shrinkage models suggested in the high-dimensional statistics literature to

improve the precision of each school level grading leniency estimate7.

I estimate the grade assignment process with a binary choice model rather than using

a linear probability model (Dee et al. (2019)) or an OLS that standardizes the dependent

variable (Lavy (2009)), as my sample varies substantially in their underlying academic abil-

ities. Namely a linear probability model fails to identify the marginal effect of a parameter

when the baseline probability for the sample is near 0 or 1 (Wooldridge (2001)). Students

with a high GCSE score of 9 or students attending elite schools are likely to achieve a high

grade, and a linear probability would fail to identify the effect of the grading method change

on such populations. A non-linear probability model consistently estimates the effect of the

grading policy on the students grades by taking into account the underlying difference in the

success rate for a student to achieve a high grade in the standardized exams. To avoiding

confounding the estimates from the estimation noise from other parameters, I remove schools

with less than 30 students in either 2020 and 2021.

5 Results

5.1 Inflation effect by schools

Figure A3 shows that the degree of grade inflation was higher in lower-quality schools. The

top and bottom panels respectively report the extent of grade inflation for every school in

the UK in 2020 and 2021, by school quality; school quality is measured by the probability

that a nationally median student at the school achieves a top grade. In both 2020 and 2021,

grade inflation was greater in lower-quality schools. A one-unit increase in school quality

6Applications include ?, Chetty et al. (2020), and surveyed in Walters (2024)
7
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— measured by the nationally median student’s probability of receiving a top grade — was

associated with 0.45 and 0.47 percentage-point smaller degrees of grade inflation in 2020 and

2021, respectively (Table A5).

The negative relationship between school quality and the extent of inflation holds after

controlling for students’ underlying probability of receiving a top grade. Because grades

are capped at the top, Equation (1) may fail to identify grade inflation for schools that

already have high probabilities of students receiving top grades: most students in those

schools would obtain top A-level grades regardless of the grading method. To separate

compositional effects from true grade-inflation effects, I re-estimate the inflation using A*

as the dependent variable and additionally interact students’ GCSE scores with the school

indicators. Columns 3 and 4 ofTable A5 report the correlation between school quality and

the extent of inflation for A* and B, respectively. The smaller correlation coefficient for A*

reflects how rarely low-to-mid school assigned A*, which flattens the estimated effect. By

contrast, the coefficient for B is larger in magnitude than that for A, because lowering the

grade threshold increases the pool of schools included in the regression.

I find that schools loosened their grading standards in subjects with less quantitative con-

tent. Figure A15a and Figure A15b report the relationship between school quality and the

extent of grade inflation by subject type. On average, a one-unit increase in school quality

was associated with a 1.5 percentage-point lower probability of receiving a top grade in non-

quantitative subjects and a 0.5 percentage-point lower probability in quantitative subjects

(Table 2). Columns 3 to 6 of Table 2 report regression coefficients using A* and B as depen-

dent variables. The results show that the negative correlation between school quality and

inflation is concentrated in non-quantitative subjects; no statistically significant relationship

appears in quantitative subjects. These findings underscore that subjects which leave more

grading discretion to teachers were the main channels schools used to raise students’ grades.

I provide evidence that privately run schools inflated their pupils’ grades more than other

school types. Section 7 shows a bin-scatter plot comparing major publicly funded schools
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(e.g., academies and state schools) with privately run (independent) schools. Table 1 reports

differences in grading patterns across school types and decomposes those estimates by school

quality. Across the school-quality distribution, independent schools were more likely than

publicly funded schools to assign top grades. Independent schools also adapted fastest to

the new grading regime, increasing the rate of top-grade assignments in 2021 more than any

other school type.

Notably, the difference in inflation between independent and other public schools does

not appear to be driven by selectivity: I find no difference in inflation between grammar

schools (public selective schools) and other public schools (Figure A4). I also find that

sixth-form colleges—schools focused on preparing students for A-levels—experienced lower

degrees of grade inflation in both 2020 and 2021. These differences are not driven by subject

composition or student composition: the degree of grade inflation at sixth-form colleges was

lower than at academies and state schools.

5.2 Persistence and Feedback of Grade Inflation

I estimate persistence in grade inflation across years by regressing 2021 inflation levels on

2020 inflation levels within the same school. Namely, I estimate

∆αj,2021 = ρ∆αj,2020 + εj. (3)

I further decompose persistence by estimating subject-group–level grade inflation. Let

Yi,j,k,t = 1{Y ∗
i,j,k,t ≥ 0}, (4)

20



and model the latent index as

Y ∗
i,j,k,t = αj +Xiη + γk

+
∑

τ∈{2020,2021}

Dτ ×

( ∑
g∈G\{g0}

Gk,g ∆αj,τ,g +Xi∆ητ +∆γk,τ

)
, (5)

where Gk,g is an indicator for whether subject k belongs to group g (e.g., quantitative vs.

non-quantitative).

To study within-school persistence by subject group, I estimate

∆αj,g,2021 = ρsame ∆αj,g,2020 + ρother ∆̄αj,−g,2020 + εj,g, (6)

where ∆̄αj,−g,2020 denotes the average 2020 inflation in school j across subject groups other

than g.

The coefficients reported are descriptive and should not be given a causal interpretation.

These estimates may confound unobserved factors that changed across the two pandemic

years. The dynamic-panel literature (e.g., ?) also discusses potential biases from estimating

dynamics with specifications like (6). Nonetheless, the estimates are informative about the

persistence of grade inflation.

Figure 7 reports the dynamic pattern of grade inflation across the two consecutive years.

The y-axis measures the average increase in a student’s probability of achieving a top grade

in 2021, and the x-axis measures that increase in 2020. Schools with inflation levels near

zero continued to inflate their students’ grades at similar levels in the second year. By

contrast, schools with low inflation in the first year increased their rate of grade inflation

in 2021, while schools with high initial inflation slightly reduced their degree of inflation in

the second year. This pattern is reflected in the estimates from Equation (6): a one-unit

difference in the degree of inflation in 2020 is associated with a 0.6-unit difference in 2021.

As Figure 7 shows, the slope is driven by adjustments among schools that did not inflate
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much in the initial year. Moreover, the extent of assigning B-or-higher grades did not vary

across years (column 3 of Panel A in Table 3).

Figure A15 reports school-level inflation separately by subject group (quantitative vs.

non-quantitative). The figure plots the average inflation levels across subject groups over

the two consecutive years. As Table 3 shows, a one-unit difference in the degree of inflation

in 2020 for non-quantitative subjects was associated with a 0.5-unit difference in the same

subject group in 2021. By contrast, a one-unit difference in grade inflation for quantitative

subjects in 2020 was associated with a 0.2-unit difference in that subject group in 2021.

Subfigure A of Figure A15 indicates that persistence within subject groups is pronounced

for non-quantitative subjects. Schools’ inflation levels in non-quantitative subjects remained

similar to their initial-year levels, although schools that inflated less in the first year tended

to increase their inflation in the second year. Subfigure D shows that quantitative subjects

exhibit a weaker correlation across years: a positive relationship exists, but schools with high

initial inflation tended to reduce their inflation in the second year, whereas schools with low

initial inflation tended to increase it.

Subfigures B and D in Figure A15 report cross-subject inflation levels between neigh-

boring subject groups over the two years. As the columns for cross-subject combinations

in Table 3 confirm, I find little evidence of spillovers or feedbacks of grade inflation across

neighboring subjects. Columns (1)–(4) show that a one-unit increase in grade inflation in a

given subject group is not associated with a statistically significant increase in inflation in

the neighboring subject in the following year.

However, the cross-subject coefficient is statistically significant for the outcome “B-or-

higher.” A one-unit difference in 2020 grade inflation in quantitative (non-quantitative)

subjects is associated with a 0.3-unit difference in 2021 grade inflation for non-quantitative

(quantitative) subjects, respectively. Notably, these cross-subject coefficients are smaller

than the within-group coefficients.

22



5.3 Institutional differences in grading biases within classrooms

How were grades reassigned to students within a classroom? Figure A6 shows how the degree

of grade inflation varied across students with different prior academic scores, measured on

the national GCSE scale8. I plot the average grade-inflation level across score bins for the

two mandatory subjects (Mathematics and English Literature), where 9 is the highest and

3 is the lowest observed grade in the sample.

In both subjects, the ordering of students’ probabilities of receiving a top grade across

score bins remained unchanged. However, I find differences in how top grades were assigned

within classrooms by students’ baseline GCSE scores. Specifically, in 2020 top A-level grades

in Mathematics were concentrated among students with GCSE scores of 7–9. By contrast,

the increase in the probability of receiving a top grade in English Literature was similar

across students with different GCSE scores.

This pattern is not solely driven by baseline differences in students’ propensity to re-

ceive a top grade. Although students with higher GCSE scores already have higher baseline

probabilities of obtaining a top A-level grade, the observed inflation reflects larger probabil-

ity increases for high-GCSE students: top GCSE students experienced bigger increases in

their chances of receiving a top grade than lower-GCSE students, even after accounting for

baseline differences. Figure A10 presents the same relationship using log-odds differences

in a student’s probability of receiving a top grade. Inflation remains concentrated among

students with high GCSE Mathematics scores in both 2020 and 2021.

Figure A11 shows how grading patterns across GCSE score bins vary by school quality.

