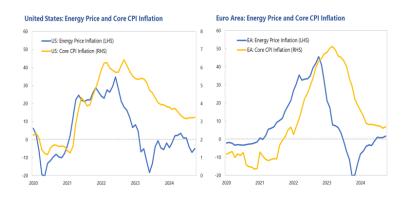
Can Energy Subsidies Help Slay Inflation?

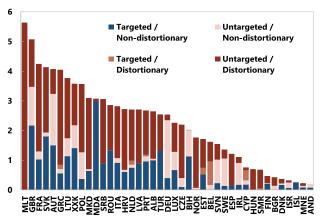
Christopher Erceg $^{\maltese}$ Marcin Kolasa $^{\maltese}$ Jesper Linde $^{\maltese}$ Andrea Pescatori $^{\spadesuit}$

ASSA


San Francisco, January 3-5, 2025

- [♣]International Monetary Fund, Monetary and Capital Markets Department
- riangleInternational Monetary Fund, Research Department

The views expressed here are those of the author and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.


Motivation

- ♦ Sharp increase in energy prices following Russia's invasion of Ukraine
- Major catalyst of high global inflation

Motivation

- Many countries responded by using energy subsidies
- ♠ Aim: support vulnerable households and help reduce inflation
- ♠ The idea: By reducing headline inflation, subsidies would curb compensatory wage demand and lower core inflation

Notes: Fiscal cost in percent of GDP. Source: Arregui et al. (2022).

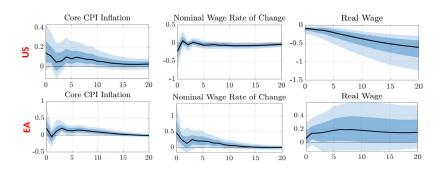
What we do

Goal: Study if energy subsidies can reduce inflation by preventing price-wage spiral

- Present empirical evidence on how wages and inflation respond to an oil supply shock in the US and EA
- Develop New Keynesian macroeconomic model to study transmission of energy price shocks and subsidies on inflation
- ⇒ First consider effects of energy subsidies when implemented globally (closed economy model)
- ⇒ Then consider a country "acting alone" (small open economy setting)

What we find

- Empirical evidence on transmission of oil prices suggest that wages are partially indexed to headline inflation in EA, but not in the US
- Key insights from model analysis
 - In a closed economy: subsidizing energy consumption = taxing energy use by firms
 - Global consumer energy subsidies are counterproductive they boost core inflation
 - TANK extension: small scope for consumer energy subsidies to shield vulnerable households, but only if targeted transfers are not available
 - More scope for consumer energy subsidies to work if adopted only by a small group of countries well connected to global energy markets and if wages are heavily indexed to headline inflation


Outline

- $1. \ \, {\rm Energy \ Shocks:} \ \, {\rm Empirical \ Evidence}$
- 2. Theoretical Setup
- 3. Analytical Results
- 4. Model Simulations: Closed Economy
- 5. Redistributive Considerations and Transfers
- 6. Open Economy Considerations
- 7. Conclusions

Energy Shocks: Empirical Evidence

Transmission of oil price shocks

Proxy VAR using OPEC announcements from Känzig (2021)

Theoretical Setup

Households

Standard utility maximization

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} \left(\frac{\left(C_{t+s} - \varkappa C_{t+s-1} \right)^{1-\frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} - \chi_{0} \frac{N_{t+s} \left(h \right)^{1+\chi}}{1 + \chi} \right)$$

- ⇒ Staggered wage setting á la Calvo
- Non-optimized wages indexed to core (producer), headline and steady-state inflation

$$W_t(h) = \prod_{Y,t-1}^{\iota_y} \prod_{C,t-1}^{\iota_c} \prod^{1-\iota_y-\iota_c} W_{t-1}(h)$$

Final goods producers

- Perfectly competitive
- ♠ Production function

$$C_t = \left((1 - \omega_c)^{\frac{1}{\eta_c}} Y_t^{\frac{\eta_c - 1}{\eta_c}} + \omega_c^{\frac{1}{\eta_c}} O_{C,t}^{\frac{\eta_c - 1}{\eta_c}} \right)^{\frac{\eta_c}{\eta_c - 1}}$$

$$P_{C,t}C_t - P_{Y,t}Y_t - (1 - \tau_{C,t})P_{O,t}O_{C,t}$$

where $\tau_{C,t}$ is energy subsidy to households

Intermediate goods producers

- Monopolistically competitive
- ⇒ Production function

$$Y_{t} = \left((1 - \omega_{y})^{\frac{1}{\eta_{y}}} V_{t}^{\frac{\eta_{y} - 1}{\eta_{y}}} + \omega_{y}^{\frac{1}{\eta_{y}}} O_{Y, t}^{\frac{\eta_{y} - 1}{\eta_{y}}} \right)^{\frac{\eta_{y}}{\eta_{y} - 1}}$$

