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Abstract

The rapid adoption of remote work reduced the physical presence of workers in urban centers, weak-

ening cities’ traditional role as centers of production. We highlight that cities’ role as centers of consump-

tion remained robust and, with greater time flexibility from workers, may have grown in importance. We

present a stylized model showing that the amenity value premium of dense urban areas can serve as an

anchoring force for urban foot traffic despite residential suburbanization. Using detailed mobile-device

foot traffic data, we find that while remote work reduced visits to former commuting destinations, it

simultaneously increased visits to amenity-rich urban hot spots. Our findings suggest that remote work

accelerated the transition of urban centers from commuting destinations to leisure destinations.
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1 Introduction

The COVID-19 pandemic triggered an unprecedented remote work revolution. At its peak, as many as

60% of U.S. workers worked from home, and by mid-2024, 29% of paid working hours continued to be

supplied away from the office, according to the Survey of Working Arrangements and Attitudes (SWAA)

(Barrero et al., 2021). With the widespread adoption of remote and hybrid work, daily commutes to urban

office districts have fallen sharply. Because office work sites are disproportionately concentrated in dense

city centers, this shift inevitably reduced the foot traffic and ancillary economic activity that commuters

once brought into downtown areas, while also fueling net out-migration from cities to suburbs (Liu and

Su, 2021; Gupta et al., 2021; Althoff et al., 2022; Ramani and Bloom, 2021). The resulting population loss

further eroded demand for urban amenities and local businesses, compounding pressures on urban prosperity

(Monte et al., 2023; Gupta et al., 2023). As remote and hybrid arrangements appear likely to persist, many

observers warn of a bleak urban future, raising concerns of an “urban doom loop” driven by declining

economic activity and downward spirals in local public finance (Nieuwerburgh, 2022).

That said, prevailing discussions about the future of cities are heavily premised on their role as centers

of production. If dense urban cores are primarily valued as sites where workers congregate to produce,

then the spatial dispersion of work enabled by remote arrangements would indeed diminish their impor-

tance. Yet cities have increasingly been recognized not only as places of production but also as centers

of consumption and leisure (Glaeser et al., 2000; Glaeser, 2011; Jedwab et al., 2022). Workers choose to

visit and reside in cities not just for job proximity but to access urban amenities. Research shows that even

before the pandemic, location choices have shifted toward valuing amenity access rather than proximity to

high-productivity workplaces per se (Glaeser and Gottlieb, 2006; Couture and Handbury, 2020). Thus, as

the workplace function of cities wanes relative to their amenity function, the trajectory of urban vitality may

hinge less on production and more on the strength of cities as centers of consumption.

In this paper, we show that although remote work has persisted and commuting trips have only par-

tially recovered, visits and consumer spending at urban consumption amenities rebounded strongly after

the pandemic’s peak. In particular, while remote work has continued to suppress foot traffic in neighbor-

hoods dominated by commuting-related destinations such as Central Business Districts (CBDs), visits to

large clusters of consumption amenities recovered robustly after an initial decline. We demonstrate that

these concentrated amenity clusters serve as powerful magnets for urban foot traffic, even in the absence of
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pre-pandemic levels of inbound commuters. Furthermore, we present evidence that the flexibility afforded

by remote work increased residents’ willingness to travel to major amenity centers, reinforcing the elevated

foot traffic in urban neighborhoods, despite residential suburbanization.

To demonstrate the mechanisms through which remote work adoption affects foot traffic and residential

population patterns, we develop a stylized spatial equilibrium model of remote work and local amenity pro-

vision with two locations: an urban core and a suburb. Our framework relaxes several common assumptions

implicitly embedded in most analyses of remote work. Once these often-implicit common assumptions are

relaxed, the model generates predictions that differ sharply from those of the conventional frameworks.

The first common assumption is that the urban core attracts visits ultimately as a commuting destina-

tion, with other activities primarily arising endogenously from foot traffic derived from commuter flows (Su,

2020; Davis et al., 2021; Delventhal et al., 2021; Delventhal and Parkhomenko, 2022; Richard, 2024). In

this view, a permanent decline in commuting would imply a long-run decline in all other urban economic

activities. We relax this assumption by allowing the urban core to provide an exogenous amenity premium

that persists even as commuter presence falls. The second common assumption is that amenity demand

originates solely from local residents. If this holds, suburbanization induced by remote work would nec-

essarily reduce visits to urban amenities. We relax this assumption by allowing residents to travel across

locations for leisure, enabling the urban amenities to attract inbound visits from suburban residents. The

third common assumption is that remote work leaves residents’ time for amenities unchanged. With a fixed

leisure-time budget, households would reduce their urban visits as they relocate outward, even if they travel

to amenities sometimes. We relax this assumption by allowing remote work adoption to increase leisure

time, thereby opening up the possibility that remote work can potentially raise the likelihood that suburban

residents travel into the urban core to enjoy its amenities.

Because remote work adoption surged concurrently with the onset of the pandemic, we stress that its

effects on foot traffic and residential patterns are distinct from those of the pandemic-induced aversion

to amenities. It is therefore important not to conflate the two. In our framework, the pandemic generated a

combination of shocks to the spatial equilibrium: a temporary rise in aversion to amenities due to heightened

disease-transmission risk, and a permanent increase in remote work adoption. Once the pandemic subsides,

the amenity aversion dissipates, but remote work adoption remains elevated relative to its pre-pandemic

level because of its persistence.

Under our model framework, the temporary pandemic-induced surge in amenity aversion strongly re-

2



duces foot traffic across all locations, with especially large effects in the urban location, and simultaneously

induces some residential suburbanization. Hence, the sharp decline in urban foot traffic observed during the

peak of the pandemic cannot be attributed solely to remote work adoption. If urban amenities retain their

amenity value premium and residents are willing to travel for leisure, once the temporary aversion dissipates

after the pandemic ends, the model predicts a strong rebound in amenity foot traffic, especially at urban

amenities. If we further account for workers’ expanded leisure time due to the reduced commuting burdens

under remote work, foot traffic to urban amenities may eventually even rise above its pre-pandemic level.

Whether urban amenities ultimately anchor or even amplify foot traffic depends on the relative strength

of the above-mentioned factors. To assess the extent to which these theoretical predictions are borne out in

practice, we analyze geographically detailed foot traffic data based on mobile devices, consumer spending

data, and housing data.

We show that both survey-reported time spent and mobile-device-based foot traffic at amenity estab-

lishments recovered strongly after collapsing during the peak of the pandemic. In particular, the recovery

of foot traffic and consumer transactions was more pronounced in urban-center amenities. Notably, the re-

bound in urban amenity visits outpaced the recovery of commuter traffic, indicating that the resurgence of

urban amenity foot traffic was not mechanically driven by the return to on-site work.

In contrast, the re-urbanization of the residential population and housing demand has been far weaker, if

present at all. The rent and housing value gradient with respect to distance from city centers has shown no

signs of recovery. Consistent with residents continuing to suburbanize while amenity visits become more

spatially concentrated in urban centers, we find that visitors to urban amenities are increasingly non-local

inbound travelers from suburban areas.

However, analyzing locations in binary terms, urban centers versus suburbs, creates difficulties in iden-

tifying whether the recovery of amenity traffic and consumer spending in urban centers reflects genuine

renewed demand for urban amenities, or instead a byproduct of a rebound in commuting trips. This em-

pirical challenge arises because urban centers disproportionately host both clusters of office work sites with

high potential for remote work adoption and clusters of high-value amenities.

To empirically demonstrate that the recovery and surge in foot traffic are driven by the anchoring effect

of urban amenities, we zoom in to the census tract level and analyze foot traffic and spending data at this finer

geographic resolution. For each tract, we separately compute (i) the expected shock to commuter presence,

based on the local industrial composition and the share of jobs with high potential for remote adoption, and
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(ii) the value of nearby amenities, measured by pre-pandemic foot traffic density to amenity establishments

in the surrounding area. This approach allows us to disentangle the effects of commuter losses from the

anchoring role of urban amenities.

Controlling for neighborhood characteristics and time effects, our regression analysis shows that neigh-

borhoods with larger expected reductions in commuter presence experienced disproportionate and persistent

declines in amenity foot traffic and consumer spending (both in transaction volume and spending amount),

well beyond the peak of the pandemic. In contrast, neighborhoods with very high amenity value, while suf-

fering larger initial drops during the pandemic peak, experienced a disproportionate rebound in foot traffic

beginning in late 2021. This rebound made foot traffic and consumer spending at amenities even more spa-

tially concentrated in high-amenity neighborhoods than before the pandemic. Moreover, in neighborhoods

facing large negative commuter shocks, visitors are no more likely to travel from farther away. In high-

amenity hot spots, however, the recovery has been fueled disproportionately by non-local visitors coming

from more distant neighborhoods.

In contrast to the patterns for foot traffic and spending, rents in neighborhoods near amenity hot spots

declined disproportionately in 2020 and showed only a modest recovery after 2021. Although the rent pre-

mium around amenity centers has returned to its pre-pandemic level, it has not risen beyond that baseline.

This stands in sharp contrast with foot traffic around amenity hot spots, which surged after 2021 and became

even more spatially concentrated near amenity clusters. These results are consistent with the model’s pre-

diction that amenities anchor foot traffic, and may even draw more of it as remote work expands workers’

time budgets, but that these forces do not translate into residential location choices to the same extent.

Finally, we test whether the surge in foot traffic and consumer spending at amenity hot spots is specif-

ically driven by the increased time flexibility afforded by widespread remote work. Using individual-level

mobile device data on movements, we show that remote work days have a positive same-day effect on the

fraction of non-work time that workers spend in high-value amenity hot spots. This effect is especially

pronounced for workers who live and work outside urban centers. To address potential measurement error

from conflating vacation days with remote work, we alternatively identify routine remote work days using

a rolling-window approach based on adjacent weeks. The results remain robust: workers are more likely to

spend time in amenity hot spots on the days of the week when they routinely work remotely. Moreover, we

find strong intertemporal patterns in visiting behavior. Anticipating a routine remote work day significantly

increases time spent in amenity hot spots on the preceding day, suggesting that remote work boosts demand
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for amenities partly by relaxing workers’ time constraints over a multi-day window.

Our paper adds to the list of recent papers and articles discussing remote work’s effect on the demand

for city neighborhoods. Since 2020, researchers have noted that the pandemic has led to a wave of sub-

urbanization among high-skilled workers, attributed to the sudden availability of virtual work options (Liu

and Su, 2021; Gupta et al., 2021; Althoff et al., 2022; Ramani and Bloom, 2021; Delventhal et al., 2021).

The decreased commute to the workplace not only weakened the relative demand for housing in city centers

and populous urban areas, but also led to persistently empty commercial real estate, including offices and

the brick-and-mortar retail spaces near these offices, and spurred a surge in online retail (Rosenthal et al.,

2022; Duguid et al., 2023). Gupta et al. (2023) show that the persistently low and subdued expectations can

even trigger financial concerns regarding the health of CRE debts. Other papers feature a variety of models

to study the equilibrium effects of remote work on cities (Delventhal and Parkhomenko, 2022; Davis et al.,

2021; Behrens et al., 2021; Brueckner et al., 2021; Liu and Su, 2023; Richard, 2024). The common focus

of these papers dwells on studying the impact of remote work on productivity and wages offered by cities.

Compared with most existing discourse, our paper presents a rosier prospect for cities by showing that dense

urban neighborhoods’ amenities may serve as an important anchor and may attract more economic activities

as a result of the relaxed time budgets.

Our paper also contributes to the study of the role of amenities in shaping cities and neighborhoods.

Over the last two decades, more attention has been paid to the role of consumption in cities. Glaeser et al.

(2000) highlight the evolution of cities’ role as a place for consumption. Since then, researchers studying

changes in cities and neighborhoods have often emphasized how endogenous change in location-specific

amenities plays a key role in shaping neighborhoods in equilibrium after an exogenous shock (Diamond,

2016; Su, 2022; Qian et al., 2023; Almagro and Domı́nguez-Iino, 2023; Hoelzlein, 2023). Our paper argues

that amenities play a key role in understanding cities’ future in the world of remote work.

Finally, this paper also adds to the general study of the agglomeration economies of consumption. Since

Krugman (1979, 1980), increasing returns to scale with consumers has been recognized as an important

determinant of the geography of economic activities. In particular, Handbury and Weinstein (2015) and

Handbury (2021) show that the agglomeration effect of consumption creates a well-being premium (price

index discount) associated with the size of the local consumer base – cities. Other papers show that dense

neighborhoods enjoy stronger amenity value also through accessing a larger variety of services (Couture,

2016; Su, 2022). Consistent with these insights, the twin agglomeration economies of production and con-

5



sumption jointly generate the anchoring force pulling people into city neighborhoods as a place to work,

consume, and live, as modeled by many versions of the quantitative spatial models (QSM) featuring cities

and neighborhoods (Ahlfeldt et al., 2015; Redding and Rossi-Hansberg, 2017; Monte et al., 2018; Heblich

et al., 2020; Severen, 2023; Tsivanidis, 2023). Our paper highlights that, while remote work diminishes the

agglomeration economies of production in cities and disperses productive activities in tradeable service sec-

tors, the agglomeration economies of consumption remain in the era of remote work, serving as an anchoring

force of increased importance for cities.

The rest of the paper is organized as follows. Section 2 presents a stylized model and its key predictions.

Section 3 describes the data and how we construct the variables. Section 4 discusses the empirical tests and

their implications. Section 5 concludes.

2 Stylized Model of Remote Work and Local Amenity Provision

We present a stylized spatial equilibrium model to illustrate how remote work adoption and shifts in amenity

preferences can reshape visiting patterns to urban and suburban amenities, the provision of amenities across

locations, and the equilibrium distribution of population between city centers and suburbs. The model

highlights that a sufficiently high inherent amenity premium in city centers may anchor foot traffic despite

the remote work shock, and it characterizes the conditions under which remote work could increase demand

for urban amenities.

We adopt a simplified variation of the Alonso-Muth-Mill Model with two locations j = u, s, represent-

ing typical urban and suburban locations (Alonso, 1964; Mills, 1967; Muth, 1969; Brueckner, 1987). The

urban location is where tradable goods and services are produced, such as office-based service production.1

Amenities are provided in both urban and suburban locations. Workers choose their residential location and,

conditional on this choice, decide which locations to visit for amenities, taking travel costs into account.

2.1 Workers’ problem

The economy consists of a total population N . Workers choose to reside in either the urban location (j = u)

or the suburban location (j = s), with Nu denoting the urban population and Ns = N − Nu the suburban

population. Let τj′|j represent the travel time from residential location j to destination j′. For simplicity,

1The urban location does not necessarily correspond to the central city; it may also represent suburban employment centers,
such as office parks.
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we assume that the urban location u is the sole commuting destination, with commuting time to the physical

workplace longer for suburban residents (τu|s) than for urban residents (τu|u).

Conditional on their residential choice, workers decide where to consume amenities, either in the urban

or suburban location. We denote by xj′|j the fraction of workers residing in j choosing to visit location j′

for amenities, and by aj′ the value of amenities provided in location j′.

2.1.1 Amenity Choice

Workers make two decisions: where to reside and where to consume amenities. We begin with the amenity

choice problem. Conditional on their residential location j, each worker derives utility from the choice of

amenity destination. A worker may choose to visit the urban location (u), the suburban location (s), or not

visit any location at all. The utility of worker i residing in j and visiting j′ is given by

Ui,j′|j = αL ln
(
τ − θcτ

c
u|j − τ0 − θaτj′|j

)
+ aj′︸ ︷︷ ︸

Ūj′|j

+εai,j′|jσa.

