A Macroeconomic Model of Central Bank Digital Currency

Pascal Paul¹

Mauricio Ulate¹

Cynthia Wu²

¹Federal Reserve Bank of San Francisco

²University of Illinois Urbana-Champaign and NBER

January 4th, 2025 AFA session on Digital Currencies

The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

Motivation

- ► Introduction of Central Bank Digital Currency (CBDC) for retail consumers is one of the most far-reaching potential innovations in central banking
- ▶ A few countries have adopted a CBDC; 19 of the G20 economies are exploring the topic

Research Questions

- Is the introduction of a CBDC beneficial for an economy as a whole?
- What's the optimal interest rate on CBDC, and how does it vary with the level of rates?
- 3. How does the presence of a CBDC affect the conduct of monetary policy?

This paper: Propose new general equilibrium model with realistic banking sector that is calibrated to empirical evidence

Motivation

- ► Introduction of Central Bank Digital Currency (CBDC) for retail consumers is one of the most far-reaching potential innovations in central banking
- ▶ A few countries have adopted a CBDC; 19 of the G20 economies are exploring the topic

Research Questions:

- 1. Is the introduction of a CBDC beneficial for an economy as a whole?
- 2. What's the optimal interest rate on CBDC, and how does it vary with the level of rates?
- 3. How does the presence of a CBDC affect the conduct of monetary policy?

This paper: Propose new general equilibrium model with realistic banking sector that is calibrated to empirical evidence

Motivation

- ► Introduction of Central Bank Digital Currency (CBDC) for retail consumers is one of the most far-reaching potential innovations in central banking
- ▶ A few countries have adopted a CBDC; 19 of the G20 economies are exploring the topic

Research Questions:

- 1. Is the introduction of a CBDC beneficial for an economy as a whole?
- 2. What's the optimal interest rate on CBDC, and how does it vary with the level of rates?
- 3. How does the presence of a CBDC affect the conduct of monetary policy?

This paper: Propose new general equilibrium model with realistic banking sector that is calibrated to empirical evidence

Outline & Results

1. Static Partial Equilibrium Model

- Cash, deposits & CBDC provide liquidity benefits to HHs, are imperfectly substitutable
- Banks have deposit market power
- ► The deposit spread is endogenous and its level is affected by CBDC
- 2. **Dynamic General Equilibrium Model** ightarrow New-Keynesian DSGE
 - lacktriangle Loan & bond markets, financial frictions ightarrow bank capital determines credit supply
 - CBDC: (+) liquidity benefits, (+) curtails market power, (-) credit disintermediation

2

Outline & Results

1. Static Partial Equilibrium Model

- Cash, deposits & CBDC provide liquidity benefits to HHs, are imperfectly substitutable
- Banks have deposit market power
- ► The deposit spread is endogenous and its level is affected by CBDC

2. **Dynamic General Equilibrium Model** ightarrow New-Keynesian DSGE

- lacktriangle Loan & bond markets, financial frictions ightarrow bank capital determines credit supply
- ► CBDC: (+) liquidity benefits, (+) curtails market power, (-) credit disintermediation
- Result #1: Welfare change displays inverted U-shape w.r.t CBDC rate icenter
- Result #2: Optimal $i^{CBDC} \approx max(0\%, i^{policy} 1\%)$, large gains at high i^{policy}
- Result #3: Responses to transitory macro-shocks largely unaffected

Paul, Ulate, and Wu A Macro Model of CBDC 2

Outline & Results

1. Static Partial Equilibrium Model

- Cash, deposits & CBDC provide liquidity benefits to HHs, are imperfectly substitutable
- Banks have deposit market power
- ► The deposit spread is endogenous and its level is affected by CBDC

2. **Dynamic General Equilibrium Model** ightarrow New-Keynesian DSGE

- lacktriangle Loan & bond markets, financial frictions ightarrow bank capital determines credit supply
- ► CBDC: (+) liquidity benefits, (+) curtails market power, (-) credit disintermediation
- Result #1: Welfare change displays inverted U-shape w.r.t CBDC rate i^{CBDC}
- Result #2: Optimal $i^{CBDC} \approx max(0\%, i^{policy} 1\%)$, large gains at high i^{policy}
- Result #3: Responses to transitory macro-shocks largely unaffected

Literature

New Monetarist Approach

► Keister & Sanches (2022), Williamson (2022), Andolfatto (2021), Chiu et al. (2023)

Here: NK-DSGE, CBDC & deposits imperfectly substitutable, bank market power in loan and deposit markets, bank profitability matters for lending

NK-DSGE Models

Barrdear & Kumhof (2022), Burlon et al. (2023), Abad et al. (2023)

