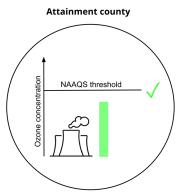
Environmental regulation, pollution, and shareholder wealth

Seungho Choi*, Ross Levine ‡ , Raphael Jonghyeon Park § , and Simon Xu †

*Hanyang University, [‡]Stanford University, [§]University of Technology Sydney, [†]Harvard Business School

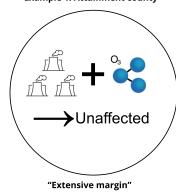

AFA 2025


What is this paper about?

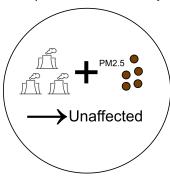
- How does the interplay between environmental regulations and firm pollution impact the financial stock market?
- Growing body of work on environmental regulations and financial markets.
- Affect pricing of:
 - ► Municipal bonds (Jha et al., 2020).
 - Corporate bonds (Seltzer et al., 2022).
 - Bank loans (Chen et al., 2023).
- This paper: Exploit local variation in federally-enforced legally binding regulation that has real effects on firms' polluting behavior to study stock market reactions.
- Key question: Does the stock market incorporate the consequences of local regulation on air pollution into the valuation of polluting firms?

Nonattainment designations

Clean Air Act (CAA): National Ambient Air Quality Standards (NAAQS)


Implications for firms

- Stringent regulations and mandatory pollution abatement requirements.
- Nonattainment regulations are binding (Chay & Greenstone, 2003; Henderson, 1996; Greenstone, 2002).
 - ▶ Material impact on firms' emission behavior.
- Exogenous source of variation in **local** regulatory stringency \rightarrow \uparrow compliance costs.


Local variation in regulatory stringency

Not all polluting firms are regulated uniformly

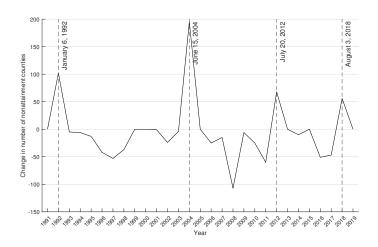
Example 1: Attainment county

Example 2: Nonattainment county

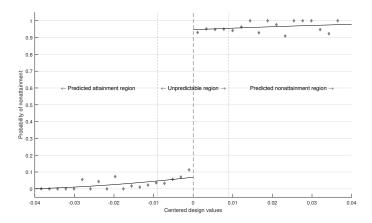
"Intensive margin"

Benefits and costs of regulation

Competitive advantages for incumbent firms:


- Barriers to entry.
 - Exit of polluting firms (Becker & Henderson, 2000; List et al., 2003, 2004).
 - Decreases competition among incumbent firms.
- 2. "Grandfather" status.
 - Incumbents grandfathered from strictest regulations until they update or expand their operations.
 - ullet o Operate at a cost advantage relative to new entrants.

Compliance costs:


- Devote some part of inputs to emissions reduction and pollution abatement.
 - Capital expenditures: LAER (nonattainment) vs BACT (attainment) (Becker & Henderson, 2000).
 - Adjustments to raw materials, maintenance practices (Becker & Henderson, 2001).
 - Emission offsets (Nelson et al., 1993; Shapiro & Walker, 2020).
- ▶ Divert resources away from production → Hampering productivity → Downward revision in shareholders' beliefs

Research design

 Nonattainment designations induced by discrete policy changes in the NAAQS threshold.

Decomposition of nonattainment designations

Key variable: NA exposure

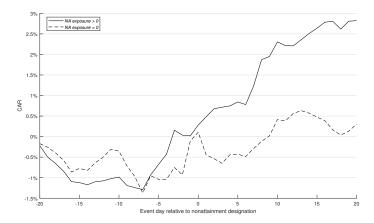
 Plant-level pollution data: Hire chemistry PhD to manually map TRI chemicals into ozone and non-ozone pollutants.

$$\textit{NA exposure}_{i,t} = \ln \left(1 + \sum_{j} \textit{ozone}_{j,i,t-1} \cdot \textit{NA}_{j,i,t} \right), \tag{1}$$

for plant j, firm i, year t.

