The contribution of robots to productivity and GDP growth in advanced economies over 1960-2022

American Economic Association Conference – 2025 ACES session: Institutions and Productivity in Advanced Countries January 5 - 2025

Gilbert Cette Vincenzo Spiezia Claudia Nobile

Content

- 1. Introduction: motivation and context
- 2. Data
- 3. Robot diffusion
- 4. The two methodologies
- 5. Results
- 6. Why so low evaluation with methodology 1?
- 7. To conclude

1. Introduction: motivation and context

Abundant literature concerning robot impact on...

○ **Employment**

- Among others: Brynjolfsson & McAfee (2014); Autor (2015); Acemoglu & Restrepo (2020); Acemoglu et al. (2020); Aghion et al. (2020); Aghion et al. (2022); Acemoglu et al. (2023), ...
- For Kapetaniou & Pissarides (2024) or Shahin *et al.* (2024), the substitution between robots and jobs depends on the country's innovation capabilities, and on openness
- No consensual results...

Labor share

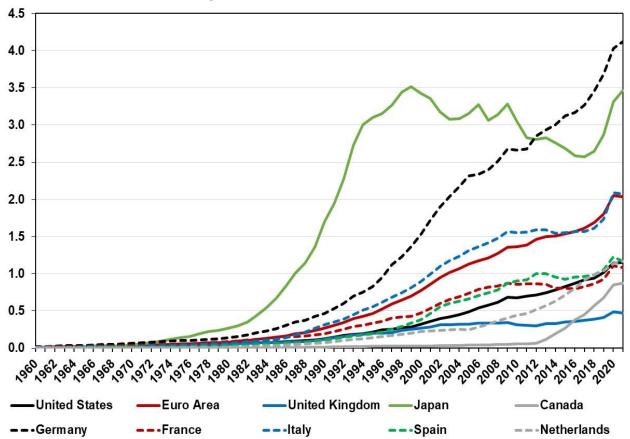
- Among others: Koch & Manuylov (2023) or Shahin et al. (2024), both based on analyses on Spanish data, and Shimizu & Momoda (2023), through a theoretical approach, ...
- Consensual results: robot diffusion => labor share decline

1. Introduction: motivation and context

- Few papers concerning robot impact on productivity
 - Graetz & Mitchels (2015, 2018)
 - Industry level database of 17 countries from 1993 to 2007
 - Increased robots per worker => +0.36pp to annual productivity growth
 - Acemoglu *et al.* (2020)
 - French firm level database, manufacturing sector, 2010, 2015
 - Positive impact on productivity
 - Cette, Devillard & Spiezia (2021, 2022)
 - Country level analysis
 - 30 advanced countries from 1960 to 2019
 - Use elasticities from G&M (2015, 2018)
 - Bekhtiar et al. (2024)
 - Same type of data as G&M
 - G&M suffer from a positive because of industry-level heterogeneity
 - They halve the impact
 - Almeida and Sequeira (2024)
 - Same type of data as G&M
 - Elasticity of productivity to robotization has at least halved from 2008

1. Introduction: motivation and context

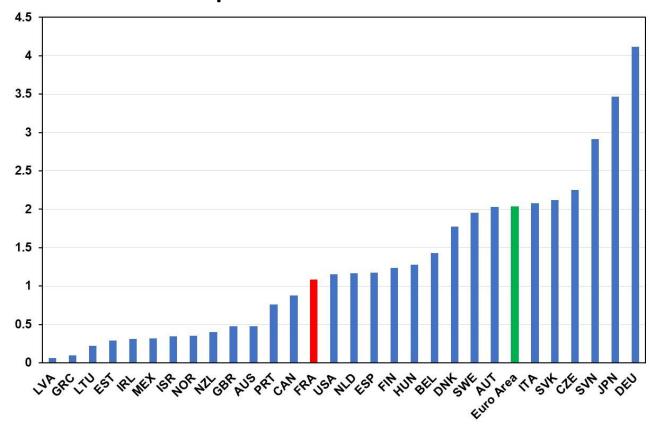
- Our paper...
 - Proposes new evaluation of robot impact on productivity growth
 - Country level analysis, 29 countries, 1960 to 2022
 - Standard growth accounting approach
 - Value added elasticity to robots: share of robots in total input remuneration
 - For this, need to estimate robot user cost
 - Two methodologies to estimate robot user cost
 - Methodology 1: Use the Jorgenson (1963) relation


 Price of robots proxied by the US price index of "information processing equipment" from the BEA
 - **Methodology 2**: derived from elasticity of labor productivity to robots estimated by G&M (2015)

