Worker Composition and Heterogeneous Firms: Employment Protection, Population Aging and Productivity

Santiago Caicedo (Northeastern University) Cheng Chen (Clemson University)

Aspen Gorry (Clemson University)

Takahiro Hattori (University of Tokyo)

ASSA - Jan. 2025

- "Human side" of (heterogeneous) firms:
 - A burgeoning literature on *interactions* between firms and workers: Engbom et al. (2019), Gregory (2020), Bagga (2022), Bilal et al. (2022), Engbom et al. (2023) and Kim (2023) etc.
- Population aging is found to have substantial impact on firms and macro-economy via changing growth rate of working-age population: Karahan et al. (2019), Peters and Walsh (2021), Hopenhayn et al. (2022) and Bianchi and Paradisi (2024) etc.
- Aging also changes the composition of workers by age/experience
- This paper: understand how changes in the *composition of labor supply across* demographic groups affect firm-level and aggregate outcomes
- Understanding optimal allocation of workers to firms ⇒ helps inform policies, including immigration, education, retirement etc.

- "Human side" of (heterogeneous) firms:
 - A burgeoning literature on interactions between firms and workers: Engbom et al. (2019), Gregory (2020), Bagga (2022), Bilal et al. (2022), Engbom et al. (2023) and Kim (2023) etc.
- Population aging is found to have substantial impact on firms and macro-economy via changing growth rate of working-age population: Karahan et al. (2019), Peters and Walsh (2021), Hopenhayn et al. (2022) and Bianchi and Paradisi (2024) etc.
- Aging also changes the composition of workers by age/experience
- This paper: understand how changes in the *composition of labor supply across* demographic groups affect firm-level and aggregate outcomes
- Understanding optimal allocation of workers to firms ⇒ helps inform policies, including immigration, education, retirement etc.

- "Human side" of (heterogeneous) firms:
 - A burgeoning literature on *interactions* between firms and workers: Engbom et al. (2019), Gregory (2020), Bagga (2022), Bilal et al. (2022), Engbom et al. (2023) and Kim (2023) etc.
- Population aging is found to have substantial impact on firms and macro-economy via changing growth rate of working-age population: Karahan et al. (2019), Peters and Walsh (2021), Hopenhayn et al. (2022) and Bianchi and Paradisi (2024) etc.
- Aging also changes the composition of workers by age/experience
- **This paper:** understand how changes in the *composition of labor supply across* demographic groups affect firm-level and aggregate outcomes
- Understanding optimal allocation of workers to firms ⇒ helps inform policies, including immigration, education, retirement etc.

- "Human side" of (heterogeneous) firms:
 - A burgeoning literature on interactions between firms and workers: Engbom et al. (2019), Gregory (2020), Bagga (2022), Bilal et al. (2022), Engbom et al. (2023) and Kim (2023) etc.
- Population aging is found to have substantial impact on firms and macro-economy via changing growth rate of working-age population: Karahan et al. (2019), Peters and Walsh (2021), Hopenhayn et al. (2022) and Bianchi and Paradisi (2024) etc.
- Aging also changes the composition of workers by age/experience
- **This paper:** understand how changes in the *composition of labor supply across demographic groups* affect firm-level and aggregate outcomes
- Understanding optimal allocation of workers to firms ⇒ helps inform policies, including immigration, education, retirement etc.

- Study how heterogeneous (e.g., age) workers are matched with heterogeneous firms (establishments) and how age structure of workers affects market concentration and aggregate productivity using data from Japan:
 - Develop static framework to understand "optimal" allocation of heterogeneous (e.g., age) workers to heterogeneous firms

 Use firm-worker-bin level data to back out firm-worker-bin level productivity
 - 2. Document new facts on relationship between firm size and worker age and tenure + propose *dynamic* model with firing cost to account for these facts
 - 3. Work-in-Progress: study how age structure of workers/employment protection affect (1) worker composition of firm, (2) firm performance (e.g., profitability and concentration), (3) aggregate productivity

- Study how heterogeneous (e.g., age) workers are matched with heterogeneous firms (establishments) and how age structure of workers affects market concentration and aggregate productivity using data from Japan:
 - Develop static framework to understand "optimal" allocation of heterogeneous (e.g., age) workers to heterogeneous firms ⇒ Use firm-worker-bin level data to back out firm-worker-bin level productivity
 - Document new facts on relationship between firm size and worker age and tenure + propose dynamic model with firing cost to account for these facts
 - 3. Work-in-Progress: study how age structure of workers/employment protection affect (1) worker composition of firm, (2) firm performance (e.g., profitability and concentration), (3) aggregate productivity

- Study how heterogeneous (e.g., age) workers are matched with heterogeneous firms (establishments) and how age structure of workers affects market concentration and aggregate productivity using data from Japan:
 - Develop static framework to understand "optimal" allocation of heterogeneous (e.g., age) workers to heterogeneous firms ⇒ Use firm-worker-bin level data to back out firm-worker-bin level productivity
 - 2. Document new facts on relationship between firm size and worker age and tenure + propose *dynamic* model with firing cost to account for these facts
 - 3. Work-in-Progress: study how age structure of workers/employment protection affect (1) worker composition of firm, (2) firm performance (e.g., profitability and concentration), (3) aggregate productivity

- Study how heterogeneous (e.g., age) workers are matched with heterogeneous firms (establishments) and how age structure of workers affects market concentration and aggregate productivity using data from Japan:
 - Develop static framework to understand "optimal" allocation of heterogeneous (e.g., age) workers to heterogeneous firms ⇒ Use firm-worker-bin level data to back out firm-worker-bin level productivity
 - 2. Document new facts on relationship between firm size and worker age and tenure + propose *dynamic* model with firing cost to account for these facts
 - 3. Work-in-Progress: study how age structure of workers/employment protection affect (1) worker composition of firm, (2) firm performance (e.g., profitability and concentration), (3) aggregate productivity

Data

Data: Source

- Basic survey of wage structure (BSWS) from Japanese government: establishment-employee matched data
 - 1. 1998-2017 at annual frequency (roughly 55,000 establishments and 1.25 million workers per year) + manuf. and service establishments
 - 2. Employment cutoff: five (ten) workers for private (public) establishments
 - 3. Representative rotating sample of both establishments and workers
 - 4. Can construct short panel of establishments (\exists establishment ID)
- Caveat: can't link workers over time (no time-invariant worker ID)

Data: Information

- Information at establishment level:
 - 1. Employment, industry, location
 - 2. Employment by work type (temporary, regular, and non-regular)
- Information at worker level:
 - 1. Worker's age, education and tenure
 - 2. We infer experience = age (6+length of education)
 - 3. Working hours (incl. overtime hours), wages, and bonus pay
 - 4. Other characteristics: job type (manuf./mana./admin./R&D etc.)
 - 5. After 2005: work type is added (fixed-term or temporary vs. regular; full-time vs. part-time)
 - 6. No top and bottom coding of wage records

Data: Information

- Information at establishment level:
 - 1. Employment, industry, location
 - 2. Employment by work type (temporary, regular, and non-regular)
- Information at worker level:
 - 1. Worker's age, education and tenure
 - 2. We infer **experience** = age (6+length of education)
 - 3. Working hours (incl. overtime hours), wages, and bonus pay
 - 4. Other characteristics: job type (manuf./mana./admin./R&D etc.)
 - 5. After 2005: work type is added (fixed-term or temporary vs. regular; full-time vs. part-time)
 - 6. No top and bottom coding of wage records

Data: Summary Statistics at establishment Level

 Table 1: Summary Statistics

	mean	count	sd	p10	p25	p50	p75	p90
emp	101.1	1094653	321.3	8	13	28	71	193
tenure _{mean}	10.24	1094653	6.052	3	5.455	9.417	14.11	18.57
age _{mean}	41.65	1094653	7.649	32.09	36.83	41.50	46.35	51.43
edu_{mean}	2.605	1073209	0.660	1.889	2.056	2.500	3.077	3.600

Time period: 1998-2017. For $tenure_{mean}$, age_{mean} , edu_{mean} , we calculate plant-level averages of workers being surveyed first and then report the summary statistics across plants and over the years. edu_{mean} takes four possible values: 1 (middle school), 2 (high school), 3 (2-year/community college), 4 (university/graduate school).