The utility from choosing a location reflects the net leisure time available after accounting for various

time costs. Specifically, it equals total non-work time (τ ) minus the mean commuting time cost (τ cu|j), the

fixed cost of visiting amenities (τ0), which captures quality-of-life considerations such as the risk of disease

transmission during the pandemic, and the travel time cost to the amenity location j′ (τj′|j).

The mean commuting time, τ cu|j , is defined as the average travel time from a worker’s residence j to

the workplace u, conditional on the prevailing remote work arrangement. Commuting time is modeled as a

function of travel distance and the share of work hours performed on-site:

τ cu|j = ωcτu|j ,

where ωc denotes the fraction of aggregate work hours conducted on-site, and 1−ωc represents the share of

hours worked remotely. The effect of the remote work revolution on commuting is captured by an exogenous

reduction in ωc.

If the worker chooses not to visit amenities, the utility is:

Ui,0|j = αL ln
(
τ − θcτ

c
u|j

)
+ εai,0|jσa.
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The logarithmic functional form over net leisure time generates a key feature of the model: the marginal

disutility of amenity travel depends on workers’ commuting burden. When commuting time τ cu|j declines

exogenously due to remote work adoption, workers’ total non-work time endowment increases, thereby

reducing both the disutility of the fixed cost of visiting amenities and the marginal disutility of additional

travel, which reduces workers’ sensitivity to leisure travel time. This mechanism allows remote work adop-

tion to influence not only the demand for amenities but also workers’ sensitivity to travel time.

In addition to the utility derived from leftover net leisure time, workers obtain amenity value aj′ from

visiting destination j′, along with an idiosyncratic preference shock εai,j′|j , assumed to follow a Type-I

Extreme Value distribution. The parameter σa denotes the scale (standard deviation) of the idiosyncratic

component. Thus, conditional on their residential location, workers may choose to visit amenities in either

u or s, or choose to remain at home.

Thus, the fraction of workers living in j visiting j′ is the following

xj′|j =
exp

(
Ūj′|j/σa

)
exp

(
Ūj′|j/σa

)
+ exp

(
Ūj′′|j/σa

)
+ exp

(
Ū0|j/σa

) .
Given the equilibrium level of amenity provision in each location and the travel time, workers living in

location j derive the following expected utility from amenity provision:

Ūa
j = ln

(
exp

(
Ūj′|j/σa

)
+ exp

(
Ūj′′|j/σa

)
+ exp

(
Ū0|j/σa

))
.

2.1.2 Residential Location Choice

Workers make location choices, taking the expected utility Ūa
j from amenity provisions in each location as

given. The upper level of worker i’s utility of living in j takes the form of a Cobb-Douglas form, combin-

ing log utility from numeraire consumption (lnC), housing consumption (lnH), and the lower-tier amenity

value Ūa
j , together with an idiosyncratic preference shock εij drawn from a Type-I Extreme Value distribu-

tion. σ is the standard deviation of the idiosyncratic component of the utility. κ is the housing expenditure

share. The utility that worker i will get living in location j is given by:

Uij = (1− κ) lnC + κ lnH + Ūa
j + εijσ,
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Each worker faces the following budget constraint:

C +RjH = I,

where I is income, and Rj is the housing rental price in location j. Solving the utility maximization problem

with respect to C and H yields the indirect utility of worker i in location j:

Vij = V0 − κ lnRj + Ūa
j + εijσ.

Workers choose the location that maximizes their utility. As a result, the population residing in location j is

given by:

Nj = N
exp

((
V0 − κ lnRj + Ūa

j

)
/σ

)
exp

((
V0 − κ lnRj + Ūa

j

)
/σ

)
+ exp

((
V0 − κ lnRj′ + Ūa

j′

)
/σ

) . (1)

2.2 Amenity Demand and Provision

We assume that foot traffic to amenities in each location is generated by leisure visits from both urban and

suburban residents. In addition, amenities in the urban location receive extra visits tied to on-site work,

such as lunch breaks or commute-chained trips. To capture this, we assume that each suburban resident

contributes an ϕ amount of visits to urban amenities whenever working onsite in the urban location.2

Hence, the total foot traffic in urban amenity locations is

Mu = Nuxu|u +Ns

(
ωcϕ+ xu|s

)
, (2)

and the foot traffic in suburban amenity locations is

Ms = Nuxs|u +Nsxs|s. (3)

To capture how amenity provision adjusts to shifting demand, we model the amenity value in each

location as the sum of an exogenous component (aj0) and an endogenous component that depends on local

foot traffic (βaMj):

aj = aj0 + βaMj . (4)

2This amount is equivalent to a ϕ fraction of the suburban worker’s total non-work leisure time.
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The exogenous component is assumed to be higher in urban locations (au0 > as0), reflecting the inher-

ent advantages of dense urban areas in producing consumption amenities, due to their built environment,

agglomerated infrastructures, and path dependence (Couture et al., 2023). The urban premium in exogenous

amenity value, au0 − as0, plays a key role in determining whether urban foot traffic can remain anchored in

city centers following a shock to commuter flows.

The endogenous component increases with local foot traffic: higher Mj enhances the amenity value of

location j. This mechanism captures the increasing returns to scale in amenity provision that are standard

in quantitative spatial models. Prior to widespread remote work adoption, urban locations benefited from

heavy exogenous foot traffic due to commuting, which in turn amplified urban amenity values through this

endogenous channel. The parameter βa governs the strength of this amplification, determining the extent to

which foot traffic shapes local amenity values.

2.3 Housing Market

Housing supply is assumed to be inelastic, so local rental prices increase with population (housing demand).

Let Nj denote the population in location j. The inverse housing supply curve is specified as

Rj = exp (r0j + ρj ln(Nj)) , (5)

where ρj denotes the inverse elasticity of housing supply in location j. We allow ρj to vary across locations,

consistent with evidence that denser urban areas typically exhibit less elastic housing supply (Baum-Snow

and Han, 2020).

2.4 Spatial Equilibrium

The spatial equilibrium in the two-location economy is defined by local foot traffic Mu, Ms, and population

Nu (and N − Nu), which simultaneously clear all amenity and housing markets. For the amenity markets

to clear, two conditions must hold:

1. Foot traffic generated by urban residents (given by equation 2) and suburban residents (given by

equation 3) must be consistent with the equilibrium level of endogenous amenity provision (equation

4 must hold),
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2. The population distribution across locations (given by equation 1) must be consistent with the equi-

librium levels of housing rents (equation 5 must hold).

2.5 How Our Model Differs from the Usual Frameworks

Before turning to the comparative statics, we highlight several key features of our framework that depart

from typical urban frameworks in which people study the impact of remote work. These departures are

central to generating the ambiguous effects of remote work on urban foot traffic, which earlier frameworks

typically do not.

Exogenous Urban Amenity Premium Much of the literature on the future of cities under remote work

implicitly assumes that urban foot traffic in major cities is driven primarily by commuting. Even when urban

amenities are discussed, the underlying view is that their value is largely endogenous, ultimately arising from

the provision sustained by commuter-driven foot traffic.

Under this assumption, widespread adoption of remote work reduces commuter inflows exogenously,

diminishing not only the urban foot traffic directly chained with commuting trips but also the additional

amenity foot traffic supported by high urban amenity value endogenously generated by the commute-chained

trips. Together, these effects imply a sharp decline in urban foot traffic and associated economic activity.

In contrast, our model incorporates both an endogenous and an exogenous component of amenity value

in urban locations. We show that if the exogenous urban amenity premium is sufficiently large, it can anchor

substantial foot traffic in urban areas, even in the face of large remote work shocks.

Residents Travel for Amenities Even in models that explicitly incorporate exogenous urban amenity

premium, demand for amenities is typically assumed to be purely local—that is, only residents consume

the amenities of their own location. As a result, amenity values are modeled solely as a function of the

number or composition of local residents. Under this assumption, migration from urban to suburban areas

in response to remote work inevitably generates an endogenous decline in both amenity value and foot traffic

in urban locations. This decline occurs even when urban areas offer a substantial amenity premium.

In our model, we relax this assumption by allowing residents of either location to choose amenities in

either j or j′, subject to travel costs that differ based on distance. With this modification of the assumption,

we continue to show that widespread adoption of remote work induces residential suburbanization because
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of the reduced need to commute. However, if the urban location provides a sufficiently large amenity

premium, it can continue to retain foot traffic, as suburban residents will still travel to the urban location to

consume amenities despite living outside.

Amenity Demand is Endogenous to the Time Budget Lastly, much of the discussion on remote work’s

impact on urban foot traffic implicitly assumes that individuals’ overall time spent visiting amenities is

unaffected by remote work. Under this assumption, as households relocate to the suburbs, even if some

continue to visit urban amenities, such visits are drawn from a fixed leisure-time budget, implying that

urban locations inevitably lose foot traffic in the long run.

In contrast, our model explicitly incorporates a time budget that adjusts endogenously with commuting

time. As remote work becomes more prevalent, workers gain net leisure time and become less constrained in

their leisure and travel decisions. Consequently, remote work can increase the overall likelihood of amenity

visits. Moreover, if the urban amenity premium is sufficiently large, the reduced sensitivity to travel costs

can generate disproportionately higher demand for urban amenities among suburban residents.

2.6 Comparative Statics

We posit that the pandemic brings dual immediate shocks to the economy:

1. A surge in remote work adoption:3 ωc ↓

2. An increase in aversion toward visiting amenities due to the risks of disease transmission:4 τ0 ↑

After the pandemic subsided, the temporary aversion toward visiting amenities outside of homes would

likely have lifted. This means that τ0 would have recovered largely to the pre-pandemic level. However,

the increased adoption of remote work remained persistently higher than the pre-pandemic level. Hence,

post-pandemic, while ωc will remain at a reduced level, the elevated τ0 is expected to have come back down.

In this section, we explore how changes in ωc and τ0 affect the equilibrium.
3The surge in remote work adoption is represented by an exogenous decrease in the size of ωc - the fraction of work time on

urban worksites.
4The shock of reduced amenity demand is captured by an exogenous increase in τ0 - the fixed cost of visiting amenities vis-a-vis

staying at home, and the eventual recovery of amenity preference is captured by a reversal of such an increase.
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2.6.1 The Effect of Remote Work Shock - ωc ↓

Effect on Residential Migration First, we discuss remote work’s effect on the migration of the residential

population:

Proposition 1. If the commuting time saving τu|s − τu|u is sufficiently large and the leisure travel cost θa

is sufficiently small, an increase in remote work (i.e., ωc ↓) leads to net migration from the urban to the

suburban location—i.e., a reduction in population Nu in the urban location u and an increase in population

Ns in the suburban location.

Please see Appendix A1.1 for the proof.

The rise of remote work affects migration through several channels:

First, remote work reduces the average commuting time required of workers, thereby diminishing the

relative commuting advantage of living in an urban location compared to a suburban location. This equaliz-

ing effect on commuting costs drives suburbanization of the residential population.

Second, as fewer commuters travel to the urban location and as part of the local customer base migrates

outward, visits to urban amenities decline. This generates an endogenous reduction in urban amenity value,

further eroding the attractiveness of urban residence and amplifying population loss.

But, at the same time, remote work expands residents’ effective time budgets, which can increase their

willingness to travel for leisure activities. In particular, the relaxed time constraint reduces the marginal

disutility of leisure travel time, allowing suburban residents to more frequently choose urban amenities.

This channel may offset the decline in foot traffic from the loss of chained commuting trips and, in some

cases, even raise urban amenity visits and amenity values, thereby mitigating the loss of urban desirability.

However, if the commuting-time saving τu|s − τu|u from living in the urban location is sufficiently

large and the marginal cost of leisure travel θa is sufficiently small, the offsetting time-budget effect will

be secondary to the commuting effect. The intuition is that when θa is small, urban amenities can attract

substantial foot traffic from suburban residents. Yet the same condition implies that access to amenities

would be more equal across locations, so urban residence provides little additional advantage. Hence, if

τu|s − τu|u is large, the commuting-time saving effect of remote work dominates and drives residential

migration patterns.
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Effect on Foot Traffic The impact of remote work on amenity foot traffic is shaped by two starkly oppos-

ing forces, yielding an ambiguous net effect even under highly plausible conditions.

Proposition 2. The increase in remote work (i.e., ωc ↓) reduces urban amenity foot traffic Mu if ϕ is

sufficiently large. But, if ϕ is small and cross-location commuting time τ cu|s sufficiently long and urban

amenity premium au0 − as0 sufficiently high, an increase in remote work could raise urban amenity foot

traffic Mu.

Please see Appendix A1.1 for the proof.

The effect of remote work adoption on amenity foot traffic can be understood as the interaction of several

opposing forces:

First, as remote work reduces the number of commuters to urban locations, urban amenities lose visits

that were previously chained with commuting trips. The parameter ϕ governs the extent to which amenity

visits are tied to commuting. Thus, when ϕ is large, an increase in remote work produces a substantial

decline in urban amenity foot traffic. This reduction, in turn, endogenously lowers the amenity value of

urban locations, further reinforcing the decline in urban amenity visits.

Second, because leisure travel incurs a positive cost (θa > 0), amenities are disproportionately visited

by local residents. Consequently, the net migration of population from urban to suburban locations shifts

amenity foot traffic outward as well.

On the other hand, remote work relaxes workers’ time budgets. If commuting times for suburban resi-

dents are long, remote work generates substantial gains in available leisure time, which increases the demand

for amenities and reduces the disutility of leisure travel. When the urban amenity premium au0−as0 is high,

this channel can significantly boost foot traffic to urban amenities.

Hence, the overall effect of remote work on urban amenity visits depends on the relative strength of

these mechanisms. If the loss of commuters and residents dominates, remote work reduces urban amenity

foot traffic. If the expanded time-budget effect dominates, remote work increases urban amenity foot traffic.

Proposition 3. The increase in remote work (i.e., ωc ↓) raises suburban amenity foot traffic Ms when the

urban amenity premium au0 − as0 is not too large or when ϕ is sufficiently large. Conversely, if the urban

amenity premium au0 − as0 is large enough and ϕ is small, then an increase in remote work could instead

reduce suburban amenity foot traffic Ms.

Please see Appendix A1.1 for the proof.
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The effect of remote work on suburban amenity foot traffic operates through a similar but distinct set of

channels:

First, net migration from urban to suburban locations shifts the residential base outward, directly raising

foot traffic at suburban amenities.

Second, as remote work reduces commuting to urban centers and urban amenities lose visits that were

previously chained with commuting trips, the relative attractiveness of suburban amenities rises, further

boosting suburban foot traffic.

On the other hand, remote work also expands leisure time, which increases overall demand for amenities

and lowers the disutility of leisure travel. This channel raises visits to both urban and suburban amenities.

However, if the urban amenity premium au0−as0 is sufficiently large, the increased amenity demand driven

by relaxed time budgets may flow disproportionately toward urban amenities, diverting visits away from

suburban locations.

Hence, the net effect of remote work on suburban amenity foot traffic depends on the relative strength

of these mechanisms. If migration, the loss of urban commuters, and the general increase in leisure time

dominate, remote work raises suburban foot traffic. If the relaxation of time budgets instead amplifies the

pull of high urban amenity premiums, suburban foot traffic will decline.

2.6.2 The Effect of Amenity Preference Change - τ0 ↑

Because the rise of remote work coincided with the onset of the pandemic, which both accelerated remote

work’s widespread adoption and likely influenced migration and amenity demand through its own channel,

it is essential to disentangle the effects of the pandemic itself from those of remote work. Failing to do so

risks conflating the pandemic-driven impact with the long-term effects of remote work adoption.

We posit that the pandemic triggered a temporary surge in aversion to visiting amenities, primarily due

to heightened concerns over disease transmission. This surge in amenity aversion can substantially alter

both local population dynamics and amenity visitation patterns.

