Mosaics of Predictability

Lin William Cong¹ Guanhao Feng² Jingyu He² Yuanzhi Wang²

2025 AFA Annual Meeting January 4, 2025, San Francisco, CA

¹Cornell University & NBER

²City University of Hong Kong

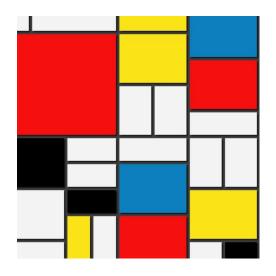
Motivation: Return Predictability

- Return predictability is well-documented empirically:
 - Aggregate market return (e.g., Campbell and Thompson, 2008).
 - Individual stock return (e.g., Fama and French, 2008; Rapach, Strauss, and Zhou, 2013; Lewellen, 2015; Han, He, Rapach, and Zhou, 2024).
- Studies regard predictability as an attribute of predictors or models.
 - Agg. predictors (e.g., dividend yield) and char. (e.g., size or value).
 - Models include historical average (e.g., Welch and Goyal, 2008) and machine learning (e.g., Gu, Kelly, and Xiu, 2020).
- We find that predictability is heterogeneous for stocks and varies over time.
 - Does high predictability imply high return?
 - —— It might a characteristic and an anomaly!

Motivation: Heterogeneous Predictability

- Some ad-hoc empirical evidence that predictability is not homogeneous:
 - Some stocks (small-cap, distressed) are more predictable than others (e.g., Avramov, Cheng, and Metzker, 2023).
 - Return predictability might be time-varying (e.g., Henkel et al., 2011).
- · However, predictability is
 - An unobservable characteristic.
 - Even not well-defined (e.g., anomaly average return, predictor significance, out-of-sample R^2 , forecast-implied portfolio).
- Before exploiting heterogeneous predictability, we need to measure them.
- Separate predictable observations from less predictable ones clustering.

Mosaics of Predictability: Mondrian



We partition the panel of returns by their heterogeneous predictability!

4

Our Clustering Solution

- Tree-based clustering (self-supervised) to separate and group asset returns
 Mosaics of Predictability.
- Objective: Maximize differences in predictability across groups.
- Interpretable: a decision tree based on firm char. and/or agg. predictors
- NOT a horse race of return prediction accuracy!
 - We revisit a classic problem from a new angle!
 - $-\!\!-\!\!-$ We study heterogeneous return predictability and the cross section.

Clustering and Split Criterion

- Never know the true label for stocks (see K-means applications, e.g., Ahn et al., 2009; Patton and Weller, 2022; Evgeniou et al., 2023)
 - "Unsupervised" subsample analysis: char. quintiles or industry classifications
 - "Goal-oriented" clustering by a decision tree: economic model objective
- Heterogeneous predictability between clusters: (in-sample) signal / noise

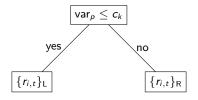
$$R_{\mathsf{leaf}_j}^2 = 1 - rac{\sum_{\{i,t\} \in \mathsf{leaf}_j} (r_{i,t} - \widehat{r}_{i,t})^2}{\sum_{\{i,t\} \in \mathsf{leaf}_j} (r_{i,t} - 0)^2},$$

which is impossible to calculate for each stock!

• $\hat{r}_{i,t}$: volatility-weighted Ridge regression (avoid dominance of microcaps).

Panel tree (e..g, Cong et al., 2024) for clustering observations by predictability. \Rightarrow maximizing between-cluster R^2 difference to differentiate predictability.