- ozone_{j,i,t-1}: total amount of ozone air emissions for plant j of firm i in year t.
- NA_{j,i,t}: dummy variable equal to one if plant j of firm i is located in a nonattainment county in year t, and zero otherwise.

 \implies A multi-plant firm that operates many heavy ozone-polluting plants in nonattainment counties \rightarrow higher value of NA exposure.


Unexpected and anticipated NA exposure

Unexp. NA exposure_{i,t} =
$$\ln \left(1 + \sum_{j} ozone_{j,i,t-1} \cdot Unexp. \ NA_{j,i,t} \right)$$
, (2)

Antic. NA exposure_{i,t} =
$$\ln \left(1 + \sum_{j} ozone_{j,i,t-1} \cdot Antic. NA_{j,i,t} \right)$$
, (3)

Unexp. $NA_{j,i,t}$ (Antic. $NA_{j,i,t}$) is a dummy variable equal to one if plant j of firm i is located in an unexpected (anticipated) nonattainment county in year t, and zero otherwise.

CARs around nonattainment designation

Economic magnitude

NA exposure > 0

Panel A: Full sample

 \bullet Average gain: \$107 million (1.215% \times \$8.84 billion) over the 11-day window.

	(1	V = 1, 106)		(N =	1, 442)	VS	. NA expos	ure = 0
	Mean	Med	lian	Mean	Median	Mea	an	Median
Event window	(1)	(2	2)	(3)	(4)	(5))	(6)
(-2, +2) (-5, +5)	0.449* (1.74) 1.157*** (3.83)	0.359 (2.5 1.143 (3.6	58) 8***	-0.536*** (-2.83) -0.057 (-0.33)	-0.913*** (-3.18) 0.284 (0.74)	0.985 (3.0 1.215 (3.4	8) ***	1.271*** (3.41) 0.860** (2.06)
Panel B: Decon	nposition							
	Unexp (N =			icipated = 383)		Unexpected posure = 0		e: Anticipated exposure = 0
	Mean	Median	Mean	Median	Mean	Median	Mean	Median
Event window	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(-2, +2) (-5, +5)	0.479* (1.79) 1.189***	0.346** (2.53) 1.143**	-0.351 (-0.75) 0.242	-0.006 (-0.01) -0.793	1.015*** (2.90) 1.246***	1.259** (2.89) 0.860**	0.184 (0.38) 0.299	0.906 (1.28) -1.076
, , , , ,	(3.64)	(2.01)	(0.54)	(-0.90)	(3.19)	(1.96)	(0.62)	(-1.53)

 $NA \ exposure = 0$

Difference: NA exposure > 0

Cross-sectional regression of nonattainment CARs

• Competitive advantages gradually erode due to the rising compliance costs.

Dep. variable:		CAR (-2, +2)		CAR $(-5, +5)$			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
NA exposure	0.281**		0.477***		0.365***		0.574***	
·	(2.35)		(3.07)		(2.98)		(3.00)	
NA exposure ²	-0.025**		-0.043***		-0.033***		-0.054***	
, , , , , ,	(-2.36)		(-3.18)		(-3.13)		(-3.16)	
Unexp. NA exposure	,	0.342***	, ,	0.503***	, ,	0.543***	, ,	0.674**
		(2.71)		(3.24)		(2.88)		(2.57)
Unexp. NA exposure ²		-0.030***		-0.042***		-0.052***		-0.066***
		(-2.63)		(-3.02)		(-3.03)		(-2.63)
Antic. NA exposure		-0.128		-0.122		0.021		-0.285
		(-1.23)		(-0.83)		(0.13)		(-1.36)
Antic. NA exposure ²		0.015		0.012		-0.002		0.022
·		(1.60)		(0.92)		(-0.10)		(1.26)
F-statistic	2.82	3.67	5.08	5.27	4.88	4.62	5.02	3.46
p-value	0.059	0.026	0.007	0.005	0.008	0.010	0.007	0.03
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Industry F.E.	Yes	Yes	No	No	Yes	Yes	No	No
Firm F.E.	No	No	Yes	Yes	No	No	Yes	Yes
Observations	2,027	2,027	1,538	1,538	2,026	2,026	1,530	1,530
Adj R ²	0.10	0.10	0.07	0.07	0.11	0.11	0.09	0.09

