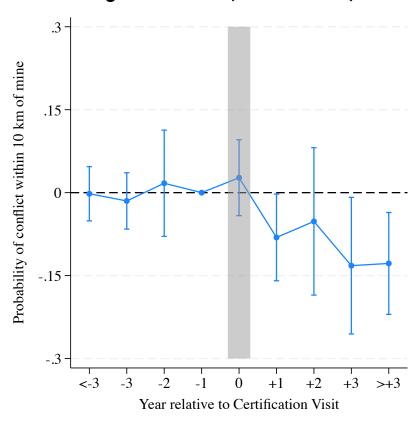
Can Audits Shift the Battleground? Supply Chain Certifications and Conflict Dynamics in the Congo

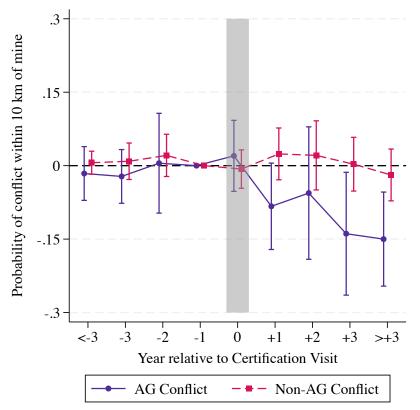
ASSA – January 2025

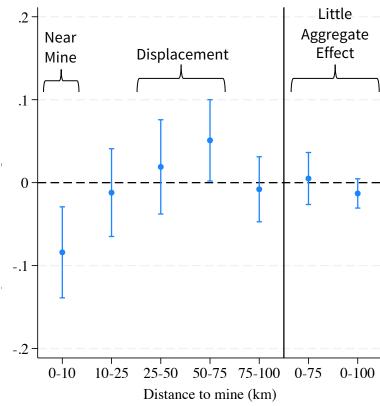
SAMUEL CHANG & HANS B. CHRISTENSEN

Motivation



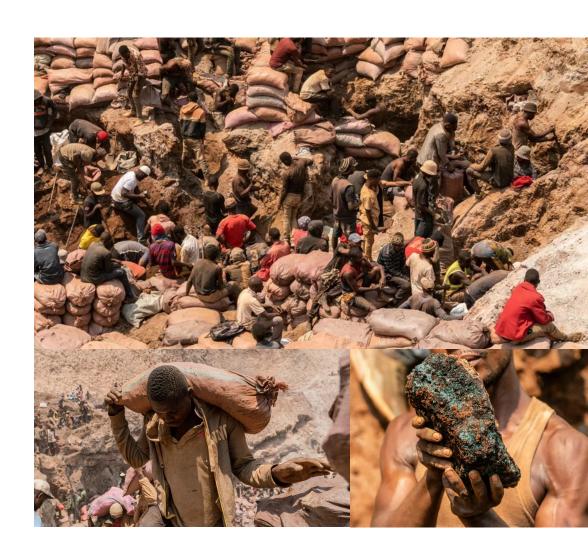
- Policy initiatives in developed countries seek to use global corporate supply chains to address human rights abuses in developing regions
 - Such issues have persisted due to weak public governance
- Notable example is Dodd-Frank Act Section 1502
 - Was enacted in 2010 to mitigate longstanding conflict in Eastern DRC
 - DRC's small-scale mining sector—integral to many corporate supply chains—has financed armed groups
 - Section 1502 aims to curtail these flows by requiring disclosure of due-diligence efforts
- Local mine certifications translate D-F mandate into local actions
 - Can disrupt equilibria of local armed group authority
 - But without injecting functional institutions, certifications cannot resolve the ongoing armed conflict
- We examine how conflict-free gold mine certifications, motivated by the Dodd-Frank Act, influence conflict dynamics in the DRC


Our Results in Three Figures


Change in Conflict (within 10km)