Here: Bank market power in deposit markets, nonbank lending

Optimal Monetary Policy & CBDC Design

▶ Brunnermeier & Niepelt (2019), Davoodalhosseini (2021), Agur et al. (2022)

Relative to Niepelt (2023): Nominal rigidities, bank market power in loan markets, bank profitability determines credit supply

3

Paul, Ulate, and Wu A Macro Model of CBDC

Static Bank Deposit Model

Deposit Supply

► Bank *j* faces deposit supply

$$d_j = \left(\frac{1+i_j^d}{1+i^d}\right)^{\varepsilon^d} \frac{d}{n}$$

 \triangleright where the aggregate deposit rate i^d and deposit amount d are

$$1 + i^{d} = \left(\sum_{j=1}^{n} \frac{1}{n} (1 + i_{j}^{d})^{\varepsilon^{d} + 1}\right)^{\frac{1}{\varepsilon^{d} + 1}}$$
$$d = \gamma_{d} \left(\frac{1 + i^{d}}{1 + i^{\mathcal{L}}}\right)^{\theta} \mathcal{L}$$

 \blacktriangleright and the gross rate on liquid instruments $i^{\mathcal{L}}$ is defined as

$$1+i^{\mathcal{L}}=\left(\gamma_m+\gamma_d(1+i^d)^{\theta+1}+\gamma_{cbdc}(1+i^{cbdc})^{\theta+1}\right)^{\frac{1}{\theta+1}}$$

Deposit Supply

► Bank *j* faces deposit supply

$$d_{j} = \left(\frac{1+i_{j}^{d}}{1+i^{d}}\right)^{\varepsilon^{d}} \frac{d}{n}$$

 \triangleright where the aggregate deposit rate i^d and deposit amount d are

$$1 + i^{d} = \left(\sum_{j=1}^{n} \frac{1}{n} (1 + i_{j}^{d})^{\varepsilon^{d} + 1}\right)^{\frac{1}{\varepsilon^{d} + 1}}$$
$$d = \gamma_{d} \left(\frac{1 + i^{d}}{1 + i^{\mathcal{L}}}\right)^{\theta} \mathcal{L}$$

ightharpoonup and the gross rate on liquid instruments $i^{\mathcal{L}}$ is defined as

$$1 + i^{\mathcal{L}} = \left(\gamma_m + \gamma_d(1 + i^d)^{\theta + 1} + \gamma_{cbdc}(1 + i^{cbdc})^{\theta + 1}\right)^{\frac{1}{\theta + 1}}$$

Bank j maximizes

$$\begin{array}{c} \max\limits_{\substack{i_j^d,d_j,h_j\\ \text{Reserves}}} \ (1+i)h_j - (1+i_j^d)d_j \\ \text{s.t.} \ \underbrace{h_j}_{\text{Reserves}} = \underbrace{f_j}_{\text{Equity}} + \underbrace{d_j}_{\text{Deposits}} \ \& \ \text{deposit supply} \end{array}$$

vielding first-order condition

$$1 + i_j^d = \frac{\epsilon_j^d}{\epsilon_j^d + 1} \cdot (1 + i)$$

lacktriangle where e^a_i is the endogenous elasticity of deposits. Given symmetry

$$\varepsilon^{d} = \frac{n-1}{n} \cdot \varepsilon^{d} + \frac{1}{n} \cdot \theta (1 - \omega_{\mathcal{L}}^{d})$$

where $\omega_{\mathcal{L}}^d = \frac{(1+j^d)d}{(1+j^{\mathcal{L}})\mathcal{L}} = \gamma_d \left(\frac{1+j^d}{1+j^{\mathcal{L}}}\right)^{\theta+1}$ is the endogenous deposit share

► Bank j maximizes

$$\text{s.t.} \quad \underbrace{\frac{\max_{i_j^d,d_j,h_j}}{h_j}}_{\text{Reserves}} \underbrace{\frac{(1+i)h_j-(1+i_j^d)d_j}{h_j-(1+i_j^d)d_j}}_{\text{Equity}} \text{ & deposit supply}$$

yielding first-order condition

$$1+i_j^d = \frac{\epsilon_j^d}{\epsilon_j^d+1} \cdot (1+i)$$

lacktriangle where ϵ_i^d is the endogenous elasticity of deposits. Given symmetry,

$$\varepsilon^d = \frac{n-1}{n} \cdot \varepsilon^d + \frac{1}{n} \cdot \theta (1 - \omega_{\mathcal{L}}^d)$$

where $\omega_{\mathcal{L}}^d = \frac{(1+i^d)d}{(1+i^L)\mathcal{L}} = \gamma_d \left(\frac{1+i^d}{1+i^L}\right)^{\theta+1}$ is the endogenous deposit share