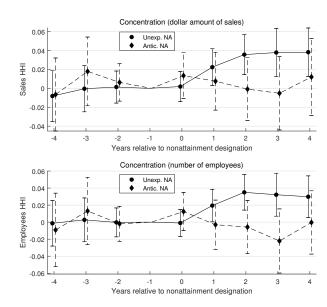
Cross-sectional regression of attainment redesignation CARs

• Opposite results when we consider redesignations back to attainment.

Dep. variable:		CAR (-	-2, +2)			CAR (-	-5, +5)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Redesig exposure	-0.168**		-0.137*		-0.290***		-0.273**	
	(-2.68)		(-1.78)		(-3.32)		(-2.37)	
Redesig exposure ²	0.017**		0.015*		0.031***		0.030**	
, , , , , , , , , , , , , , , , , , , ,	(2.36)		(1.80)		(3.88)		(2.59)	
Unexp. redesig exposure	()	-0.183**	(,	-0.232**	()	-0.334**	()	-0.443***
		(-2.41)		(-2.44)		(-2.59)		(-3.12)
Unexp. redesig exposure ²		0.020**		0.025**		0.033**		0.044***
, , , , , , , , , , , , , , , , , , , ,		(2.47)		(2.62)		(2.52)		(2.89)
Antic. redesig exposure		-0.025		-0.028		0.107		0.141
σ.		(-0.25)		(-0.27)		(0.91)		(0.89)
Antic. redesig exposure ²		0.004		0.003		-0.011		-0.011
, , , , , , , , , , , , , , , , , , ,		(0.39)		(0.28)		(-0.93)		(-0.67)
F-statistic	3.84	3.09	1.65	3.63	7.51	3.37	3.44	4.90
p-value	0.035	0.063	0.213	0.041	0.003	0.050	0.048	0.016
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Industry F.E.	Yes	Yes	No	No	Yes	Yes	No	No
Firm F.E.	No	No	Yes	Yes	No	No	Yes	Yes
Observations	4,513	4,513	4,428	4,428	4,512	4,512	4,427	4,427
Adj R ²	0.10	0.09	0.13	0.10	0.09	0.06	0.14	0.13

New entrants

 A nonattainment designation for a county leads to an 11% decrease in the expected number of new TRI plants in the subsequent year.


Dep. variable: Plant births _t	(1)	(2)	(3)	(4)
$\overline{\mathit{NA}_{t-1}}$	-0.131***	-0.121***		
	(-10.79)	(-6.14)		
Unexp. NA_{t-1}			-0.340***	-0.334***
			(-3.20)	(-9.30)
Antic. NA_{t-1}			0.039	0.044
			(0.41)	(0.99)
Controls	No	Yes	No	Yes
Year × Cohort F.E.	Yes	Yes	Yes	Yes
County × Cohort F.E.	Yes	Yes	Yes	Yes
Log likelihood	-8,101.5	-6,791.8	-8,093.4	-6,784.0
Observations	17,746	14,017	17,746	14,017
Pseudo R^2	0.12	0.12	0.12	0.12

County-level competition

- Stacked DiD at the county-level. (-4, +4) years window.
- 4.6% increase in sales concentration among ozone-emitting plants in unexpected nonattainment counties, relative to the sample mean, in comparison to always-attainment counties.

Dep. variable:	Sales	Sales HHI		ees HHI
	(1)	(2)	(3)	(4)
$NA \times Post$	0.021***		0.018***	
	(2.84)		(2.39)	
Unexp. $NA \times Post$		0.028***		0.023***
		(3.13)		(2.64)
Antic. $NA \times Post$		0.002		0.002
		(0.11)		(0.12)
Year \times Cohort F.E.	Yes	Yes	Yes	Yes
County × Cohort F.E.	Yes	Yes	Yes	Yes
Observations	23,677	23,677	23,677	23,677
Adj R ²	0.75	0.75	0.76	0.76

Dynamic effects

Firm-level competition: Product market

- Stacked DiD at the firm-level with continuous treatment. (-4, +4) years window.
- ↑ Fluidity, ↑ Similarity → ↑ Competitive threat for the firm due to increased product-relatedness to competitors.