Change Only For AG-Initiated Conflict

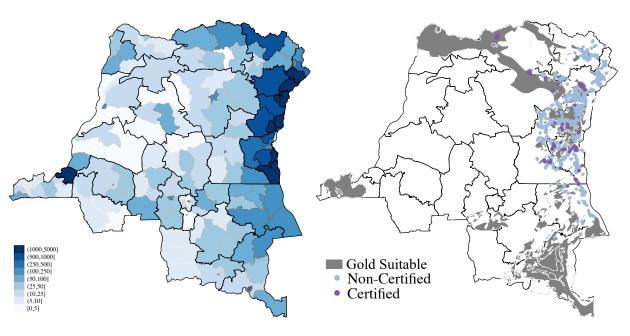
Geographical Displacement of Conflict


Setting: Artisanal Mining in the Eastern DRC

Source of financing for some armed factions and subject to certification (e.g., Dodd-Frank and EU)

Artisanal Mining and Armed Conflict

- Artisanal and small-scale mining is a large sector of the DRC economy
 - Employs more than 2 million people
 - 20% of DRC GDP
 - Each mine typically employs 100-200
- Ideal financing source for militant factions
 - Some finance activity through violently looting mining communities
 - Others establish systems of governance that monopolize violence and provide "essential functions of a state" (Sánchez de la Sierra, 2020)
- After metal is smelted, no way to identify source
 - First step is very important
 - Artisanal mining certifications operationalize regulation to the mining community level


Artisanal Mining Certifications

- ICGLR mine certification scheme initiated in 2011 after Dodd-Frank
 - Implementation in the DRC focuses on mines in high-conflict provinces
 - Only for 3TG minerals (covered by Dodd-Frank)
- We analyze the period around the initial certification visit
 - Selected by the DRC government
 - Inspector physically visits mine site and checks for armed presence
 - Follow-up visits occur at least annually

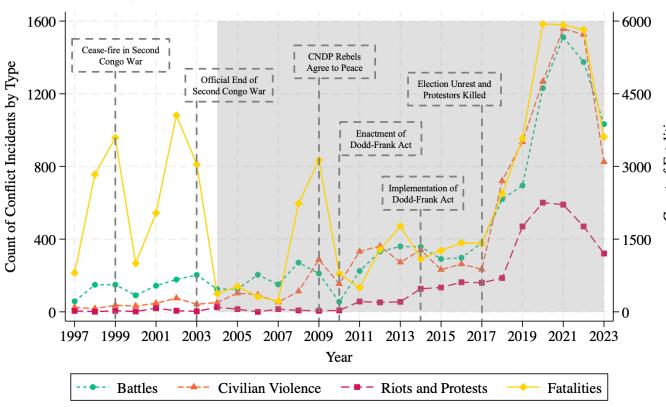
Figure 1. Conflicts and Small-Scale Mines

Panel A: Conflicts by Territory Panel B: Gold Suitability and Mines

General Framework

- Mines can sell minerals in two ways
 - Officially to smelters (higher amount) and unofficially to smugglers (lower amount)
- Armed groups tax local population
 - Stationary bandits have interest in continued success of mines and communities
 - In return for tax, stationary armed groups "protect" communities against themselves and others
- Certification scheme increases the audit "risk" of the mine from ~2% to 100%
 - All certified mines (regardless of status) are visited at least annually in the future
 - Mines cannot sell officially (i.e., lose certification) if conflict is detected
- After audit, it becomes relatively more beneficial for armed groups to conceal financing by protecting certified mine
 - Thus, armed groups increase the amount spent on protection
- Tension: two different effects can occur in equilibrium
 - Substitution effect: armed group optimally redistributes protection to certified mines from uncertified mines due to limited resources and increased audit risk
 - Income effect: armed group receive more tax revenue from certified mines and expand protection to all mines

Method: Measuring Conflict


Both our conflict measure and the certification program are local to mines

Dependent Variable: Nearby Conflicts

- Spatial analysis of conflicts within radii of artisanal mines
- Conflict dataset captures conflict instances recorded by media/NGOs
 - Includes details on type and fatalities
 - We use only eastern province data
 - Fatalities more comprehensive
- Conflicts geolocated to the nearest village, so relatively precise