▶ Bank *j* maximizes

$$\text{s.t.} \quad \underbrace{\frac{\max_{i_j^d,d_j,h_j}}{h_j}}_{\text{Reserves}} \underbrace{\frac{(1+i)h_j-(1+i_j^d)d_j}{h_j-(1+i_j^d)d_j}}_{\text{Equity}} \text{ & deposit supply}$$

yielding first-order condition

$$1+i_j^d=\frac{\epsilon_j^d}{\epsilon_j^d+1}\cdot(1+i)$$

ightharpoonup where ϵ_i^d is the endogenous elasticity of deposits. Given symmetry,

$$\epsilon^d = \frac{n-1}{n} \cdot \epsilon^d + \frac{1}{n} \cdot \theta (1 - \omega_{\mathcal{L}}^d)$$

• where $\omega_{\mathcal{L}}^d = \frac{(1+i^d)d}{(1+i^{\mathcal{L}})\mathcal{L}} = \gamma_d \left(\frac{1+i^d}{1+i^{\mathcal{L}}}\right)^{\theta+1}$ is the endogenous deposit share

Effects of CB Rates on Deposit Market

▶ Define the deposit spread $(i - i^d)/(1 + i^d)$ which satisfies

$$\frac{i-i^d}{1+i^d}=\frac{1}{\epsilon^d}$$

Deposit spread is solely driven by endogenous deposit elasticity.

Proposition 1

- The deposit rate increases with the policy rate and the CBDC rate.
- The deposit spread increases with the policy rate but decreases with the CBDC rate

Effects of CB Rates on Deposit Market

▶ Define the deposit spread $(i - i^d)/(1 + i^d)$ which satisfies

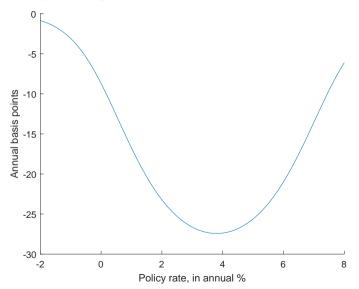
$$\frac{i-i^d}{1+i^d}=\frac{1}{\epsilon^d}$$

Deposit spread is solely driven by endogenous deposit elasticity.

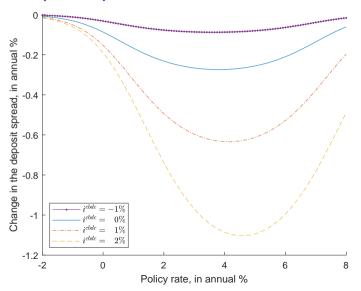
Proposition 1.

- 1. The deposit rate increases with the policy rate and the CBDC rate.
- 2. The deposit spread increases with the policy rate but decreases with the CBDC rate.

Change in the Deposit Spread due to CBDC Introduction



Change in the Deposit Spread due to CBDC Introduction



Representative Household

Household maximizes lifetime utility

$$\mathbb{E}_{O} \sum_{t=0}^{\infty} \beta^{t} \left(u(C_{t}) - v(N_{t}) \right)$$
 s.t.
$$\underbrace{P_{t}C_{t}}_{\text{Consumption}} + \underbrace{B_{t}}_{\text{Bonds}} + \underbrace{\Phi(\mathcal{L}_{t})P_{t}}_{\text{Liquidity Costs}} = \underbrace{W_{t}N_{t}}_{\text{Income}} + \underbrace{AH_{t-1}}_{\text{Assets in Hand}} + \underbrace{T_{t}}_{\text{Transfe}}$$

 \blacktriangleright where \mathcal{L}_t is a liquidity aggregator and $\Phi(\mathcal{L}_t) < \mathcal{L}_t$ for small $\mathcal{L}_t \Rightarrow$ convenience benefit

$$\mathcal{L}_t = \left(\gamma_m^{-\frac{1}{\theta}} m_t^{\frac{\theta+1}{\theta}} + \gamma_d^{-\frac{1}{\theta}} d_t^{\frac{\theta+1}{\theta}} + \gamma_{cbdc}^{-\frac{1}{\theta}} cbdc_t^{\frac{\theta+1}{\theta}} \right)^{\frac{\theta}{\theta+1}}; \qquad d_t = \left(\sum_{j=1}^n \alpha_j^{-\frac{1}{\epsilon^d}} d_{j,t}^{\frac{\epsilon^d+1}{\epsilon^d}} \right)^{\frac{\epsilon^d+1}{\epsilon^d}}$$

 $AH_{t-1} = (1 + i_{t-1})B_{t-1} + M_{t-1} + \sum_{j=1} (1 + i_{j,t-1}^d)D_{j,t-1} + (1 + i_{t-1}^{cbdc})CBDC_{t-1}$