Split Criterion and Tree Growth



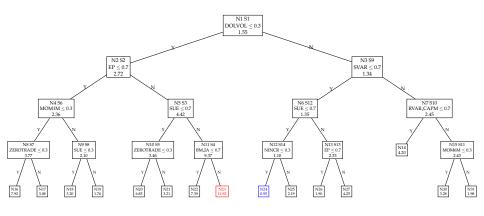
- Candidate cutpoints: {0.3, 0.7} among standardized range [0, 1].
 - monthly cross-sectional ranked char. or agg. predictor.
 - For example, small-cap on the left and non-small-cap on the right.
- Calculate the model objective for a splitting candidate (var_p, c_k) on the R² difference, which differentiates predictability:

$$S_{\{\mathsf{leaf}_L,\mathsf{leaf}_R\}}(\mathsf{var}_p,c_k) = |R_{\mathsf{left}}^2 - R_{\mathsf{right}}^2|$$

 Greedy algorithm: leaf-wise tree growth, search all combinations, and find the best splitting candidate to partition the subsample into two.

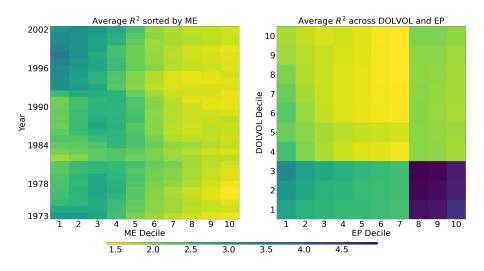
7

Cross-Sectional Tree-based Clusters



- Highly Predictable: N23 (11.92%) about 0.7% $1{DOLVOL} \le 0.3{1{EP} > 0.7}1{SUE} > 0.7{1{BM_IA} > 0.7}$
- Less Predictable: N24 (0.95%) about 35.9% $1{DOLVOL} > 0.3{1{SVAR} \le 0.7}1{SUE \le 0.7}1{NINCR \le 0.3}$

Mosaics of Predictability - Chars Sorting



Evaluations of Predictability (R^2 , %)

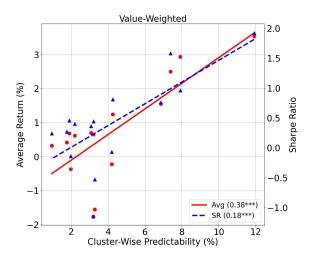
- Cluster-wise heterogeneous models > Global homogeneous model
- Highly predictable clusters show persistently high R^2 s out of sample.

		1973 - 2002				2003 - 2022					
Forecasts	All	High	Medium	Low	All	High	Medium	Low			
Global	1.00	2.02	1.01	0.77	0.47	1.62	0.45	0.32			
CW	1.60	6.50	1.66	0.43	0.62	2.05	0.63	0.34			

- Global: Homogeneous predictive model (similar to GKX2020).
- CW: Cluster-wise heterogeneous models.

Characteristic: Predictability v.s. Return

- \bullet Cluster-wise value-weighted average return v.s. ${\it R}^2 \Longrightarrow$ monotonic trend.
- ullet high predictability \Longrightarrow high average return



Heterogeneous Predictability Anomaly

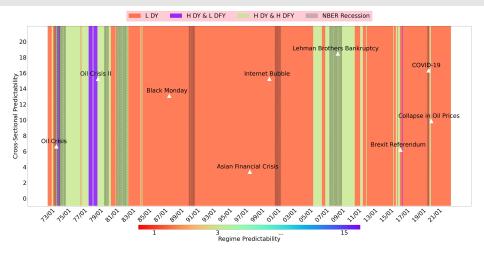
	1973	- 2002 (in-sa	imple)	2003 - 20	2003 - 2022 (out-of-sample)					
	L5	S1	L5-S1	L5	S1	L5-S1				
		Panel A: Performance								
Avg (%)	2.35	0.32	2.03	1.81	0.73	1.08				
Ann. SR	1.35	0.24	1.85	1.03	0.58	1.13				
		Panel B: Unexplained monthly alphas (%)								
CAPM	1.95***	-0.08	2.03***	0.87***	-0.06	0.92***				
FF3+MOM	1.67***	-0.09**	1.76***	0.98***	-0.04	1.01***				
FF5	1.42***	-0.19***	1.61***	1.00***	-0.08**	1.07***				
FF5+MOM+IVOL	1.59***	-0.12***	1.72***	1.05***	-0.07**	1.12***				
Q5	1.59***	-0.04	1.64***	1.03***	-0.06	1.09***				
BS6	1.35***	-0.14***	1.49***	0.91***	-0.06*	0.98***				

Percentage of stocks in the sorted portfolio:

• L5: 7.7%

• S1: 35.9%

Heterogeneous Predictability and Regime Switches



- Regimes partitioned by S&P 500 dividend yield (DY) and default yield (DFY).
- Time-series partitions display larger predictability heterogeneity (color bar).
- Numerous events trigger regime changes (e.g., Oil Crisis, COVID-19).

