Beyond the Status Quo: A Critical Assessment of Lifecycle Investment Advice

Aizhan Anarkulova¹ Scott Cederburg² Michael S. O'Doherty³

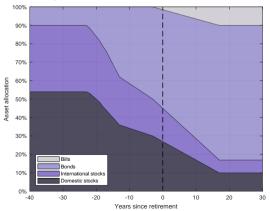
¹Goizueta Business School, Emory University

²Eller College of Management, University of Arizona

³Trulaske College of Business, University of Missouri

American Finance Association 2025 Annual Meeting

Principles of Lifecycle Investing

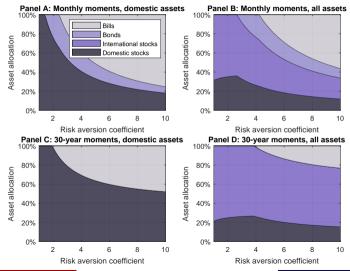

- Two central tenets underlie lifecycle investment advice:
 - ✓ Diversify across stocks and bonds.
 - ✓ Reduce equity allocations with age.

Principles of Lifecycle Investing

- Two central tenets underlie lifecycle investment advice:
 - ✓ Diversify across stocks and bonds.
 - ✓ Reduce equity allocations with age.
- This advice is ubiquitous:
 - Financial advisors and CFA study materials [e.g., Blanchett et al. (2023)].
 - Textbooks [e.g., Bodie, Kane, and Marcus (2024)].
 - Popular books [e.g., Dave Ramsey, Suze Orman, and Tony Robbins].
 - Academic studies [e.g., Campbell and Viceira (2002) and Cocco, Gomes, and Maenhout (2005)].
 - US regulations [Pension Protection Act of 2006].
 - Qualified Default Investment Alternatives (QDIAs) provide "long-term appreciation and capital preservation through a mix of equity and fixed income exposures based on the participant's age," [29 CFR §2550.404c-5(e)(4)(i)].

Target-Date Funds

- Where is the \$600 billion in annual retirement contributions invested?
 - TDFs are the default in 98% of employer plans [Vanguard (2023)].
 - Participants use the default (83% own TDFs; 59% invest fully in a TDF) [Vanguard (2023)].


Our Paper

- We challenge the two central tenets:
 - Diversify across stocks and bonds.
 - X Reduce equity allocations with age.
- Within a lifecycle model with labor income risk, Social Security income, and longevity risk, a US couple optimizes utility over real retirement consumption and bequest.
- The optimal lifetime allocation of 33% domestic stocks, 67% international stocks, 0% government bonds, and 0% government bills vastly outperforms age-based, stock-bond strategies.
- To match the expected utility of the optimal strategy with a 10.0% savings rate, a couple using the TDF must save 16.1%.

Our Contribution

- Normative literature on the optimal design of lifecycle investment strategies [e.g., Michaelides and Zhang (2017, 2022); Dahlquist, Setty, and Vestman (2018); Kraft, Munk, and Weiss (2019); Gomes, Michaelides, and Zhang (2022); and Duarte, Fonseca, Goodman, and Parker (2024)].
- Modeling investment opportunity set:
 - Including **international stocks** within a lifecycle investing framework.
 - Modeling long-horizon returns using the block bootstrap approach to preserve the empirically relevant features of investment opportunities and non-normalities that affect the return distribution without requiring ex-ante specification of which aspects matter most.

Mean-variance Asset Allocation

Roadmap

- Methodology:
 - Lifecycle model and optimization.
- Results:
 - Base case static asset allocation results.
 - Modifications of the static base case model.
 - Deviations from static optimization.
 - Reconciling with the status quo.

Base Case Lifecycle Design

- A US household composed of a female and a male. Mortality is based on SSA tables.
 - Pre-retirement:
 - Eligible to work from age 25 until retirement at 65.
 - 10% savings rate if labor income exceeds \$15,000 USD.
 - Post-retirement:
 - 4% withdrawal rate of wealth at retirement in the first year and inflation-adjusted amounts after that.
 - Social Security benefits based on SSA formulas, including SSI if their retirement income falls below the threshold.
 - Bequest based on remaining wealth upon the death of the last survivor in a couple.