Allocation of Workers across Firms:

Static Model

- ullet Economy with a continuum of firms (unit mass) with productivity $z \sim \Phi(z)$
- Firms produce homogeneous good using labor from different types of workers
- Worker belongs to group $g \in \mathcal{G}$ where \mathcal{P} is partition of \mathcal{G} :
 - skills and experience (or age): observable
 - ullet L_g denotes supply of type g workers and $L \equiv \sum_{g} L_{g}$ is total labor supply
- Firm-level profit equals (taking wages w_g as given)

$$\max_{l_g \ge 0} F(\{l_g\}; z) - \sum_g w_g l_g \tag{1}$$

where $\{I_g\} = (I_1, ..., I_G)$ denote set of labor allocations

$$\int F\left(\{l_g\};z\right)\phi(z)dz$$

- ullet Economy with a continuum of firms (unit mass) with productivity $z \sim \Phi(z)$
- Firms produce homogeneous good using labor from different types of workers
- Worker belongs to group $g \in \mathcal{G}$ where \mathcal{P} is partition of \mathcal{G} :
 - skills and experience (or age): observable
 - ullet L_g denotes supply of type g workers and $L \equiv \sum_g L_g$ is total labor supply
- Firm-level profit equals (taking wages w_g as given)

$$\max_{l_g \ge 0} F(\{l_g\}; z) - \sum_{g} w_g l_g$$
 (1)

where $\{I_g\} = (I_1, ..., I_G)$ denote set of labor allocations

$$\int F\left(\{l_g\};z\right)\phi(z)dz$$

- ullet Economy with a continuum of firms (unit mass) with productivity $z\sim\Phi(z)$
- Firms produce homogeneous good using labor from different types of workers
- Worker belongs to group $g \in \mathcal{G}$ where \mathcal{P} is partition of \mathcal{G} :
 - skills and experience (or age): observable
 - ullet L_g denotes supply of type g workers and $L \equiv \sum_g L_g$ is total labor supply
- \bullet Firm-level profit equals (taking wages w_g as given)

$$\max_{l_g \ge 0} F(\{l_g\}; z) - \sum_g w_g l_g \tag{1}$$

where $\{I_g\} = (I_1, ..., I_G)$ denote set of labor allocations.

$$\int F\left(\{l_g\};z\right)\phi(z)dz$$

- ullet Economy with a continuum of firms (unit mass) with productivity $z \sim \Phi(z)$
- Firms produce homogeneous good using labor from different types of workers
- Worker belongs to group $g \in \mathcal{G}$ where \mathcal{P} is partition of \mathcal{G} :
 - skills and experience (or age): observable
 - ullet L_g denotes supply of type g workers and L $\equiv \sum_{g} L_{g}$ is total labor supply
- \bullet Firm-level profit equals (taking wages w_g as given)

$$\max_{l_g \ge 0} F(\{l_g\}; z) - \sum_g w_g l_g \tag{1}$$

where $\{I_g\} = (I_1, ..., I_G)$ denote set of labor allocations.

$$\int F\left(\{I_g\};z\right)\phi(z)dz$$

Static Model: cont.

• Labor market clearing conditions for group g:

$$\int I_g^*(z) \ d\Phi(z) = L_g \ \forall g \tag{2}$$

- Competitive Equilibrium: A competitive equilibrium is characterized by a set of labor allocations $l_g(z)$ for each firm z and type of worker g, and a set of wages w_g such that firm optimize (1) and markets clear (2)
- Social Planner:

$$\max_{l_g(z)\geq 0} \int F\left(\{l_g\}; z\right) \phi(z) dz \quad s.t \quad \int \left(\sum_{g\in P_s} l_g(z)\right) \phi(z) dz = L_s,$$

each $P_s \in \mathcal{P}$ is set of groups g that planner can adjust

Static Model: cont.

• Labor market clearing conditions for group g:

$$\int I_g^*(z) \ d\Phi(z) = L_g \ \forall g \tag{2}$$

- Competitive Equilibrium: A competitive equilibrium is characterized by a set of labor allocations $l_g(z)$ for each firm z and type of worker g, and a set of wages w_g such that firm optimize (1) and markets clear (2)
- Social Planner:

$$\max_{l_g(z)\geq 0} \int F\left(\{l_g\}; z\right) \phi(z) dz \quad s.t \quad \int \left(\sum_{g\in P_s} l_g(z)\right) \phi(z) dz = L_s,$$

each $P_s \in \mathcal{P}$ is set of groups g that planner can adjust

Static Model: Example

General production function (CES):

$$\left(\sum_{g} A_{g}(z)^{\frac{1}{\sigma}} I_{g}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\alpha\sigma}{\sigma-1}}$$

- $\sigma \in (0, \infty)$ is E.S. and $\alpha \in (0, 1)$ measures DRS
- $A_g(z)$ is firm-worker-specific productivity
- Key assumptions on firm-worker productivity:
 - 1. DRS for production function
 - 2. Imperfect substitution between workers of different types (evidence: Card and Lemieux (2001), Borjas (2003), Ottaviano and Peri (2012))
- We consider case where $\frac{\alpha\sigma}{\sigma-1}=1\Rightarrow \max_{l_g}\;\;\sum_g A_g(z)^{\frac{1}{\sigma}}l_g^{\frac{\sigma-1}{\sigma}}-\sum_g w_gl_g$

Static Model: Example

General production function (CES):

$$\left(\sum_{g} A_{g}(z)^{\frac{1}{\sigma}} I_{g^{\sigma}}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\alpha\sigma}{\sigma-1}}$$

- $\sigma \in (0, \infty)$ is E.S. and $\alpha \in (0, 1)$ measures DRS
- $A_g(z)$ is firm-worker-specific productivity
- Key assumptions on firm-worker productivity:
 - 1. DRS for production function
 - 2. Imperfect substitution between workers of different types (evidence: Card and Lemieux (2001), Borjas (2003), Ottaviano and Peri (2012))
- We consider case where $\frac{\alpha\sigma}{\sigma-1}=1\Rightarrow \max_{l_g}\;\sum_g A_g(z)^{\frac{1}{\sigma}} I_g^{\frac{\sigma-1}{\sigma}} -\sum_g w_g I_g$

Optimal Allocation

- \bullet Denote $ar{A}_g := \int A_g(z) d\Phi(z)$ and $ar{A} := \sum_g ar{A}_g$
- Optimal allocation of workers:

$$L_g^* = L \frac{\bar{A}_g}{\bar{A}}$$

- $A_g(z)$: sufficient statistics that can be estimated but require firm-level information (no explicit solution in general)
- This is true only when there is no reallocation friction (e.g., firing cost)

Static Model: Identification

- Goal: Backing out $A_g(z)$:
 - Assume skill is unobservable but experience is observable
 - Worker-establishment bins: worker skill-experience-establishment size bins (I * J * K) where we set I = 2, J = 9 and K = 2.
 - Data moments: J * K wage and J * K employment for J * K worker experience-establishment size bins
 - Share of high-skill workers within experience group:
 - 1. Increasing first and then decreasing (main specification):

$$\xi_j = [0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.3, 0.3, 0.3]$$

$$2. \quad \xi_j = \xi = 0.5 \ \forall j$$

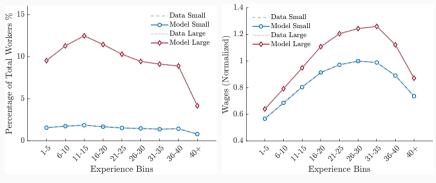
- $\sigma = 2.5$ and $\alpha = 0.6$
- Impose monotonicity of wage schedule along skill dimension