We summarize these implications in the following propositions:

Proposition 4. An increase in amenity aversion (τ0 ↑) reduces amenity foot traffic in both urban and subur-

ban locations (Mu and Ms), provided that the urban amenity premium au0−as0 is sufficiently large and the

aversion shock is strong enough. In this case, the decline in Mu exceeds that in Ms — i.e., urban amenity
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foot traffic falls more sharply than suburban amenity foot traffic.

See Appendix A1.2 for the proof.

Provided that the endogenous amenity parameter is not so large as to preclude a stable equilibrium, and

that the urban location offers a sufficiently strong amenity premium, a large increase in amenity aversion (τ0)

lowers foot traffic across all locations, with particularly strong effects in the urban area. The mechanism

is straightforward: a higher τ0 reduces the probability that residents visit any amenities, raising instead

the likelihood of staying home. Because greater aversion also heightens sensitivity to leisure travel costs,

it disproportionately discourages non-local trips. Since urban locations typically draw a large share of

inbound visitors due to their high amenity premium, the loss of such trips depresses their foot traffic most

severely. Hence, even absent remote work, we would expect amenity visits to decline everywhere during the

pandemic, and most sharply in urban centers.

Moreover, as residents broadly reduce their demand for amenities, the value of close access to high-

quality urban amenities falls. This diminishes the relative attractiveness of urban residence compared with

suburban residence, thereby inducing suburbanization of the residential population:

Proposition 5. An increase in amenity aversion (τ0 ↑) induces net migration from the urban location (u)

to the suburban location (s) — i.e., a decline in the urban population Nu and a corresponding rise in the

suburban population Ns, provided that βa is sufficiently small, the urban amenity premium au0 − as0 is

sufficiently large, and the aversion shock is strong enough.

See Appendix A1.2 for the proof.

2.7 Model Predictions of the Pandemic and Post-Pandemic Foot Traffic Patterns

From the comparative statics, it is clear that while the residential migration effects of the pandemic and

remote work move in the same direction, their effects on urban amenity foot traffic differ sharply. Hence, if

the pandemic effect itself is ignored and the dramatic decline in urban amenity visits during the pandemic

is attributed entirely to remote work, we risk misidentifying the true effect of remote work once pandemic

conditions subside.

To account for the dual shocks, we analyze the dynamics of population and foot traffic under their com-

bined influence during the pandemic and its aftermath. Specifically, we posit that the pandemic introduced
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a temporary rise in amenity aversion (τ0 ↑) alongside a permanent increase in remote work adoption (ωc ↓).

Once the pandemic wanes, the temporary aversion shock dissipates, while the rise in remote work persists.

At the height of the pandemic, a large increase in amenity aversion dominated, reducing foot traffic

across all locations, with disproportionately large declines in urban amenities.5 At the same time, both the

rise in τ0 and the decline in ωc induce net out-migration from urban to suburban locations.

When the pandemic subsides, the aversion shock dissipates, reversing its depressing effect on foot traffic

and generating a broad rebound in amenity visits, particularly a strong rebound in urban areas.

In the post-pandemic period, however, the dynamics of foot traffic are governed primarily by remote

work, since its adoption remains persistently higher than pre-pandemic levels. Based on Proposition 2, if

the urban amenity premium is sufficiently high and the commuting-time savings from remote work are large

enough, urban amenity foot traffic may not only recover but even exceed its pre-pandemic benchmark.

Turning to residential migration, the urban location is expected to recover only a modest amount of

population once the aversion dissipates. A full reversal is unlikely, as the residential suburbanizing effect of

remote work endures as a first-order force. Thus, in the long run, once τ0 has fully normalized, residents will

remain disproportionately suburbanized. Nevertheless, foot traffic to urban amenities is likely to rebound

more strongly than in foot traffic in suburban amenities and may even overshoot pre-pandemic levels, if the

urban amenity premium is high enough. In this sense, remote work is expected to transform urban locations

more into leisure travel destinations, even as the residential population shifts outward.

3 Data

3.1 SafeGraph Foot Traffic Data

To test the effect of remote work on foot traffic at amenities, we use SafeGraph Foot Traffic data to measure

monthly visits to both office establishments and consumption amenity establishments. Each business point

of interest (POI) is linked to foot traffic records through a unique establishment identifier. The dataset,

which is proprietary, is compiled from multiple sources, including mobile devices, WiFi connections, and

sensors. A valuable feature is that visits are reported by duration—for example, 5–20 minutes versus longer
5As Proposition 2 shows, the standalone effect of remote work adoption on urban amenity foot traffic could be positive. If τ0

is not sufficiently high, the combined effect of remote work and increased aversion to urban foot traffic could even be positive. We
return to this case when discussing the post-pandemic period. However, at the peak of the pandemic, it is reasonable to assume that
the surge in τ0 was large enough to drive urban amenity visits to very low levels.
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than 4 hours. This allows us to distinguish office visits, which generally exceed one hour, from visits to

consumption amenities, which are typically shorter.

An important caveat is that SafeGraph sold the data to Advan after the end of 2022. Although the

basic format of the data remained unchanged after the sale, Advan implemented several rounds of major

corrections to establishment polygons and foot-traffic assignment algorithms. These adjustments introduced

structural discontinuities in the data over time. Because the revisions were designed to improve accuracy by

eliminating duplicate visit counts, each algorithmic change produced abrupt upward or downward shifts in

foot traffic at the neighborhood level, depending on the nature of the local adjustment.

To smooth out the structural breaks in the data, we implement a simple imputation procedure at the

tract level. Specifically, for each break month identified nationally, we assume that local foot traffic remains

unchanged during that period. Operationally, we multiplicatively rescale the foot traffic in the subsequent

month and onward so that no growth is recorded over the break months. The detailed adjustment procedure

is provided in Appendix A4.

The implicit assumption behind our multiplicative rescaling is that, in months without structural breaks,

the growth rate of tract-level foot traffic observed in the raw data provides an unbiased estimate of the

true growth rate. While the level of foot traffic may be affected by measurement error stemming from

the cumulative effects of idiosyncratic POI assignment algorithms, these errors are assumed not to distort

month-to-month growth.

We argue that the multiplicative rescaling procedure introduces minimal bias in measuring foot traffic

trajectories. In our summary statistics, all foot traffic measures are normalized to pre-pandemic levels,

which eliminates idiosyncratic cross-sectional differences in levels. What matters for our analysis is the

cumulative growth of foot traffic over time. In the regression analysis, log foot traffic serves as the outcome

variable, with census tract fixed effects included in all specifications. This ensures that any persistent cross-

sectional level differences across tracts are differenced out, leaving only within-tract variation relevant for

our empirical analysis.

3.2 SafeGraph Spend data

To complement the SafeGraph foot traffic data, we draw on SafeGraph Spend data. Unlike foot traffic,

which is derived from mobile device pings, the Spend data records monthly establishment-level transac-

tions, including transaction counts, dollar volumes, and unique customers. In our analysis, we use business
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transaction counts from the Spend data as an additional measure of visits to consumption amenities.

These proprietary data are compiled from a variety of payment sources, including credit and debit card

networks as well as electronic payment platforms. The coverage is narrower, encompassing roughly 10% of

the businesses included in the foot traffic dataset.

3.3 Global Wireless Solutions - Mobile Consumer Panel

To study how remote work causally affects residents’ trip choices, specifically the frequency, location, and

distance of visits, we use mobile-level panel data from Global Wireless Solutions (GWS). The GWS dataset

provides anonymized panel data on Android users’ mobile device activity, recorded 24 hours a day, 7 days

a week, over several months for a rolling sample of approximately 60 thousand users at any given time. All

users included in the sample opted in voluntarily through a rewards app available on the Google Play Store.

Participation required installation of the app and completion of an onboarding process, including explicit

permission settings.

The data span from early 2019 to mid-2024, but the period with a consistent sample size and composition

extends only through mid-2023. Accordingly, we restrict our analysis to data from 2019 through mid-2023.

Each observation corresponds to a device ping, which contains the timestamp, geographic location, and

information on mobile applications in use. For our purposes, the longitudinal sequence of geolocation pings

across a large user base allows us to construct trip profiles at the individual level and analyze how travel

behavior responds to different work arrangements.

3.4 Housing and Rent Data

To disentangle the effects of reduced commuting and the scale of consumption amenities on housing de-

mand, we analyze housing price and rent data at the Zip Code level. Housing price data are obtained from

Redfin, a national real estate brokerage. We use monthly median sale prices and listing prices at the Zip

Code level, disaggregated by residential property type. These measures are compiled from multiple sources,

including local Multiple Listing Services (MLS) and assessments by Redfin-affiliated real estate agents. To

strengthen coverage, we supplement these data with the Zillow Home Value Index (ZHVI), which tracks

the typical home value and market changes for homes between the 35th and 65th percentiles of the value

distribution. For rent prices, we use the Zillow Observed Rent Index (ZORI), which provides monthly Zip
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Code–level measures of typical asking rents.

3.5 American Time Use Survey (ATUS)

We use the American Time Use Survey (ATUS) to measure the overall time people devote to commuting

and to traveling to consumption amenities outside the home, with particular attention to changes before

and after 2020. Conducted by the Census Bureau for the Bureau of Labor Statistics, the ATUS provides

detailed information on how a representative sample of Americans allocate their time across daily activities,

including commuting, dining out, and socializing, as well as the locations where these activities occur. Each

respondent records a 24-hour activity diary, which forms the basis of the dataset.

4 Empirical Evidence

4.1 Remote Work Persistence and Amenity Visit Recovery

To validate the model’s predictions, we begin documenting the trajectory of commuting trips and amenity

foot traffic since 2020. Figure 1 plots the frequency and the average time U.S. residents spend on work-

related travel (primarily commuting) and amenity-related travel, normalized to 2012 levels, using the Amer-

ican Time Use Survey (ATUS). Before 2020, both types of travel remained relatively stable. In 2020, how-

ever, they both collapsed sharply, consistent with findings from pandemic-era studies, with the frequency

and time spent in amenity trips dropping much more severely. However, beginning in 2021, their trajecto-

ries diverged: while commuting time has remained relatively steady and well below pre-pandemic levels,

reflecting the persistence of remote work, time spent on amenity-related travel rebounded quickly and has

risen steadily from its 2020 trough.

We complement the ATUS evidence with SafeGraph foot traffic data to document changes in commuting

and amenity visits. Unlike ATUS, which is survey-based, the SafeGraph data are derived from mobile device

geolocations. A challenge, however, is that the data do not directly distinguish between work-related and

amenity-related trips. To address this, we classify commuting visits as trips to establishments outside the

amenity industries that last longer than one hour, and amenity visits as trips lasting less than one hour

to establishments in amenity-related industries. Specifically, we define amenity establishments as those

in the following NAICS codes: 722 (Restaurants); 445, 446 (Grocery); 440–459 excluding 445 and 446
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(Non-Grocery Retail); 713 (Gyms); 812 (Personal Care); 512 (Movie Theaters); and 712 (Recreation and

Entertainment).6

Figure 2a plots the number of commuting trips and visits to urban consumption amenities. The patterns

mirror those in the time-use data. Commuting trips collapsed to unprecedented lows in 2020 and, despite

some modest recovery, have remained depressed through 2024. By contrast, visits to amenities rebounded

more strongly.

4.1.1 Rebounding Amenity Activities in Urban Centers

Not only has the overall demand for amenities recovered more, but urban centers in particular have expe-

rienced a faster rebound relative to suburban areas. Figure 2b plots the trajectories of amenity foot traffic

in urban centers and suburbs, where we define urban centers as census tracts within a 5-mile radius of the

downtowns of the associated MSAs. Foot traffic fell much more sharply in urban centers at the height of

the pandemic, yet their recovery was also faster than that of suburban amenities. Strikingly, the rebound in

urban amenity visits has outpaced the recovery of urban commuting trips, indicating that the resurgence of

urban foot traffic cannot be explained solely by the return of commuters.

Moreover, when we examine individual MSAs with dense urban centers and well-known urban amenity

offerings, the disproportionate recovery of urban amenity foot traffic becomes even more pronounced. Fig-

ure 3 presents the trajectories for New York, Chicago, San Francisco, and Washington MSAs. In all four

MSAs, both commuting and amenity trips to urban centers collapsed precipitously at the onset of the pan-

demic, with declines larger than the national average. Commuting trips have since partially rebounded but

remain far below pre-pandemic levels as of 2024. In contrast, amenity visits to urban centers in New York

and Chicago surged past both suburban amenity foot traffic and urban commuting traffic, nearly regaining

their pre-pandemic levels by mid-2024. In San Francisco, the overall recovery has been weaker, yet urban

amenity visits still outpaced suburban amenity traffic and urban commuting traffic. In Washington, urban

amenity foot traffic rebounded disproportionately and surpassed urban commuting trips, though it remained

below suburban amenity traffic. Taken together, these patterns reveal that the recovery of urban amenity

visits has been especially strong in MSAs where we would expect a high level of amenity value due to their

exogenous urban layouts.
6The time-duration assumption underlying these definitions is that consumers generally spend relatively short periods at

amenity destinations such as stores and restaurants, while commuting visits typically involve employment shifts lasting at least
one hour.
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Besides foot traffic data, we also analyze consumer spending data from SafeGraph Spend data. Figure

2c plots the share of consumer spending transaction volume occurring in establishments in the urban cen-

ters. The graph shows a clear dip in 2020, meaning that business establishments in urban centers saw a

precipitous, outsized drop in consumer presence during that time. However, urban centers started to reclaim

their share of consumer spending starting in 2021, and as of mid-2024, merchants in urban centers claim a

higher fraction of consumer transactions than even before the pandemic.

Consistent with the prediction of the model, Figure 2d shows that the average distance to home for

visitors coming to amenities in urban centers surged after 2021. This suggests that after the peak of the

pandemic, an increasing fraction of visits to amenities in city centers are made by residents of the suburbs.

This rising distance to home by urban amenity visitors is consistent with the results from Figure 4a,

where we plot the population change in urban core counties and the suburban counties of a few select MSAs

since 2020.7 We see a pattern of continuing residential suburbanization since 2020.

Furthermore, Figure 4b plots rent levels in urban centers versus suburbs, normalized to 2019 Q1. Since

the start of the pandemic, rent growth in the suburbs has far outpaced that in urban centers, and the gap has

continued to widen through 2024. Similarly, Figure 4c shows listed home values, also normalized to 2019

Q1, and reveals the same pattern: suburban home value growth began pulling ahead of urban counterparts

in 2020, with the divergence widening steadily by 2024. These results indicate a sustained suburbanization

of residential housing demand, with no sign of reversal as of 2024.

This pattern aligns with the model’s prediction that the persistent adoption of remote work leads subur-

banized residents to remain suburbanized. At the same time, the anchoring value of urban amenities enables

urban locations to continue attracting amenity foot traffic, even with fewer residents in proximity, so long as

individuals are willing to travel for leisure. The effect is especially pronounced in MSAs with well-known

premium urban amenities, where urban amenity foot traffic has nearly fully recovered. These findings

provide suggestive evidence that remote work, by relaxing time budgets, may have increased demand for

premium urban amenities.
7We select MSAs where county division is fine enough to designate some counties as distinctly urban and other counties as

distinctly suburban. They include New York, San Francisco, Denver, Baltimore, Boston, Philadelphia, and Washington. New York
includes the four boroughs (all other than Staten Island) as urban counties. Other MSAs include only the core central county as the
urban county, and the rest are suburban counties.
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4.2 Spatial Tests of Model Mechanisms

The limitation of testing our model predictions using foot traffic patterns based on binary locations — urban

vs. suburban is that it may not be enough to rule out alternative explanations. For example, a sharp drop in

amenity foot traffic in urban centers during the peak of the pandemic could reflect either the sudden adoption

of remote work or a surge in amenity aversion, since both shocks occurred simultaneously. Similarly, in the

aftermath of the pandemic, it is difficult to infer from the recovery or lack of recovery of urban foot traffic

whether the patterns are driven by renewed demand for amenities or by increased commuter presence as

on-site work partially resumed.