Household Portfolio Choice Problem

• The household chooses a static asset allocation across domestic stocks, international stocks, bonds, and bills to maximize expected utility:

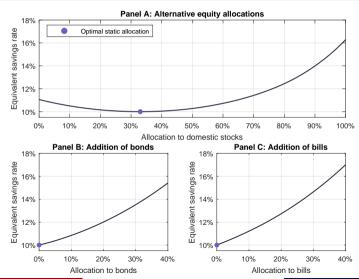
$$\max_{\{w\}} \quad \mathbb{E}_0[U(C,B)] = \mathbb{E}_0\left[\sum_{t=T_{ret}+1}^{T_{max}} \frac{\left(C_t/\sqrt{H_t}\right)^{1-\gamma}}{1-\gamma} + \theta \frac{(B+k)^{1-\gamma}}{1-\gamma}\right],\tag{1}$$

s.t.
$$R_t^p = w'R_t$$
, (2)

$$\mathbb{I}'w=1, \tag{3}$$

$$w \ge 0,$$
 (4)

$$W_0 = 0. (5)$$


Simulation Components

- **1 Longevity**: random longevity using SSA conditional mortality probabilities.
- 2 Labor income: based on the model of Guvenen, Karahan, Ozkan, and Song (2021) that allows for investor heterogeneity, permanent and transitory income shocks, and employment and nonemployment states.
- 3 Asset class returns: a stationary block bootstrap approach.
 - We draw a time series of monthly real returns for the four asset classes that covers the couple's lifespan with an average block length of 120 months.
 - The sample is a comprehensive dataset for domestic stocks, international stocks, bonds, and bills spanning nearly 2,600 years of returns from 39 countries over 1890-2023.

Optimal Lifecycle Portfolio

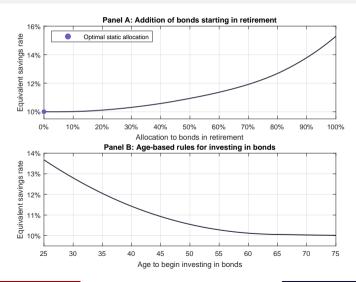
Strategy	QDIA	Domestic stocks	International stocks	Bonds	Bills	Equivalent savings rate		
Panel A: Base strategy								
Optimal	No	33%	67%	0%	0%	_		
Panel B: Alternative strategies								
Bills	No	0%	0%	0%	100%	56.2%		
Domestic Stocks	No	100%	0%	0%	0%	16.3%		
Balanced	Yes	60%	0%	40%	0%	19.3%		
TDF	Yes	[10%, 54%]	[7%, 36%]	[10%, 73%]	[0%, 10%]	16.1%		

Deviations from Optimal Lifecycle Portfolio

Modifications to the Static Base Case

- Model parameters: average block length, the coefficient of relative risk aversion, bequest utility parameter, scaling household consumption parameter, and subjective discount factor.
- Alternative constant and varying with the level of wealth withdrawal rates, retirement ages, contribution rates, and lower income limits to contribute.
- Household types: singles or same-sex couples and heterogeneous income types.
- Correlation between labor income and stock returns.
- Leverage.

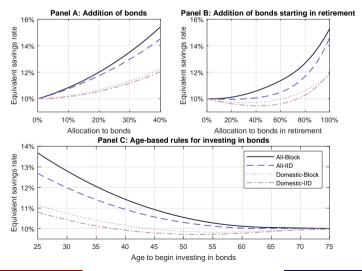
Description	Domestic stocks	International stocks	Bonds	Bills	Borrowing (% of wealth)			
Panel L: Leverage								
Borrowing spread of 6.50% (High)	33%	67%	0%	0%	0%			
Borrowing spread of 1.40% (Medium)	34%	66%	0%	0%	55%			
Borrowing spread of 0.37% (Low)	28%	57%	15%	0%	100%			


Static vs Dynamic Optimization

- Income and age-based contribution rates estimated by Parker, Schoar, Cole, and Simester (2023).
- Endogenous optimal retirement age based on (i) earnings, (ii) retirement wealth, and (iii) expected Social Security benefits.
- Time-varying investment allocations:
 - P/D ratios.
 - Age.

Conditional on Market State

Market state	Aggregate P_t/D_t	Domestic stocks	International stocks	Bonds	Bills					
Panel A: Static asset allocation										
All	[0, ∞)	33%	67%	0%	0%					
Panel B: Dynamic asset allocation										
Low P_t/D_t	[0, 18.76]	65%	35%	0%	0%					
2	(18.76, 23.47]	28%	72%	0%	0%					
3	(23.47, 29.94]	30%	70%	0%	0%					
4	(29.94, 43.67]	31%	69%	0%	0%					
High P_t/D_t	(43.67, ∞)	16%	75%	9%	0%					


Age-based Strategies

Reconciling with the Status Quo

- Innovation along the two dimensions:
 - Including international stocks within a lifecycle investing framework.
 - Modeling long-horizon returns using the block bootstrap approach to preserve the
 empirically relevant features of investment opportunities and non-normalities that affect
 the return distribution without requiring ex-ante specification of which aspects matter
 most.

Reconciling with the Status Quo

Conclusion

- We challenge two central tenets of lifecycle investing.
- Investors with access to international stocks optimally choose an all-equity portfolio for lifetime investment.
 - There is no significant economic benefit from holding bonds at any point during their lifetimes.
 - Our block bootstrap approach is key for modeling these long-horizon outcomes when investors are faced with changing investment opportunities and non-normalities.