Static Model: Identification

- Goal: Backing out $A_g(z)$:
 - Assume skill is unobservable but experience is observable
 - Worker-establishment bins: worker skill-experience-establishment size bins (I * J * K) where we set I = 2, J = 9 and K = 2.
 - Data moments: J * K wage and J * K employment for J * K worker experience-establishment size bins
 - Share of high-skill workers within experience group:
 - 1. Increasing first and then decreasing (main specification):

$$\xi_j = [0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.3, 0.3, 0.3]$$

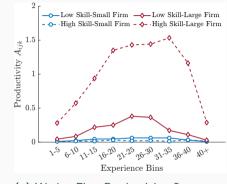
- 2. $\xi_j = \xi = 0.5 \ \forall j$
- $\sigma = 2.5$ and $\alpha = 0.6$
- Impose monotonicity of wage schedule along skill dimension

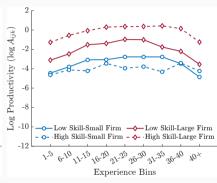

Static Model: Identification

- Goal: Backing out $A_g(z)$:
 - Assume skill is unobservable but experience is observable
 - Worker-establishment bins: worker skill-experience-establishment size bins (I * J * K) where we set I = 2, J = 9 and K = 2.
 - Data moments: J * K wage and J * K employment for J * K worker experience-establishment size bins
 - Share of high-skill workers within experience group:
 - 1. Increasing first and then decreasing (main specification):

$$\xi_j = [0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.3, 0.3, 0.3]$$

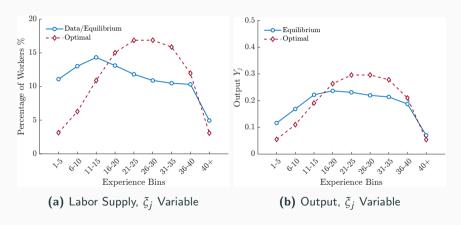
- 2. $\xi_j = \xi = 0.5 \ \forall j$
- $\sigma = 2.5$ and $\alpha = 0.6$
- Impose monotonicity of wage schedule along skill dimension


Results: Moments


(a) Labor by Experience, ξ_j Variable

(b) Wages by Experience, ξ_j Variable

Calibrated Productivity


(a) Worker-Firm Productivity, ξ_j Variable

(b) Worker-Firm Productivity, ξ_j Variable

Optimal Allocation: Output Gains by $\Delta\%Y = 5.3\%$

Figure 3: Optimal Labor and Output

Static Model: Results

- Robustness: Equal share of high-skill workers $(\xi_i = \xi = 0.5 \ \forall j)$ results
- Robustness: CES production function Presults
- Key lessons:
 - Log supermodularity between establishment size (productivity) and worker skill
 - High wage for workers with experience ∈ [21, 35] ⇒ high establishment-specific productivity ⇒ more workers should allocated to these bins ⇒ population aging does not necessarily reduce output

Static Model: Results

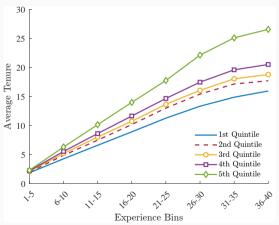
- Robustness: Equal share of high-skill workers $(\xi_j = \xi = 0.5 \ \forall j)$ results
- Robustness: CES production function Presults
- Key lessons:
 - Log supermodularity between establishment size (productivity) and worker skill
 - High wage for workers with experience $\in [21,35] \Rightarrow$ high establishment-specific productivity \Rightarrow more workers should allocated to these bins \Rightarrow population aging does not necessarily reduce output

Worker Composition of Firms:

Establishment-level Findings

Larger Establishments have Younger Workers with Longer Tenure on average

▶ workers≤60 years old
▶ within-establishment tenure distribution
▶ within-establishment experience distribution


Table 2: Worker Characteristics and Plant Size (1998-2003): full Sample

Size Bin	emp _{mean}	age _{mean}	exp _{mean}	tenure _{mean}	wage _{mean}	edu _{mean}
1	8.49	42.13	23.83	10.54	32078.94	12.30
2	16.83	40.56	21.91	10.95	35749.17	12.65
3	32.11	40.24	21.51	11.47	36916.25	12.73
4	72.46	39.96	21.11	12.24	38314.43	12.85
5	677.31	39.02	19.72	14.52	44639.36	13.30

Time period: 1998-2003. exp: experience (years of working). Unit of wage: one hundred yen (or one USD). edumean: years of schooling. We divide plants to five size bins with equal number of plants in each bin. Size bin 1: emp \leq 11; Size bin 2: emp \in [12, 22]; Size bin 3: emp \in [23, 44]; Size bin 4: emp \in [45, 115]: Size bin 1: emp > 116.

Figure 4: Experience-tenure profile (pooled cross-section: 1998-2003)

Note: Experience = age - (length of education + 6). Size bin 1: emp \leq 11; Size bin 2: emp \in [12, 22]; Size bin 3: emp \in [23, 44]; Size bin 4: emp \in [45, 115]; Size bin 1: emp \geq 116.

Establishment Age

- Establishment age is an important confounding factor:
 - ullet Smaller establishments tend to be younger establishments o their workers must have shorter tenure (mechanical correlation)
 - ullet Smaller establishments tend to be younger establishments o younger establishments tend to have younger labor force (see Ouimet and Zarutskie (2014))
- Robustness: controlling for establishment age

Establishment Age

- Establishment age is an important confounding factor:
 - ullet Smaller establishments tend to be younger establishments o their workers must have shorter tenure (mechanical correlation)
 - ullet Smaller establishments tend to be younger establishments o younger establishments tend to have younger labor force (see Ouimet and Zarutskie (2014))
- Robustness: controlling for establishment age

Mechanism

- High-productivity establishments:
 - Hire more young workers who are more talented on average
 - Fire middle-aged and old workers who didn't upgrade their human capital enough
- Low-productivity establishments:
 - Hire fewer young workers who are less talented on average
 - Hire to fill vacancies with middle-aged and old workers who are separated from more productive firms.
- ▶ Evidence

Mechanism

- High-productivity establishments:
 - Hire more young workers who are more talented on average
 - Fire middle-aged and old workers who didn't upgrade their human capital enough
- Low-productivity establishments:
 - Hire fewer young workers who are less talented on average
 - Hire to fill vacancies with middle-aged and old workers who are separated from more productive firms.
- Evidence

Dynamic Model

Setup: Worker and Establishments

- Life-cycle model of workers with two-dimensional heterogeneity:
 - 1. Workers at age (i.e., experience) a_i and with human capital h_i
 - Assumption: Deterministic accumulation of experience and *stochastic* accumulation of human capital
 - Learning/forgetting shocks + exiting from labor market randomly (over life-cycle)
- Comparative advantage of productive establishments:
 - Assumption: More productive establishments benefit more by using workers with more human capital

$$y(\varphi, h_i, a_j, l_{ij}) = \int_{h_i \in H, a_j \in A} \left[l_{ij}^{\frac{\sigma - 1}{\sigma}} (\varphi h_i + \varphi^{\nu} a_j) \right] dh_i da_j, \tag{3}$$

where $y(arphi, \mathit{h_i}, \mathit{a_j}, \mathit{l_{ij}})$ is output of homogeneous good and $u \in [\mathsf{0}, \mathsf{1})$