Dep. variable:	Flu	idity	Sim	nilarity
	(1)	(2)	(3)	(4)
NA exposure × Post	-0.020**		-0.020*	
	(-1.97)		(-1.72)	
Unexp. NA exposure × Post		-0.087***		-0.031***
		(-3.07)		(-6.39)
Antic. NA exposure \times Post		0.001		0.010
		(0.14)		(1.64)
Controls	Yes	Yes	Yes	Yes
Year \times Cohort F.E.	Yes	Yes	Yes	Yes
Firm \times Cohort F.E.	Yes	Yes	Yes	Yes
Observations	13,929	13,929	14,385	14,385
Adj R ²	0.66	0.66	0.62	0.62

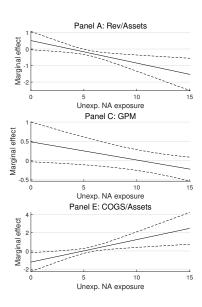
Firm-level competition: Supply chain contracting

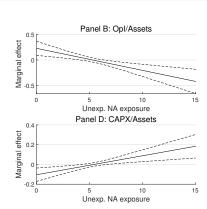
		Full	sample			8-Hour Ozone (2008) sample						
Dep. variable:									Contract ngth (days)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
NA exposure × Post	0.073** (1.99)		0.067** (1.99)		0.140** (2.01)		0.143** (2.08)		8.784** (2.32)			
Unexp. NA exposure × Post	, ,	0.153** (2.76)	, ,	0.141*** (2.98)	, ,	0.306** (2.38)	, ,	0.310** (2.44)	, ,	41.622** (3.06)		
Antic. NA exposure × Post		0.040 (0.61)		0.045 (0.75)		0.084 (0.47)		0.080 (0.46)		3.396 (0.45)		
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Year × Cohort F.E.	Yes	Yes	Yes	Yes	No	No	No	No	No	No		
Firm × Cohort F.E.	Yes	Yes	Yes	Yes	No	No	No	No	No	No		
Year F.E.	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes		
Firm F.E.	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	8,525	8,525	8,525	8,525	3,368	3,368	3,368	3,368	3,368	3,368		
Adj R ²	0.33	0.33	0.33	0.33	0.26	0.26	0.26	0.26	0.17	0.17		

Facility-level compliance costs

- Stacked DiD at the facility-level. (-4, +4) years window.
- Proxy for potential compliance costs with observable regulatory enforcement and source reduction activities.

Dep. variable:	HPV			le V ection	Compliance evaluation	
	(1)	(2)	(3)	(4)	(5)	(6)
Facility NA exposure × Post	0.001** (2.23)		0.003*** (5.78)		0.001** (2.36)	
Facility Unexp. NA exposure × Post	,	0.001** (2.32)	,	0.004*** (6.22)	,	0.002*** (2.75)
Facility Antic. NA exposure × Post		0.000 (0.48)		0.000 (0.52)		0.001 (0.81)
Year × Cohort F.E.	Yes	Yes	Yes	Yes	Yes	Yes
Plant × Cohort F.E.	Yes	Yes	Yes	Yes	Yes	Yes
Observations	126,363	126,363	126,363	126,363	126,363	126,363
Adj R ²	0.18	0.18	0.82	0.82	0.54	0.54


Panel B: Source reduction								
Dep. variable:	Onsite treated		Onsite recovery		Onsite recycle		SR activity	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Facility NA exposure × Post	0.063*** (9.52)		0.010** (2.48)		0.041*** (7.56)		0.007*** (10.50)	
Facility Unexp. NA exposure \times Post	()	0.081**	(-)	0.025*** (2.60)	(*)	0.049**	(/	0.010** (2.10)
Facility Antic. NA exposure × Post		0.018 (1.26)		0.004 (0.96)		0.025 (1.59)		0.002 (0.73)
Year × Cohort F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Plant × Cohort F.E.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	126,363	126,363	126,363	126,363	126,363	126,363	126,363	126,363
Adj R ²	0.87	0.87	0.80	0.80	0.74	0.74	0.46	0.46


Accounting performance

- Do short-term market reactions to nonattainment designations accurately reflect the long-term effects?
- Firm-level stacked DiD.