Representative Household

► Household maximizes lifetime utility

$$\mathbb{E}_{O} \sum_{t=0}^{\infty} \beta^{t} \left(u(C_{t}) - v(N_{t}) \right)$$
 s.t.
$$\underbrace{P_{t}C_{t}}_{\text{Consumption}} + \underbrace{B_{t}}_{\text{Bonds}} + \underbrace{\Phi(\mathcal{L}_{t})P_{t}}_{\text{Liquidity Costs}} = \underbrace{W_{t}N_{t}}_{\text{Income}} + \underbrace{AH_{t-1}}_{\text{Assets in Hand}} + \underbrace{T_{t}}_{\text{Transfers}}$$

lacktriangle where \mathcal{L}_t is a liquidity aggregator and $\Phi(\mathcal{L}_t) < \mathcal{L}_t$ for small $\mathcal{L}_t \Rightarrow$ convenience benefit

$$\begin{split} \mathcal{L}_{t} &= \left(\gamma_{m}^{-\frac{1}{\theta}} m_{t}^{\frac{\theta+1}{\theta}} + \gamma_{d}^{-\frac{1}{\theta}} d_{t}^{\frac{\theta+1}{\theta}} + \gamma_{cbdc}^{-\frac{1}{\theta}} cbdc_{t}^{\frac{\theta+1}{\theta}} \right)^{\frac{\theta}{\theta+1}}; \qquad d_{t} = \left(\sum_{j=1}^{n} \alpha_{j}^{-\frac{1}{\epsilon^{d}}} d_{j,t}^{\frac{\epsilon^{d}+1}{\epsilon^{d}}} \right)^{\frac{\epsilon^{d}}{\epsilon^{d}+1}} \\ AH_{t-1} &= (1+i_{t-1})B_{t-1} + M_{t-1} + \sum_{j=1}^{n} (1+i_{j,t-1}^{d})D_{j,t-1} + (1+i_{t-1}^{cbdc})CBDC_{t-1} \end{split}$$

9

Household Equilibrium Conditions

... yielding first-order conditions

$$x_t = \gamma_x \left(\frac{1 + i_t^x}{1 + i_t^{\mathcal{L}}} \right)^{\theta} \mathcal{L}_t \text{ for } x = \{m, cbdc, d\}; \qquad \frac{1 + i_t^{\mathcal{L}}}{1 + i_t} = \Phi'(\mathcal{L}_t)$$

with remaining deposit supply conditions similar to static model

$$1 + i_{t}^{d} = \left(\sum_{j=1}^{n} \alpha_{j} (1 + i_{j,t}^{d})^{e^{d} + 1}\right)^{\frac{1}{e^{d} + 1}}; \qquad d_{j,t} = \alpha_{j} \left(\frac{1 + i_{j,t}^{d}}{1 + i_{t}^{d}}\right)^{e^{d}} d_{t}$$

$$1 + i_{t}^{\mathcal{L}} = \left(\gamma_{m} + \gamma_{d} (1 + i_{t}^{d})^{\theta + 1} + \gamma_{cbdc} (1 + i_{t}^{cbdc})^{\theta + 1}\right)^{\frac{1}{\theta + 1}}$$

Household Equilibrium Conditions

... yielding first-order conditions

$$x_t = \gamma_x \left(\frac{1+i_t^x}{1+i_t^{\mathcal{L}}}\right)^{\theta} \mathcal{L}_t \text{ for } x = \{m, cbdc, d\}; \qquad \frac{1+i_t^{\mathcal{L}}}{1+i_t} = \Phi'(\mathcal{L}_t)$$

with remaining deposit supply conditions similar to static model

$$\begin{aligned} 1 + i_{t}^{d} &= \left(\sum_{j=1}^{n} \alpha_{j} (1 + i_{j,t}^{d})^{\varepsilon^{d} + 1}\right)^{\frac{1}{\varepsilon^{d} + 1}}; \qquad d_{j,t} = \alpha_{j} \left(\frac{1 + i_{j,t}^{d}}{1 + i_{t}^{d}}\right)^{\varepsilon^{d}} d_{t} \\ 1 + i_{t}^{\mathcal{L}} &= \left(\gamma_{m} + \gamma_{d} (1 + i_{t}^{d})^{\theta + 1} + \gamma_{cbdc} (1 + i_{t}^{cbdc})^{\theta + 1}\right)^{\frac{1}{\theta + 1}} \end{aligned}$$