This empirical challenge arises because U.S. urban centers disproportionately host both clusters of office

job sites that are highly remote-compatible and dense concentrations of popular urban amenities. Table 1

illustrates this overlap: office clusters with high shares of remote-adopting jobs are typically located in

neighborhoods closer to city centers with higher population density, and amenity clusters are also much

more likely to be concentrated in these same urban locations.

Drawing on insights from the model, we propose empirical tests at finer geographic resolution to disen-

tangle the drivers of changing foot traffic and residential patterns.

4.2.1 Spatial Patterns in Foot Traffic

To separate amenity visits chained to commuting trips (e.g., lunch breaks) from leisure-driven visits an-

chored by high-value urban amenities, we disaggregate cities into fine neighborhoods and analyze foot

traffic at the Census tract level.

Commute-Chained Amenity Foot Traffic To assess whether remote work lowers urban foot traffic by

reducing commute-chained amenity visits, we examine foot traffic around large employment centers such

as Central Business Districts (CBDs), where the decline in on-site commuters is expected to be most pro-

nounced. During the height of the pandemic, these tracts should experience sharper drops in amenity visits

relative to other areas. If remote work remains persistent after the pandemic subsides, foot traffic to ameni-

ties in these tracts should remain subdued.

Anchoring Effect of Urban Amenity Premium On the other hand, if the premium value of urban ameni-

ties anchors foot traffic under remote work, then neighborhoods with very high amenity value—such as
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popular recreational or commercial streets with dense retail—should exhibit a rapid rebound after the initial

pandemic-era decline and should not experience a permanent reduction once the pandemic subsides.

Moreover, if remote work relaxes workers’ time budgets sufficiently, foot traffic in these high-amenity

neighborhoods should more than fully recover, ultimately surpassing the pre-pandemic baseline.

Rising Non-Local Foot Traffic to Urban Amenities In the model, a key mechanism enabling a strong

recovery of urban foot traffic despite residential suburbanization is the ability of residents to travel for

amenities. Thus, if urban amenity visits rebound while the residential population remains suburbanized, an

increasing share of urban foot traffic should originate from residents living farther away from these amenity

clusters.

Therefore, empirically, while the temporary surge in amenity aversion during the height of the pandemic

should reduce the share of non-local inbound trips to high-amenity census tracts, once the pandemic sub-

sides, an increasing fraction of visits to these urban locations should originate from non-local residents of

lower-amenity suburban neighborhoods.

Remote Work’s Effect on Workers’ Demand for Urban Amenities Finally, the crucial countervailing

force that allows remote work to raise urban foot traffic is its ability to relax workers’ leisure time, thereby

increasing their demand for amenities, particularly high-value urban amenities. If this channel is operative,

then empirically, workers who frequently work remotely should be more likely to visit amenities in general,

and more likely to patronize high-value amenities specifically, compared to workers who primarily work

on-site.

4.2.2 Spatial Patterns in Residential Housing Demand

To validate Propositions 1 and 5 regarding the effects on residential population, we examine the trajectory

of housing demand at the census tract level.

Reduced Housing Demand Near Remote-Compatible Job Centers Based on Proposition 1, the rise of

remote work erodes the commuting-time advantage of residing in urban centers, leading to out-migration

from these areas. To test this channel, we examine changes in housing demand in neighborhoods around ma-

jor job centers such as CBDs, where the reduction in commuting needs should be most pronounced. These
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neighborhoods are expected to experience disproportionately large declines in housing demand, reflected in

lower rent and housing value growth relative to other locations.

Amenities’ Mitigated Effects on Housing Demand Based on Proposition 5, neighborhoods with high

amenity value should experience a population decline—and hence in housing demand—during the peak of

the pandemic. However, once the pandemic subsides, this demand is expected to recover. That said, the

fluctuation should be relatively moderate, since the value of amenity access remains steady if the cost of

leisure travel θa is not too high.

Similarly, the rise of remote work, while it affects amenity foot traffic, is expected to also have moderate

effects on residential location choices, particularly if individuals are willing to travel for amenities. There-

fore, rent and housing value growth around high-amenity hot spots should differ moderately, if any, from

that in other neighborhoods.

4.2.3 Identifying Local Commuter Shocks vs. Amenity Hot Spots

4.2.4 Local Commuter Shocks – RSj

To identify neighborhoods expected to experience larger reductions in workers’ physical presence due to

remote work, we measure the fraction of nearby jobs that are remote-adoptive based on the industrial com-

position of pre-pandemic commuters to surrounding job sites. Specifically, we use pre-pandemic SafeGraph

foot traffic data to calculate the number of commuting trips to each location by industry and then estimate

how many of those trips would have disappeared under remote work adoption.8

Using this approach, we first compute the number of commuters in each census tract likely to adopt

remote work, relative to the total number of commuters to that tract. We then aggregate within a 3-mile

radius to construct the fraction of commuters likely to go remote after 2020, denoted as RSj . This variable

captures the spatial variation in the expected reduction in commuting trips.

4.2.5 Local Consumption Amenity Provision – Amj

Next, we calculate the value of local amenity provision. A natural starting point is to measure amenity

establishment density at a highly localized level. However, relying on the raw count of establishments poses
8As an alternative, one could use the Zip Code Business Patterns (ZCBP), which report establishment counts by industry and

size. However, small ZIP code-industry-size cells are masked in the ZCBP, which could introduce bias into such measurements.
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an obvious drawback: amenities differ substantially in quality, capacity to serve customers (i.e., size), and

the diversity of services offered. Ignoring these variations risks serious measurement error, particularly

because establishments in large amenity hot spots are often designed to accommodate far larger volumes of

customers than their suburban counterparts.

To account for variation in amenity quality and service capacity, we measure amenity provision using the

pre-pandemic density of recorded foot traffic to amenity establishments. For each census tract, we calculate

the total foot traffic to establishments in the designated NAICS categories (as defined in Section 4.1) and

divide by the tract’s land area. We denote this measure of local amenity provision by Amj . 9

4.3 Regression Analysis

We use a regression model to separate the effect of reduced commuting vs. the anchoring effect of high-value

amenities. The regression is specified as follows:

lnMjt = γRS
t RSj + γAm

t Amj + δj + δt +XjΠt + εjt. (6)

Mjt is the outcome variable, which is the foot traffic at amenities at census tract j at time (year-quarter)

t. 2019 Q1 is treated as the omitted time category for the time effect coefficients γRS
t and γAm

t . δj is the

census tract fixed effects, which accounts for cross-sectional variation in foot traffic across neighborhoods.

δt is the time fixed effects, which accounts for the nationwide ups and downs in foot traffic throughout

the pandemic. We also use a number of tract-level characteristics as controls, including MSA indicators,

log median income, the share of Black and Hispanic residents, the share of college graduates, the share of

renters, and pre-pandemic population density, and allow their coefficients to vary by time so that any of

fluctuations in lnMjt led by time-varying factors related to these local characteristics will be accounted for.

The goal of the specification is to isolate the spatial variation in the change in local commuters, captured

by RSj , and in the existing value of local amenities, captured by Amj . To facilitate the interpretation of

the results, we standardize RSj and Amj such that each of the regressors has a mean of 0 and a standard

deviation of 1.

The key coefficients of interest are γRS
t and γAm

t . The coefficients represent the trajectories of foot
9As an alternative, we can construct an amenity density measure using Zip Code Business Patterns (ZCBP). Specifically, we

count the total number of establishments in the designated NAICS codes, assign them to the census tract corresponding to the
nearest ZIP Code, and divide by the land area of that ZIP Code. This measure of nearby amenity density can serve as an additional
proxy for the spatial variation in initial amenity provision.
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traffic normalized to 2019 Q1 in neighborhoods with a large decrease in commuters and in neighborhoods

with very high amenity value relative to the average neighborhood.

Figure 5a plots estimates of γRS
t and γAm

t , respectively. Based on the trajectory of γRS
t , after the start

of the pandemic, tracts that experienced a larger loss of commuters due to the remote work shock saw a

larger drop in foot traffic to nearby amenities, and such a disproportionate drop in amenity foot traffic to

these neighborhoods never fully recovered back to the pre-pandemic level, even by mid-2024. This result

is consistent with the prediction that a permanent loss of commuters permanently reduces the amenity foot

traffic associated with commuting.

In contrast, the trajectory of γAm
t implies that while the high-value amenity hot spots saw a dispro-

portionate loss of foot traffic during the peak of the pandemic, foot traffic to these locations was quickly

regained by the end of 2020. Starting in 2021, these neighborhoods even started to attract disproportionately

more foot traffic relative to the average neighborhood. The quick recovery of foot traffic to neighborhoods

with high amenity value, despite the depressed amenity traffic in neighborhoods with sustained shortfalls

in commuters, demonstrates that urban amenities with high value premium produce a powerful anchoring

effect for urban foot traffic. Not only that, the fact that the high-value amenity hot spots saw higher-than-

average growth in foot traffic after 2021 suggests that the amenity hot spots have increasingly attracted a

larger proportion of foot traffic.10

To validate the findings from the foot traffic analysis, we also analyze the log of total consumer transac-

tions at the census tract level, recorded in the SafeGraph Spend data, as the outcome variable. The specifi-

cation follows equation 6. Figure 5b reports the estimates of γRS
t and γAm

t based on the spending data. The

results closely mirror those obtained from the foot traffic analysis. Both γRS
t and γAm

t declined sharply in

2020, consistent with the pandemic shock: neighborhoods with large commuter losses and those with high

amenity value both experienced disproportionate drops in consumer transaction volume relative to other

neighborhoods.

After the pandemic peak, however, the trajectories diverged in the same way as in the foot traffic results.

Neighborhoods near office clusters with a large and persistent decline in commuting continued to show

depressed transaction volumes through mid-2024. In contrast, amenity hot spots began to see disproportion-

ately higher consumer transaction volumes starting in 2021, surpassing their pre-pandemic baseline. This
10This could mean that these high-amenity neighborhoods lost less foot traffic than the average neighborhood since 2019 Q1 or

that these neighborhoods gained more foot traffic than the average neighborhood.
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elevated level of spending in amenity-dense neighborhoods persisted and did not revert as of mid-2024.

Furthermore, to examine whether amenity hot spots disproportionately attract non-local inbound visi-

tors, Figure 5c plots the estimated time effects using visitors’ log distance to home as the outcome variable.

The results show that neighborhoods experiencing commuter losses did not exhibit a statistically significant

change in the average distance to visitors’ homes. In contrast, amenity hot spots saw a statistically signif-

icant increase in the average home-to-visit distance. This pattern suggests that the spatial concentration of

visits in amenity clusters is driven by residents traveling farther for leisure.

Because the key to the empirical test is whether neighborhoods with strong initial amenity value experi-

ence a rebound in traffic, it is important to ensure that our measurement of amenity clusters is accurate. As

a robustness check, we replace our foot traffic–based measure of amenity value with two alternatives: (1)

the density of amenity business establishments, and (2) the density of consumer transactions recorded in the

Spend data. The count of amenity establishments is taken from the 2019 ZIP-code-level County Business

Patterns.11

Table 2 reports the regression results at a year-to-year frequency. The findings are consistent across

specifications: while foot traffic and spending activity remain persistently low in neighborhoods where

commuter presence is expected to stay depressed, amenity-rich areas show a strong rebound, regardless of

whether amenity value is measured through establishments, transactions, or foot traffic.

4.4 Spatial Changes in Population and Housing Prices and Rents

Next, we examine the spatial changes in housing demand. Because no publicly available data provides

neighborhood-level population changes at fine geographic detail, we are in the process of constructing a

panel of neighborhood population change. In the meantime, we analyze local housing markets using data

on rents and home values.

Figures 6a and 6b plot the time effects with log housing rent and listed home value as the outcome

variables, respectively. The patterns mirror those from the foot traffic analysis: during the peak of the pan-

demic, both rents and home values declined in neighborhoods exposed to negative commuting shocks and in

neighborhoods with high amenity value. After 2021, however, the trajectories diverged. In neighborhoods

affected by commuting shocks, rents and home values remained below pre-pandemic levels, whereas in
11We compute amenity establishment density at the ZIP code level and then assign values to census tracts based on the proximity

between ZIP codes and tracts.
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neighborhoods near large amenity clusters, both measures rose above their pre-pandemic baselines.

It is important to note, however, that the magnitude of the positive amenity effects on rents and home

values is much smaller than the surges observed in foot traffic and consumer spending. Moreover, these

positive amenity effects are smaller than the negative effects of remote work. This pattern reinforces the

model’s insight: because residents can travel to high-value amenity clusters, the premium associated with

living near such amenities diminishes, making the residential housing demand around them less responsive

than foot traffic or spending.

4.4.1 Discussion

The empirical analysis thus far validates the model’s prediction that urban amenity value acts as a powerful

anchoring force, sustaining foot traffic even amid the permanent decline in commuter presence and the

associated loss of commute-linked amenity visits. Moreover, amenity hot spots have attracted relatively

more traffic in the era of remote work, suggesting that remote work may have increased demand for premium

amenities.

That said, while remote work is a plausible driver, alternative explanations, such as pandemic-induced

preference shifts, cannot be ruled out. To directly test whether remote work increases individuals’ propensity

to visit amenity hot spots, we next turn to individual-level mobility data.

4.5 Remote Work and Demand for Urban Amenities — Microdata Analysis

We use the Global Wireless Solutions (GWS) consumer panel data to examine how remote work influences

travel behavior. The real-time mobility records are aggregated into an individual-by-day panel, from which

we construct key variables such as whether the individual commuted to their usual workplace and the share

of non-work time spent in high-amenity locations. Because the data identify each person’s usual home and

work locations, we can incorporate these characteristics directly as controls.

The following is the specification of our regression model:

yijnt = βRRemoteit + δi + ιt +XjΠres,t +XnΠwork,t + εijnt.

In the above equation, i indexes an individual; j indexes the residential location of the individual; n

indexes the location of the usual workplace; t indexes the day of the observation. yijnt is the daily visiting
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outcomes — i.e., fraction of time away from workplace spent in high-value amenity hot spots on day t by

individual i. Remoteit is an indicator equal to one if individual i is absent from their usual workplace on

a non-holiday workday t. δi and ιt denote individual and day fixed effects. The individual fixed effects

can absorb all the variation in the change in foot traffic due to the spatial sorting of residents based on their

taste for amenities and remote work. The time (day) fixed effects capture time-specific variation in remote

work prevalence and amenities’ overall popularity. We also control for characteristics of the residential and

workplace locations, with coefficients allowed to vary over time.

To ensure that Remoteit does not capture variation arising from transitions in and out of employment,

we restrict the sample to observations where individuals have an identifiable workplace within a given

month. This restriction implies that our analysis focuses on the impact of hybrid remote work on travel

behavior, rather than the effect of full remote work.

4.5.1 Baseline Regression — Effect of Working Remotely on Visits to Amenity Hot Spots

In our first regression, we examine the effect of remote work on the share of time away from the workplace

that individuals spend in high-value amenity hot spots. We define high-value hot spots as census block

groups in the top decile of foot traffic density (per square mile) in 2019. Column 1 of Table 4 reports

the baseline estimate. Controlling for individuals’ residential and workplace characteristics (distance to

downtown and whether the block group itself is a high-value amenity location), we find that remote work

increases the same-day daily time (not at the workplace) spent in high-value amenity block groups by 0.12

percentage points. Given that the average share of time spent in such locations is about 1 percent, this effect

corresponds to a 12 percent increase relative to the mean.