The figure plots the change in the probability of receiving a top A-level grade across GCSE

score bins, standardized to the mean GCSE score (GCSE = 6). It also shows aggregated

mean differences in inflation by school-quality groups; school quality is measured using the

school fixed effects estimated from Equation (1) and then split into three bins.

8The GCSE is a nationally standardized exam that all students take before starting their secondary-school
(16–18) education; mathematics, English Language, and English Literature are mandatory.
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I find that lower-quality schools — defined as those below the 30th percentile of the

school-quality measure — tended to inflate the grades of students with top GCSE scores in

both Mathematics and English Literature more than higher-quality schools. On the GCSE

Mathematics scale, the increase in the probability of receiving a top A-level grade is roughly

proportional to the student’s GCSE score, and this proportional pattern is similar across

school-quality bins. On the English Literature scale, the increases are more uniform across

score bins, but low-quality schools show relatively larger increases for students scoring 8 or

9 on the GCSE English Literature exam. These patterns are consistent in both 2020 and

2021.

Demographic differences and students’ economic affluence were also taken into account

in grading. I find that female students had a higher probability of receiving a top grade

than male students with similar academic and socioeconomic backgrounds (Section 7). I

also find that White students had a slightly higher probability of receiving a top grade than

ethnic-minority students. Female students were about one percentage point more likely to

receive a top grade than male students.

Figure 8a plots how the gender grading bias varied by school-quality bins across the two

pandemic years. Higher-quality schools were more likely to inflate female students’ grades,

whereas schools below the low-to-mid range of the quality distribution showed little gender-

based difference. Schools in the middle of the quality distribution increased their gender

grading bias in the second year, while low-quality schools did not show notable increases in

gender differences.

Teachers and schools awarded higher grades to students from more affluent backgrounds.

Section 7 reports grading patterns using income-related measures. Panel A shows how grad-

ing varies by parental occupational class: students whose parents hold higher-income occu-

pations (for example, managers or professionals) were more likely to receive a top grade than

students whose parents work in elementary occupations. The difference in the probability

of receiving a top grade between students with parents in elementary occupations and those
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with parents in occupations with only slightly higher average incomes (for example, caring

or sales) is small and not statistically significant.

The monotonic relationship between parental occupational income and the degree of in-

flation is stronger in lower-quality schools (Figure A8). I plot the average difference across

parental occupational classes by school-quality bins; the bin-scatter shows that the correla-

tion between parental income class and inflation is concentrated in low-quality schools. I do

not observe a statistically significant relationship between parental income class and grade

inflation in higher-quality schools.

These patterns are confirmed using alternative measures of parental wealth, such as the

average university-progression rate in a student’s home area: students from regions with

higher progression rates were assigned higher grades at low-quality schools, but not at high-

quality schools.

5.4 Effect on student placement at universities

Did the extent of grade inflation differ for similar students with different application port-

folios? To assess whether schools adjusted inflation depending on the universities students

applied to, I test whether grade inflation differentially affected students’ placement after con-

ditioning on student and school attributes, but without controlling for application patterns.

First I estimate whether student-level inflation predicts placement into a given course/program:

Y ∗
i,j,s = Xiβ + γ Infli + αs + κj + ui,j,s, (7)

Yi,j,s = 1{Y ∗
i,j,s > 0}, (8)

where Yi,j,s indicates that student i from school s is placed into (or accepts) course/program

j; Xi contains the student’s predicted grade from a standardized exam and other observables;

Infli is the student-level assigned-grade inflation (observed grade minus predicted grade); αs

are school fixed effects; and κj are course/program fixed effects.
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Next I allow the effect of inflation to vary by school to test whether some schools tailor

inflation to students’ target universities:

Y ∗
i,j,s = Xiβ + γ Infli + δs

(
Infli ×Ds

)
+ αs + κj + ui,j,s, (9)

Yi,j,s = 1{Y ∗
i,j,s > 0}, (10)

whereDs denotes a (school) indicator used to recover school-specific interaction effects and δs

captures how a marginal increase in Infli at school s mechanically alters the student’s proba-

bility of meeting the grade requirement for (or being placed into) higher-quality universities,

above the average effect γ.

Identification of δs exploits cross-student variation in Infli conditional on covariates Xi,

school fixed effects αs, and course fixed effects κj. In practice I recover δs by interacting Infli

with school indicators, so comparisons are made between students with different estimated

inflation but otherwise similar observables within and across schools.

Because I do not observe each student’s counterfactual grade, I construct a predicted

grade ˆgradei,2020 for each student using an elastic-net trained on pre-2020 outcomes, and

define inflation as the realized minus predicted grade. I then regress this measure of inflation

on students’ observed tariff scores.9

Înfli,2020 = gradei,2020 − ˆgradei,2020, Înfli,2020 = β Tariffi + εi,2020.

Here Tariffi denotes the student’s observed tariff score (a summary of prior attainment).

The coefficient β captures how inflation varies with students’ position in the prior academic

9The prediction step ˆgradei,2020 = F(Xi) uses a penalized regression,

β̂λ = argmin
δ

1

2n

∑
i∈pre

(
yi −X⊤

i δ
)2

+ λ

[
1− ξ

2
∥δ∥22 + ξ ∥δ∥1

]
,

where λ > 0 is the tuning parameter and ξ ∈ [0, 1] controls the ℓ1–ℓ2 mix. This design isolates how much
of the observed inflation can be attributed to students’ position in the academic distribution while allowing
the prediction step to flexibly incorporate a rich set of covariates Xi.
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distribution.

I find that schools differed in how grade inflation affected students’ chances of being

placed at their firm-choice university. Figure A13 plots the marginal effect of a one-unit

increase in assigned-grade inflation on the probability that a student from a given school is

placed at their firm choice. In 2020, these marginal effects are largest for schools near the

20th, 55th, and 85th percentiles of the school-quality distribution. A simple linear regression

of the marginal effect on school quality yields a positive coefficient in 2020, indicating that

higher-quality schools extracted larger placement gains from inflation. By 2021, however,

this positive correlation disappears (Table A13).

Furthermore, I decompose placement improvements by two grade-inflation channels: (i)

school-specific inflation and (ii) grade changes induced by students’ GCSE scores (and by

the selectivity of the universities they apply to). Figure A14 presents bin-scatter plots of

the marginal effect of a one-unit increase in assigned-grade inflation (separately for 2020 and

2021) on the probability of securing a place at a student’s firm-choice university, decomposed

into variation attributable to GCSE Mathematics scores and to the school’s overall inflation

level.

The channels operate differently across years. In 2020, GCSE-induced grade increases

translated into better placements mainly for schools in the middle of the quality distribution;

the marginal effect for top-ranked schools was similar to that for schools at the bottom of

the distribution despite differences in pupil composition. In 2021, however, the placement

gains from GCSE-induced inflation rose for high-quality schools: the marginal probability

of placement for high-quality schools was about 8 percentage points higher than for lower-

quality schools. By contrast, the school-specific inflation channel lost relative influence in

2021 — its contribution to placement success declined in the second year.

Regression results in Table A9 corroborate these patterns. A one–percentage-point dif-

ference in school quality is associated with a decline in the placement payoff from school-level

inflation, while within-school re-grading based on pupils’ GCSE grades increases the proba-
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bility of placement at higher-quality universities. In both years, the interaction coefficients

on school quality are statistically significant, indicating that the effectiveness of each inflation

channel systematically varies with school quality.

Additionally, I decompose placement effects by the selectivity of the universities appli-

cants target. Figure A13 plots the marginal effect of a one-unit increase in assigned-grade

inflation on the probability of securing a place at a selective program and at a non-selective

program; Panel A shows 2020 and Panel B shows 2021. In 2020 the placement impact of

inflation is largest for schools near the 20th–30th percentile of the school-quality distribution.

In 2021, the group of schools that gains the most shifts toward the middle of the distribu-

tion (roughly the 50th–60th percentiles): mid-rank schools led other schools in converting

inflation into placements at students’ firm-choice programs.

Table A8 reports regression estimates of the probability of placing into a firm-choice

program by the selectivity level of the target university. The point estimates show a weakly

negative relationship between placement gains and school quality, but these coefficients are

not statistically significant. Taken together with the bin-scatter in Figure A13, the evidence

suggests that mid-quality schools took greater advantage of grading discretion to improve

their pupils’ placement outcomes. The conversion of grades into placements therefore does

not follow a monotonic pattern: lower-quality schools generally did not succeed in pushing

pupils into better programs, while mid-quality schools were most effective at using grade

inflation to secure students’ firm-choice placements.

6 Discussion

My results qualitatively aligns with ? on how schools with worse quality inflates grade more

than good schools. I find that a one unit difference in school quality was associated with

a 10 percentage point difference in the extent of inflating grades. ? and Denning et al.

(2023) similarly find concentration of grade manipulation in schools with worse quality. ?
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finds that a one standard deviation in students achievements is associated with a 0.4 percent

point probability in manipulating the students scores. Denning et al. (2023) finds that a one

percentage point increase in shares of students with free lunch was associated with 4.8 more

students getting manipulated scores.

I find evidence on the positive evolution of grade inflation levels consistent with Dee et al.

(2019) and Bleemer (2020). I find that experiencing a year of grade discretionary grading

scheme is associated with on average a 10 percent increase in the average grade inflation level

in the following year. This results aligns withDee et al. (2019) which finds that Dartmouths

incoming student’s average GPA increased by an annual rate of 40 percent, while Bleemer

(2020) finds the number to be 10 percent.