Dep. variable:	Rev/Assets	OpI/Assets	GPM	CAPX/Assets	COGS/Assets
	(1)	(2)	(3)	(4)	(5)
Unexp. NA exposure × Post	0.510*	0.228***	0.487*	-0.104***	-1.224**
	(1.80)	(3.24)	(1.84)	(-3.01)	(-2.32)
Unexp. NA exposure $^2 \times Post$	-0.068***	-0.022***	-0.024**	0.010***	0.123***
	(-2.68)	(-3.47)	(-2.30)	(3.09)	(2.66)
Antic. NA exposure × Post	-0.271	0.031	-1.307	-0.033	-0.030
	(-1.04)	(0.47)	(-1.11)	(-0.79)	(-0.12)
Antic. NA exposure $^2 \times Post$	0.034	-0.001	0.094	0.002	-0.024
,	(1.43)	(-0.09)	(1.12)	(0.53)	(-1.05)
Controls	Yes	Yes	Yes	Yes	Yes
F-statistic	7.32	6.04	2.67	4.78	4.05
<i>p</i> -value	0.000	0.002	0.069	0.008	0.017
Year × Cohort F.E.	Yes	Yes	Yes	Yes	Yes
Firm \times Cohort F.E.	Yes	Yes	Yes	Yes	Yes
Observations	15,056	14,683	13,900	14,852	14,886
Adj R ²	0.92	0.63	0.13	0.62	0.90

Marginal effects

Conclusion

- Stock market internalizes the perceived benefits and costs of local environmental regulation.
- Currently, there are no federal regulations aimed at mitigating global pollutants that contribute to climate change.
- Local environmental regulations contain value-relevant information that have stock-price implications for polluting firms.
- Any cost-benefit analysis of new climate policy must take into account the impact on financial markets.

Thank you!

Becker, R. A., & Henderson, V. (2000). Effects of air quality regulations on polluting industries. *Journal of Political Economy*, 108(2), 379–421.

polluting industries. *Journal of Political Economy*, 108(2), 379–421.

Becker, R. A., & Henderson, V. (2001). Costs of air quality regulation. *In:*Behavioral and distributional effects of environmental policy, Carraro, C. and

Metcalf, G. E., eds. (Chicago: University of Chicago Press), (pp. 159–186). Chay, K. Y., & Greenstone, M. (2003). Air quality, infant mortality, and the

Clean Air Act of 1970. NBER Working Paper No. 10053. Chen, J., Hsieh, P., Hsu, P., & Levine, R. (2023). Environmental liabilities, borrowing costs, and pollution prevention activities: The nationwide impact

of the Apex Oil ruling. NBER Working Paper No. 29740. Greenstone, M. (2002). The impacts of environmental regulations on industrial activity: Evidence from the 1970 and 1977 Clean Air Act Amendments and the census of manufactures. *Journal of Political Economy*, 110(6),

1175–1219.
Henderson, J. V. (1996). Effects of air quality regulation. *American Economic Review*, 86(4), 789–813.

Jha, A., Karolyi, S. A., & Muller, N. Z. (2020). Polluting public funds: The effect of environmental regulation on municipal bonds. NBER Working Paper No. 28210.

List, J. A., McHone, W. W., & Millimet, D. L. (2004). Effects of environmental regulation on foreign and domestic plant births: Is there a home field advantage? *Journal of Urban Economics*, *56*(2), 303–326. List, J. A., Millimet, D. L., Fredriksson, P. G., & McHone, W. W. (2003).