Column 3 of Table 4 replaces the outcome variable with the share of daily non-workplace time spent in

city-center locations, defined as block groups within a five-mile radius of downtowns. The estimated same-

day effect of remote work is negative and statistically significant, though modest in magnitude at roughly

-2 percent relative to the mean. This result is consistent with the model’s prediction that remote work has

offsetting effects on urban amenity foot traffic: a negative effect from the loss of commute-chained visits,

and a positive effect from increased leisure-driven visits. In Column 4, we instead use as the outcome the

share of non-workplace time spent in block groups in the top quartile of expected commuter losses, areas

disproportionately hosting worksites where employees are more likely to work remotely. Unsurprisingly,

the estimated same-day effect of remote work is negative and statistically significant.

30



A key concern with the above regressions is that remote work days are identified solely by workers’

physical absence from their usual workplace. Although our sample only includes individuals with a routine

workplace, it may also capture vacation days. If a nontrivial share of vacation days is misclassified as

remote work, and if individuals visit high-amenity locations more frequently while on vacation, the resulting

estimates may conflate vacation-related travel behavior with the effects of remote work.

4.5.2 The Effects of Remote Work Routines

To overcome the challenge of distinguishing between remote workdays and vacations, we identify each

worker’s routine weekly absences from the workplace and use these recurring absences as a proxy for remote

workdays. The rationale is that vacation days are typically sporadic and unlikely to generate consistent

weekly patterns of absence. By focusing on these systematic absences, we isolate differences in travel

behavior that are more plausibly attributable to remote work rather than vacation-related activities.

We measure routine absences using a rolling window. For each individual-day observation, we compute

the fraction of days on which the individual commutes to their usual workplace for each day of the week,

within the nearest four-week period (two weeks before and two weeks after the observation). For example,

for a Tuesday observation, we calculate the share of days in which the worker commutes to the workplace

out of the two preceding and two subsequent Tuesdays. The day of the observation itself is excluded from

this calculation to avoid conflating measurement error with vacation-related absences.

In the following regressions, the indicator variable Remoteit in Equation 4.5 is defined using this

rolling-window measure rather than the current-day workplace attendance. Specifically, Remoteit = 1

if the individual is absent from the workplace on all corresponding days within the rolling window, and

Remoteit = 0 otherwise.

Column 1 of Table 5 shows that a routine absence leads to a 0.02 percentage point increase in the

probability of visiting amenity hot spots, which is around 2 percent relative to the outcome mean. This

estimate is much smaller than the baseline estimate, suggesting that the same-day effect of a routine remote

day may not be economically large in magnitude. That said, if we restrict the sample to individuals who live

and work away from urban centers, the space where high-amenity hot spots are disproportionately clustered,

the effect is much larger. In percentage terms, the same-day effect of routine remote day on visits to amenity

hot spots is around 10 percent in Column 2 of Table 5.

Although the results are robust to potential conflation with one-off vacation days, two concerns remain.
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The first relates to intertemporal substitution between leisure and work across remote and on-site days.

Remote work may simply reallocate amenity visits from on-site days to remote days, without changing the

overall volume of amenity travel. In this case, a higher frequency of remote work days would not necessarily

translate into greater total demand for amenities.

A second, related concern is that the effect of routine remote work may not be confined to the same day.

If remote work alters schedules beyond the immediate day, for instance, if working remotely on a Tuesday

enables individuals to plan more leisure activities on Monday evening, our regression framework, which

restricts effects to the same day, could understate the true impact. This possibility may help explain why the

estimated effects appear relatively modest.

4.5.3 Intertemporal Effects of Remote Work

To capture a broader range of intertemporal reallocation of amenity visits, we extend the analysis to examine

how remote workdays affect travel patterns on the days immediately preceding and following routine remote

workdays. These regressions exploit the cross-week difference in remote work intensity as the source of

identifying variation.

Column 3 of Table 5 shows that once we include two backward and two forward lags of the routine

remote work indicator, the same-day effect disappears, while the backward two-day lag and the forward

one- and two-day lags are positive and statistically significant. This pattern suggests that having worked

remotely two days earlier, or anticipating remote work in the next one to two days, raises the likelihood

of visiting high-value amenity hot spots. Summing across these intertemporal effects yields a total impact

of about 9 percent of the outcome mean, which is economically meaningful. Notably, the anticipation of

an upcoming remote work day exerts the strongest effect on current-day amenity visits, consistent with the

intuition presented earlier.

Moreover, in Column 4, where the sample is restricted to workers who both live and work in suburban

neighborhoods, the same-day effect becomes positive and statistically significant, and the effects of expected

remote work one and two days ahead also remain positive and statistically significant. The combined im-

pact across adjacent days amounts to 15 percent of the outcome mean, which is even larger in economic

magnitude than the baseline effect.

Furthermore, Column 5 replaces the outcome variable with the share of time spent in city centers and

restricts the sample to suburban residents and workers — i.e., those whose primary activities are located
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outside city centers. In this specification, both the same-day effect and the anticipation effects are positive,

indicating that remote work encourages suburban-based individuals to travel into city centers for leisure.

Although the two-day lag effect is negative, its magnitude is small relative to the same-day and one-day-

ahead effects. Overall, the impact of remote work across these adjacent days corresponds to about 13 percent

of the outcome mean, representing a quantitatively large economic effect.

4.5.4 Discussion

So far, we have shown that remote work days, both same-day and anticipated, have statistically and eco-

nomically significant effects on time spent in amenity hot spots.

That being said, one remaining concern, however, is that the intensity of remote work observed at the

individual level may still be endogenous to unobserved time-varying lifestyle characteristics and the chang-

ing preferences for remote work. If so, the association between the change in remote work take-up and the

change in visits to high-value amenity locations could reflect omitted variable bias rather than a causal effect.

To address this concern, our ongoing work leverages spatial variation in workplace adoptiveness to remote

work as a source of identification for the causal impact of remote work on travel behavior. In addition, we

incorporate variation in timing and geographic detail to improve measurement and strengthen identification.

Further results along these lines will be reported soon!

5 Conclusion

Following the surge in remote work adoption after 2020, many researchers and commentators have predicted

that the permanent reduction in commuting to urban centers could set off a self-reinforcing cycle of urban

decline. In this paper, however, we present a more optimistic view of remote work’s impact on cities. We

emphasize that cities serve not only as centers of production but also as centers of consumption.

We argue that the prediction that remote work necessarily depresses foot traffic and economic activity

in urban centers rests on three implicit assumptions. First, that urban centers derive their appeal fundamen-

tally as commuting destinations, with other economic activities arising only as endogenous byproducts of

commuter flows. Second, that demand for urban amenities originates solely from local residents. Third,

that remote work does not affect individuals’ leisure time budgets. Once these assumptions are relaxed,

the impact of remote work on urban amenity foot traffic becomes theoretically ambiguous. In particular, if
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urban amenities provide sufficiently large value premiums and leisure travel costs are low, an increase in

remote work adoption may, in fact, generate an increase in visits to urban centers.

We provide empirical evidence consistent with these theoretical predictions. After an initial decline in

foot traffic, high-value amenity hot spots in urban areas experienced a disproportionately strong recovery in

both visits and consumer spending, even as commuting trips remained below pre-pandemic levels. Using

fine-grained geographic data, we show that while neighborhoods with large expected commuter losses faced

persistent reductions in amenity foot traffic, neighborhoods with high amenity value experienced a post-

pandemic surge, ultimately capturing a larger share of overall amenity visits than before the pandemic.

Moreover, individual-level mobile device data reveal that holding workplace and residence characteristics

constant, remote work days increase the likelihood of visiting amenity hot spots, with particularly strong

effects for workers who live and work in suburban areas.
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Figure 1: Commuting vs. Visiting Amenities From Time-Use Data

(a) Number of Distinct Activities (Work or
Amenity-Related) (b) Time Spent at Destinations

Note: Figure 1a plots the normalized frequency of working at the workplace and visiting amenities. The frequency is calculated
as the number of distinct ATUS activities that are categorized as working at workplaces or amenity activities. Figure 1b plots
the normalized total duration of time used either working at the workplace or in amenity activities. We restrict the sample
between the ages of 25 and 65 and working at least part-time. Amenity trips activities related to eating and drinking, grocery
shopping, shopping for food, other non-grocery shopping, personal care, participating in or attending sporting and recreational
events, and socializing and communicating with destinations other than one’s home. Visiting one’s workplace is defined as
work activities taking place at the place of work.
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Figure 2: Amenity Visits and Commuting Trips

(a) National (b) Urban Centers vs. Suburbs

(c) Payments Recorded at Amenity Establishments (d) Distance to Home

Note: These figures summarize the amenity and commuting trip patterns over time since the outbreak of the pandemic. Figure
2a presents the normalized amenity trips and commuting trips recorded nationally in the SafeGraph Foot Traffic data. Amenity
foot traffic is the sum of trips that last less than one hour and at establishments that fall in the amenity categories defined in the
manuscript. Commuting trips are defined as the sum of trips that last at least one hour and at establishments not categorized
as amenities. Figure 2b presents the summary of trip patterns for urban centers and suburbs, separately, using the SafeGraph
Foot Traffic data. Urban centers are defined as census tracts within 5 miles of the downtowns of the respective MSAs. Figure
2c presents the share of total consumer spending transactions and total consumer spending amount recorded in the SafeGraph
Spend data that occurred in establishments located in urban centers. Figure 2d presents the average distance to visitors’ homes
for trips to amenities in urban centers and amenities in the suburbs. The foot traffic data plotted after the end of 2022, shown in
Figures 2 and 2b are subject to the adjustment procedure outlined in section 3.1 and Appendix section A4.
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Figure 3: Foot Traffic Patterns by MSA

(a) New York MSA (b) Chicago MSA

(c) San Francisco MSA (d) Washington MSA

Note: These figures present the summaries of trip patterns for urban centers and suburbs, separately, using the SafeGraph Foot
Traffic data, for four selected MSAs (New York, Chicago, San Francisco, and Washington). Urban centers are defined as census
tracts within 5 miles of the downtowns of the respective MSAs. The foot traffic data plotted after the end of 2022 are subject to
the adjustment procedure outlined in section 3.1 and Appendix section A4.
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Figure 4: Suburbanization of Residents Since 2020

(a) Population Changes in Core Urban Counties vs.
Suburban Counties in Select Metros

(b) Rent Growth in Urban Neighborhoods vs. Suburban
Neighborhoods

(c) Home Value Growth in Urban Neighborhoods vs.
Suburban Neighborhoods

Note: The figures present measures of spatial allocation of in urban centers versus the suburban locations over time. Figure
4a presents the change in population in the urban core counties in select MSAs (New York City, excluding Staten Island (New
York MSA), San Francisco County (San Francisco MSA), Denver County (Denver MSA), Baltimore City (Baltimore MSA),
Suffolk County (Boston MSA), Philadephia County (Philadelphia MSA), District of Columbia (Washington MSA) where
county division is fine enough to designate some counties as distinctly urban and other counties as distinctly suburban. The
county-level population estimates are from the U.S. Census Bureau’s annual population estimates. Figure 4b plots the average
rent for neighborhoods in the suburbs and urban centers, respectively, normalized to the levels of 2019 Q1. Figure 4c plots the
average listed home value for neighborhoods in the suburbs and urban centers, respectively, normalized to the levels of 2019
Q1. We define urban centers are census tracts that fall within 5 miles of the downtown of any MSAs in the US. Suburbs are
census tracts that fall outside 5 miles of downtown but within some MSAs.
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Figure 5: The Spatial Time Effects on Foot Traffic and Consumer Spending Activities By Remote Work
Shock and Local Amenity Provision

(a) Foot Traffic (b) Consumer Spending Transactions

(c) Visitors’ Distance from Home

Note: The graphs plot time effects for remote work shock and amenity cluster size, γRS
t and γAm

t , in the regression model
specified in equation 6. The frequency of time is a quarter. 2019 Q4 is the omitted base time period. The dashed lines are the
upper and lower bounds of the 95% confidence interval. Figure 5a plots the effects where the tract-level log visits to amenities
are the outcome variable. The foot traffic data used after the end of 2022 are subject to the adjustment procedure outlined in
section 3.1 and Appendix section A4. Figure 5b plots the effects where the tract-level log transaction volume is the outcome
variable. Figure 5c plots the effects where the tract-level log average distance to home of the visitors is the outcome variable.
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Figure 6: The Spatial Time Effects on Rent and Home Prices

(a) Rent (b) Listed Home Value

Note: The graphs plot time effects for remote work shock and amenity cluster size, γRS
t and γAm

t , in the regression model
specified in equation 6. The frequency of time is a quarter. 2019 Q4 is the omitted base time period. The dashed lines are the
upper and lower bounds of the 95% confidence interval. Figure 6a plots the effects where the tract-level log rent is the outcome
variable. Figure 6b plots the effects where the tract-level log listed home value is the outcome variable. Both rent and listed
home value are provided at the ZIP code level. We assign each census tract the rent or home value of the ZIP Code whose
geographic centroid is closest to the centroid of the census tract.
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Table 1: Local Amenities, Remote Work Share, Distance to Downtown, and Population Density

(1) (2) (3) (4)
Standardized Fraction of Fraction of Standardized
Amenity level Remote Jobs (Stand.) Remote Jobs Amenity level

Standardized Pop Den 0.496*** 0.0498*** 0.00227***
(0.0350) (0.00786) (0.000359)

Distance to Downtown (Mile) -0.00360*** -0.0152*** -0.000695***
(0.000802) (0.000525) (2.39e-05)

Fraction of WFH-Adopting Jobs 4.748***
(0.253)

Constant 0.0575*** 0.263*** 0.0674*** -0.261***
(0.0123) (0.00930) (0.000424) (0.0101)

Observations 60,647 60,647 60,647 61,532
R-squared 0.278 0.136 0.136 0.136

Note: This table presents the results from regressions designed to demonstrate the spatial relationship between distance to urban centers,
population density, amenity levels, and the local fraction of remote-adopting jobs. Column 1 presents results from regressing the stan-
dardized amenity level (pre-pandemic foot traffic density to amenity establishments) on standardized population density and distance
to downtown (miles). Column 2 presents results from regressing the standardized fraction of remote-adopting jobs on standardized
population density and distance to downtown (miles). Column 3 replaces the standardized fraction of remote-adopting jobs with a
non-standardized version of the same variable as the outcome variable. Column 4 presents the results from regressing the standardized
amenity level on the local fraction of remote-adopting jobs. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table 2: Regression Results with Alternative Initial Amenity Measurements

Ln Amenity Foot Traffic Ln Transaction Volume
Initial Amenity Estab. Density Transaction Density Estab. Density Transaction Density

(1) (2) (3) (4)
Remote Job Share ×
(Standardized)

2020 -0.0118*** -0.0132*** -0.0112*** -0.0139***
(0.00100) (0.000839) (0.00250) (0.00236)

2021 -0.0145*** -0.0161*** -0.0119*** -0.0117***
(0.00132) (0.00113) (0.00331) (0.00318)

2022 -0.0144*** -0.0156*** -0.00959** -0.00754*
(0.00152) (0.00131) (0.00405) (0.00390)

2023 -0.0110*** -0.0108*** -0.00920* -0.00550
(0.00205) (0.00171) (0.00518) (0.00506)

2024 -0.00926*** -0.0101*** -0.0106* -0.00726
(0.00234) (0.00202) (0.00566) (0.00549)

Initial Amen. Level ×
(Standardized)

2020 -0.0202*** -0.00675*** -0.0263*** -0.0254***
(0.00183) (0.000908) (0.00296) (0.00218)