My paper provides a novel evidence on the dynamics of grade inflation by decomposition

the extent of the grading policy update by their school types and also their inflation levels

in the initial year.I find that the private schools schools increased their inflate rate much

faster than other type of schools. Private schools increased their inflation rate by 4 folds

of the previous year, while difference in inflation levels during the two years were similar

for public schools. My findings matches with Bleemer (2020) who finds that schools with

students with higher income parents exhibit a faster rate of inflation then other types of

schools. However, the persistence of grade inflation is confined with subject groups with

weaker effect to spreading to less related subjects. Table 3 reports that the correlation

between same subject groups across the two consecutive years are significantly stronger than

the correlation between neighboring subject groups. My findings support how grades are

contagious within schools (Chan et al. (2007)), but also highlights how the spread of the

grading policy is varies within a school.

My results support how students economic affluence influences teachers grading behavior,

supporting the findings by Burgess and Greaves (2013) and Botelho et al. (2015), while

contradicting the findings in Hanna and Linden (2012). My results point to how teachers,

especially at worse quality schools, tended to assign higher grades to students with lower
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economic affluence, measured by their parents occupational class and the income deprivation

index of their permanent residence. Hanna and Linden (2012) finds that lower caste students

were assigned at most 0.9 standard deviation lower grades than a student from a higher caste.

I provide evidence that grade inflation is positively correlated with the academic achieve-

ments of the student, measured by their GCSE scores. However, the monotone pattern is

observed mainly in low quality schools. The extent of the grade inflation is exponentially

larger for students with higher GCSE math scores. The results matches Cornwell et al.

(2013) and Botelho et al. (2015), who finds similar effect in primary school children. Corn-

well et al. (2013) find that an one standard deviation increase in math scores increases grade

assigned by nearly 0.2 standard deviation points in their grade measure. However, my paper

highlights that this pattern is only hold for a subpopulation, namely the low quality schools.

For mid-quality schools, the schools/teachers do not seem to assign grades by the academic

score of their pupils, and in high quality school grade inflation is larger for the students with

lower academic scores.

I find evidence of gender bias against males. The findings support the findings of the

grade bias literature (Lavy (2009), Lavy and Sand (2018), Cornwell et al. (2013)). Female

students received top grades by 6 percentage points higher than male students. The results

are at odds with the findings of Hanna and Linden (2012) and Diamond and Persson (2016),

that does not find any biases against males when teachers have grading discretion. Diamond

and Persson (2016) attempted to identify gender biases by the size of the discontinuity near

the cutoff grades for a top grade which is different from my approach with compares final

grades between a predicted scores in the standardized regime against the observed teacher-

assigned grade.

I provided a decomposition exercise to explain the changes in the overall grading distri-

bution during the COVID 19 pandemic into the grading biases from the student attributes

and the schools grading policies. I find rich heterogeneity in how students attributes lead to

reshuffling of top grades within a school with their patterns varying by the schools quality.
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At low quality schools, students with higher academic achievements increase their chances

of receiving a top grade, thereby exacerbating the achievement inequality across students

with varying academic ability. However, low quality schools also provides leniency towards

students from socio-economically disadvantaged backgrounds, by assigning better grades

towards to the disadvantaged student when comparing academically similar students. How-

ever, the mean-spreading property of academic achievements of students weaken in mid-high

quality schools, as mid-tier schools show lower tendency to change the ordering of students by

academic or demographic characteristics. High quality school inflates the grades for lower

academically capable students. However the results for the high quality schools needs to

be carefully interpreted as students in high quality schools already have a high chance of

receiving a top grade regardless of the grading regime.

Despite the non-standardized grading regime increased students chances of receiving a

top grade, only a limited population of students gained from the opportunity to use the

opportunity to secure a placement at a selective university that they had little chance of

acceptance. The findings are similar to Dee et al. (2019) and Phillips and Reber (2022)

in which they show how improving access to universities don’t necessary lead to better

placements. My results show that most under-represented students in 2020 did not place

into selective universities despite higher grades, even in 2021 although students could have

applied to better universities if they successfully predicted that their teachers will grant them

higher grades then they deserve.

7 Conclusion

This paper demonstrates how replacing grading discretion from a central examiner to the the

local educators of students reduces the information content of grades. The new grades re-

flected the quality of the grade rewarding institution, with lower quality school adding higher

grades to than higher quality schools. The grading standards rapidly evolves upwards with

31



educational standards and the information content deteriorating in an increasing rate, with

profit driven schools among the schools with fastest adjustments to the new grading regime.

The loosening of grading standards are also accompanied by a pattern for teachers/schools

to reward grades that satisfies the acceptance requirement provided by the universities. The

grade matching adds to another source of information deterioration of the rewarded grade,

as more institutions with stricter grade requirement are subject to a worse deterioration of

grade standards as schools/teachers adjust for the universities responses.

Despite the loosening of grading standard was larger in lower quality institutions the

impact of the jump in grade were limited to placement improvements for students from dis-

advantaged socio-economic background. Additionally the improvements in representations

at selective institutions were limited to students above the average in the pre-pandemic

grade distribution. The non-monotone relationship between grade and placement mobil-

ity were driven by differences in application choices between students with varying baseline

backgrounds, as disadvantaged students do not apply to selective institutions despite their

rewarded grades facilitating their placements into selective institutions than students from

more advantaged backgrounds.

My results points to the dangers of accommodating test-optional policies into university

admission systems. Proponents of test-optional policies advocate for a holistic admission sys-

tem to diversify students background at selective universities, as well as using schools and

teachers as a method for extracting information on students quality and potential that would

be missed out in traditional standardized exams in which the examiner has no-knowledge of

the students background when they are grading the tests. The grading patterns in the UK

demonstrates the vulnerability of such decentralized grading regimes to potential gaming

of grades from teachers, as well as their limited effect on diversifying selective universities

with students socio-economic backgrounds. The speed of the adaptation were fastest for

private schools, which teaches the students from the wealthiest background of parents. I

suggest that simply lowering the barriers to selective universities will not improve the diver-
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sity of selective universities. Even among the students that apply to universities, students

from socio-economics advantaged vary with their attitudes towards selective institutions,

such as the composition of students or their parents attitudes or knowledge on elite institu-

tions. I propose that the lowering the barriers for universities to diversity their knowledge

to students from diverse backgrounds could be met by reducing frictions in the benefits of

higher-education but not on the application system.

A important caveat of the policy implication is whether policy makers can take advan-

tage of the regressive grade inflation from non-standardized testing while assuring that the

increase in grades for socio-economically disadvantaged students are converted to improve-

ments into placements into selective institutions. As my results uses the changes in grades

due to COVID19 pandemic, the application patterns that I use for assessing placement pat-

tern may be influenced by the non-normal situation accruing from the pandemic chaos. For

example, students from disadvantaged backgrounds may refrain from applying ambitiously

despite receiving high grades, and also students may prefer to study at universities closer to

their parents to ease the civil unrest during the pandemic. A feasible extension of my results

would be to take advantage of the growing literature on estimating of university application

portfolio choice (Ali and Shorrer (2025)) and test whether placement patterns would change

if students had changed their application choice by foreseeing the changes in the grading

scheme.
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Figure 1: Grade distribution

Note: The histogram displays the share of letter grades issued for each grade bins in the A-levels between
2018 and 2021. A*,A denotes the highest grade assigned to exam results scoring above the top 90th and
80th percentile respectively. Sample is the universe of test takers in each year. Data is derived from grade
reports from the Joint Councils of Qualifications.
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Figure 2: Results on stationarity test comparing average grade across years
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Note: The figure displays the exam level year-to-year differences in probability to receive a top grade (A or
A∗) between the reference year (2019) and other years from 2015 to 2021. The sample is the universe of
A-level exams used for admissions at British universities through the centralized administrative system (N
= 2,802,651). Year-specific coefficients and 95% confidence intervals are from a logistic regression that
regresses a success dummy indicating the student receiving a top grade (A or A∗) on a series of time
indicator dummy variables while controlling for students’ achievement score in a previous standardized
national exam (GCSE) in mandatory subjects (mathematics and English literature) and a dummy variable
for the subject course of the exam.. Standard errors are clustered at the school-subject course level.
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Figure 3: Stationatity test by (a) school types and (b) parental occupation class
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Note: The figure displays the exam level year-to-year differences in probability to receive a top grade (A or
A∗) between the reference year (2019) and other years from 2015 to 2021 after sub-sampling the sample by
the test takers’ (a) school types or (b) parents’ parental occupation class. The sample is the universe of
A-level exams used for admissions at British universities through the centralized administrative system (N
= 2,802,651). Year-specific coefficients and 95% confidence intervals are from a logistic regression that
regresses a success dummy indicating the student receiving a top grade (A or A∗) on a series of time
indicator dummy variables while controlling for students’ achievement score in a previous standardized
national exam (GCSE) in mandatory subjects (mathematics and English literature) and a dummy variable
for the subject course of the exam. Coefficients are estimated jointly by interacting the times indicator
dummy with either a (a) school type indicator or a (b) parental occupation indicator. Standard errors are
clustered at the school-subject course level.