2. Worker type-specific output is log super-modular (log sub-modular) w.r.t. (φ, h_i) (w.r.t. φ, a_j)

Setup: Worker and Establishments

- Life-cycle model of workers with two-dimensional heterogeneity:
 - 1. Workers at age (i.e., experience) a_i and with human capital h_i
 - Assumption: Deterministic accumulation of experience and *stochastic* accumulation of human capital
 - Learning/forgetting shocks + exiting from labor market randomly (over life-cycle)
- Comparative advantage of productive establishments:
 - 1. Assumption: More productive establishments benefit more by using workers with more human capital

$$y(\varphi, h_i, a_j, l_{ij}) = \int_{h_i \in H, a_j \in A} \left[l_{ij}^{\frac{\sigma - 1}{\sigma}} (\varphi h_i + \varphi^{\nu} a_j) \right] dh_i da_j, \tag{3}$$

where $y(\phi, h_i, a_j, l_{ij})$ is output of homogeneous good and $\nu \in [0, 1)$

2. Worker type-specific output is log super-modular (log sub-modular) w.r.t. (φ, h_i) (w.r.t. φ, a_j)

Firing Cost

• Employment protection: establishments have to pay τ fraction of worker's wage if fired:

$$FC_{ijt} = \tau w_{ij} \max\{0, (L_{ijt} - I_{ijt})\},$$

for worker group (h_i, a_j) . l_{ijt} : empl. choice; L_{ijt} : inherited empl. stock

- Employment decision is dynamic: employment stock and expected firing prob
- ullet Workers are also separated from establishments (without being fired) with prob. η every period

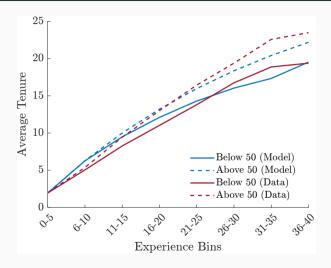
▶ Equilibrium

► Solution Algorithm

Calibration: Work-in-Progress

Calibration

- Estimation:
 - Two types of establishments
 - τ : fixed
- Targeting (different weights):
 - Tenure-experience profile (x2)
 - Employment-experience distribution (x2)
 - Employment-tenure distribution
 - Wage-experience profile (normalized)
 - Average tenure by firm
 - Average experience by firm
 - Average wage by firm (normalized)
 - Firing rate (x2)


Calibration

- Estimation:
 - Two types of establishments
 - τ : fixed
- Targeting (different weights):
 - Tenure-experience profile (x2)
 - Employment-experience distribution (x2)
 - Employment-tenure distribution
 - Wage-experience profile (normalized)
 - Average tenure by firm
 - Average experience by firm
 - Average wage by firm (normalized)
 - Firing rate (x2)

Parameter Values • moments: data v.s. model • policy functions

Parameter	Description	Value				
Externally C	Externally Calibrated					
β	Discount rate (4 years)	0.815				
σ	Elasticity of Substitution Inputs	3				
g_0	Initial Distribution of Human Capital	[0.17 0.17 0.17 0.17 0.17 0.17]				
au	Firing Costs	0.2 (fixed)				
Simulated M	Simulated Method of Moments					
u	Elasticity of Output Relative to Experience	0.006				
δ	Survival Rate of Cohort	0.938				
η	No Exogenous Separation	0.862				
ϕ	Firm Productivity	[8.293 22.926]				
h	Levels of Human Capital	[1 2.62 4.24 5.86 7.48 9.1]				

Experience-tenure profile: Model v.s. Data

Counterfactual: Work-in-Progress

- Increasing τ from zero to 0.2 or 0.3
- Distributional effects on workers:
 - 1. Aggregate labor demand in submarket: driven by demand from large firms.
 - 2. $\tau \uparrow \rightarrow$ productive firms reduce demand for young workers and fire fewer old workers \rightarrow young workers lose and old workers gain Figures
- Distributional effects on establishments:
 - 1. $\tau \uparrow \Rightarrow$ productive (unproductive) establishments hire fewer (more) young workers + employment/output share of productive establishments \Downarrow
 - 2. Productive establishments' productivity and profitability can increase relative to unproductive ones (equilibrium effect):
 - Young (old) workers' wages drop (increase) + productive establishments hire more young workers => productive establishments lose less
- Higher (product) market concentration (i.e., lower firing cost) can lead to increase in worker movement and reduce wage inequality

- Increasing τ from zero to 0.2 or 0.3
- Distributional effects on workers:
 - 1. Aggregate labor demand in submarket: driven by demand from large firms.
 - 2. $\tau \uparrow \rightarrow$ productive firms reduce demand for young workers and fire fewer old workers \rightarrow young workers lose and old workers gain Figures
- Distributional effects on establishments:
 - 1. $\tau \uparrow \Rightarrow$ productive (unproductive) establishments hire fewer (more) young workers + employment/output share of productive establishments \Downarrow
 - 2. Productive establishments' productivity and profitability can increase relative to unproductive ones (equilibrium effect):
- Higher (product) market concentration (i.e., lower firing cost) can lead to increase in worker movement and reduce wage inequality

- Increasing τ from zero to 0.2 or 0.3
- Distributional effects on workers:
 - 1. Aggregate labor demand in submarket: driven by demand from large firms.
 - 2. $\tau \uparrow \rightarrow$ productive firms reduce demand for young workers and fire fewer old workers \rightarrow young workers lose and old workers gain Figures
- Distributional effects on establishments:
 - 1. $\tau \uparrow \Rightarrow$ productive (unproductive) establishments hire fewer (more) young workers + employment/output share of productive establishments \Downarrow
 - 2. Productive establishments' productivity and profitability can increase relative to unproductive ones (equilibrium effect):
 - Young (old) workers' wages drop (increase) + productive establishments hire more young workers ⇒ productive establishments lose less
- Higher (product) market concentration (i.e., lower firing cost) can lead to increase in worker movement and reduce wage inequality

- Increasing τ from zero to 0.2 or 0.3
- Distributional effects on workers:
 - 1. Aggregate labor demand in submarket: driven by demand from large firms.
 - 2. $\tau \uparrow \rightarrow$ productive firms reduce demand for young workers and fire fewer old workers \rightarrow young workers lose and old workers gain Figures
- Distributional effects on establishments:
 - 1. $\tau \uparrow \Rightarrow$ productive (unproductive) establishments hire fewer (more) young workers + employment/output share of productive establishments \Downarrow
 - 2. Productive establishments' productivity and profitability can increase relative to unproductive ones (equilibrium effect):
- Higher (product) market concentration (i.e., lower firing cost) can lead to increase in worker movement and reduce wage inequality

- Increasing τ from zero to 0.2 or 0.3
- Distributional effects on workers:
 - 1. Aggregate labor demand in submarket: driven by demand from large firms.
 - 2. $\tau \uparrow \rightarrow$ productive firms reduce demand for young workers and fire fewer old workers \rightarrow young workers lose and old workers gain Figures
- Distributional effects on establishments:
 - 1. $\tau \uparrow \Rightarrow$ productive (unproductive) establishments hire fewer (more) young workers + employment/output share of productive establishments \Downarrow
 - 2. Productive establishments' productivity and profitability can increase relative to unproductive ones (equilibrium effect):
- Higher (product) market concentration (i.e., lower firing cost) can lead to increase in worker movement and reduce wage inequality

Population Aging and Market Concentration

- Change age structure of workers with fixed L (surviving rate of worker $\delta \uparrow \Rightarrow$ average age/experience \uparrow) \Rightarrow Concentration of productive establishments \Downarrow
- Drag of pop. aging on agg. productivity: making productive establishments shrink

Table 3: Outcomes Changing δ (surviving rate): fixing L

$\delta = 0.8$	$\delta = 0.938$	$\delta = 1$
91.1 %	90.5 %	90.3 %
90.2 %	89.1 %	88.7 %
$\delta = 0.8$	$\delta = 0.938$	$\delta = 1$
91%	90.3 %	90 %
89.5 %	88.5 %	88.1 %
$\delta = 0.8$	$\delta = 0.938$	$\delta = 1$
86.9 %	85.5 %	84.8 %
81.9 %	79.6 %	78.6 %
	91.1 % 90.2 % $\delta = 0.8$ 91% 89.5 % $\delta = 0.8$ 86.9 %	91.1 % 90.5 % 90.2 % 89.1 % $\delta = 0.8$ $\delta = 0.938$ 91% 90.3 % 89.5 % 88.5 % $\delta = 0.8$ $\delta = 0.938$ 86.9 % 85.5 %