2. Data

- An update of the database built by Cette, Devillard & Spiezia (2021 & 2022)
 - Country level, from 1950 to 2022, 29 advanced countries, Euro Area reconstituted
 - **GDP, employment, hours:** Bergeaud *et al.* (2016), OECD databases, Conference Board TED, & several other databases
 - o Interest rates: Jordà et al. (2019), OECD databases
 - Robots:
 - Industrial robots only
 ISO definition (ISO 8373:2012): an "automatically controlled, reprogrammable multipurpose manipulator programmable in three or more axes"
 - Number of robots: IFR completed by us through estimates on ICTs

3. Robot diffusion


Chart 1. Robot diffusion, 1960-2021
Number of robots per million hours worked in selected countries

- Continuously increasing diffusion in all countries, except Japan from the early 2000s to the mid 2010s
- Explained by the robot price decrease: G&M (2018) estimate that the price of robots in six major developed economies (France, Germany, Italy, Sweden, the United Kingdom and the United States) in 1990-2005 fell by about 50% in nominal terms and 80% when adjusted for quality

3. Robot diffusion

Chart 2. Robot diffusion, 2021 Number of robots per million hours worked

- Contrasted level of robot diffusion
- In 2021, highest diffusion: Germany, Japan
- The observed patterns of diffusion also reflect country-specific specializations: robots tend to be concentrated in few manufacturing sectors

4. The two methodologies

- Growth accounting approach (Solow approach)
- Capital deepening contribution channel
 - \circ $RCG_t = \alpha r_t$. $(\Delta k r_{t-1} \Delta n_t \Delta h_t)$ kr: log of robot capital, n: log of employment; h: log of hours per worker
 - o Törnquist index on $\alpha r_t = (CR_t . KR_{t-1})/(PQ_t . Q_t)$ CR: user cost of robot capital, KR robot capital, constant price quality adjusted; PQ: GDP price; Q: GDP in constant price

4. The two methodologies

Methodology 1

- $\circ CR_t = PR_t$. $(i_t \Delta pr_t + \delta R)$ following Jorgenson (1963) PR: price of the robots, quality adjusted; pr: in log; i: interest rate; δR : depreciation rate of robots
- $\circ \delta R$ = 10% per year, corresponds to IFR hypothesis This rate is higher than 4% to 7% proposed by Klump *et al.* (2021) Evaluations robust to other values (δR = 5% or δR = 15% or 20%)
- Calculation of KR is made in two steps
 - We calculate the stock of robots in current value: KRCV = NR*UVR
 NR: number of robots, UVR: unitary value of robots, from IFR completed by us
 - We divide *KRCV* by a quality-adjusted robot price index (*QARP*) *QARP*: US 'information processing equipment' price index computed by BEA

 From 1990 to 2005, the annual decrease of this index is 8%, almost the same as G&M (2015)

4. The two methodologies

Methodology 2

- Same approach as Cette, Devillard & Spiezia (2021, 2022)
- \circ CR_t is derived from cost-minimisation based on G&M (2015, 2018) elasticities of labor productivity to the number of robots
- From this methodology, the elasticity of labor productivity to the number of robots per hour worked comes
 - For ¾ via the TFP channel
 - For ¼ via the capital deepening channel

5. Results

Results with methodology 1

Annual robots' contribution to growth via capital deepening (in pp)

	1960-1975	1975-1995	1995-2005	2005-2022	1960-2022
United States	0.0010	0.0010	0.0020	0.0011	0.0011
Euro Area	0.0001	0.0012	0.0046	0.0021	0.0020
United Kingdom	-0.0001	0.0008	0.0015	0.0004	0.0008
Japan	0.0000	0.0001	0.0001	0.0000	0.0000
Canada	0.0000	0.0002	0.0002	0.0010	0.0004
Germany	0.0003	0.0020	0.0088	0.0036	0.0033
France	0.0001	0.0008	0.0025	0.0009	0.0011
Italy	-0.0003	0.0015	0.0052	0.0024	0.0025
Spain	0.0003	0.0006	0.0034	0.0019	0.0017
The Netherlands	0.0001	0.0004	0.0008	0.0011	0.0006

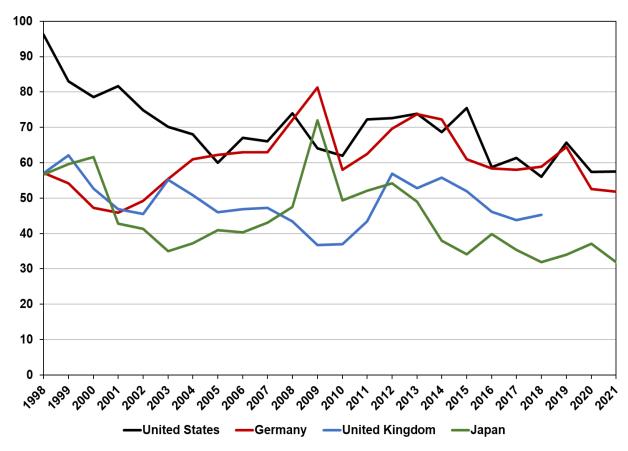
Robots' contribution to growth is very small according to methodology 1