41



Figure 4: Grade inflation by school quality and subject group.
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Note: This bin-scatter displays the subject group level increments in grade improvements defined as a
student receiving a top grade (A or A∗) in (a) 2020 and (b) 2021. The sample is the universe of A-level
exams used for admissions at British universities through the centralized administrative system (N =
2,802,651). Year-specific coefficients and 95% confidence intervals are from a logistic regression that
regresses a success dummy indicating the student receiving a top grade (A or A∗) on the interaction
between school subject group dummy and a time indicator for both pandemic years. The regression
controls for students’ achievement score in a previous standardized national exam (GCSE) in mandatory
subjects (mathematics and English literature) and a dummy variable for the subject course of the exam.
Standard errors are clustered at the school-subject course level.
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Figure 5: Grade inflation by school type
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Note: The bin-scatter displays the school level increments in grade improvements defined as a student
receiving a top grade (A or A∗) in (a) 2020 and (b) 2021. The sample is the universe of A-level exams used
for admissions at British universities through the centralized administrative system (N = 2,802,651).
Year-specific coefficients and 95% confidence intervals are from a logistic regression that regresses a success
dummy indicating the student receiving a top grade (A or A∗) on the interaction between school subject
group dummy and a time indicator for both pandemic years. The regression controls for students’
achievement score in a previous standardized national exam (GCSE) in mandatory subjects (mathematics
and English literature) and a dummy variable for the subject course of the exam. Standard errors are
clustered at the school-subject course level.
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Figure 6: Aggregate dynamics
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Note: The bin-scatter displays the school level grade improvements in 2021 relative the degree of grade
improvements in 2020 for the same school. The sample is the universe of A-level exams used for admissions
at British universities through the centralized administrative system (N = 2,802,651). Year-specific
coefficients and 95% confidence intervals are from a logistic regression that regresses a success dummy
indicating the student receiving a top grade (A or A∗) on the interaction between school subject group
dummy and a time indicator for both pandemic years. The regression controls for students’ achievement
score in a previous standardized national exam (GCSE) in mandatory subjects (mathematics and English
literature) and a dummy variable for the subject course of the exam. Standard errors are clustered at the
school-subject course level.
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Figure 7: By subject groups
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Note: The bin-scatter displays the school-subject-group level grade improvements in 2021 relative the
degree of grade improvements in 2020 for the same school. The sample is the universe of A-level exams
used for admissions at British universities through the centralized administrative system (N = 2,802,651).
Year-specific coefficients and 95% confidence intervals are from a logistic regression that regresses a success
dummy indicating the student receiving a top grade (A or A∗) on the interaction between school subject
group dummy and a time indicator for both pandemic years. The regression controls for students’
achievement score in a previous standardized national exam (GCSE) in mandatory subjects (mathematics
and English literature) and a dummy variable for the subject course of the exam. Standard errors are
clustered at the school-subject course level.
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Figure 8: Grade inflation by GCSE score by exam subject.
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(b) Ethnicity gap in grade inflation by school quality
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Note: The bin-scatter displays the school level difference in grade improvements between (a)female and
male students and (b) while and non-white students. The sample is the universe of A-level exams used for
admissions at British universities through the centralized administrative system (N = 2,802,651).
Year-specific coefficients and 95% confidence intervals are from a logistic regression that regresses a success
dummy indicating the student receiving a top grade (A or A∗) on the interaction between school subject
group dummy and a time indicator for both pandemic years. The regression controls for students’
achievement score in a previous standardized national exam (GCSE) in mandatory subjects (mathematics
and English literature) and a dummy variable for the subject course of the exam. Standard errors are
clustered at the school-subject course level.
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Figure 9: Reduced form result of application success on grade inflation
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Note: The figure displays school level improvements in success rate of securing a placement at a students
top choice university program versus the extent of grade inflation at the school. The sample is the universe
of A-level exams used for admissions at British universities through the centralized administrative system
(N = 2,802,651). The y-axis coefficients and 95% confidence intervals are from a student level logistic
regression that regresses a success of student application on the interaction between school subject group
dummy and a time indicator for both pandemic years. The x-axis coefficients and 95% confidence intervals
are from a student level logistic regression that regresses a dummy variable indicating whether a student
received a top grade (A or A∗) in their exam on the interaction between school subject group dummy and
a time indicator for both pandemic years. Both regressions control for students’ achievement score in a
previous standardized national exam (GCSE) in mandatory subjects (mathematics and English literature)
and a dummy variable for the subject course of the exam. Standard errors are clustered at the
school-subject course level.
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Figure 10: Decomposition of university composition by source

Note: The bin plot displays a decomposition of the increase in the number of incoming student at each
university tier group by separate channels. The sample is the universe of A-level exams used for admissions
at British universities through the centralized administrative system (N = 2,802,651). Tariff groups
denotes the degree of selectivity of the university program, with high tariff indicating the most selective
university tier group and the lower tariff indicating the least selective group.
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Table 1: Grade inflation and school type

A A* B

(1) (2) (3) (4) (5) (6)

School Quality -0.570*** -0.618*** -0.289*** -0.307*** -0.289*** -0.307***
(0.031) (0.034) (0.027) (0.029) (0.027) (0.029)

Further Education 0.139* -0.136 -0.094*** -0.040 -0.094*** -0.040
(0.077) (0.084) (0.026) (0.028) (0.026) (0.028)

Grammar School -0.062 0.013 -0.047 0.007 -0.047 0.007
(0.049) (0.053) (0.047) (0.050) (0.047) (0.050)

Independent School 0.082*** 0.344*** -0.065*** -0.006 -0.065*** -0.006
(0.022) (0.024) (0.017) (0.018) (0.017) (0.018)

Other -0.501 -0.124 0.118 -0.567** 0.118 -0.567**
(0.502) (0.546) (0.209) (0.223) (0.209) (0.223)

Sixth Form College 0.026 -0.210*** -0.068*** -0.047* -0.068*** -0.047*
(0.036) (0.039) (0.021) (0.023) (0.021) (0.023)

State School 0.023 0.024 -0.048*** -0.019 -0.048*** -0.019
(0.023) (0.025) (0.015) (0.016) (0.015) (0.016)

School Quality × school type
School Quality × Further Education -0.045 -0.179 0.249* 0.108 0.249* 0.108

(0.087) (0.095) (0.103) (0.109) (0.103) (0.109)
School Quality × Grammar School -0.087 0.135 0.085 -0.031 0.085 -0.031

(0.107) (0.118) (0.140) (0.149) (0.140) (0.149)
School Quality × Independent School 0.301*** 0.222*** 0.146** 0.148** 0.146** 0.148**

(0.055) (0.060) (0.049) (0.053) (0.049) (0.053)
School Quality × Other -1.261 1.237 -0.210 2.075* -0.210 2.075*

(2.023) (2.206) (0.811) (0.863) (0.811) (0.863)
School Quality × Sixth Form College 0.043 -0.098 0.141* 0.014 0.141* 0.014

(0.073) (0.080) (0.069) (0.074) (0.069) (0.074)
School Quality × State School 0.123* -0.040 0.154*** 0.074 0.154*** 0.074

(0.055) (0.060) (0.046) (0.049) (0.046) (0.049)

Year 2020 2021 2020 2021 2020 2021
Num. Obs. 1858 1858 1852 1852 1852 1852
R2 0.257 0.318 0.099 0.150 0.099 0.150

Notes: The table reports the regression coefficient that regresses the inflation measure defined in Equa-
tion (1) on the measure of school quality, the school type dummy variable, and the interaction of the two
variables. Degree of inflation is measured as the average marginal effect (AME) at the school level, in which
I calculates the average marginal effect of the school inflation for all students within the school. Namely, the
latent scores of each students without the inflation effects are calculated by mapping the student attributes
on the fixed effect coefficient in Equation (1). Before the AME is calculated, I apply the shrinkage correction
method by ?.School quality is defined as the fixed effect derived from Equation (1). The school fixed effect is
evaluated by calculating the probability of obtaining A or A* for the nationally representative student, which
I define as the student with median values in their continuous or categorical variables. School fixed effects
are corrected for the incidental parameter bias by using methods by Fernández-Val and Weidner (2016) .
Schools without less than 30 students in both 2020 and 2021 taking A-level exams are dropped from the
regression. Column 1 and 2 uses A, Column 3 and 4 uses A*, and Column 5 and 6 uses B as the binary
dependent variable for estimating Equation (1). Bootstrapped standard errors at obtained by blocking at
the school level. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 2: Regression results: Treatment estimates by subject type

Non-Quantitative subjects

A A* B

(1) (2) (3) (4) (5) (6)

School Quality -0.598*** -0.729*** -0.523*** -0.538*** -0.062** -0.111***
(0.032) (0.033) (0.027) (0.031) (0.021) (0.021)

Year 2020 2021 2020 2021 2020 2021
Num. Obs. 1887 1889 1887 1889 1879 1876
R2 0.155 0.208 0.163 0.141 0.004 0.014

Quantitative subjects

A A* B

(1) (2) (3) (4) (5) (6)

School Quality -0.200*** -0.220*** 0.018 0.006 -0.001 -0.071***
(0.027) (0.034) (0.023) (0.022) (0.021) (0.021)

Year 2020 2021 2020 2021 2020 2021
Num. Obs. 1887 1889 1879 1876 1879 1876
R2 0.029 0.022 0.000 0.000 0.000 0.006