Evidence: growth of work. age pop. $\Downarrow \Rightarrow$ top establishments' emp. share \Downarrow

	prefye	ear level	indprefyear level		
	(1)	(2)	(3)	(4)	
	empl share pref,y	empl share pref,y	empl share ^{top} 5%	empl share ^{top} 10%	
working gr _{p,y}	1.458***	1.211***	0.464***	0.391***	
	(0.427)	(0.372)	(0.108)	(0.102)	
Prefecture FE	Yes	Yes	No	No	
Industry-prefecture FE	No	No	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
N	1598	1598	19913	19913	
R^2	0.899	0.907	0.744	0.747	
adj. R^2	0.894	0.902	0.730	0.733	

Notes: Census of manufacturing plants (1985-2018) is used. The estimate of the constant is suppressed. Standard errors are clustered at prefecture-year level. For columns 3-4, ind.-pref.-year obs. with at least 100 plants are included. * 0.10 ** 0.05 *** 0.01.

- Growth of working-age pop. (working $gr_{p,y}$): -0.52% (mean) and 0.86% (s.d.)
- Endogenous migration across prefectures ⇒ using lagged birth rate

IV: using (20-year) lagged birth rate (corr. coeff.: 0.867)

	prefye	ear level	indprefyear level		
	(1) (2)		(3)	(4)	
	empl share pref,y	empl share top 10%	empl share _{ind,pref,y}	empl share ^{top} 10%	
birth $rate_{p,y-20}$	0.620***	0.536***	0.200***	0.205***	
	(0.178)	(0.142)	(0.0321)	(0.0298)	
Prefecture FE Yes		Yes	No	No	
Industry-prefecture FE	No	No	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
N	1588	1588	19873	19873	
R^2	0.901	0.909	0.744	0.747	
adj. R^2 0.896		0.904	0.729	0.733	

Notes: Census of manufacturing plants (1985-2018) is used. The estimate of the constant is suppressed. Standard errors are clustered at prefecture-year level. For columns 3-4, ind.-pref.-year obs. with at least 100 plants are included. * 0.10 ** 0.05 *** 0.01.

• Lagged birth rate (birth rate $_{p,y-20}$): 1.34% (mean) and 0.34% (s.d.)

Robustness: using average age of prefecture-level population

	prefye	ear level	indprefyear level		
	(1) (2)		(3)	(4)	
	empl share pref,y	empl share top 10%	empl share _{ind,pref,y}	empl share ^{top} 10%	
average age _{p,y}	-0.00000277	-0.00148	-0.00484***	-0.00511***	
	(0.00688)	(0.00568)	(0.00140)	(0.00131)	
Prefecture FE	Yes	Yes	No	No	
Industry-prefecture FE	No	No	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
N	1598	1598	19913	19913	
R^2	0.894	0.903	0.744	0.747	
adj. R^2 0.899		0.898	0.733	0.733	

Notes: Census of manufacturing plants (1985-2018) is used. The estimate of the constant is suppressed. Standard errors are clustered at prefecture-year level. For columns 3-4, ind.-pref.-year obs. with at least 100 plants are included. * 0.10 ** 0.05 *** 0.01.

• Average age (average $age_{p,y}$): 42.6 (mean) and 3.87 (s.d.)

Final Comments

- We propose simple static model and use Japanese data to back out firm-worker specific productivity and to study optimal allocation of workers
- We study worker-composition of heterogeneous firms ⇒ comparative advantage of using worker skill for productive firms
 - 1. Large, more productive firms have up-or-out dynamics
 - 2. Small, less productive firms hire gradually
- **Distributional effects of firing cost on firms:** Productive firms may gain relatively despite that they fire workers and shrink
- Higher (product) market concentration does not necessarily reduce worker movement and increase wage inequality
- Pop. aging leads to less concentrated market/drags down agg. productivity

- We propose simple static model and use Japanese data to back out firm-worker specific productivity and to study optimal allocation of workers
- We study worker-composition of heterogeneous firms ⇒ comparative advantage of using worker skill for productive firms
 - 1. Large, more productive firms have **up-or-out** dynamics
 - 2. Small, less productive firms hire gradually
- **Distributional effects of firing cost on firms:** Productive firms may gain relatively despite that they fire workers and shrink
- Higher (product) market concentration does not necessarily reduce worker movement and increase wage inequality
- Pop. aging leads to less concentrated market/drags down agg. productivity

- We propose simple static model and use Japanese data to back out firm-worker specific productivity and to study optimal allocation of workers
- We study worker-composition of heterogeneous firms ⇒ comparative advantage of using worker skill for productive firms
 - 1. Large, more productive firms have **up-or-out** dynamics
 - 2. Small, less productive firms hire gradually
- **Distributional effects of firing cost on firms:** Productive firms may gain relatively despite that they fire workers and shrink
- Higher (product) market concentration does not necessarily reduce worker movement and increase wage inequality
- Pop. aging leads to less concentrated market/drags down agg. productivity

- We propose simple static model and use Japanese data to back out firm-worker specific productivity and to study optimal allocation of workers
- We study worker-composition of heterogeneous firms ⇒ comparative advantage of using worker skill for productive firms
 - 1. Large, more productive firms have **up-or-out** dynamics
 - 2. Small, less productive firms hire gradually
- **Distributional effects of firing cost on firms:** Productive firms may gain relatively despite that they fire workers and shrink
- Higher (product) market concentration does not necessarily reduce worker movement and increase wage inequality
- Pop. aging leads to less concentrated market/drags down agg. productivity

- We propose simple static model and use Japanese data to back out firm-worker specific productivity and to study optimal allocation of workers
- We study worker-composition of heterogeneous firms ⇒ comparative advantage of using worker skill for productive firms
 - 1. Large, more productive firms have **up-or-out** dynamics
 - 2. Small, less productive firms hire gradually
- **Distributional effects of firing cost on firms:** Productive firms may gain relatively despite that they fire workers and shrink
- Higher (product) market concentration does not necessarily reduce worker movement and increase wage inequality
- Pop. aging leads to less concentrated market/drags down agg. productivity

Appendix Slides

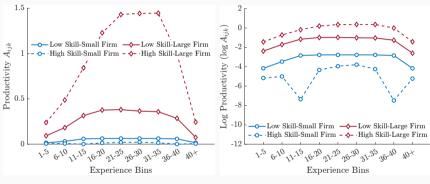
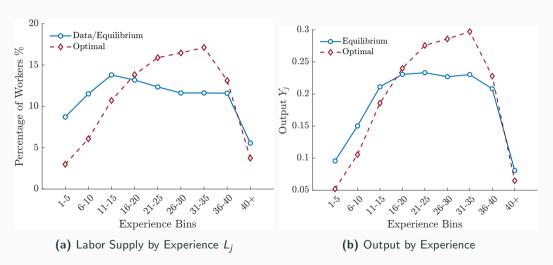

Data: Simple Correlation • Go back

Table 4: Correlations of Variables

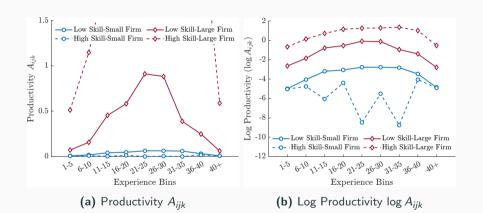
	log(emp)	edu _{mean}	age _{mean}	tenure _{mean}	lwage _{mean}
log(emp)	1				
edu _{mean}	0.171***	1			
age _{mean}	-0.0784***	-0.299***	1		
tenure _{mean}	0.179***	-0.0489***	0.341***	1	
lwage _{mean}	0.277***	0.197***	0.0311***	0.547***	1