where

$$V_t = K_t^{\alpha} N_t^{1-\alpha}$$

Period profits

$$P_{Y,t}Y_t - R_{K,t}K_t - W_tN_t - (1 - \frac{\tau_{Y,t}}{P_{O,t}})P_{O,t}O_{Y,t}$$

where $\tau_{Y,t}$ is energy subsidy to firms

Staggered price setting á la Calvo

Closing the model

Energy market clearing

$$Y_{O,t} = O_{C,t} + O_{Y,t}$$

where $Y_{O,t}$ is exogenous energy endowment

Monetary policy

$$I_t = I + \psi_{\pi} \left(\Pi_{Y,t} - \Pi \right) + \psi_y \left(\frac{Y_t}{Y_t^{pot}} - 1 \right)$$

Fiscal authority finances subsidies with lump sum taxes

Analytical Results

How do consumer energy subsidies work? $(\varkappa = \iota = \alpha = 0)$

Headline inflation

$$\pi_t^c = \omega_c \left(\Delta p_t^o - \Delta \tau_t^c \right) + \pi_t^y$$

S IS curve

$$y_t = -\sigma \mathbb{E}_t \sum_{s=0}^{\infty} (i_{t+s} - \pi_{t+s+1}^y) - \omega_c(\sigma - \eta_c)(p_t^o - \frac{\tau_t^c}{\tau_t^c})$$

♠ Energy market clearing

$$y_t^o = y_t - \tilde{\eta}_y \left(p_t^o - w_t^y \right) - \tilde{\eta}_c \left(p_t^o - \frac{\tau_t^c}{\tau_t} \right)$$

Core inflation

$$\pi_t^y = \beta \mathbb{E}_t \pi_{t+1}^y + \kappa_y \left[\omega_y \left(p_t^o - w_t^y \right) + w_t^y \right]$$

Wage inflation

$$\pi_{t}^{w} = \iota_{y} \pi_{t}^{y} + \iota_{c} \pi_{t}^{c} + \beta \mathbb{E}_{t} \left\{ \pi_{t+1}^{w} - \iota_{y} \pi_{t+1}^{y} - \iota_{c} \pi_{t+1}^{c} \right\}$$

$$+ \kappa_{w} \left[\left(\chi + \frac{1}{\sigma} \right) y_{t} + \chi \omega_{y} \eta_{y} \left(p_{t}^{o} - w_{t}^{y} \right) + \omega_{c} \left(1 - \frac{\eta_{c}}{\sigma} \right) \left(p_{t}^{o} - \tau_{t}^{c} \right) - w_{t}^{y} \right]$$

Equivalence result

Proposition

Any two sequences of consumer and producer energy subsidies $\{\tau_t^c, \tau_t^y\}_{t=0}^\infty$ and $\{\mathring{\tau}_t^c, \mathring{\tau}_t^y\}_{t=0}^\infty$ yield identical equlibrium allocations iff $\frac{1-\tau_t^c}{1-\tau_t^y} = \frac{1-\mathring{\tau}_t^y}{1-\mathring{\tau}_t^y}$ for all $t=0,1,\ldots$

Corollary

Subsidizing energy use by households is equivalent to taxing energy use by firms (to first order approximation: at the same rate)

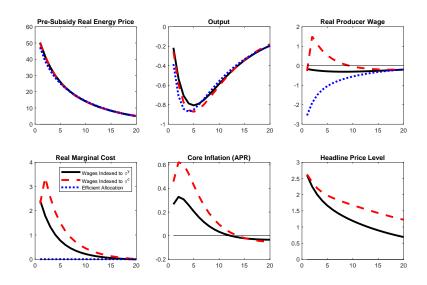
- ♠ Key mechanism: endogenous adjustment in pre-subsidy energy price
- ⇒ Intuition: Both alternative policies lower (increase) effective energy cost for households (firms)
- Key assumptions:
 - Exogenous energy supply
 - o Closed economy / segmented energy market
 - Lump sum transfers / taxes available