Notes: The table reports the regression coefficient that regresses the inflation measure defined in Equa-
tion (1) on the measure of school quality, the school type dummy variable, and the interaction of the two
variables. Degree of inflation is measured as the average marginal effect (AME) at the school level, in which
I calculates the average marginal effect of the school inflation for all students within the school. Namely, the
latent scores of each students without the inflation effects are calculated by mapping the student attributes
on the fixed effect coefficient in Equation (1). Before the AME is calculated, I apply the shrinkage correction
method by ?.School quality is defined as the fixed effect derived from Equation (1). The school fixed effect is
evaluated by calculating the probability of obtaining A or A* for the nationally representative student, which
I define as the student with median values in their continuous or categorical variables. School fixed effects
are corrected for the incidental parameter bias by using methods by Fernández-Val and Weidner (2016) .
Schools without less than 30 students in both 2020 and 2021 taking A-level exams are dropped from the
regression. Column 1 and 2 uses A, Column 3 and 4 uses A*, and Column 5 and 6 uses B as the binary
dependent variable for estimating Equation (1). Bootstrapped standard errors at obtained by blocking at
the school level. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 3: Descriptive regression on persistence of grade inflation

Panel A: Dynamics between 2021 and 2020

A A* B

(1) (2) (3)

Inflation in 2020 0.624*** 0.454*** 1.018***

(0.022) (0.024) (0.009)

Num. Obs. 1890 1869 1869

R2 0.302 0.157 0.875

Panel B: Decomposition by subject type

(1) (2) (3) (4) (5) (6)

Q NQ Q NQ Q NQ

Inflation in 2020 + Non-
Quant

0.036** 0.507*** -0.023 0.296*** 0.287*** 0.537***

(0.016) (0.023) (0.033) (0.023) (0.022) (0.018)

Inflation in 2020 + Quant 0.225*** -0.020 0.393*** -0.007 0.744*** 0.311***

(0.023) (0.034) (0.025) (0.017) (0.019) (0.016)

Num. Obs. 1863 1869 1846 1852 1852 1846

R2 0.047 0.210 0.100 0.141 0.695 0.649

Notes: The table reports the regression coefficient that regresses the inflation measure defined in Equa-
tion (1) on the measure of school quality, the school type dummy variable, and the interaction of the two
variables. Degree of inflation is measured as the average marginal effect (AME) at the school level, in which
I calculates the average marginal effect of the school inflation for all students within the school. Namely, the
latent scores of each students without the inflation effects are calculated by mapping the student attributes
on the fixed effect coefficient in Equation (1). Before the AME is calculated, I apply the shrinkage correction
method by ?.School quality is defined as the fixed effect derived from Equation (1). The school fixed effect is
evaluated by calculating the probability of obtaining A or A* for the nationally representative student, which
I define as the student with median values in their continuous or categorical variables. School fixed effects
are corrected for the incidental parameter bias by using methods by Fernández-Val and Weidner (2016) .
Schools without less than 30 students in both 2020 and 2021 taking A-level exams are dropped from the
regression. Column 1 and 2 uses A, Column 3 and 4 uses A*, and Column 5 and 6 uses B as the binary
dependent variable for estimating Equation (1). Bootstrapped standard errors at obtained by blocking at
the school level. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 4: Grade inflation by demographic groups

A A* B

(1) (2) (3) (4) (5) (6)

SES (ref. Elementary occupations.)

Managers, directors and senior officials 0.190*** 0.011 0.171*** 0.149*** 0.177*** 0.150***

(0.013) (0.012) (0.012) (0.012) (0.014) (0.017)

Professional occupations 0.173*** 0.024 0.134*** 0.105*** 0.181*** 0.128***

(0.012) (0.012) (0.016) (0.018) (0.023) (0.029)

Associate professional and technical 0.190*** 0.032 0.179*** 0.135*** 0.267*** 0.168***

(0.012) (0.016) (0.022) (0.022) (0.034) (0.035)

Administrative and secretarial 0.161*** -0.016 0.166*** 0.087*** 0.178*** 0.028

(0.019) (0.020) (0.028) (0.013) (0.042) (0.015)

Skilled trades occupations 0.264*** 0.028 0.075*** 0.054*** 0.064*** 0.069***

(0.023) (0.024) (0.012) (0.016) (0.016) (0.023)

Caring, leisure and other service occupa-
tions

0.175*** -0.029 0.021 0.046* 0.039 0.048

(0.023) (0.023) (0.019) (0.023) (0.028) (0.034)

Sales and customer service occupations 0.206*** -0.019 0.002 0.029 0.017 0.040

(0.029) (0.028) (0.022) (0.028) (0.033) (0.039)

Year 2020 2021 2020 2021 2020 2021

Number of Obs. 2,802,651 2,802,651 2,802,651 2,802,651 2,802,651 2,802,651

Notes: The table reports the regression coefficient that regresses the inflation measure defined in Equa-
tion (1) on the measure of school quality, the school type dummy variable, and the interaction of the two
variables. Degree of inflation is measured as the average marginal effect (AME) at the school level, in which
I calculates the average marginal effect of the school inflation for all students within the school. Namely, the
latent scores of each students without the inflation effects are calculated by mapping the student attributes
on the fixed effect coefficient in Equation (1). Before the AME is calculated, I apply the shrinkage correction
method by ?.School quality is defined as the fixed effect derived from Equation (1). The school fixed effect is
evaluated by calculating the probability of obtaining A or A* for the nationally representative student, which
I define as the student with median values in their continuous or categorical variables. School fixed effects
are corrected for the incidental parameter bias by using methods by Fernández-Val and Weidner (2016) .
Schools without less than 30 students in both 2020 and 2021 taking A-level exams are dropped from the
regression. Column 1 and 2 uses A, Column 3 and 4 uses A*, and Column 5 and 6 uses B as the binary
dependent variable for estimating Equation (1). Bootstrapped standard errors at obtained by blocking at
the school level. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 5: Treatment interaction estimates by demographic groups

A A* B

(1) (2) (3) (4) (5) (6)

Panel B: POLAR Quintiles (ref: Quintile 5)

Quintile 1 0.019 -0.003 0.064*** 0.032* 0.030 0.003
(0.018) (0.019) (0.017) (0.018) (0.027) (0.028)

Quintile 2 0.036** -0.003 0.066*** 0.020 0.033 0.004
(0.016) (0.016) (0.015) (0.016) (0.021) (0.022)

Quintile 3 – 0.021 0.037*** 0.023 0.041** 0.013
(0.015) (0.014) (0.015) (0.019) (0.020)

Quintile 4 -0.019 0.015 0.018 0.032* -0.020 0.001
(0.017) (0.017) (0.018) (0.018) (0.022) (0.022)

Panel C: IMD Quintiles (ref: Quintile 5)
Quintile 1 0.013 -0.081 -0.014 -0.091 0.041 -0.046

(0.015) (0.016) (0.014) (0.015) (0.022) (0.024)
Quintile 2 0.008 -0.066 -0.026 -0.058 0.061 -0.033

(0.014) (0.014) (0.014) (0.014) (0.019) (0.020)
Quintile 3 0.018 -0.040 -0.024 -0.033 0.039 -0.020

(0.013) (0.014) (0.014) (0.014) (0.018) (0.018)
Quintile 4 0.010 -0.035 -0.011 -0.049 0.021 -0.007

(0.016) (0.016) (0.017) (0.017) (0.020) (0.020)
Panel A: Gender

Female × Treat 0.055*** 0.069*** 0.041*** 0.062*** 0.063*** 0.079***

(0.003) (0.003) (0.004) (0.004) (0.003) (0.003)

Panel B: Ethnicity (ref: White)

Asian -0.037*** 0.040*** -0.082*** 0.031 -0.034** 0.005
(0.013) (0.014) (0.018) (0.019) (0.013) (0.014)

Black -0.004 -0.024 -0.018 -0.026 -0.067*** -0.073***

(0.020) (0.021) (0.032) (0.034) (0.018) (0.019)

Mixed -0.029 -0.063*** -0.063** -0.066** -0.048** -0.077***

(0.019) (0.020) (0.026) (0.026) (0.020) (0.020)

Other 0.005 0.053 0.048 0.127*** -0.015 0.006
(0.031) (0.033) (0.045) (0.047) (0.030) (0.031)

Unknown / Prefer not to say 0.069* -0.065* 0.243*** 0.109** -0.037 -0.082*

(0.037) (0.037) (0.043) (0.043) (0.041) (0.042)

Year 2020 2021 2020 2021 2020 2021
Number of Obs. 2,802,651 2,802,651 2,802,651 2,802,651 2,802,651 2,802,651

Notes: Columns (1)-(2)=A, (3)-(4)=AS, (5)-(6)=B. Entries are coefficients; standard errors are in parentheses.
Significance: * p < 0.10, ** p < 0.05, *** p < 0.01. Baseline level and fixed effects omitted.
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A Appendix

A.0.1 Application-Adjusted Assignment with Demographic-Specific Preferences

The second approach allows students to adjust their application choices in response to grade
changes. Preferences over universities vary systematically by observable demographic char-
acteristics. These preferences are estimated using pre-COVID application data within a
multinomial logit (MNL) framework. Specifically, the probability that student i applies to
and attends university j is given by:

Pij =
eVij∑

m∈Ji
eVim

, Vij = β × Si × Sj,2019 + ιi + δj,

where δj is a university fixed effect, ιi is a student fixed effect, Si =
∑

k wkGik is the weighted
sum of grades for student i, and Sj,2019 is the mean Si among students admitted to j in 2019.
The choice set Ji consists of all universities to which student i could plausibly apply.