Time period: 1998-2017. *edu* takes four possible values: 1 (middle school), 2 (high school), 3 (2-year/community college), 4 (university/graduate school). *emp*: plant employment. * p < 0.10, ** p < 0.05, *** p < 0.01

Results: Calibrated Productivity with $\xi = 0.5$

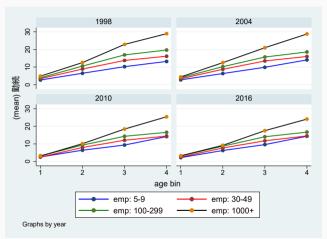


(a) Worker-Firm Labor Productivity, $\xi=0.5$

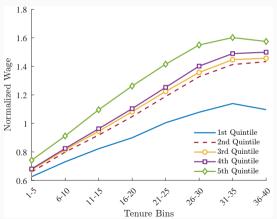

(b) Log Labor Productivity, $\xi=0.5$

Results: Optimal Allocation with $\xi=0.5$: Output gains $\Delta\%Y=4.06\%$ \bullet Go back

Figure 6: Optimal Labor Supply and Output


Results: Calibrated Productivity under CES with $\sigma = 3$

Results: Optimal Allocation under CES with $\sigma=3$ Go back


Channel: Age-tenure Profile (various years) • Go back

Note: This figure plots how tenure varies with the age bin and establishment size. Age bin: 1 (age \leq 30), 2 (age \in [31, 40]), 3 (age \in [41, 50]) 4 (age \geq 51).

Channel: Tenure-wage Profile • Go back

Figure 9: Tenure-wage profile (pooled cross-section: 1998-2003)

Note: Average wage is normalized to one. Size bin 1: emp \leq 11; Size bin 2: emp \in [12, 22]; Size bin 3: emp \in [23, 44]; Size bin 4: emp \in [45, 115]; Size bin 1: emp \geq 116.

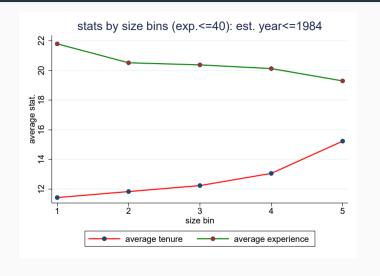
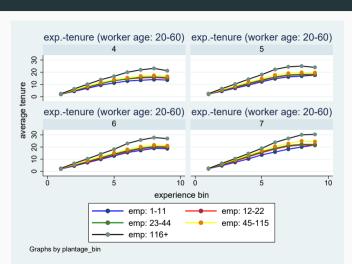

Regression results: 1998-2007 • 2004-2011

Table 5: Cross-sectional regression of experience, age and tenure: 1998-2007


	(1)	(2)	(3)
Dep.Var:	ave. experience	ave. age	ave. tenure
plant age	0.101***	0.093***	0.121***
	(0.001)	(0.001)	(0.001)
log(empl.)	-1.487***	-1.263***	0.335***
	(0.017)	(0.016)	(0.013)
constant	24.720***	43.380***	5.570***
	(0.066)	(0.060)	(0.046)
City FE	Yes	Yes	Yes
Industry-year FE	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
N	298970	303625	303625
R^2	0.342	0.348	0.357

^{* 0.10 ** 0.05 *** 0.01.} Standard errors are clustered at the firm level.

Average tenure and experience (excluding young establishments): 1998-2001

Experience-tenure profile conditioning on est. age: 1998-2001 • Go back

4: est. age 18-27; 5: est. age 28-37; 6: est. age 38-47; 7: est. age 48+ • 2008-2011

Larger establishments are more likely to hire entrants than experienced workers

Table 6: Cross-sectional regression of hiring new v.s. hiring old

	(1)	(2)	(3)	(4)
Dep.Var:	h	iring new > 0	- hiring old >	0
log(empl.)	0.125***	0.124***	0.124***	0.124***
	(0.002)	(0.002)	(0.002)	(0.002)
plant age		0.003***		0.002***
		(0.000)		(0.000)
constant	-0.506***	-0.569***	-0.503***	-0.566***
	(0.006)	(0.007)	(0.006)	(800.0)
Year FE	Yes	Yes	No	No
City FE	Yes	Yes	Yes	Yes
Prefecture FE	Yes	Yes	No	No
Industry FE	Yes	Yes	No	No
Industry-year FE	No	No	Yes	Yes
Prefecture-year FE	No	No	Yes	Yes
N	135918	108371	135716	108247
R^2	0.099	0.103	0.130	0.133

^{*} 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the firm level. *hiring new* > 0 (*hiring old* > 0) is an indicator of (net) hiring of job-market entrants (incumbents).

Larger establishments hire disproportionately more entrants • Go back

Table 7: Cross-sectional regression of hiring shares

Dep.Var:	(1) log(hired fresh)	(2) hired fresh empl.	(3) hired fresh net hire
log(empl.)	0.539***	0.005***	0.135***
	(0.004)	(0.000)	(0.002)
plant age	-0.002***	-0.000***	0.002***
	(0.000)	(0.000)	(0.000)
constant	-1.248***	-0.002***	-0.173***
	(0.016)	(0.000)	(800.0)
City FE	Yes	Yes	Yes
Industry-year FE	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
N	70587	303625	54285
R^2	0.462	0.129	0.260

* 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the firm level. hired fresh denotes the number of hired job market entrants, while net hire is the change in employment over two consecutive years (i.e., net hiring or firing). hired fresh is one (or missing), if the net hiring of job-market incumbents is negative (or the hiring of job-market entrants is zero and the net hiring of job-market incumbents is non-positive).

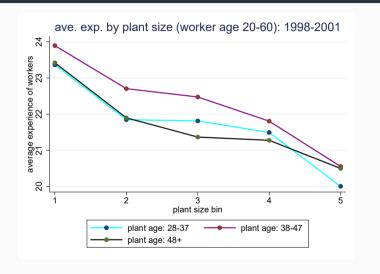
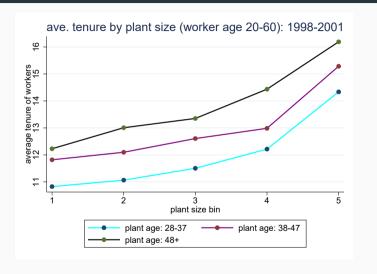
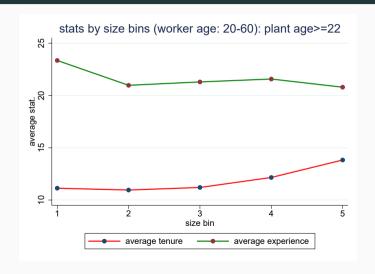

Regression results: 2004-2011 • Go Back

Table 8: Cross-sectional regression of experience, age and tenure: 2004-2011

	(1)	(2)	(3)
Dep.Var:	ave. experience	ave. age	ave. tenure
plant age	0.092***	0.091***	0.112***
	(0.001)	(0.001)	(0.001)
log(empl.)	-1.377***	-1.185***	0.150***
	(0.018)	(0.017)	(0.013)
constant	24.788***	43.642***	6.067***
	(0.065)	(0.061)	(0.045)
City FE	Yes	Yes	Yes
Industry-year FE	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
N	309312	317156	317156
R^2	0.319	0.355	0.383

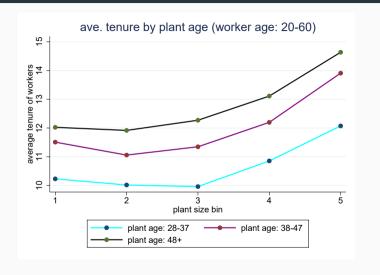

^{* 0.10 ** 0.05 *** 0.01.} Standard errors are clustered at the firm level.