Corporate Sector & Government

► Intermediate good firm has Cobb-Douglas production function

$$Y_t^m = A_t K_t^{\alpha} N_t^{1-\alpha}$$

 \triangleright K_t consists of pledgeable capital K_t^P & nonpledgeable capital K_t^N

$$K_{t} = \left((1 - \psi)^{\frac{1}{\varrho R}} (K_{t}^{NP})^{\frac{\varrho R_{-1}}{\varrho R}} + \psi^{\frac{1}{\varrho R}} (K_{t}^{P})^{\frac{\varrho R_{-1}}{\varrho R}} \right)^{\frac{\varrho R_{-1}}{\varrho R_{-1}}}; \quad K_{t}^{P} = \left(\sum_{j=1}^{n} (\alpha_{j}^{l})^{\frac{1}{\varrho l}} (K_{j,t}^{P})^{\frac{\varrho l_{-1}}{\varrho l}} \right)^{\frac{\varrho l_{-1}}{\varrho l_{-1}}}$$

- \triangleright K_i^P is financed with bank loans, while K_i^{NP} is financed with bond borrowing
- Other firms: Retailers subject to nominal rigidities, final good & capital good producers
- 🕨 Government: Central bank follows Taylor rule, fiscal spending constant fraction of output

Corporate Sector & Government

► Intermediate good firm has Cobb-Douglas production function

$$Y_t^m = A_t K_t^{\alpha} N_t^{1-\alpha}$$

 $ightharpoonup K_t$ consists of pledgeable capital K_t^P & nonpledgeable capital K_t^{NP}

$$K_t = \left((1 - \psi)^{\frac{1}{\theta^k}} (K_t^{NP})^{\frac{\theta^k - 1}{\theta^k}} + \psi^{\frac{1}{\theta^k}} (K_t^P)^{\frac{\theta^k - 1}{\theta^k}} \right)^{\frac{\theta^k}{\theta^k - 1}}; \quad K_t^P = \left(\sum_{j=1}^n (\alpha_j^l)^{\frac{1}{\varepsilon^l}} (K_{j,t}^P)^{\frac{\varepsilon^l - 1}{\varepsilon^l}} \right)^{\frac{\varepsilon^l}{\varepsilon^l - 1}}$$

- $ightharpoonup K_t^P$ is financed with bank loans, while K_t^{NP} is financed with bond borrowing
- Other firms: Retailers subject to nominal rigidities, final good & capital good producers
- Government: Central bank follows Taylor rule, fiscal spending constant fraction of output

Corporate Sector & Government

► Intermediate good firm has Cobb-Douglas production function

$$Y_t^m = A_t K_t^{\alpha} N_t^{1-\alpha}$$

 $ightharpoonup K_t$ consists of pledgeable capital K_t^P & nonpledgeable capital K_t^{NP}

$$K_t = \left((1 - \psi)^{\frac{1}{\theta^k}} (K_t^{NP})^{\frac{\theta^k - 1}{\theta^k}} + \psi^{\frac{1}{\theta^k}} (K_t^P)^{\frac{\theta^k - 1}{\theta^k}} \right)^{\frac{\theta^k}{\theta^k - 1}}; \quad K_t^P = \left(\sum_{j=1}^n (\alpha_j^l)^{\frac{1}{\epsilon^l}} (K_{j,t}^P)^{\frac{\epsilon^l - 1}{\epsilon^l}} \right)^{\frac{\epsilon^l}{\epsilon^l - 1}}$$

- \triangleright K_t^P is financed with bank loans, while K_t^{NP} is financed with bond borrowing
- Other firms: Retailers subject to nominal rigidities, final good & capital good producers
- ► Government: Central bank follows Taylor rule, fiscal spending constant fraction of output

The balance-sheet constraint now is

$$\underbrace{L_{j,t}}_{\text{Loans}} + \underbrace{H_{j,t}}_{\text{Reserves}} = \underbrace{F_{j,t}}_{\text{Equity}} + \underbrace{D_{j,t}}_{\text{Deposits}}$$

Bank faces costs of (i) operation, (ii) issuing loans & deposits, (iii) leverage deviations

$$\underbrace{S_{j,t+1}}_{\text{E.o.P. Res}} = \underbrace{(1+i_{j,t}^l - \mu^l)L_{j,t}}_{\text{Loans}} + \underbrace{(1+i_t)H_{j,t}}_{\text{Reserves}} \underbrace{-(1+i_{j,t}^d + \mu^d)D_{j,t}}_{\text{Deposits}} \underbrace{-GF_{j,t}}_{\text{Operation}} - \underbrace{\Psi\left(\frac{L_{j,t}}{F_{j,t}}\right)F_{j,t}}_{\text{Leverage}}$$

Leverage

- Bank pays constant fraction of profits as dividends each period
- And solves $\max \mathbb{E}_t \sum_{s=0}^{\infty} \Lambda_{t,t+s+1} DIV_{j,t+s+1}$
- Frictions imply that bank capital is slow-moving & determines credit supply