The student–university ranking under this approach is

Rank(Xi,j, u) = F
(
G(Xi,j)

∣∣G(X−i,j), u
)
,

with assignments determined by

Uu =

{
Xi,j

∣∣∣∣∣ ∑
Qk>Qu

Ck ≤ Rank(Xi,j, u) ≤
∑

Qk>Qu

Ck + Cu

}
.

Endogenous Application Mechanism. Under this model, the effect of grade changes on
university composition arises through two channels: (i) the direct reordering of students in
the admissions ranking due to changes in G(Xi,j), and (ii) the induced change in application
probabilities Pij through the MNL utility specification. By estimating β, ιi, and δj using pre-
COVID data, I recover the structural relationship between student characteristics, relative
grade position, and application behavior. I then simulate counterfactual application sets
Ji under alternative grade distributions, re-solving the assignment problem to capture both
ranking and choice adjustments.

A.1 Estimating counterfactual grades for the 2020–21 cohorts

I obtain counterfactual grades for students in the pandemic years by training a prediction
rule on the pre-pandemic cohorts and then applying that rule to the pandemic cohorts. The
idea is simple: estimate the relationship between observable student features (GCSEs, prior
attainment, demographics, subject and school indicators, etc.) and realised grades before
the pandemic, and then use that relationship to predict what each pandemic-year student
would have received had the pre-pandemic mapping continued to hold.

A plain ordinary least squares estimator (a maximum likelihood estimator for a lin-
ear model) performs poorly in this setting for two reasons: (i) the predictor set is large
(many dummies, interactions and polynomial terms), which makes a plain regression prone
to overfitting, and (ii) many predictors are highly correlated, producing unstable coefficient
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estimates. To address both issues I use elastic net regularisation, which shrinks coefficients
and — when helpful — sets some coefficients exactly to zero.

The elastic-net estimator is

β̂λ,ξ = argmin
β

;
1

2npre

∑
i∈pre

(
yi −X⊤

i β
)2

λ
(

1−ξ
2
, |β|22 + ξ, |β|1

)
, (11) where yi is the (numeric) grade for pre-pandemic student i,

Xi is the vector of predictors, λ > 0 controls the overall strength of regularisation (larger λ
produces stronger shrinkage), and ξ ∈ [0, 1] mixes between ridge (ξ = 0) and lasso (ξ = 1)
behaviour.

I select the tuning parameter λ byK-fold cross-validation. Split the pre-pandemic sample
into K folds, estimate the penalised problem on K−1 folds and measure prediction error on
the held-out fold; repeat for each fold and choose the λ that minimises the average held-out
mean-squared error:

λ⋆ = argmin
λ

;
1

K

K∑
k=1

1

nk

∑
i∈foldk

(
yi −X⊤

i β̂λ,−k
)2
, (12)

where β̂λ,−k is the estimator obtained without fold k.
With λ⋆ fixed, the counterfactual continuous score for a pandemic-year student with

covariates Xi is
ŷiCF = X⊤

i β̂λ
⋆, ξ. (13)

If desired, this continuous prediction can be mapped back to discrete grade categories using
empirically estimated cutoffs (for example, the observed thresholds between letter grades in
the pre-pandemic data). Alternatively, one may estimate a multinomial or ordinal penalised
model directly and obtain predicted grade probabilities; the two approaches are broadly
equivalent in spirit, and the choice depends on whether you want direct probability estimates
or a continuous latent score.

Practical implementation notes

• Standardisation. Elastic-net penalties are scale-dependent. Standardise continuous
predictors (zero mean and unit variance) before estimation (most software does this
automatically).

• Categorical variables. Convert factors to dummies (one-hot encoding) but be mind-
ful of huge design matrices (e.g. subject×school interactions). Elastic net handles large
p but runtime and memory still matter.

• Cross-validation folds. If observations within schools are correlated, form CV folds
that respect clustering (e.g. fold by school) so the CV error is not overly optimistic.

• Choosing ξ. Try a few values (e.g. ξ ∈ 0, 0.5, 1) and report sensitivity. In practice
ξ ∈ (0, 1) often combines the stability of ridge with the sparsity of lasso.
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A.2 Estimating school-level effects with Empirical Bayes

With many schools and uneven sample sizes, raw MLEs for school effects are noisy in small
samples. Empirical Bayes (EB) “borrows strength” across schools by shrinking imprecise
estimates toward a common mean, while leaving precise estimates largely unchanged. The
amount of shrinkage is data-driven: noisier schools shrink more.

Setup. Let α̂j be the MLE of the school effect αj from Equation (1) with estimated standard

error sj ≡ ŜE(α̂j). Under standard regularity conditions,

α̂j

∣∣ αj ≈ N (αj, s
2
j).

EB posits a working prior (random-effects distribution) for the true school effects

αj
iid∼ N (µ, τ 2),

with unknown hyperparameters (µ, τ 2) estimated from the collection {α̂j, s
2
j}Jj=1.

Hyperparameter estimation (marginal MLE). Integrating out αj yields the marginal
sampling model

α̂j ∼ N
(
µ, τ 2 + s2j

)
.

The marginal log-likelihood is

ℓ(µ, τ 2) = −1
2

J∑
j=1

{
log(τ 2 + s2j) +

(α̂j−µ)2

τ2+s2j

}
.

The maximizer satisfies

µ̂ =

∑
j wj α̂j∑
j wj

, wj ≡
1

τ̂ 2 + s2j
,

and τ̂ 2 solves
J∑

j=1

(α̂j − µ̂)2

(τ̂ 2 + s2j)
2
=

J∑
j=1

1

τ̂ 2 + s2j
,

which can be obtained by a short 1D Newton or grid search.10

EB shrinkage estimator (posterior mean). Given (µ̂, τ̂ 2), the EB estimate of αj is the
posterior mean under the normal–normal model:

α̂EB
j = (1−Bj) α̂j + Bj µ̂, Bj ≡

s2j
s2j + τ̂ 2

.

Equivalently,

α̂EB
j =

τ̂ 2

τ̂ 2 + s2j
α̂j +

s2j
τ̂ 2 + s2j

µ̂.

10A nonnegative constraint on τ2 is imposed; if the MLE hits τ̂2 = 0, no cross-school variation is detected
and EB reduces to pooling at µ̂.
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Schools with large s2j (imprecise MLEs) have Bj closer to 1 and hence shrink more toward
µ̂; precise schools (small s2j) are shrunk little.

The corresponding EB posterior variance (useful for uncertainty display) is

V̂ar(αj | α̂j) =
s2j τ̂

2

s2j + τ̂ 2
.

Treatment-year school effects. For treatment-year deviations ∆αj,τ with MLEs ∆̂αj,τ

and errors sj,τ , apply the same steps with a potentially different hyper-variance τ 2∆,τ and
mean µ∆,τ :

∆̂α
EB

j,τ = (1−Bj,τ ) ∆̂αj,τ + Bj,τ µ̂∆,τ , Bj,τ ≡
s2j,τ

s2j,τ + τ̂ 2
∆,τ

.

Remarks. (i) EB uses plug-in (µ̂, τ̂ 2), so intervals based solely on the posterior variance
above understate hyperparameter uncertainty; in large J this is typically minor. (ii) Cen-
tering at µ̂ (rather than 0) avoids implicit assumptions that the grand mean effect is zero.
(iii) The gain is variance reduction for noisy schools with limited bias, which is crucial with
many parameters and heterogeneous cell sizes.

A.3 Computation of variance in full model

Computation of variances for the full model. Computing standard errors in our high-
dimensional, sparse likelihood required estimating the diagonal of the observed-information
matrix H−1 (the parameter variances). A direct approach (form H−1 or compute a full
Cholesky factor) proved infeasible: sparse Cholesky factorization produced excessive fill-
in and exhausted memory for our problem size. To avoid factorization and the attendant
memory costs we combine an iterative linear solver (Conjugate Gradient, CG) with the
Hutchinson trace estimator. Concretely, for m independent Rademacher probe vectors z(r) ∈
{±1}n we solve Hx(r) = z(r) by CG and accumulate the elementwise products z(r)⊙x(r); the
sample average is an unbiased estimator of diag(H−1). This approach only requires sparse
matrix–vector products and a small working set of vectors, so its memory use scales with
the number of nonzeros of H (and not with the fill-in of a factor). For reproducibility we
implement the CG solver using Eigen’s sparse CG via RcppEigen, run m = 200 probes, set
the solver tolerance to tol = 10−8 and cap iterations at maxit = 2000. Practical diagnostics
include: (i) verify H is stored as a dgCMatrix and is numerically symmetric/positive definite
(force symmetry and add a tiny ridge if needed); (ii) monitor CG residuals for each probe and
increase tol or add an incomplete-Cholesky preconditioner if convergence is slow; (iii) choose
m by trading off accuracy and CPU (typical m ∈ [100, 500]); and (iv) validate the estimator
on a small index set by comparing Hutchinson estimates to exact variances computed by
direct solves for those indices when feasible. These choices deliver accurate, scalable variance
estimates without ever forming H−1 or a full factor, and the implementation details and
minimal code used in this paper are provided below for reproducibility.11