Figure 2: Conflict Incidents and Fatalities

Assignment of Treatment

- Provincial governments select mines for certification
 - Main concern is selection on security
 - Additional economic variables could also play a role
- We have not been able to confirm selection criteria with the DRC Ministry of Mines
 - No statistical association between certification choice and pre-cert conflict or local economic characteristics with territory-year FE
 - Certifications occur in groups over time but are not clumped in one province or area – may affect economic magnitudes

Table 1. Certification Selection

	All Years		_
Dep. Var.: 1(Certified)	No FE	FE	_
	(10)	(11)	- Security
			(pre-period)
$asinh(Conflict\ 10km)_{t-1}$	-0.003	0.001	(pre-period)
	(0.002)	(0.002)	Economic
$asinh(Avg\ Lum\ Ikm)_{t-1}$	0.000	-0.001	
	(0.003)	(0.003)	growth
$EVI\ 1km_{t-1}$	-0.156***	-0.035	Agriculture
	(0.054)	(0.027)	alternative
asinh(Dist to Road)	-0.001	0.000	atternative
	(0.003)	(0.001)	
asinh(Dist to Maj Road)	-0.006**	-0.002	
	(0.003)	(0.002)	
asinh(Dist to Pop)	0.005**	0.002	Accessibility
	(0.002)	(0.001)	
$asinh(Dist\ to\ Cert)_t$	-0.037***	-0.056***	
	(0.005)	(0.008)	
1(Protected Area)	0.005	-0.004*	
	(0.017)	(0.002)	Legality
Constant	0.285***		
	(0.043)		
	·		_
Territory x Year FE	No	Yes	_ _
R-squared	0.126	0.242	
Observations (Mine)	25,784	25,748	_

Results: Certification and Conflict Intensity Near Mines

Conflict decreases in the area proximal to certified mines

Certifications and Conflict

$$\mathbb{1}(All\ Conflicts_{m,t}) = \beta_1\ CFC_m \times Year\ Relative\ to\ Cert_{m,t} + \alpha_m + \delta_{r,t} + \epsilon_{m,t}$$

- Dependent variable: 1(All Conflicts)
- CFC: Treatment indicator for certified mines
- Conley (1999) standard errors (100km) to account for geographical and spatial correlation
- Fixed effects: mine, territory x year
- o Interpretation:
 - Gradual decrease in conflict after certifications
 - Effect only for gold mines, not 3T mines
 - Average treatment effect significant

Figure 3 Panel A: Conflict Incidence

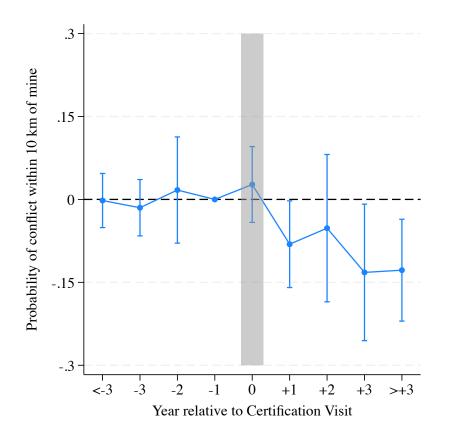
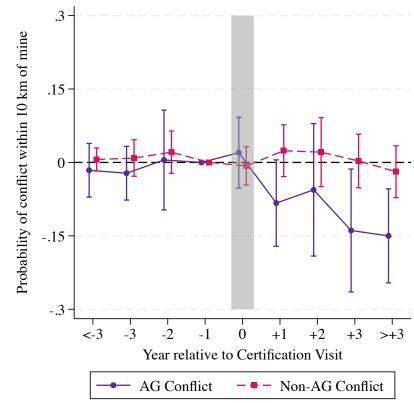
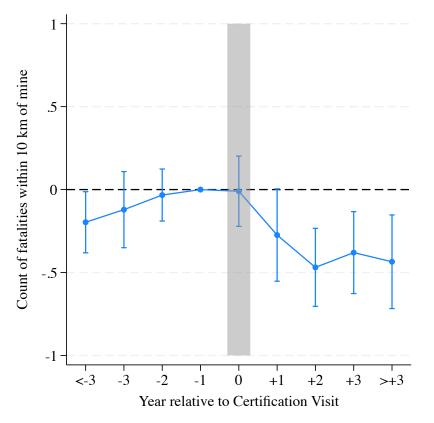
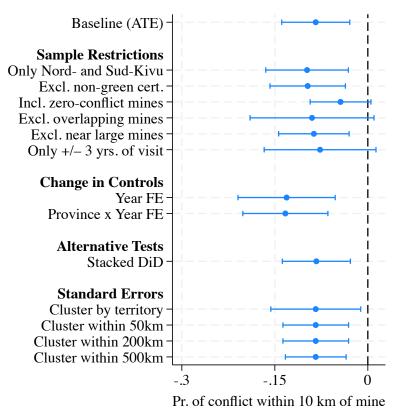