2021 -0.00843*** 0.00167 -0.0112*** -0.0232***
(0.00154) (0.00121) (0.00393) (0.00313)

2022 0.000308 0.00708*** 0.0177*** -0.0171***
(0.00134) (0.00128) (0.00498) (0.00398)

2023 0.00663*** 0.0193*** 0.0272*** -0.0140***
(0.00180) (0.00187) (0.00607) (0.00487)

2024 0.00728*** 0.0236*** 0.0249*** -0.0171***
(0.00216) (0.00214) (0.00614) (0.00546)

Observations 328,781 323,014 312,586 328,500
R-Squared 0.988 0.988 0.945 0.944

Note: This table presents the regression coefficients for the regression model specified in equation 6. The time frequency is
annual. Columns 1 and 3 use the amenity establishment density (standardized) sourced from the County Business Patterns in
2019 as the initial amenity level measurement. Columns 2 and 4 use the consumer transaction density (number of transactions
divided by the land area) reported at the census tract-year level, sourced from the SafeGraph Spend data, as the initial amenity
level measurement. Columns 1 and 2 report regression results where the outcome variable is the log amenity foot traffic at the
census tract-year level. Columns 3 and 4 report regression results where the outcome variable is the log transaction volume at
amenity establishments reported at the census tract-year level. The foot traffic data used after the end of 2022 are subject to the
adjustment procedure outlined in section 3.1 and Appendix section A4. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table 3: Commuters are Less Likely to Make Amenity Trips

(1) (2) (3)
Dep Var Visit Amenities Duration of Amenity Travel Duration of Amenity Travel

Commute Indicator -0.0327*** -5.621*** -8.318***
(0.00924) (0.606) (0.915)

Constant 0.523*** 21.73*** 41.30***
(0.00789) (0.545) (0.827)

Sample Work Days Work Days Work Days Reporting
Amenity Travels

Observations 25,842 25,842 13,076
R-squared 0.076 0.068 0.119

Note: The table reports coefficient estimates for regressions in which we regress amenity travel choice during the 24
hours on the indicator variable of whether an individual commutes over the same period. We use data from the American
Time Use Survey over the period from 2012 to 2023. We restrict the sampled individuals to be aged 25 to 65 and fully
employed. We also restrict the 24 hours to weekdays and during which at least one leg of the activity during the day
is for work. The commute indicator is defined as one is the individual reports work-related travel immediately before
or after working at the workplace. Column 1 uses the indicator variable of whether the individual visits amenities
altogether as the outcome variable. Column 2 uses the total duration of travel time related to amenity visits as the
outcome variable. Column 3 uses the same outcome variable but restricts the sample to days in which amenity travel
time is nonzero. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table 4: Workers Visit High-Value Amenity Hot Spots More on Remote Work Days

(1) (2) (3)
Dep Var Amenity Spots City Centers Large Commuter Shocks

Remote 0.00123*** -0.00200*** -0.00599***
(8.08e-05) (0.000237) (0.000325)

Dep Var Mean 0.00964 0.0941 0.177

Observations 17,464,351 17,464,351 17,464,351
R-squared 0.513 0.674 0.544

Notes: The table reports coefficient estimates of βR from the regression specified in equation
4.5. The variable Remote equals 0 if the individual spent at least three hours at their usual
workplace during the 24-hour period, and 1 otherwise. In Columns 1, the outcome variable is
the fraction of the day spent in high-value amenity hot spots, defined as census block groups in
the top 15th percentiles of foot traffic density. In Column 2, the outcome variable is the fraction
of the day spent in city centers, defined as census block groups located within five miles of
downtowns. In Column 3, the outcome variable is the fraction of the day spent in census block
groups with an industry mix corresponding to the top 50 percent of expected commuter losses.
*** p < 0.01, ** p < 0.05, *p < 0.1.
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Table 5: Workers Visit High-Value Amenity Hot Spots More on Days Before Routine Remote Work Days

(1) (2) (3) (4) (5)
Dep Var Amenity Spots Amenity Spots Amenity Spots Amenity Spots City Centers

Remote 0.000207*** 0.000657*** -3.77e-05 0.000508*** 0.00155***
(6.61e-05) (6.13e-05) (6.31e-05) (6.00e-05) (9.67e-05)

Remotet−1 -6.77e-05 -4.44e-05 6.08e-05
(4.81e-05) (4.92e-05) (8.24e-05)

Remotet−2 0.000120** -2.34e-05 -0.000290***
(4.95e-05) (4.79e-05) (8.09e-05)

Remotet+1 0.000414*** 0.000338*** 0.00122***
(5.18e-05) (5.36e-05) (8.49e-05)

Remotet+2 0.000347*** 0.000160*** 0.000154*
(4.82e-05) (4.63e-05) (8.13e-05)

Dep Var Mean 0.00964 0.00666 0.00964 0.00666 0.0196

Sample Full Suburb. Residents Full Suburb. Residents Suburb. Residents
+ Workers + Workers + Workers

Observations 17,464,351 11,856,721 17,464,351 11,856,721 11,856,721
R-squared 0.513 0.404 0.513 0.404 0.137

Note: The table reports coefficient estimates of βR from the regression specified in equation 4.5. Unlike Table 4, here the regressor
Remote is constructed based on physical attendance at the usual workplace on the same weekdays in the two preceding weeks and
the two subsequent weeks. The regressor equals 1 only if the individual worked remotely on all of the corresponding weekdays in
these surrounding weeks. Importantly, the remote status on the observation day itself is excluded from this calculation. Columns
1 and 3 use the full sample, while Columns 2, 4, and 5 restrict the sample to individuals living and working in the suburbs (census
block groups outside a five-mile radius of downtowns). Remotet−x and Remotet+x denote the individual’s remote work status x
days before and x days after the observation day, respectively. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Appendix

A1 Comparative Statics of the Model

Below, we provide proofs for the Propositions that pertain to the comparative statistics of the model’s spatial

equilibrium.

A1.1 Proofs of Propositions 1-3

Propositions 1 to 3 govern the comparative statics of a change (decrease) in ωc. Since the effects of ωc are

jointly determined, we first derive the expressions of comparative statics before proceeding to the proofs.

We substitute the amenity provision (equation 4) and the inverse housing supply (equation 5) into the

population (equation 1) and foot traffic (equations 2 and 3) so that the only three endogenous variables in

the system are population in location u (Nu) and foot traffic to amenities in location u and s (Mu and Ms),

respectively. The population in location s is N−Nu and therefore does not need to be included as a separate

endogenous variable. Then, we totally differentiate Nu (equation 1) and Mu and Ms (equations 2 and 3)

with respect to the exogenous changes in ωc.

First, we totally differentiate population of u (Nu) (equation 1) with respect to ωc:

(
−1− NPu (1− Pu)κ

σ

)(
ρu
Nu

+
ρs
Ns

)
∂Nu

∂ωc
+

NPu (1− Pu)βa
σσa

(
xu|u − xu|s

) ∂Mu

∂ωc

+
NPu (1− Pu)βa

σσa

(
xs|u − xs|s

) ∂Ms

∂ωc
+

NPu (1− Pu) θαL

σσa

(
τ cu|sMUs − τ cu|uMUu

)
= 0

, where MUs =
xu|s

τnet,u|s
+

xs|s
τnet,s|s

+
x0|s

τnet,0|s
and MUu =

xu|u
τnet,u|u

+
xs|u

τnet,s|u
+

x0|u
τnet,0|u

, which are the expected

marginal utility of net leisure time for residents in u and s.

Next, we totally differentiate foot traffic in u and s (Mu and Ms) (equations 2 and 3):
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(
xu|u − xu|s − ωcϕ

) ∂Nu

∂ωc
−
(
1− βa

σa

(
Nuxu|u

(
1− xu|u

)
+Nsxu|s

(
1− xu|s

)))
︸ ︷︷ ︸

Φuu

∂Mu

∂ωc

− βa
σa

(
Nuxu|uxs|u +Nsxu|sxs|s

)
︸ ︷︷ ︸

Φus

∂Ms

∂ωc
+Nsϕ

−Nsxu|s
θcτ

c
u|sαL

σa

(
MUu|s −MUs

)
−Nuxu|u

θcτ
c
u|uαL

σa

(
MUu|u −MUu

)
︸ ︷︷ ︸

Φω
u

= 0

(
xs|u − xs|s

) ∂Nu

∂ωc
−
(
1− βa

σa

(
Nuxs|u

(
1− xs|u

)
+Nsxs|s

(
1− xs|s

)))
︸ ︷︷ ︸

Φss

∂Ms

∂ωc

− βa
σa

(
Nuxs|uxu|u +Nsxs|sxu|s

)
︸ ︷︷ ︸

Φus

∂Mu

∂ωc

−Nsxs|s
θcτ

c
u|sαL

σa

(
MUs|s −MUs

)
−Nuxs|u

θcτ
c
u|uαL

σa

(
MUs|u −MUu

)
︸ ︷︷ ︸

Φω
s

= 0

Combining the last two equations, we get to solve for ∂Mu
∂ωc

and ∂Ms
∂ωc

in terms of ∂Nu
∂ωc

:

∂Mu

∂ωc
= ΛN

u

∂Nu

∂ωc
+ Λ0

u,

where

ΛN
u =

Φus

ΦssΦuu − Φ2
us

(
Φss

Φus

(
xu|u − xu|s − ωcϕ

)
+
(
xs|s − xs|u

))
,

and,

Λ0
u =

Φss (Φ
ω
u +Nsϕ)− ΦusΦ

ω
s

ΦssΦuu − Φ2
us

,

∂Ms

∂ωc
= ΛN

s

∂Nu

∂ωc
+ Λ0

s,

where

ΛN
s = − Φuu

ΦssΦuu − Φ2
us

(
Φus

Φuu

(
xu|u − xu|s − ωcϕ

)
+
(
xs|s − xs|u

))
,
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and,

Λ0
s = −

Φus (Φ
ω
u +Nsϕ)− ΦuuΦ

ω
s

ΦssΦuu − Φ2
us

.

Finally, we can plug in ∂Mu
∂ωc

and ∂Ms
∂ωc

into the population comparative static and express the effect of

reducing ωc on the equilibrium population of u as follows:

−∂Nu

∂ωc
= −

NPu(1−Pu)
σ


Commuting Effect︷ ︸︸ ︷

θcαL

σa

(
τu|sMUs − τu|uMUu

)
+

Amenity Value Effects︷ ︸︸ ︷
βa
σa

(
xu|u − xu|s

)
Λ0
u +

βa
σa

(
xs|u − xs|s

)
Λ0
s


1 + NPu(1−Pu)

σ

(
κ

(
ρu
Nu

+
ρs
Ns

)
− βa

σa

(
xu|u − xu|s

)
ΛN
u −

βa
σa

(
xs|u − xs|s

)
ΛN
s

)
︸ ︷︷ ︸

Endogenous Factors

The numerator includes the two exogenous effects on population:

In the first component (named as the “commuting effect”), the decrease in ωc exogenously reduces the

relative desirability of the urban location vis-a-vis the suburban location because the commuting time saving

provided by the urban location becomes less relevant. Such reduction in urban desirability is stronger if the

typical commuting time saving of an urban residence, τu|u vs. τu|s, is bigger, and commuting disutility θc is

larger, and leisure time utility weight αL is larger.

In the second component (named as the “amenity value effect”), the change in foot traffic led by the

decrease in ωc endogenously affects the value of amenity access by residents in the two locations, which is

captured by βa

σa

(
xu|u − xu|s

)
Λ0
u +

βa

σa

(
xs|u − xs|s

)
Λ0
s in the numerator. The amenity effects, however, are

ambiguous, depending on the signs of Λ0
u and Λ0

s, which represent the change in foot traffic in u and s and

will be discussed in a few paragraphs. The effect on amenity value in u and s on population depends on

xu|u − xu|s and xs|u − xs|s, which represent how much amenity visit choice varies with where people live.

If xu|u − xu|s = 0 and xs|u − xs|s = 0, which means that their choice of amenities stays the same wherever

they live, their residential location choice should be independent of their valuation of amenities.

The denominator captures the endogenous factors for population change in equilibrium. First of all, be-

cause rent increases with population growth and decreases with population loss, the population will be miti-

gated with the endogenous housing supply responses in both locations, which are captured in κ
(

ρu
Nu

+ ρs
Ns

)
in the denominator. The intuition is that if the housing supply is inelastic in either location, the sharp rent re-

sponses will deter some people from moving and offset some of the exogenous changes in location demand.
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Second, the endogenous amenity change led by population change will magnify the exogenous population

shock. The magnifying effects are captured by −βa

σa

(
xu|u − xu|s

)
ΛN
u −

βa

σa

(
xs|u − xs|s

)
ΛN
s .

Proposition 1. If the commuting time saving τu|s − τu|u is sufficiently large and the leisure travel cost θa

is sufficiently small, an increase in remote work (i.e., ωc ↓) leads to net migration from the urban to the

suburban location—i.e., a reduction in population Nu in the urban location u and an increase in population

Ns in the suburban location.

Proof. To show the sufficient condition in which −∂Nu
∂ωc

< 0, we identify the conditions that ensure the

numerator and the denominators are both positive. Namely, the sum of the “commuting effect” and the

“amenity value effects” must be positive, and the “endogenous factors” must be positive.

First, for the “commuting effect” to be positive, the commuting time differential τu|s − τu|u must be

sufficiently large. In other words, urban locations must provide a large enough commuting time saving.

Second, “amenity value effects” the amenity value effects have ambiguous signs because of the ambigu-

ity in Λ0
u and Λ0

s. Thus, the sum of the commuting effect and the amenity value effects could, in principle,

be negative even if the commuting effect is positive. However, if the marginal leisure travel cost θa is suffi-

ciently small, the amenity choice differences xu|u − xu|s and xs|u − xs|s converge to zero. Therefore, there

must exist a value θa low enough such that the sum of the commuting effect and amenity value effect is

strictly positive.

For the endogenous factors in the denominator, the first term (endogenous rent factor) κ
(

ρu
Nu

+ ρs
Ns

)
is

always positive. The concern is that the two endogenous amenity change terms are negative and could be

large enough in magnitude to render the denominator negative.

Yet, if θa is sufficiently small, the amenity choice differences xu|u−xu|s and xs|u−xs|s again converge to

zero, which ensures the endogenous amenity terms are small enough that the denominator remains positive.

In summary, if the commuting time saving τu|s − τu|u is sufficiently large and the leisure travel cost θa

is sufficiently small, then −∂Nu
∂ωc

< 0. That is, an increase in remote work will lead to net migration from

the urban to the suburban location.

Proposition 2. The increase in remote work (i.e., ωc ↓) reduces urban amenity foot traffic Mu if ϕ is

sufficiently large. But, if ϕ is small and cross-location commuting time τ cu|s sufficiently long and urban
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amenity premium au0 − as0 sufficiently high, an increase in remote work could raise urban amenity foot

traffic Mu.

Proof. We show the sufficient condition such that−∂Mu
∂ωc

= −ΛN
u

∂Nu
∂ωc
−Λ0

u > 0 and the sufficient condition

such that −∂Mu
∂ωc

= −ΛN
u

∂Nu
∂ωc
− Λ0

u < 0.

Let’s first show the condition that leads to −∂Mu
∂ωc

> 0.

First, we can show that ΛN
u is positive if ΦssΦuu−Φ2

us > 0, which would be held true if the endogeneity

of amenity provision βa is sufficiently small such that the equilibrium amenity provision becomes unstable.

To ensure the stability of the amenity provision, we make this assumption in the model setup.

If ΛN
u > 0 and that −∂Nu

∂ωc
< 0, then to bring the whole term positive, −Λ0

u must be positive and

sufficiently large in magnitude.