11A compact description of this procedure used for computing the appendix variances is given in the
original implementation notes.
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Figure A1: Timeline for university application in the UK
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Figure A2: Cohort Size Growth
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Figure A3: Grade inflation by school quality (2020, 2021).
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Figure A4: Grade inflation at grammar schools
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Figure A5: Grade inflation at further education schools
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Figure A6: Grade inflation by GCSE score by exam subject.
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(a) Grade inflation by GCSE score in Mathematics
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(b) Grade inflation by GCSE score in English Literature.
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Figure A7: Inflation by parental occupation class
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Figure A8: Grade inflation by (a) Parental occupation class, and (b) Univ. progression rate
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Note: The bin-scatter displays student level difference in grade improvements across (a) parental
occupational class and (b) average university progression rate of the students’ residential address. The
sample is the universe of A-level exams used for admissions at British universities through the centralized
administrative system (N = 2,802,651). Year-specific coefficients and 95% confidence intervals are from a
logistic regression that regresses a success dummy indicating the student receiving a top grade (A or A∗)
on the interaction between school subject group dummy and a time indicator for both pandemic years.
The regression controls for students’ achievement score in a previous standardized national exam (GCSE)
in mandatory subjects (mathematics and English literature) and a dummy variable for the subject course
of the exam. Standard errors are clustered at the school-subject course level.
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Figure A9: Inflation by poverty score score
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Figure A10: Inflation by GCSE scores measured by log-odds
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Figure A11: Inflation by GCSE scores by school quality

−1

0

1

2

4 5 6 7 8
Math Score

C
oe

ffi
ci

en
t

School Quality Low Mid High

−1

0

1

2

4 5 6 7 8
Math Score

C
oe

ffi
ci

en
t

School Quality Low Mid High

68



Figure A12: Inflation by GCSE scores and schools
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Figure A13: Effect of inflation on placements in 2020
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Figure A14: Effect of inflation on placements in 2021
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Table A1: Balance Table of Applicant Characteristics

Characteristic N = 1, 192, 935 (2020) N = 219, 929 (2021) N = 234, 294 (2020 + 2021) N = 1, 647, 158 (2015-2019)

Gender
Men 522,795 (44%) 95,289 (43%) 102,174 (44%) 720,258 (44%)
Women 670,140 (56%) 124,640 (57%) 132,120 (56%) 926,900 (56%)

School Type
Academy 411,969 (35%) 84,186 (38%) 90,521 (39%) 586,626 (36%)
Further Education 62,864 (5.3%) 9,840 (4.5%) 10,614 (4.5%) 83,318 (5.1%)
Grammar School 55,818 (4.7%) 5,897 (2.7%) 6,252 (2.7%) 67,973 (4.1%)
Independent 167,995 (14%) 24,869 (11%) 26,301 (11%) 223,561 (14%)
Sixth Form 237,426 (20%) 46,177 (21%) 48,868 (21%) 332,471 (20%)
State School 256,863 (22%) 48,960 (22%) 51,738 (22%) 344,140 (21%)

Ethnic Group
Asian 156,871 (13%) 29,111 (13%) 30,869 (13%) 235,067 (14%)
Black 61,526 (5.2%) 11,964 (5.4%) 12,568 (5.4%) 86,058 (5.2%)
Mixed 53,751 (4.5%) 11,936 (4.5%) 13,335 (5.7%) 79,022 (4.8%)
Other 51,823 (4.3%) 8,774 (4.0%) 9,207 (3.9%) 69,804 (4.2%)
Unknown/Prefer NS 41,923 (3.5%) 7,936 (3.6%) 7,817 (3.3%) 57,676 (3.5%)
White 857,238 (72%) 144,645 (66%) 152,763 (65%) 1,154,617 (70%)

Domicile
England 1,070,768 (90%) 210,220 (96%) 224,699 (96%) 1,505,687 (91%)
EU (excl. UK) 36,002 (3.0%) 6173 (2.8%) 6456 (2.8%) 48,631 (3.0%)
Northern Ireland 46,319 (3.9%) 1764 (0.8%) 1698 (0.7%) 49,781 (3.0%)
Not EU 30,252 (2.5%) 5,535 (2.5%) 5,283 (2.3%) 41,070 (2.5%)
Scotland 2,503 (0.2%) 1,477 (0.7%) 2,310 (1.0%) 3,928 (0.2%)
Wales 39,491 (3.3%) 1352 (0.6%) 1588 (0.7%) 42,431 (2.6%)

POLAR4 Quintile
Q1 113,733 (9.5%) 21,763 (9.9%) 23,175 (9.9%) 158,671 (9.6%)
Q2 163,860 (14%) 29,981 (14%) 32,260 (14%) 226,101 (14%)
Q3 211,895 (18%) 41,877 (17%) 44,111 (19%) 291,461 (18%)
Q4 268,260 (22%) 49,360 (22%) 52,248 (22%) 369,868 (22%)
Q5 400,492 (34%) 74,065 (34%) 79,426 (34%) 553,918 (34%)
Unknown 34,758 (2.9%) 6345 (2.9%) 6036 (2.6%) 47,139 (2.9%)

IMD Quintile
Q1 151,778 (13%) 30,905 (14%) 32,784 (14%) 215,467 (13%)
Q2 186,674 (16%) 36,096 (16%) 38,057 (16%) 260,827 (16%)
Q3 220,488 (18%) 39,982 (18%) 42,878 (18%) 303,348 (18%)
Q4 162,748 (22%) 46,752 (21%) 47,873 (20%) 310,122 (19%)
Q5 336,024 (28%) 59,774 (27%) 64,598 (28%) 460,396 (28%)
Unknown 35,223 (3.0%) 6420 (2.9%) 6100 (2.6%) 47,743 (2.9%)
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Figure A15: Impact of grade inflation into placement success rates by school.
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(b) Grade inflation by subject group, 2021.
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Table A2: Distribution by Social Class, School Background, and Ethnic Group across
University Types

Category Russell Group Other Old New
Social class origin
Higher professional/managerial 35 23 42
Lower professional/managerial 25 22 53
Routine non-manual 20 20 60
Manual class 13 17 70
School background
Private 53 24 23
State 20 20 60
Ethnic group
White 24 20 56
Black Caribbean/African 6 17 77
Pakistani/Bangladeshi 12 23 65
Indian 18 21 61
Chinese 33 19 48
Mixed/Other 21 21 58
All 22 20 58
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Table A3: Selectivity and Mean demographics

Panel A. Female Share

(1) (2) (3)

AcceptRate19 0.046* 0.002 0.041*
(0.019) (0.019) (0.019)

Num. Obs. 6443 6026 5708
R2 0.001 0.000 0.001

Panel B. High Math score share

(1) (2) (3)

AcceptRate19 0.325*** 0.170*** 0.197***
(0.018) (0.019) (0.020)

Num. Obs. 6443 6026 5708
R2 0.050 0.014 0.017

Panel C. High income parent

(1) (2) (3)

AcceptRate19 0.039*** -0.004 0.000
(0.005) (0.005) (0.005)

Num. Obs. 18901 16981 15982
R2 0.004 0.000 0.000

Panel D. Independent school share

(1) (2) (3)

AcceptRate19 0.202*** 0.149*** 0.149***
(0.007) (0.007) (0.007)

Num. Obs. 18901 16981 15982
R2 0.047 0.026 0.026

Notes: Standard errors in parentheses.
+ p < 0.1, * p < 0.05, ** p < 0.01, ***
p < 0.001.
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Table A4: Applications by School Type and Tariff Group

Characteristic State School Academy Grammar Independent Sixth Form Further Overall
N = 112,415 N = 231,948 N = 18,181 N = 91,663 N = 120,562 N = 26,053 N = 600,822