The balance-sheet constraint now is

$$\underbrace{L_{j,t}}_{\text{Loans}} + \underbrace{H_{j,t}}_{\text{Reserves}} = \underbrace{F_{j,t}}_{\text{Equity}} + \underbrace{D_{j,t}}_{\text{Deposits}}$$

▶ Bank faces costs of (i) operation, (ii) issuing loans & deposits, (iii) leverage deviations

$$\underbrace{S_{j,t+1}}_{\text{E.o.P. Res}} = \underbrace{(1+i_{j,t}^{l}-\mu^{l})L_{j,t}}_{\text{Loans}} + \underbrace{(1+i_{t})H_{j,t}}_{\text{Reserves}} \underbrace{-(1+i_{j,t}^{d}+\mu^{d})D_{j,t}}_{\text{Deposits}} \underbrace{-\varsigma F_{j,t}}_{\text{Operation}} \underbrace{-\Psi\left(\frac{L_{j,t}}{F_{j,t}}\right)F_{j,t}}_{\text{Leverage}}$$

- Bank pays constant fraction of profits as dividends each period
- And solves $\max \mathbb{E}_t \sum_{s=0}^{\infty} \Lambda_{t,t+s+1} DIV_{j,t+s+1}$
- Frictions imply that bank capital is slow-moving & determines credit supply

Paul, Ulate, and Wu A Macro Model of CBDC 12

The balance-sheet constraint now is

$$\underbrace{L_{j,t}}_{\text{Loans}} + \underbrace{H_{j,t}}_{\text{Reserves}} = \underbrace{F_{j,t}}_{\text{Equity}} + \underbrace{D_{j,t}}_{\text{Deposit}}$$

▶ Bank faces costs of (i) operation, (ii) issuing loans & deposits, (iii) leverage deviations

$$\underbrace{S_{j,t+1}}_{\text{E.o.P. Res}} = \underbrace{(1+i_{j,t}^{l}-\mu^{l})L_{j,t}}_{\text{Loans}} + \underbrace{(1+i_{t})H_{j,t}}_{\text{Reserves}} \underbrace{-(1+i_{j,t}^{d}+\mu^{d})D_{j,t}}_{\text{Deposits}} \underbrace{-\varsigma F_{j,t}}_{\text{Operation}} \underbrace{-\Psi\left(\frac{L_{j,t}}{F_{j,t}}\right)F_{j,t}}_{\text{Leverage}}$$

- Bank pays constant fraction of profits as dividends each period
- And solves $\max \mathbb{E}_t \sum_{s=0}^{\infty} \Lambda_{t,t+s+1} DIV_{j,t+s+1}$
- Frictions imply that bank capital is slow-moving & determines credit supply

Paul, Ulate, and Wu A Macro Model of CBDC 12

Bank Equilibrium Conditions

Decision separated into a deposit sub-problem and a loan sub-problem, yielding

$$1 + i_{j,t}^d = \frac{\epsilon_{j,t}^d}{\epsilon_{j,t}^d + 1} (1 + i_t - \mu^d)$$

lacktriangle where endogenous deposit elasticity $\epsilon^d_{j,t}$ takes similar form as in static model, and

$$1+i_{j,t}^l = \frac{\varepsilon_{j,t}^l}{\varepsilon_{j,t}^l - 1} \left[1+i_t + \mu^l + \Psi'\left(\frac{L_{j,t}}{F_{j,t}}\right) \right]$$

where endogenous loan elasticity $e^l_{j,t}$ is weighted average between e^l and the elasticity of substitution between pledgeable and non-pledgeable capital, θ^k

Bank Equilibrium Conditions

Decision separated into a deposit sub-problem and a loan sub-problem, yielding

$$1 + i_{j,t}^d = \frac{\epsilon_{j,t}^d}{\epsilon_{j,t}^d + 1} (1 + i_t - \mu^d)$$

ightharpoonup where endogenous deposit elasticity $\epsilon^d_{i,t}$ takes similar form as in static model, and

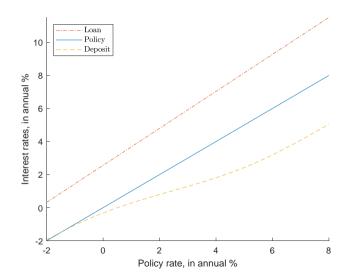
$$1 + i_{j,t}^l = \frac{\epsilon_{j,t}^l}{\epsilon_{j,t}^l - 1} \left[1 + i_t + \mu^l + \Psi'\left(\frac{L_{j,t}}{F_{j,t}}\right) \right]$$

where endogenous loan elasticity $e^l_{j,t}$ is weighted average between e^l and the elasticity of substitution between pledgeable and non-pledgeable capital, θ^k