5. Results

Results with methodology 2

Annual robots' contribution to growth via capital deepening and TFP (pp)

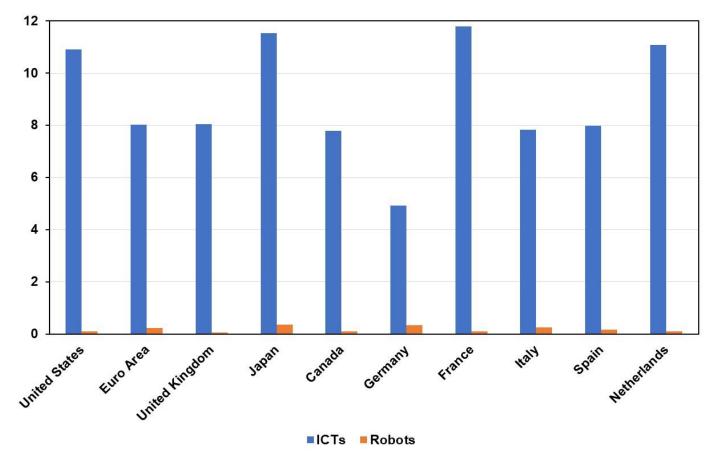
		1960-1975	1975-1995	1995-2005	2005-2022	1960-2022
United States	Cap. Deep.	0.00	0.01	0.03	0.04	0.02
	TFP	0.01	0.03	0.08	0.12	0.06
Euro Area	Cap. Deep.	0.00	0.02	0.07	0.06	0.04
	TFP	0.01	0.07	0.25	0.19	0.12
United Kingdom	Cap. Deep.	0.00	0.01	0.02	0.01	0.01
	TFP	0.01	0.03	0.05	0.03	0.03
Japan	Cap. Deep.	0.01	0.19	-0.03	0.00	0.07
	TFP	0.03	0.59	-0.09	0.00	0.19
Canada	Cap. Deep.	0.00	0.00	0.00	0.05	0.00
	TFP	0.00	0.00	0.01	0.17	0.06
Germany	Cap. Deep.	0.01	0.04	0.15	0.14	0.08
	TFP	0.02	0.13	0.48	0.43	0.25
France	Cap. Deep.	0.00	0.02	0.04	0.02	0.02
	TFP	0.01	0.05	0.13	0.07	0.06
Italy	Cap. Deep.	0.00	0.03	0.09	0.04	0.05
	TFP	0.01	0.09	0.29	0.13	0.13
Spain	Cap. Deep.	0.00	0.01	0.07	0.03	0.03
	TFP	0.01	0.03	0.23	0.11	0.08
Netherlands	Cap. Deep.	0.00	0.01	0.01	0.06	0.02
	TFP	0.00	0.02	0.04	0.18	0.07


- Higher contribution than with methodology 1, consistent with other evaluations (G&M, 2015 & 2018, and Cette, Devillard & Spiezia, 2021 & 2022 ...)
- \circ Average yearly robots' contribution to productivity growth appears the largest in Germany and \Im apana

6. Why so low evaluation with methodology 1?

More likely explanation:

IFR data may underestimate the value of the stock of robots because of an undervaluation of the unitary value of robots (*UVR*)


Unitary value of robots (UVR) (USD thousand)

Low UVR from IFR data

6. Why so low evaluation with methodology 1?

- Low value of robot stock
- Ratios of the ICT capital stock and the robot capital stock to GDP, current value, in %, 2021

And consequently, low value of the robot capita stock compared to ICTs for instance

7. To conclude

- Few evaluations of robot contribution to growth at the country level
- We have proposed two evaluations, giving contrasted results
 - Methodology 1 must underestimate robot contribution, due to a low evaluation of the Unitary Value of Robots (UVR) by IFR
 - Methodology 2: higher impact, but still based on G&M (2015, 2018) estimates
 - But G&M (2015, 2018) may overestimate robot contribution, see for instance Bekhtiar et al. (2024) or Almeida and Sequeira (2024)
 - => Robot contribution to productivity growth would be large only in some manufacturing industries where the use of robots is itself large
- Need for further research on the robots' contribution to growth at the country level