Average experience by establishment age and size: 1998-2001

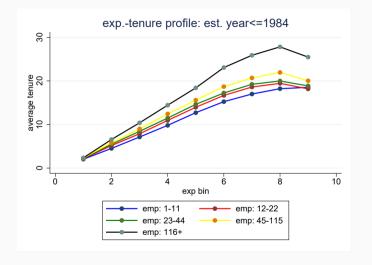


Average tenure by establishment age and size: 1998-2001

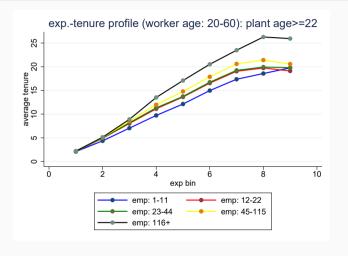
Average tenure and experience (throwing away young establishments): 2008-2011



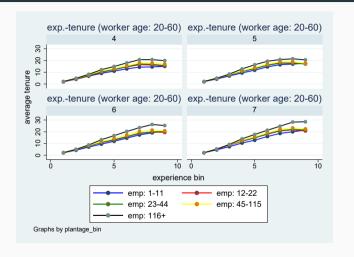
Average experience by establishment age and size: 2008-2011



Average tenure by establishment age and size: 2008-2011



Experience-tenure profile (excluding young establishments): 1998-2001



Experience-tenure profile (throwing away young establishments): 2008-2011

Experience-tenure profile conditioning on establishment age: 2008-2011

4: est. age 18-27; 5: est. age 28-37; 6: set. age 38-47; 7: set. age 48+ lacksquare Go back

Larger establishments hire disproportionately more entrants • Go back

Table 9: Panel regression of hiring shares

Dep.Var:	(1) log(hired fresh)	(2) hired fresh empl.	(3) hired fresh net hire
log(empl.)	0.555***	0.001**	-0.361***
	(0.017)	(0.000)	(0.017)
constant	-1.336*** (0.081)	0.010*** (0.001)	2.261*** (0.081)
Industry-year FE	Yes	Yes	Yes
Prefecture-year FE	Yes	Yes	Yes
Plant FE	Yes	Yes	Yes
N	52311	279587	25402
R ²	0.775	0.627	0.672

^{* 0.10 ** 0.05 *** 0.01.} Standard errors are clustered at the firm level. hired fresh is one (or missing), if the net hiring of job-market incumbents is negative (or the hiring of job-market entrants is zero and the net hiring of job-market incumbents is non-positive).

Solution Method Go Back

Procedure

- 1. Given expected firing probs. and wage schedule, solve empl choice of workers at age a₁ (youngest workers)
- 2. Solve emp. choice of workers age a_j given expected firing probs. for age a_{j+1} and empl. stock inherited from employed workers of age a_{j-1} last period
- 3. Find wage schedule w_{ij} that clears each labor submarket based on establishments' emp. choices and expected firing probs.
- 4. Calculate *actual* firing probs. based on establishments' choices and update expected firing probs. until they converge

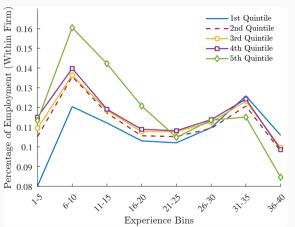
- Key challenge: vf iteration does not work due to curse of dimensionality
- Key is to derive FOCs of empl. analytically
 - Firm's inaction region of hiring/firing workers at age ai depends on expected firing
 - Firm's empl. choice of workers at age a; depends on its inaction region and empl.

Solution Method: Ideas Go back

- Key challenge: vf iteration does not work due to curse of dimensionality
- Key is to derive FOCs of empl. analytically
 - Firm's inaction region of hiring/firing workers at age a_j depends on expected firing probs. for workers at age a_{j+1}
 - Firm's empl. choice of workers at age a_j depends on its inaction region and empl. stock (i.e., empl. choice of age a_{j-1} last period).

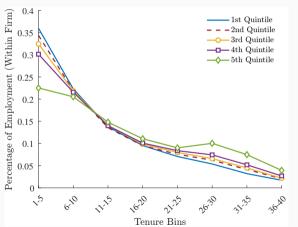
Facts: Larger Establishments have Younger Workers who have Longer

Table 10: Worker Characteristics and Plant Size: workers who are at most 60 years old


Size Bin	emp _{mean}	age _{mean}	exp _{mean}	tenure _{mean}	wage _{mean}	edu _{mean}
1	8.53	38.88	20.33	9.56	32547.41	12.54
2	16.84	38.15	19.29	10.40	36176.99	12.86
3	32.16	38.31	19.40	11.03	37249.1	12.92
4	72.53	38.33	19.31	11.90	38577.94	13.02
5	683.28	38.00	18.58	14.19	44775.83	13.42

Time period: 1998-2003. *exp*: experience (years of working). Unit of *wage*: one hundred yen (or one USD). edu_{mean} : years of schooling. We divide plants to five size bins with equal number of plants in each bin. Size bin 1: emp \leq 11; Size bin 2: emp \in [12, 22]; Size bin 3: emp \in [23, 44]; Size bin 4: emp \in [45, 115]; Size bin 1: emp \geq 116.

Within-firm Employment Distribution: Experience


Figure 10: Distribution of Workers across Experience Bins (pooled cross section: 1998-2003)

Note: Size bin 1: emp \leq 11; Size bin 2: emp \in [12, 22]; Size bin 3: emp \in [23, 44]; Size bin 4: emp \in [45, 115]; Size bin 1: emp > 116.

Within-firm Employment Distribution: Tenure

Figure 11: Distribution of Workers across Tenure Bins (pooled cross section: 1998-2003)

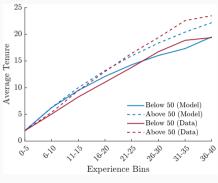
Note: Size bin 1: emp \leq 11; Size bin 2: emp \in [12, 22]; Size bin 3: emp \in [23, 44]; Size bin 4: emp \in [45, 115]; Size bin 1: emp > 116.

Equilibrium Conditions

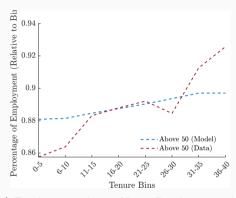
- ullet Establishments maximize profit and demand labor in each labor submarket (h_i, a_j)
- Workers choose highest-paying establishment to work
- Every labor submarket clears
- Product market clears (product price is numeraire)

Equilibrium Conditions

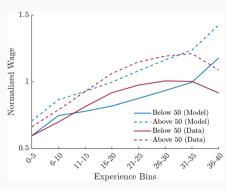
- ullet Establishments maximize profit and demand labor in each labor submarket (h_i, a_j)
- Workers choose highest-paying establishment to work
- Every labor submarket clears
- Product market clears (product price is numeraire)

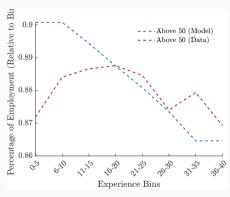


Moments


Table 11: Moments

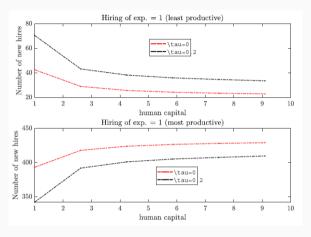
Moment	Data	Model
Firing Rate	0.44%	0.44%
Average Tenure	[11.1 13]	[12;12.5]
Average Experience	[21.3 20.9]	[22.2 20.7]
Average Wages (Normalized)	[0.872 1.018]	[0.861;1.018]


Moments: cont.