Investment Gains on Cluster-wise Models

- A by-product: cluster-wise heterogeneous predictive model
 global models fail to account for modeling heterogeneity (Feng and He, 2022; Evgeniou et al., 2023)
- Forecast-Weighted portfolio (based on the normalized predictions)
- Highly predictable clusters show the highest investment gains!

		In-Sample (1973 - 2002)					Out-of-Sample (2003 - 2022)				
	Avg	Std	SR	Alpha	MDD		Avg	Std	SR	Alpha	MDD
Global	2.28	3.57	2.21	2.16***	17.84		1.44	4.43	1.13	0.75***	19.36
Aggregate	3.09	3.86	2.77	2.95***	12.24		1.83	4.37	1.45	1.22***	19.46
High	4.46	8.72	1.77	3.99***	27.71		3.24	6.87	1.63	2.34***	19.73
Medium	3.10	3.99	2.69	3.02***	23.14		1.95	4.61	1.46	1.54***	19.98
Low	1.18	3.08	1.33	1.02***	13.71		0.86	4.77	0.62	0.06	21.80

Summary

- Mosaics of predictability heterogeneity of return predictability.
- Unexplained anomaly: high predictability ⇒ high average return
- Tree-based clustering approach based on firm char. and agg. predictors.
- All comments are welcome! Thank you!

References i

References

- Ahn, D.-H., J. Conrad, and R. F. Dittmar (2009). Basis assets. Review of Financial Studies 22(12), 5133-5174.
- Avramov, D., S. Cheng, and L. Metzker (2023). Machine learning vs. economic restrictions: Evidence from stock return predictability. Management Science 69(5), 2587–2619.
- Campbell, J. Y. and S. B. Thompson (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? Review of Financial Studies 21(4), 1509–1531.
- Cong, L. W., G. Feng, J. He, and X. He (2024). Growing the Efficient Frontier on Panel Trees. Journal of Financial Economics, Forthcoming.
- Evgeniou, T., A. Guecioueur, and R. Prieto (2023). Uncovering sparsity and heterogeneity in firm-level return predictability using machine learning. Journal of Financial and Quantitative Analysis 58(8), 3384–3419.
- Fama, E. F. and K. R. French (2008). Dissecting anomalies. Journal of Finance 63(4), 1653-1678.
- Feng, G. and J. He (2022). Factor investing: A Bayesian hierarchical approach. Journal of Econometrics 230(1), 183-200.
- Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. Review of Financial Studies 33(5), 2223-2273.
- Han, Y., A. He, D. E. Rapach, and G. Zhou (2024). Cross-sectional expected returns: New Fama–MacBeth regressions in the era of machine learning. Review of Finance 28(6), 1807–1831.
- Henkel, S. J., J. S. Martin, and F. Nardari (2011). Time-varying short-horizon predictability. Journal of Financial Economics 99(3), 560–580.
- Lewellen, J. (2015). The Cross-section of Expected Stock Returns. Critical Finance Review 4(1), 1-44.
- Patton, A. J. and B. M. Weller (2022). Risk price variation: The missing half of empirical asset pricing. Review of Financial Studies 35(11), 5127–5184.
- Rapach, D. E., J. K. Strauss, and G. Zhou (2013). International stock return predictability: What is the role of the united states? *Journal of Finance* 68(4), 1633–1662.
- Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity premium prediction. Review of Financial Studies 21(4), 1455–1508.