Calibration

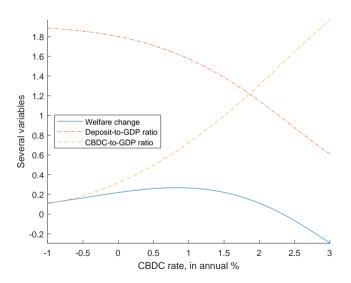
Param.	Value	Description	Target or source
Deposit side			
γ_{m}	0.3005	Importance of cash in liquidity	$\gamma_{\it m} + \gamma_{\it d} + \gamma_{\it cbdc} =$ 1
$\gamma_{\sf d}$	0.3990	Importance of deposits in liquidity	$D/\mathcal{L}=$ 0.8 at $i=$ 2%
γ_{cbdc}	0.3005	Importance of CBDC in liquidity	$\gamma_{cbdc}=\gamma_{m}$ (Bidder et al.)
n	1.1685	Number of banks	Deposit rate target #1
θ	554.21	E.o.S. between instruments in liquidity	Deposit rate target #2
$arepsilon^{d}$	661.36	E.o.S. between banks in deposits	Deposit rate target #3
μ^{d}	-0.20%	Cost of issuing deposits	Deposit rate target #4
Loan side			
ψ	0.3000	Importance of pledgeable capital	Crouzet (2021)
Q	0.70%	Extra cost of corporate-bond borrowing	Schwert (2020)
μ^{l}	0.35%	Cost of issuing loans	Schwert (2020)

Model-Implied Loan and Deposit Rates

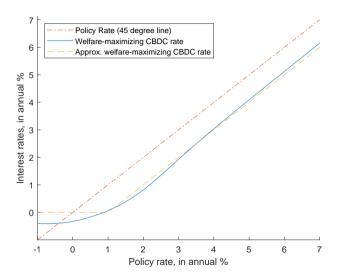


Results

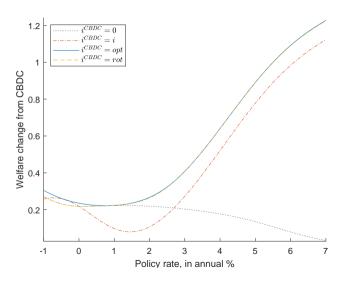
Result 1: CBDC Introduction Across CBDC Rates



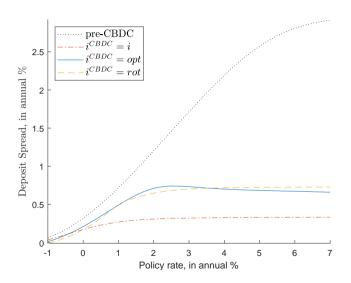
Result 2: Welfare-Maximizing CBDC Rate Across Policy Rates



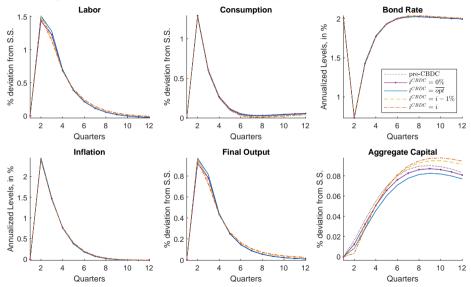
Result 2: Welfare Changes



Result 2: Deposit Spread



Result 3: Responses to Monetary Policy Shock



Conclusion

- ► Introduction of CBDC debated worldwide, but practical experience remains scarce ⇒ analysis based on theoretical models needed
- ▶ **This paper**: provides such guidance and delivers a simple practical message
- Substantial welfare improvements from introducing CBDC based on a rule-of-thumb: optimal CBDC rate $i^{CBDC} \approx max(0\%, i^{policy} 1\%)$
- Can be easily communicated to the public and avoids political-economy concerns related to paying negative rates on CBDC
- ► Introduction of CBDC most beneficial for economies with high interest rates ⇒ bank market power in deposit markets sharply curtailed

Paul, Ulate, and Wu A Macro Model of CBDC 21

Extra Slides

Full Endogenous Elasticities

 $ightharpoonup \epsilon_{i,t}^d$ is the endogenous elasticity of deposits. Given symmetry,

$$\varepsilon_t^d = \frac{n-1}{n} \cdot \varepsilon^d + \frac{1}{n} \left[(1 - \omega_{\mathcal{L},t}^d) \theta + \omega_{\mathcal{L},t}^d \frac{\partial \ln \mathcal{L}_t}{\partial \ln (1 + i_t^{\mathcal{L}})} \right]$$