−Λ0
u captures the effect of ωc on urban amenity foot traffic:

−Λ0
u =
−Φss (Φ

ω
u +Nsϕ) + ΦusΦ

ω
s

ΦssΦuu − Φ2
us

,

Since it is assumed that ΦssΦuu − Φ2
us > 0, for −Λ0

u to be positive, the numerator of the above ex-

pression must be positive. For the numerator to be positive, Φω
u must be sufficiently negative or Φω

s must be

sufficiently positive. Φω
u and Φω

s capture the effects of restricting time budgets on the foot traffic in u and s,

respectively.

Based on the results from the total differentiations, Φω
s is potentially negative because restricting the time

budget can reduce the foot traffic in all amenity locations. Therefore, for the numerator to be positive, Φω
u

must be sufficiently more negative than Φω
s , i.e., Φω

u −Φω
s must be negative and large enough in magnitude.

We know that if the cross-location commuting time τ cu|s and the urban amenity premium au0 − as0 both

go to∞, then

Φω
u →∞ and Φω

s → 0.

This implies that for any negative value V , there must exist a cross-location commuting time τ cu|s sufficiently

large and an urban amenity premium au0 − as0 sufficiently high such that Φω
u − Φω

s is less than V .

This means if the cross-location commuting time τ cu|s sufficiently large and an urban amenity premium

au0−as0 sufficiently high, the effect of remote work on urban foot traffic will be positive — i.e.,−∂Mu
∂ωc

> 0.

For the effect of remote work on urban foot traffic to be negative — i.e., −∂Mu
∂ωc

< 0, we just need to
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show that −Λ0
u = −Φss (Φ

ω
u +Nsϕ) + ΦusΦ

ω
s is negative.

For that to be true, we just need the amount of amenity foot traffic chained with commuting trips (ϕ) to

be sufficiently large.

Proposition 3. The increase in remote work (i.e., ωc ↓) raises suburban amenity foot traffic Ms when the

urban amenity premium au0 − as0 is not too large or when ϕ is sufficiently large. Conversely, if the urban

amenity premium au0 − as0 is large enough and ϕ is small, then an increase in remote work could instead

reduce suburban amenity foot traffic Ms.

Proof. To show the condition in which a decrease in ωc increases suburban foot traffic Ms, we need to show

−∂Ms
∂ωc

= −ΛN
s

∂Nu
∂ωc
− Λ0

s > 0.

First of all we know that ΛN
s ≤ 0 and−∂Nu

∂ωc
< 0 if the conditions stipulated in Proposition 1 holds. This

means that as long as rising remote work leads to residential suburbanization, foot traffic due to residential

shift must work in favor of suburban amenities — i.e., −ΛN
s

∂Nu
∂ωc

> 0.

Given that, to ensure that the total foot traffic effect is positive, we need to make sure that −Λ0
s is either

positive or not too negative such that it overwhelms the first term. −Λ0
s is specified below:

−Λ0
s =

Φus (Φ
ω
u +Nsϕ)− ΦuuΦ

ω
s

ΦssΦuu − Φ2
us

.

If Φω
u and Nsϕ are large enough and Φω

s is small enough, −Λ0
s < 0. As we mentioned earlier, Φω

u and

Φω
s represent the changes in urban and suburban foot traffic caused by restricting the time budget, holding

local population constant and amenity provision constant.

Since the larger the urban amenity premium au0−as0 is, the larger the difference Φω
u−Φω

s is. Therefore,

to ensure that −Λ0
s stays positive, ϕ must be sufficiently large or that the urban amenity premium au0 − as0

must be small enough.

A1.2 Proof of Propositions 4-5

Propositions 4 and 5 characterize the comparative statics of an increase in τ0. Because the effects of τ0

are jointly determined, too, we first derive the relevant comparative static expressions before presenting the

proofs of the propositions.

Analogous to the derivation of the comparative statics for Propositions 1–3, we totally differentiate the
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population equation with respect to τ0:

(
−1− NPu (1− Pu)κ

σ

)(
ρu
Nu

+
ρs
Ns

)
∂Nu

∂τ0
+

NPu (1− Pu)βa
σσa

(
xu|u − xu|s

) ∂Mu

∂τ0

+
NPu (1− Pu)βa

σσa

(
xs|u − xs|s

) ∂Ms

∂τ0
+

NPu (1− Pu)αL

σσa
(xsMUa,s − xuMUa,u) = 0

Next, we totally differentiate the foot traffic equations:

(
xu|u − xu|s − ωcϕ

) ∂Nu

∂τ0
−
(
1−

(
βa
σa

(
Nuxu|u

(
1− xu|u

)
+Nsxu|s

(
1− xu|s

))))
︸ ︷︷ ︸

Φuu

∂Mu

∂τ0

−
(
βa
σa

(
Nuxu|uxs|u +Nsxu|sxs|s

))
︸ ︷︷ ︸

Φus

∂Ms

∂τ0

− 1

σa

(
Nuxu|u

(
MUa,u|u −MUa,uxu

)
+Nsxu|s

(
MUa,u|s −MUa,sxs

))
︸ ︷︷ ︸

Φτ
u

= 0

(
xs|u − xs|s

) ∂Nu

∂τ0
−
(
1−

(
βa
σa

(
Nuxs|u

(
1− xs|u

)
+Nsxs|s

(
1− xs|s

))))
︸ ︷︷ ︸

Φss

∂Ms

∂τ0

−
(
βa
σa

(
Nuxu|uxs|u +Nsxu|sxs|s

))
︸ ︷︷ ︸

Φus

∂Mu

∂τ0

− 1

σa

(
Nuxs|u

(
MUa,s|u −MUa,uxu

)
+Nsxs|s

(
MUa,s|s −MUa,sxs

))
︸ ︷︷ ︸

Φτ
s

= 0

Again, combining the last two equations, we get to solve for the derivatives of foot traffic in terms of the

derivative of u’s population:
∂Mu

∂τ0
= ΓN

u

∂Nu

∂τ0
+ Γ0

u,

where

ΓN
u =

Φus

ΦssΦuu − Φ2
us

(
Φss

Φus

(
xu|u − xu|s − ωcϕ

)
+
(
xs|s − xs|u

))
,

and,

Γ0
u =

ΦssΦ
τ
u − ΦusΦ

τ
s

ΦssΦuu − Φ2
us

,

55



∂Ms

∂τ0
= ΓN

s

∂Nu

∂τ0
+ Γ0

s,

where

ΓN
s = − Φuu

ΦssΦuu − Φ2
us

(
Φus

Φuu

(
xu|u − xu|s − ωcϕ

)
+
(
xs|s − xs|u

))
,

and,

Γ0
s = −

ΦusΦ
τ
u − ΦuuΦ

τ
s

ΦssΦuu − Φ2
us

,

Here is the equilibrium effect on population:

∂Nu

∂τ0
=

NPu(1−Pu)
σ


Leisure Time Effect︷ ︸︸ ︷

αL

σa
(xsMUa,s − xuMUa,u)+

Amenity Value Effect︷ ︸︸ ︷
βa
σa

(
xu|u − xu|s

)
Γ0
u +

βa
σa

(
xs|u − xs|s

)
Γ0
s


1 + NPu(1−Pu)

σ

(
κ

(
ρu
Nu

+
ρs
Ns

)
− βa

σa

(
xu|u − xu|s

)
ΓN
u −

βa
σa

(
xs|u − xs|s

)
ΓN
s

)
︸ ︷︷ ︸

Endogenous Factors

Proposition 4. An increase in amenity aversion (τ0 ↑) reduces amenity foot traffic in both urban and subur-

ban locations (Mu and Ms), provided that the urban amenity premium au0−as0 is sufficiently large and the

aversion shock is strong enough. In this case, the decline in Mu exceeds that in Ms — i.e., urban amenity

foot traffic falls more sharply than suburban amenity foot traffic.

Proof. First, to establish that amenity foot traffic declines in both locations in response to a rise in τ0, it

suffices to show that Γ0
u and Γ0

s are negative and sufficiently so to outweigh any migration effect.

Here, Γ0
u and Γ0

s capture each location’s foot traffic response to an increase in τ0, holding population

migration to zero. Their values depend on the relative magnitudes of Φτ
u and Φτ

s . Moreover, note that as the

urban amenity premium becomes large, we have Φus → 0, Φss → 1, and Φuu → 1. In this case, Γ0
u → Φτ

u

and Γ0
s → Φτ

s .

For Φτ
u to be negative, it suffices that MUa,u|u−MUa,uxu > 0 and MUa,u|s−MUa,sxs > 0. The latter

condition, MUa,u|s −MUa,sxs > 0, always holds. The former, however, may fail if the amenity choice

probability xu is too high. As τ0 increases, xu declines, and eventually MUa,u|u −MUa,uxu > 0 will be

satisfied once τ0 is sufficiently large. In that case, Φτ
u < 0.

For Φτ
s to be negative, it is sufficient that MUa,s|u −MUa,uxu > 0 and MUa,s|s −MUa,sxs > 0. The

first condition, MUa,s|u−MUa,uxu > 0, always holds. The second condition may fail if the amenity choice
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probability xs is too high. However, as τ0 increases, xs decreases, and eventually MUa,s|s −MUa,sxs > 0

will be satisfied once τ0 is sufficiently large. In this case, Φτ
s < 0.

Moreover, because the marginal utility MU diverges as τ0 approaches the total leisure endowment τ ,

both Φτ
u and Φτ

s can become arbitrarily negative, thereby dominating any migration effect. These results

imply that, with a sufficiently large urban amenity premium and a sufficiently strong τ0 shock, foot traffic

declines in both u and s.

Next, we establish that if the urban amenity premium is large enough, the decline in foot traffic is greater

in u than in s.

When the urban amenity premium is very large, we have MUa,u|u → MUa,u and MUa,u|s → MUa,s,

which implies Φτ
u < 0. Furthermore, if the τ0 shock is large, then by the Inada condition of the log utility

function, MUa,s|u → ∞ and MUa,u|u → ∞. Consequently, a sufficiently strong increase in τ0 generates

an arbitrarily large negative value of Φτ
u, implying that the loss of amenity foot traffic is more severe in u

than in s.

Furthermore, if the urban amenity premium is very large, then xs|u → 0 and xs|s → 0, which implies

that Φτ
s → 0. This means that, for a given τ0 shock, there exists an urban amenity premium sufficiently

large such that |Φτ
s | is small in magnitude while |Φτ

u| is large in magnitude, with Φτ
u < Φτ

s .

Proposition 5. An increase in amenity aversion (τ0 ↑) induces net migration from the urban location (u)

to the suburban location (s) — i.e., a decline in the urban population Nu and a corresponding rise in the

suburban population Ns, provided that βa is sufficiently small, the urban amenity premium au0 − as0 is

sufficiently large, and the aversion shock is strong enough.

Proof. For an increase in amenity aversion to reduce the urban population Nu, two conditions must hold:

the sum of the “leisure time effect” and the “amenity value effect” must be negative, and the “endogenous

factors” must not be too negative such that the denominator dips below zero.

First, the leisure time effect has an ambiguous sign. Its direction depends on how the probability-

weighted marginal utility of leisure time for residents in s compares with that for residents in u. If the urban

amenity premium is positive, the probability that residents from both locations choose to visit u will be

high. In this case, MUa,s > MUa,u. However, because the cost of accessing amenities is lower for urban

residents, it follows that xu > xs. This leads to an ambiguous sign for the leisure time effect.
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Therefore, for the numerator to be negative, the amenity value effect must itself be negative and suffi-

ciently large in magnitude.

Since xu|u − xu|s > 0 and xs|u − xs|s < 0, the numerator will be negative if Γ0
u is sufficiently negative

or if Γ0
s is sufficiently positive.

If the urban amenity premium is very large, it implies that the probability of visiting u over s becomes

one, which ensures that MUa,u|u → MUa,u and MUa,u|s → MUa,s, which in turn implies Φτ
u < 0.

Moreover, if the τ0 shock is large enough, then by the Inada condition of the log utility function, we have

MUa,s|u → ∞ and MUa,u|u → ∞. This implies that a sufficiently strong increase in τ0 will generate a

very large magnitude of negative value for Φτ
u.

Furthermore, if the urban amenity premium is very large, then xs|u → 0 and xs|s → 0, which implies

that Φτ
s → 0.

This, in turn, implies that Γ0
u < 0, with its magnitude becoming arbitrarily large when both the urban

amenity premium and the τ0 shock are sufficiently strong. Taken together, a sufficiently large urban amenity

premium and τ0 shock ensure that the amenity value effect dominates the leisure time effect.

Finally, we must verify that the “endogenous factors” do not drive the denominator below zero, which

would imply the absence of a stable equilibrium. This condition is satisfied if βa is sufficiently small.

A2 Graphical analysis

We draw out a series of diagrams to intuitively illustrate the driving forces behind the changes in foot traffic

activities in urban and suburban locations in response to each shock. In Figure A1, we highlight the very

different mechanisms through which the increase in remote work adoption and change in aversion toward

amenities affect urban foot traffic.

In these diagrams, amenity supply as a function of local foot traffic is represented by a(M) curve.

Since we assume that more foot traffic to each location endogenously leads to higher amenity value at that

location, the amenity supply curve is upward-sloping. Since amenity supply is assumed to be exogenously

more abundant (i.e., au0 > as0) in the urban location, the au(M) curve is above as(M).

Amenity demand is exhibited as the location’s received amenity visits made by residents living in all

locations. Because amenity choice probability and each location’s population are both increasing functions

of local amenity value, the aggregate amenity visit should also be an increasing function of the local amenity
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value - Mj(a) is upward sloping. The amenity demand curves for u and s are represented by Mu(a) and

Ms(a), respectively. Since the urban location receives exogenously large amenity visits due to the associated

commuting trips (captured by ϕ), the amenity demand in the urban location is higher than the amenity

demand in the suburban location - Mu(a) > Ms(a). Hence, in Figure A1a, the initial amenity demand

in u is to the right of the initial amenity demand in s. The equilibrium foot traffic and the amenity value

are represented by the cross point between the amenity demand and supply curves of the corresponding

locations.

Note that amenity value and foot traffic are both higher in the urban than in the suburban locations:

au > as and Mu > Ms. The urban premia in amenity value and foot traffic reflect both the exogenously

abundant amenity supply component in the urban location and the endogenously higher amenity demand

due to the commuting crowd.

A2.1 Changes in Commuting Patterns

During the pandemic, because of the rise in remote work adoption, work presence downtown is sharply

reduced, and the work-related amenity visits in u locations further diminish. In addition, the population

relocates from u to s location due to the lessened commuting need. The combination of these factors pulls

the amenity demand for u inward while pushing the amenity demand for s outward. Such pull and push

forces lead to parallel and converging shifts in the two amenity demand curves, leading to the narrowing

of the gap between amenity value and visits between the urban and suburban locations, as shown in Figure

A1a.

A2.2 Changes in Amenity Preference

In addition to the direct impact of reduced commuting traffic and the suburbanization of population, the sub-

stantially reduced commuting time reduces the disutility of making amenity trips, especially trips with long

travel costs. The reduction in the disutility of amenity travel should enable stronger demand for amenities

in general, and, thereby, increase the slope/sensitivity to amenity difference between locations, lowering the

slope of the Mu(a) and Ms(a) curves.

On the other hand, the pandemic simultaneously led to an abrupt and temporary increase in the aversion

to going outside the home and risking infection. The disutility of using amenities reduces people’s sensitivity
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to the difference in amenity value, vastly increasing the steepness of the Mu(a) and Ms(a) curves and

temporarily overwhelming the opposing effect coming from the reduced commuting time.