Figure 3 Panel D: Conflict Incidence by Type


Fatalities and Sensitivity Tests


 $asinh(Fatalities_{m,t})/\mathbb{1}(All\ Conflicts_{m,t}) = \beta_1\ CFC_m \times Year\ Relative\ to\ Cert_{m,t} + \alpha_m + \delta_{r,t} + \epsilon_{m,t}$

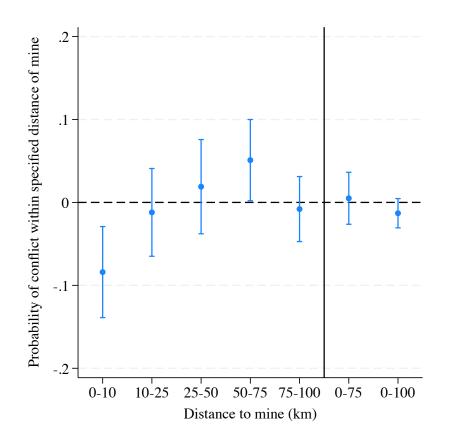
- Dependent variable: asinh(Fatalities)/1(All Conflicts)
- CFC: Treatment indicator for certified mines
- Conley (1999) standard errors (100km) to account for geographical and spatial correlation
- Fixed effects: mine, territory x year
- o Interpretation:
 - Same as conflict probability results
 - Magnitude: 0.4 deaths per certified mine-year
 - Magnitude for battles: 0.2 deaths per certified mineyear

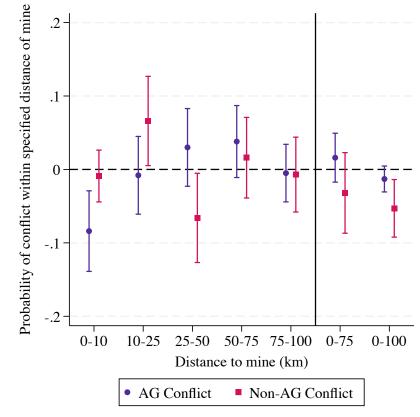
Figure 3 Panel B: Fatality Count

Figure 3 Panel C: ATE and Sensitivity Tests

Results: Displacement of Conflict

Conflict moves further away from certified mines but does not decrease in the aggregate


Displacement of Conflict


 $\mathbb{1}(All\ Conflicts_{m,t}) = \beta_1\ CFC_m \times Year\ Relative\ to\ Cert_{m,t} + \alpha_m + \delta_{r,t} + \epsilon_{m,t}$

- Dependent variable: 1(All Conflicts)
- CFC: Treatment indicator for certified mines
- Conley (1999) standard errors
 (100km) to account for
 geographical and spatial
 correlation
- Fixed effects: mine, territory x year
- o Interpretation:
 - Negative average effect between 0–10km for gold
 - Positive average effect between 25–75km for gold
 - No effect for 3T
 - Stronger displacement to mining areas