- $\qquad \text{where } \omega_{\mathcal{L},t}^d \equiv \frac{(1+i_t^d)d_t}{(1+i_t^{\mathcal{L}})\mathcal{L}_t} = \gamma_d \left(\frac{1+i_t^d}{1+i_t^{\mathcal{L}}}\right)^{\theta+1} \text{ is the endogenous deposit share }$
- $ightharpoonup \epsilon_i^l$ is the endogenous loan elasticity. Given symmetry,

$$\epsilon_t^l = \left\{ \frac{n-1}{n} \cdot \epsilon^l + \frac{1}{n} \left[(1 - \omega_{K,t}^{K_p})\theta + \frac{\omega_{K,t}^{K_p}}{1 - \alpha} \right] \right\} \frac{Q_t}{P_t} \frac{1 + i_t^l}{1 + i_t} \frac{1}{z_t^P}$$

• where $\omega_{K,t}^{K_p} \equiv \frac{z_t^p K_t^p}{z_t K_t} = \psi \left(\frac{z_t^p}{z_t}\right)^{1-\theta^k}$ is the endogenous loan share

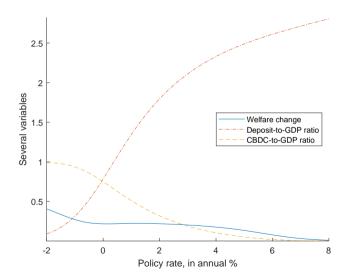
Full Intermediate Good Producer Setup

$$\begin{array}{lcl} Y_{t}^{m} & = & A_{t}K_{t}^{\alpha}N_{t}^{1-\alpha} \\ \\ K_{t} & = & \left((1-\psi)^{\frac{1}{\theta^{k}}}(K_{t}^{P})^{\frac{\theta^{k}-1}{\theta^{k}}} + \psi^{\frac{1}{\theta^{k}}}(K_{t}^{NP})^{\frac{\theta^{k}-1}{\theta^{k}}} \right)^{\frac{\theta^{k}}{\theta^{k}-1}} \\ K_{t}^{NP} & = & \left(\sum_{j=1}^{n} (\alpha_{j}^{l})^{\frac{1}{\epsilon^{l}}}(K_{j,t}^{NP})^{\frac{\epsilon^{l}-1}{\epsilon^{l}}} \right)^{\frac{\epsilon^{l}}{\epsilon^{l}-1}} \\ \Pi_{t}^{m} & = & P_{t}^{m}Y_{t}^{m} - W_{t}N_{t} + (1-\delta)Q_{t}\sum_{j=1}^{n}K_{j,t}^{NP} + (1-\delta)Q_{t}K_{t}^{P} \\ & - & \sum_{j=1}^{n} (1+i_{j,t-1}^{l})Q_{t-1}K_{j,t}^{NP} - (1+i_{t-1}+\varrho_{t-1})Q_{t-1}K_{t}^{P} \end{array}$$

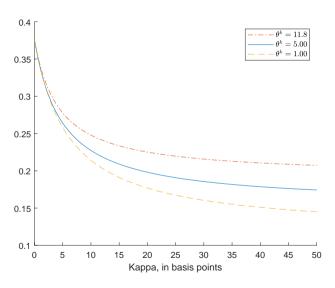
Intermediate Good Producer Equilibrium Conditions

$$\begin{split} \frac{W_t}{P_t} &= (1-\alpha) \frac{P_t^m}{P_t} \frac{Y_t^m}{N_t} \\ z_t &= \left(\psi(z_t^{NP})^{1-\theta^k} + (1-\psi)(z_t^P)^{1-\theta^k} \right)^{\frac{1}{1-\theta^k}} \\ z_t^P &= \left(\frac{Q_t}{P_t} \frac{1+i_t+Q_t}{1+i_t} - (1-\delta) \mathbb{E}_t \left(\beta \frac{u'(C_{t+1})}{u'(C_t)} \frac{Q_{t+1}}{P_{t+1}} \right) \\ z_{j,t}^{NP} &= \frac{Q_t}{P_t} \frac{1+i_j!}{1+i_t} - (1-\delta) \mathbb{E}_t \left(\beta \frac{u'(C_{t+1})}{u'(C_t)} \frac{Q_{t+1}}{P_{t+1}} \right) \\ K_{t+1}^{NP} &= \psi \left(\frac{z_t^{NP}}{z_t} \right)^{-\theta^k} K_{t+1} \\ K_{t+1}^{NP} &= \psi \left(\frac{z_t^{NP}}{z_t} \right)^{-\theta^k} K_{t+1} \end{split}$$

0% Interest Rate CBDC for Different Policy Rates



Welfare Across κ



Recalibrating Additional Parameters