High Tariff
0 33,441 (30%) 61,637 (27%) 4,041 (22%) 9,708 (11%) 33,849 (28%) 8,313 (32%) 150,989 (25%)
1 19,026 (17%) 34,927 (15%) 2,101 (12%) 6,720 (7.3%) 20,213 (17%) 4,826 (19%) 87,813 (15%)
2 15,898 (14%) 31,084 (13%) 2,067 (11%) 7,492 (8.2%) 16,906 (14%) 4,426 (17%) 77,475 (13%)
3 14,311 (13%) 30,611 (13%) 2,562 (14%) 10,660 (12%) 16,673 (14%) 2,988 (11%) 77,805 (13%)
4 14,627 (13%) 34,386 (15%) 2,871 (16%) 16,613 (18%) 17,505 (15%) 2,897 (11%) 90,796 (15%)
5 13,748 (12%) 36,017 (16%) 3,737 (21%) 34,909 (38%) 15,475 (13%) 2,470 (9.5%) 106,356 (18%)
6 1,364 (1.2%) 3,286 (1.4%) 412 (2.3%) 3,839 (4.2%) 1,487 (1.2%) 229 (0.9%) 10,617 (1.8%)
7 0 (0%) 0 (0%) 0 (0%) 3 (<0.1%) 0 (0%) 0 (0%) 3 (<0.1%)
Mid Tariff
0 26,335 (23%) 56,366 (24%) 4,942 (27%) 41,324 (45%) 36,986 (31%) 6,721 (26%) 172,674 (29%)
1 29,573 (26%) 60,002 (26%) 4,638 (26%) 21,987 (24%) 32,455 (27%) 6,852 (26%) 155,507 (26%)
2 26,555 (24%) 53,062 (23%) 4,054 (22%) 13,828 (15%) 25,234 (21%) 5,991 (23%) 128,724 (21%)
3 18,636 (17%) 37,851 (16%) 2,747 (15%) 8,698 (9.5%) 16,450 (14%) 3,943 (15%) 88,325 (15%)
4 8,652 (7.7%) 18,937 (8.2%) 1,296 (7.1%) 4,462 (4.9%) 7,319 (6.1%) 1,998 (7.7%) 42,664 (7.1%)
5 2,454 (2.2%) 5,352 (2.3%) 477 (2.6%) 1,261 (1.4%) 1,991 (1.6%) 511 (2.0%) 12,046 (2.0%)
6 210 (0.2%) 378 (0.2%) 27 (0.1%) 100 (0.1%) 126 (0.1%) 37 (0.1%) 878 (0.1%)
7 0 (0%) 0 (0%) 0 (0%) 0 (<0.1%) 0 (0%) 0 (0%) 0 (0%)
Low Tariff
0 48,878 (43%) 118,550 (51%) 11,156 (61%) 72,696 (79%) 51,397 (43%) 9,770 (38%) 312,447 (52%)
1 22,914 (20%) 44,555 (19%) 2,983 (17%) 9,715 (23%) 23,636 (20%) 6,300 (24%) 109,403 (18%)
2 16,745 (15%) 30,257 (13%) 1,954 (11%) 4,928 (5.4%) 19,756 (16%) 2,287 (8.8%) 75,927 (13%)
3 12,415 (11%) 21,074 (9.1%) 1,247 (6.9%) 2,649 (2.9%) 13,910 (12%) 3,358 (13%) 54,653 (9.1%)
4 7,700 (6.8%) 12,005 (5.2%) 585 (3.2%) 1,221 (1.3%) 9,078 (7.5%) 2,011 (7.7%) 32,600 (5.4%)
5 3,445 (3.1%) 5,901 (2.5%) 256 (1.4%) 414 (0.5%) 4,430 (3.7%) 906 (3.5%) 14,542 (2.4%)
6 318 (0.3%) 416 (0.2%) 11 (<0.1%) 40 (<0.1%) 354 (0.3%) 104 (0.4%) 1,243 (0.2%)
7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
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Table A5: Grade inflation and school quality

A A* B

(1) (2) (3) (4) (5) (6)

School Quality -0.452*** -0.473*** -0.212*** -0.212*** -0.591*** -0.591***
(0.019) (0.022) (0.018) (0.019) (0.006) (0.006)

Year 2020 2021 2020 2021 2020 2021
Num. Obs. 1890 1890 1869 1869 1869 1869
R2 0.227 0.193 0.072 0.061 0.818 0.820

Notes: The table reports the regression coefficient that regresses the inflation measure defined in Equa-
tion (1) on the measure of school quality. Degree of inflation is measured as the average marginal effect
(AME) at the school level, in which I calculates the average marginal effect of the school inflation for all
students within the school. Namely, the latent scores of each students without the inflation effects are cal-
culated by mapping the student attributes on the fixed effect coefficient in Equation (1). Before the AME is
calculated, I apply the shrinkage correction method by ?.School quality is defined as the fixed effect derived
from Equation (1). The school fixed effect is evaluated by calculating the probability of obtaining A or A*
for the nationally representative student, which I define as the student with median values in their contin-
uous or categorical variables. School fixed effects are corrected for the incidental parameter bias by using
methods by Fernández-Val and Weidner (2016) . Schools without less than 30 students in both 2020 and
2021 taking A-level exams are dropped from the regression. Column 1 and 2 uses A, Column 3 and 4 uses
A*, and Column 5 and 6 uses B as the binary dependent variable for estimating Equation (1). Bootstrapped
standard errors at obtained by blocking at the school level. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A6: Grading bias across demographics by school quality

(1) (2)

Gender ×SQ -0.006 0.281∗∗∗

(0.078) (0.082)

Num.Obs. 1818 1824

Ethnic ×SQ 0.062 -0.175+

(0.064) (0.105)

Num.Obs. 1838 1855

SES Class2 ×SQ -0.084 -0.034
(0.193) (0.130)

SES Class3 ×SQ 0.155 0.190
(0.155) (0.156)

SES Class4 ×SQ 0.165 0.202
(0.174) (0.185)

SES Class5 ×SQ 0.399∗ 0.264
(0.180) (0.199)

SES Class6 ×SQ 0.367∗ 0.182
(0.162) (0.189)

SES Class7 ×SQ 0.331+ 0.579∗∗

(0.196) (0.218)
SES Class9 ×SQ 0.033 0.204

(0.128) (0.126)

Num.Obs. 13997 14006

IMD Quantile 1 ×SQ 0.001 0.355∗

(0.154) (0.157)
IMD Quantile 2 ×SQ 0.286∗ 0.040

(0.136) (0.131)
IMD Quantile 3 ×SQ 0.208+ 0.286∗

(0.113) (0.119)
IMD Quantile 4 ×SQ 0.317∗∗ 0.175+

(0.115) (0.103)

Num.Obs. 8719 8759

POLAR Quantile 1 ×SQ 0.452∗ -0.040
(0.199) (0.199)

POLAR Quantile 2 ×SQ 0.163 0.148
(0.172) (0.204)

POLAR Quantile 3 ×SQ -0.074 -0.172
(0.149) (0.171)

POLAR Quantile 4 ×SQ -0.068 -0.162
(0.151) (0.156)

Num.Obs. 8061 8162

Notes: standard errors in parentheses. +p < 0.1, ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.
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Table A7: Decomposing Inflation by school and student channel

(1) (2) (3) (4) (5) (6) (7) (8)

Inflation -0.437 -0.429 0.199 0.229 -0.100 -0.409 -0.409 -0.437
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Year 2020 2021 2020 2021 2020 2021 2020 2021
Num. Obs. 522667 568060 522667 568060 522667 568060 522667 568060
R2 0.191 0.184 0.082 0.072 0.207 0.044 0.126 0.255
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Table A8: Regression results: Selectivity slopes

plogis(slope 20) plogis(slope 21) plogis(slope selective 20) plogis(slope selective 21)
(Intercept) 0.541*** 0.566*** 0.562*** 0.568***

(0.040) (0.038) (0.047) (0.046)
plogis(Base Estimate) -0.073 -0.128 -0.101 -0.080

(0.087) (0.082) (0.101) (0.100)
Num. Obs. 1878 1881 1878 1881
R2 0.000 0.001 0.001 0.001
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A9: Regression results: School vs. Student channels

(School Channel) (School Channel) (Student Channel) (Student Channel)
(Intercept) 0.618*** 0.713*** 0.420*** 0.396***

(0.022) (0.023) (0.020) (0.022)
plogis(Base Estimate) -0.009 -0.105* 0.078* 0.222***

(0.047) (0.049) (0.043) (0.047)
Year 2020 2021 2020 2021
Num. Obs. 1878 1881 1878 1881
R2 0.000 0.002 0.002 0.012
R2 Adj. 0.000 0.002 0.001 0.012
AIC -999.2 -812.4 -1372.0 -979.8
BIC -982.6 -795.8 -1355.4 -963.2
Log Lik 502.625 409.210 689.024 492.913
F 0.039 2.479 3.524 22.152
RMSE 0.19 0.19 0.17 0.19
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A10: Performance of predicting tariff score
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Table A11: Regression Results: Acceptance and Rejection

Dep. #Accept #Rejection

Treat -0.0025 -0.0017 -0.0279*** -0.0348**
(0.0016) (0.0024) (0.0078) (0.0115)

(x) Further Education -0.0084 0.0736.
(0.0071) (0.0432)

(x) Grammar School -0.0096 0.0493
(0.0086) (0.0371)

(x) Independent School -0.0072 -0.0424
(0.0090) (0.0362)

(x) Sixth Form College 0.0005 0.0103
(0.0040) (0.0186)

(x) State School -0.0004 0.0012
(0.0043) (0.0222)

Obs. 371,477 371,477 262,595 262,595
R2 0.44417 0.44418 0.36535 0.36541

83



Table A12: Regression Results: High, Medium, and Low Tariff

Dep. #H Tariff #M Tariff #L Tariff

Treat 0.0161*** 0.0192** 0.0161*** -0.0224** -0.0078
(0.0044) (0.0065) (0.0044) (0.0069) (0.0055)

(x) Further Education -0.0081 0.0068
(0.0274) (0.0175)

(x) Grammar School -0.0582** 0.0040
(0.0214) (0.0286)

(x) Independent School -0.0516*** 0.0619*
(0.0156) (0.0307)

(x) Sixth Form College 0.0038 -0.0033
(0.0110) (0.0119)

(x) State School 0.0069 -0.0005
(0.0120) (0.0122)

Obs. 306,983 306,983 306,983 326,639 264,154
R2 0.58502 0.58508 0.58502 0.51234 0.52139
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Table A13: Regression results: Improvements in placements by school quality

(1) (2) (3) (4)

School Quality -0.067∗ -0.171∗∗∗ 0.086∗ -0.049
(0.040) (0.036) (0.052) (0.048)

Year 2020 2021 2020 2021
Num. Obs. 1,878 1,881 1,878 1,881
Uni FE X X
School FE X X
Tariff X X

Notes: Standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. δ is the (estimated) logit
coefficient and SQ denotes the coefficient for the school fixed effect from a seperate grade regression.
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