Figure 4 Panel A: Conflict Incidence

Figure 4 Panel D: Conflict Incidence by Type

Aggregate Territory Effect

 $asinh(All\ Conflicts_{r,t}) = \beta_1\ asinh(Count)/Fraction_{r,t} + \alpha_r + \delta_{p,t} + \varepsilon_{m,t}$

- Dependent variable: asinh(All Conflicts)
- o Ind. variable: Count or fraction of certified mines in region
- Standard errors: clustered at territory level
- Fixed effects: territory, province x year

Interpretation:

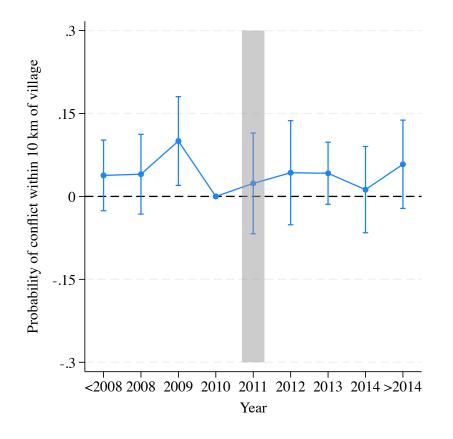
 Effect of certifications (count or fraction) on aggregate (territory-level) conflict <u>not</u> negative in any category

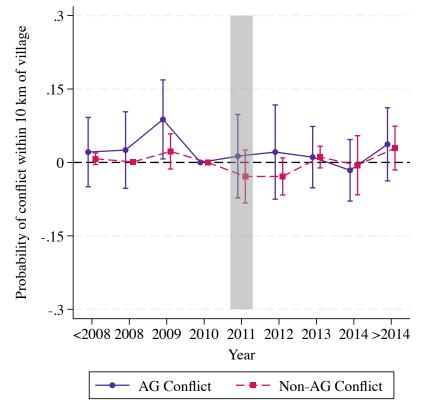
Table 3. Certifications and Territory-Level Conflict Intensity

	asinh(All Conflict)		asinh(AG	asinh(AG Conflict)		asinh(All Fatalities)	
	(1)	(2)	(3)	(4)	(5)	(6)	
asinh(Gold Cert Count)	0.053** (0.021)	0.016 (0.022)	0.063*** (0.023)	0.024 (0.022)	0.048 (0.030)	-0.000 (0.023)	
Territory FE	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	No	Yes	No	Yes	No	
Province x Year FE	No	Yes	No	Yes	No	Yes	
Adj. R-squared	0.696	0.740	0.684	0.734	0.550	0.637	
Observations (Territory-Year)	1,700	1,700	1,700	1,700	1,700	1,700	

Results: Intent-to-Treat Around Dodd-Frank Enactment

No statistically or economically significant effect


Intent-to-Treat at Enactment of Dodd-Frank


$$\mathbb{1}(All\ Conflicts_{m,t}) = \beta_1\ GoldSuitable_m \times Post2011_{m,t} + \alpha_m + \delta_{r,t} + \varepsilon_{m,t}$$

- Dependent variable: 1(All Conflicts)
- Gold: Villages with gold mines or suitable for gold
- Standard errors: clustered at territory level
- Fixed effects: mine, territory x year
- o Interpretation:
 - Intent-to-treat effect not statistically or economically significant

Figure 5 Panel A: Conflict Incidence

Figure 5 Panel D: Conflict Incidence by Type

Main Takeaways

Key evidence:

- No significant deterrence effects of the program initiation (i.e., Dodd-Frank enactment)
- Initial certification visits are associated with a local reduction in future conflict probability
- Conflicts shift to a greater distance from certified mines without changing aggregate conflict intensity

Consistent with certifications:

- Increasing the demand for local monopolies on violence
- Strengthen stationary bandits that trade in protection from themselves and competing factions
- No "traditional" certification effect
- For policy evaluation purposes, a displacement of conflicts away from mining areas is different from a broader reduction in conflicts—distinct political and economic implications
- Illustrates the unintended consequences of supply-chain certification systems in resolving complex geopolitical challenges, such as the humanitarian crisis in the DRC