Consumer energy subsidies are counterproductive to fight inflation

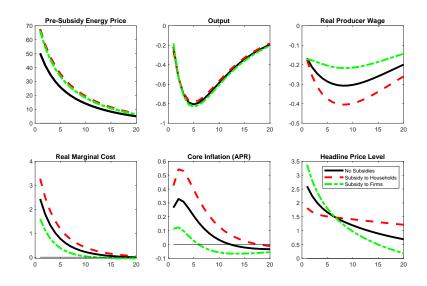
Proposition

Assume that:

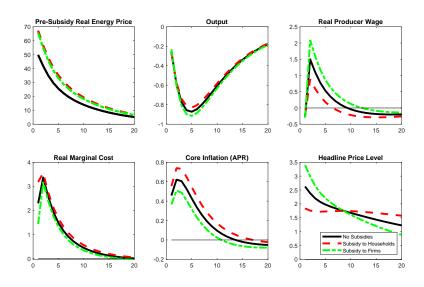
- Energy and non-energy goods are complements in household preferences
- Dynamic component of wage indexation relies on core inflation


Then, conditional on any response of the output gap, an increase in consumer energy subsidies increases core inflation.

♦ Key mechanism: subsidies decrease flex-price wage, creating a positive wage gap if wages are sticky


$$\pi_t^y \propto \mathbb{E}_t \sum_{s=0}^{\infty} \beta^s \hat{w}_{t+s}^y$$

Model Simulations: Closed Economy


Energy supply shock

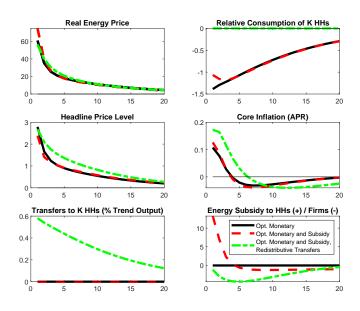
Energy supply shock with energy subsidies, wages indexed to π^y

Energy supply shock with energy subsidies, wages indexed to π^c

Redistributive Considerations and Transfers

TANK Extension

 \bullet Introducing hand-to-mouth (Keynesian) households


$$P_{C,t}C_t^K = W_t N_t^K - T_t^K$$

• Transfer rule

$$\frac{T_t - T}{P_{Y,t}Y} = t_t + \phi \frac{B_{G,t} - B_G}{P_{Y,t}Y}$$

- Share of Keynesian households: 0.4
- Relative consumption of Keynesian households: 0.5

Energy supply shock: optimal subsidies in TANK

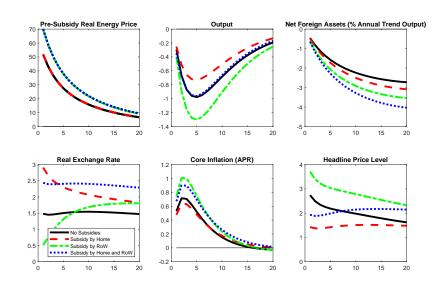
Open Economy Considerations

Open Economy Extension

- Home bias in non-energy goods consumption
- World energy market clearing (here: $\zeta \to 0$)

$$\zeta Y_{O,t} + (1 - \zeta)Y_{O,t}^* = \zeta(O_{C,t} + O_{Y,t}) + (1 - \zeta)(O_{C,t}^* + O_{Y,t}^*)$$

Net foreign asssets


$$B_{t} = \underbrace{\varepsilon_{t} P_{M,t}^{*} M_{t}^{*} - P_{M,t} M_{t}}_{\text{non-energy trade balance}} + \underbrace{P_{O,t} (Y_{O,t} - O_{Y,t} - O_{C,t})}_{\text{energy trade balance}}$$

$$+ \underbrace{\left((1 - \zeta) I_{t-1} + \zeta \frac{\varepsilon_{t}}{\varepsilon_{t-1}} I_{t-1}^{*} \right) B_{t-1}}_{\text{gross interest payment on foreign assets}}$$

• UIP condition (Gabaix and Maggiori, 2015)

$$I_{t} = \mathbb{E}_{t} \left\{ I_{t}^{*} \frac{\varepsilon_{t+1}}{\varepsilon_{t}} \right\} - \Gamma I_{t} \frac{B_{t}}{P_{Y,t}}$$

Energy supply shock with consumer energy subsidies (SOE energy importer, wages indexed to π^c , deep FX markets)

Conclusions

Conclusions

- Consumer energy subsidies likely to be counterproductive to fight inflation globally and in segmented markets
 - o Raise pre-subsidy energy price
 - o Effectively shift the burden of adjustment to firms
- More scope for energy subsidies to consumers in a small open economy
 - o Gains limited by exchange rate depreciation
 - High degree of wage indexation to headline inflation and deep FX markets still required
 - o Hurt other energy importers if conducted by many open economies