Consistent with that intuition, Figure A1b presents the scenario in which the reduction of residents’

overall demand for amenities and thereby their responsiveness to local differences in amenity value would

lower their marginal demand (foot traffic) for amenities, effectively making the amenity demand curves

steeper (less steep with respect to a). The changed slope of the demand curves lowers the equilibrium

foot traffic and amenity value in both u and s locations because workers in both locations value amenities

less. But the diagram shows that the drop in foot traffic and thereby amenity value is much larger in the u

location because u starts with a higher level of amenity value compared with s, consistent with the result in

the comparative statics.

A2.3 Combined Pandemic Effects

Combining the effects of both the shifts and the tilts in the demand curves (as represented by the shifts from

Mu(a) and Ms(a) to M ′
u(a) and M ′

s(a) in Figure A2a), we can see that the dual shocks during the pandemic

would strongly reduce the amenity value and foot traffic in the urban location as both the remote work shock

and the amenity preference shock reduce foot traffic there. On the other hand, for the suburban location,

while a parallel outward shift would bring more foot traffic, the counterclockwise tilt of the demand curve

would lower traffic. So the effect of the pandemic on suburban locations’ amenity value and foot traffic is

indeterminate.

A2.4 Post-Pandemic Effect

Lifting of the pandemic-related aversion to amenities After the pandemic ends, since the concerns of

COVID-19 transmission have been removed, an increase in τ0, the temporary disutility of visiting amenities

due to disease concerns is lifted, and the demand for amenities likely has bounced back. This means that,

to some extent, the population will shift back from the suburb to the urban location, which means that the

Mu(a) curve will shift back outward, and the Ms(a) curve will shift back inward, to some degree. In

addition, the steepness of both Mu(a) and Ms(a) will recover and be reduced back to their original levels.

In Figure A2a M ′′
j (a) represents the effect of the recovery of amenity aversion in equilibrium. We

can see that amenity value in the urban location would bounce back strongly from the low level during the
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pandemic, while the suburban location would see a more moderate increase in amenity value and foot traffic.

Hence, while the long-term reduction in commuting frequency would still lead to a net loss in urban amenity

foot traffic, a full recovery in amenity aversion would ensure that urban amenities reclaim much of the loss

of traffic seen during the pandemic.

Persistent prevalence of remote work After the pandemic ends, research has demonstrated that remote

work is very likely here to stay (Barrero et al., 2021; Gupta et al., 2021). This means that the parallel shifts

in the amenity demand curves that occurred during the pandemic will likely not fully recover due to the

sustained popularity of remote work. Moreover, the sustained prevalence of remote work implies that com-

muting time stays permanently reduced, which raises the total amount of leisure time at workers’ disposal

and, thereby, reduces the disutility of amenity travel. The reduced disutility of travel costs for amenities

implies that the demand for amenities should increase. During the pandemic, the increased demand for

amenities was overwhelmed by the temporary aversion to amenities. Once the temporary aversion is lifted

after the pandemic ends, the increased demand for amenities should bring up the general sensitivity toward

amenity value across locations, which will make the amenity demand curve even less steep than before the

pandemic. In other words, the curve M ′′
j (a) would further tilt clockwise to M ′′′

j (a), as shown in Figure

A2b.

If the preference for amenities increases sufficiently due to the permanent increase in remote work

adoption and if the urban location carries sufficiently high amenity value premium, it is possible that urban

amenities gain so much more foot traffic that they overshoot the pre-pandemic benchmark. In contrast, the

increase in amenity demand would not produce as big an overshoot of amenity foot traffic in the suburban

location, resulting in a disproportionate concentration of foot traffic in the urban location.

A3 Data Validations

A3.1 SafeGraph Foot Traffic validation

SafeGraph foot traffic data provides us with information on amenity and commuting trip patterns at a highly

geographically detailed level. To make sure that we can reliably use it for analysis, we validate it with

Google Mobility data, a publicly available data source that tracks mobility patterns at the county level for

several different categories of destinations during the COVID-19 pandemic.
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The Google Mobility data reports how much the number of visits changes in each month during the

pandemic relative to the baseline period, which is the 5 weeks Jan 3–Feb 6, 2020. They calculate these

mobility numbers based on data from users who have opted in to Location History for their Google Account,

which is a subsample of all users and of the underlying population. We use the county-level Google Mobility

index to places of retail and recreation in July, August, and September of 2022 as the ending period (2022

Q3). The index would represent the percentage change in mobility between the beginning of 2020 and Q3

of 2022. Then, we take the SafeGraph Foot Traffic data and calculate the percent change in county-level

short visits to amenities (as defined in the paper) between 2019 Q4 and 2022 Q3.

Figure A3a presents the binned scatterplot between the SafeGraph county-level growth in amenity visits

and the county-level Google Mobility index to retail and recreation places. We can see that the relationship

between the two variables is strong and the magnitude lines up reasonably well.

A3.2 SafeGraph Spend Data Validation

Next, we provide external validation for the SafeGraph Spend data. SafeGraph Spend data covers a subset

of the merchants across the U.S. Therefore, to rely on the data for spatial analysis, we need to ensure that

the spending patterns observed in the Spend data indeed track the spatial patterns of consumer spending.

Spending data at a detailed geographic level is hard to come by with publicly available resources. The

lowest level of geography available is at the state level for the Monthly State Retail Sales (MSRS) data

reported by the U.S. Census Bureau. The dataset is constructed with both the national Monthly Retail Trade

Survey (MRTS) brick and mortar sales and the state- and NAICS-level payroll data. The retail sale growth

(12-month) is reported each month for NAICS codes 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453,

representing sub-industries of the retail trade sector.

To mimic the MSRS data, we construct the 12-month growth measure for the selected NAICS code

separately for each state and month. We remove the 12-month periods ending in March and April of 2021

because the baseline time over those periods is at the depth of the pandemic level, during which the sales and

spending numbers were exceedingly low, leading to explosively large growth rate numbers. We then gener-

ate a residualized binned scatterplot, after controlling for the year dummies, the NAICS industry dummies,

and their interaction terms, as shown in Figure A3b. We can see that the state-time variation in spend-

ing growth tracks the Census-reported sales growth reasonably well, except that the spending growth has a

slight positive level bias. In other words, SafeGraph spending growth appears to be positive in data points
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where Census sales growth is zero. Nevertheless, since our analysis relies on time-varying spatial variation

in spending and transactions, instead of the level variation over time, the positive level bias is unlikely to

create bias for our empirical analysis, so long as the spatial variation does not exhibit systematic bias in

measurement.

A3.3 SafeGraph Home Panel Data Validation

To track population change at the highly detailed census tract level, we use SafeGraph’s Home Panel Sum-

mary data. Home Panel Summary Monthly patterns provide the number of devices by census tract based on

the devices’ primary nighttime geohash with a high degree of confidence. The included devices are those

that have made at least one visit during the referenced month. The device count based on place of residence

is used for approximating the number of residents over time by location.

Publicly available population at the census tract only comes with pooled American Community Survey

(ACS) data. Since our goal is to study population change since the start of 2020 and track the precise

trajectory over the years during and after the peak of the pandemic, the slow-moving time frame of the ACS

is inadequate for our purpose. That being said, the county-level population estimates are released annually

by the U.S. Census Bureau. This allows us to produce cross-validation between the SafeGraph device count

growth and the population growth at the county level.

To do so, we aggregate the SafeGraph Home Panel Summary device count up to the county level at

two points in time: 2019 Q4 and 2022 Q4, and calculate the device count growth. Since the national

device count changes over time, we normalize the county-level device count by multiplying the county-level

share of the national devices by the national population count at the corresponding points in time. We also

calculate the county-level population growth from the Census Bureau between April 2020 and July 2022.

Figure A3c presents the binned scatterplot between the county-level device count growth and the county-

level population growth. We can see that they line up reasonably well. However, we can clearly see that

device count growth swings much more widely than population growth. Namely, while counties with high

population growth over the period also tend to see stronger device count growth, the magnitude of the device

count growth tends to be much larger.
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A3.4 Remote Work Shocks

The spatial remote work shocks are constructed using the NAICS industry mix profile of pre-pandemic foot

traffic (and employment data) combined with the measurement of remote work adoption at the industry or

industry-MSA level. In this section, we validate that the remote work shock indeed predicts a large drop in

commuting trips.

First, we divide census tracts into three categories: those with high remote work shock, moderate remote

work shock, and low remote work shock. The census tracts with high remote work shock are those with

industry mixes within a 3-mile radius that give rise to a level of shock in the top 10 percent of all census

tracts. Census tracts with moderate and low remote work shocks are those in the 46th-90th percentiles and

the 1st-45th percentiles. Then, we plot the normalized commuting trips to each of the census tract categories,

recorded in the SafeGraph Foot Traffic data. Commuting trips are defined as the trips that last at least one

hour and go to destinations that are not considered amenities.

Figure A4 plots the normalized numbers of commuting trips by categories. We can see that census tracts

that saw the highest remote work shock indeed experience the sharpest decline in commuting trips during

the pandemic and remain the lowest in terms of the number of commuting trips by the end of 2022. Census

tracts with a moderate level of remote work shock are stuck in the middle of the pandemic, and the census

tracts with a low level of remote work shock saw the least decline in commuting trips, though all census

tracts saw a considerable decline during the pandemic and a lack of full recovery by the end of 2022.

A4 Smoothing Adjustment for Foot Traffic

To accommodate and smooth over the arbitrary structural breaks discussed in section 3.1 in the manuscript,

we introduce a simple imputation procedure on the tract-level foot traffic statistics. The idea is that we

remove the foot traffic information that occurs over the months in which the structural breaks occur. To

operationalize on that idea, over all the months where structural breaks occur nationally, we assume that the

foot traffic sees no change over the said months.

Let Mjt be the raw foot traffic in census tract j and during time (month) t, as measured by Ad-

van/SafeGraph. Let S be the set of months over which there are structural breaks in the data. We construct

the imputed foot traffic at the census tract j as follows:
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M̃jt =

 ∏
t′∈S,t′≤t

Mj,t′−1

Mj,t′

Mjt

The set of months that saw structural breaks includes December 2022, June, September, October 2023,

and January and May of 2024. Since S contains only time periods after the end of 2022, no adjustment is

made for foot traffic before then: M̃jt = Mjt for t before 2022 December.
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Figure A1: Population and Commuter Shock vs. Amenity Preference Shock in Equilibrium
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(a) Shifts in Amenity Demand due to Changes in Population and Commuter Traffic
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(b) Negative Shock to Preferences for Amenities

Note: The figures present graphical illustrations of how changes in commuting patterns and in the preferences for amenities
over the pandemic can affect amenity visit foot traffic in equilibrium. In both subfigures, the solid upward-sloping curves are
the amenity provision curves in the u and s locations, respectively. The slopes of the curves with respect to M reflect the
endogeneity of amenity. The dashed lines represent the amenity demand curves. They are upward sloping because a higher
amenity a leads to more visits. In Figure A1b, we illustrate commuting shocks (reduction in commuting time) as shifting the
amenity demand curve inward in the u location and outward in the s location. Equilibrium amenity levels and foot traffic are
given by the cross-points between the amenity demand curves and the respective amenity provision curves. In Figure A1b, we
illustrate the negative shock to preferences for amenities as a reduction in the sensitivity of foot traffic with respect to amenity
levels, which represents an increase in the slope of the amenity demand curves.
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Figure A2: Recovery of Amenity Preference Post-COVID

M

a

Mu (a)M ′
u (a) M ′′

u (a)

Ms (a)M ′
s (a) M ′′

s (a)

au (M)

as (M)

Mu

au

M ′
u

a′u

M ′′
u

a′′u

Ms ∼M ′
s

as ∼ a′s

M ′′
u

a′′u

(a) During and After the Pandemic: Lifting of Pandemic Aversion to Amenities

M

a

M ′′′
u (a)Mu (a)M ′′

u (a)
Ms (a)M

′′
s (a)M ′′′

s (a)

au (M)

as (M)

Mu

au

M ′′
u

a′′u

M ′′′
u

a′′′u

Ms

as

M ′′
s

a′′s

M ′′′
s

a′′′s

(b) Accounting for the Full Change in Amenity Preference

Note: The figure presents a graphical illustration of the simultaneous changes in commuting patterns and in the preferences
for amenities that can jointly affect amenity visit foot traffic in equilibrium during the pandemic, and how the recovery of
preference for local amenities can partially reverse the amenity foot traffic.
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Figure A3: Cross-Validation for SafeGraph Foot Traffic, Spend, and Device Count Data

(a) SafeGraph Foot Traffic vs. Google Mobility (b) Spending vs. Retail Sales

(c) Device Count vs. Population Count

Note: These figures show the results of the cross-validation checks for the geographically detailed foot traffic and device count
data. For each of the data, we aggregate the data to the county level and compare the county-level changes against publicly
available external datasets at the county level. In Figure A3a, we plot the growth of short visits to amenities (trips that last less
than one hour) between 2019 Q4 and 2022 Q3 in the SafeGraph data against the Google Mobility Index tracking changes in
mobility to retail and recreational facilities between Jan 3–Feb 6 of 2022, and 2022 Q3. In Figure A3b, we present the residual
binned scatterplot after controlling for year dummies, NAICS dummies, and the interaction between the two sets of dummies.
For this graph alone, we remove the 12-month periods ending in March and April of 2021. The vertical axis represents the
monthly total spending growth over a 12-month horizon from the SafeGraph Spend data, and the horizontal axis represents
the monthly retail sales over a 12-month horizon reported from the Monthly State Retail Sales (MSRS) provided by the U.S.
Census Bureau. Figure A3c presents the binned scatterplot between the growth of normalized device count between 2019 Q4
and 2022 Q4 at the county level against the growth in county population estimated by the U.S. Census Bureau between April
2020 and July 2022.
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Figure A4: Cross-Validation for Spatial Remote Work Shock

Note: This figure plots the normalized commuting trips to census tracts with high remote work shock, moderate
remote work shock, and low remote work shock, recorded in the SafeGraph Foot Traffic data. Commuting trips
are defined as the trips that last at least one hour and go to destinations that are not considered amenities. The
census tracts with high remote work shock are those with industry mixes within a 3-mile radius that give rise
to a level of shock in the top 10 percent of all census tracts. Census tracts with moderate and low remote work
shocks are those in the 46th-90th percentiles and the 1st-45th percentiles.
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Table A1: Hotels are Likely to Locate at Amenity Clusters

(1) (2) (3) (4)
Dep Var Log Visits to Hotel Visits to Hotel Log Visits to Hotel Visits to Hotel

Ln Amenity Density 0.645*** 0.669***
(0.0119) (0.0134)

Ln Pop Density 0.347*** 0.386***
(0.0165) (0.0189)

Ln Distance to Downtown -0.0831*** -0.115***
(0.0135) (0.0206)

Amenity Density 1.45e-07*** 1.46e-07***
(2.37e-08) (2.38e-08)

Pop Density -5.837*** -6.048***
(1.686) (1.989)

Distance to Downtown -6.39e-08*** -1.98e-07***
(1.77e-08) (7.63e-08)

Constant -10.03*** 0.00760*** -9.680*** 0.0117***
(0.269) (0.00224) (0.329) (0.00450)

MSA FE No No Yes Yes
Observations 21,914 68,165 21,055 64,197
R-squared 0.509 0.130 0.522 0.131

Note: This table reports the results of regressing census tract-level hotel foot traffic in 2019 on the 2019 amenity foot traffic
measure, controlling for population density and the distance to downtown. Columns 1 and 2 report results where we do not
include the MSA fixed effects, while columns 3 and 4 report results where we do include them. Columns 1 and 3 report results
of regressions in which all variables are log transformed, while columns 2 and 4 report results of regressions in which variables
in levels are used. *** p < 0.01, ** p < 0.05, *p < 0.1.
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