(a) Tenure-experience profile

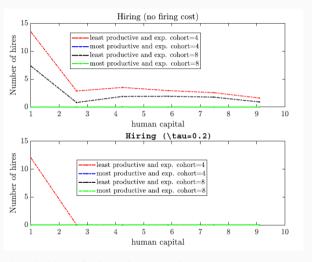
(b) Employment share of large firm by tenure bin

(a) Experience-wage profile

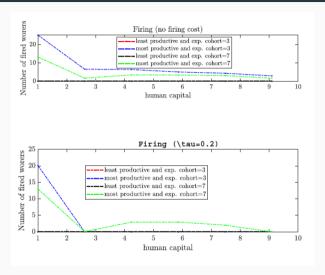


(b) Employment share of large firm by experience bin

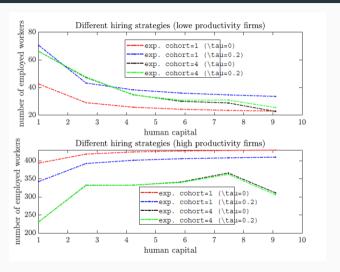
Firing and Hiring


• Different hiring (job-market incumbents vs. job-market entrants) and firing strategies across firms • employment choice

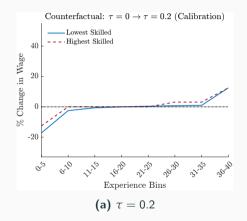
Hiring of Job-market Entrants: Productive Firms Hire Disproportionately More

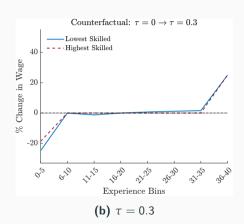

This figure plots the hiring decision of job-market entrants.

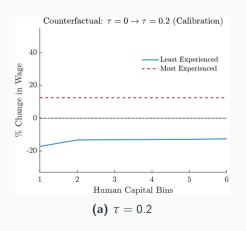
Net Hiring of Job-market Incumbents: Only Unproductive Firms Hire

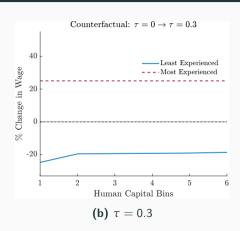

This figure plots the hiring decision of job-market incumbents.

Firing Strategies: No Firing by Unproductive Firms • Go back


This figure plots the firing decision of job-market incumbents.


Employment Go back


This figure plots employment of workers.


Distributional Effects on Workers across experience bins

Distributional Effects on Workers across human capital bins among youngest workers • Go back

Table 12: Average tenure and experience: τ changes from zero to 0.3

Variable	au=0	Calibration $\tau = 0.2$	$\tau = 0.3$
Firing Rate	1.17%	0.44%	0.25%
Average Tenure	[14.2;15.4]	[15;15.5]	[15.3;15.6]
Average Experience	[24 20.4]	[22.2 20.7]	[21.5 20.7]
Average Wages (Normalized)	[0.871;1.016]	[0.861;1.018]	[0.876;1.019]

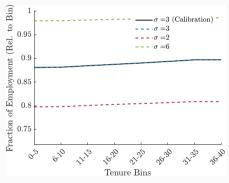
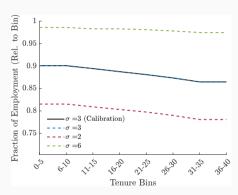
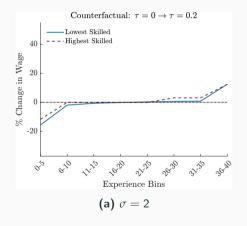

Key Moments Go back

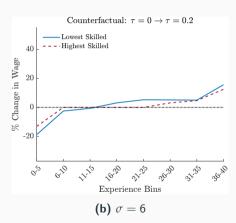
Table 13: Distributional Effects on Firms: τ changes from zero to 0.3


Variable	$\tau = 0$	Calibration $\tau = 0.2$	$\tau = 0.3$
Efficiency and Concentration			
Normalized Output	1	1	0.999
Labor Productivity ϕ^h	22.307	22.398	22.588
Labor Productivity ϕ^I	19.135	18.529	17.728
Firm profit ϕ^h (*10 ⁵)	1.0282	$1.0061\ (-2.15\%)$	0.9844 (-4.26%)
Firm profit ϕ^I (*10 ⁵)	0.1061	0.1019 (-3.96%)	0.09965 (-6.08%)
Output Concentration ϕ^h	90.5%	90.3%	89.1%
Employment Concentration ϕ^h	89.1%	88.5%	86.6%
Wage Inequality			
Normalized Standard Deviation of Wage	0.4648	0.4858	0.4978

Robustness: Different σ

• A larger σ intensifies market competition and thus favor productive firms


(a) Employment share of large firm by experience



(b) Employment share of large firm by tenure

Robustness: Different σ (cont.)

ullet However, it does not change counterfactual results of varying au

Outcomes: $\sigma = 2$

Variable	au=0	Calibration $\tau = 0.2$	au=0.5
Firing Rate	1.26%	0.42%	0%
Average Tenure	[14.8;15.3]	[15.3;15.5]	[15.6;15.6]
Average Experience	[22.7 20.4]	[21.6 20.6]	[20.8 20.8]
Average Wages (Normalized)	[0.934;1.016]	[0.924;1.019]	[0.938;1.024]
Efficiency and Concentration			
Normalized Output	1	1	0.994
Labor Productivity ϕ^h	9.386	9.449	9.985
Labor Productivity ϕ^I	8.633	8.395	7.128
Output ϕ^h (%)	82.1 %	81.9 %	78.3 %
Employment ϕ^h (%)	80.9 %	80.1 %	72.1 %
Profits			
Normalized Profits ϕ^h	1.012	1	0.981
Normalized Profits ϕ^I	1.019	1	0.914

References

- **Bagga, Sadhika**, "Internal and External Labor Markets and Declining Dynamism," 2022.
- **Bianchi, Nicola and Matteo Paradisi**, "Countries for Old Men: An Analysis of the Age Pay Gap," Technical Report, National Bureau of Economic Research 2024.
- **Bilal, Adrien, Niklas Engbom, Simon Mongey, and Giovanni L Violante**, "Firm and worker dynamics in a frictional labor market," *Econometrica*, 2022, *90* (4), 1425–1462.
- **Borjas, George J**, "The labor demand curve is downward sloping: Reexamining the impact of immigration on the labor market," *The quarterly journal of economics*, 2003, 118 (4), 1335–1374.
- **Card, David and Thomas Lemieux**, "Can falling supply explain the rising return to college for younger men? A cohort-based analysis," *The quarterly journal of economics*, 2001, *116* (2), 705–746.

- **Engbom, Niklas, Christian Moser, and Jan Sauermann**, "Firm pay dynamics," *Journal of Econometrics*, 2023, *233* (2), 396–423.
- et al., "Firm and worker dynamics in an aging labor market," Technical Report 2019.
- **Gregory, Victoria**, "Firms as learning environments: Implications for earnings dynamics and job search," *FRB St. Louis Working Paper*, 2020, (2020-036).
- **Hopenhayn, Hugo, Julian Neira, and Rish Singhania**, "From population growth to firm demographics: Implications for concentration, entrepreneurship and the labor share," *Econometrica*, 2022, *90* (4), 1879–1914.
- Karahan, Fatih, Benjamin Pugsley, and Ayşegül Şahin, "Demographic origins of the startup deficit," Technical Report, National Bureau of Economic Research 2019.
- **Kim, Seula**, "Workers' Job Prospects and Young Firm Dynamics," Technical Report, Working Paper 2023.

- **Ottaviano, Gianmarco IP and Giovanni Peri**, "Rethinking the effect of immigration on wages," *Journal of the European economic association*, 2012, *10* (1), 152–197.
- Ouimet, Paige and Rebecca Zarutskie, "Who works for startups? The relation between firm age, employee age, and growth," *Journal of financial Economics*, 2014, 112 (3), 386–407.
- Peters, Michael and Conor Walsh, "Population growth and firm dynamics," Technical Report, National Bureau of Economic Research 2021.