

Background

- Most theory: $E(R_{k-years})=k \times E(R_{1-year})$
- Most evidence: E(R_{1-year})

 Our study: Consider both near-term (1-year horizon) and long-term (10-year horizon) return distribution perceptions

Individuals' beliefs are puzzling (evidence based on 1-year horizon)

- Lots of persistent heterogeneity
- Subjective return beliefs differ from objective expected returns
- Beliefs related to participation, risky share, trading decisions
 - BUT Relations are much weaker than theory suggests (attenuation puzzle)
 - E.g., Empirical beliefs-risky share relation ~ 10% of theoretical beliefsrisky share relation

Should long-term beliefs matter?

- Absent frictions, maybe not
 - Can adjust based on NT beliefs
 - o E.g., bullish NT, bearish LT→ Hold equity now, sell later
- But maybe so:
 - o Reported E(R) = True E(R) + noise
 - With frictions and a long-horizon, LT E(R) may matter
 - If individuals are uncertain about their NT beliefs (cognitive uncertainty) will put some weight on LT beliefs

Data

- RAND American Life Panel (ALP)
- 3,800+ individuals in 61 interviews over 87-month period (2008-2016)
 - Stock market participation in 30 waves
 - Risky share in six waves
- ~90K panel observations (average person participates in 23 interviews)

The six return belief questions

- Short-term beliefs
 - Chance markets increase in next year?
 - Chance increase >20% in next year?
 - Chance decrease >20% in next year?
- Long-term beliefs
 - Chance increase in next 10-years?
 - Chance increase >20% in 10-years? (29 long-form waves)
 - Chance decrease >20% in 10-years? (29 long-form waves)
- Infer $E(r_{i,1-year})$ and $E(r_{i,10-year})$ from P(r>0.2) and P(r<-0.2)
- Focus on inferred expected return but also look at raw data (and reach same conclusions)

Basic model (~Patton and Timmermann (2010))

- E(r) = prior + signal
- $E_{i,t}(r_1) = \mu_i + \eta_{i,t,1}$
- $E_{i,t}(r_{10}) = 10\mu_i + \eta_{i,t,1} + \eta_{i,t,2} ... + \eta_{i,t,10}$
- → Key implication: Signals play a larger role in heterogeneity in 1-year beliefs than 10-year beliefs
- → Five empirical implications

Test 1: XS variation in expectations

• If signals play no role,

$$E(r_{10})=10E(r_1) \rightarrow \sigma_{xs}(E(r_{10}))/\sigma_{xs}(E(r_1))=10$$

If signals play a role,

$$\sigma_{xs}(E(r_{10}))/\sigma_{xs}(E(r_{1})) < 10$$

- Empirically: $\sigma_{xs}(E(r_{10}))/\sigma_{xs}(E(r_1)) = 2.72$
- Temporary signals play a role in explaining heterogeneity in beliefs

Test 2: Characteristics will better explain LT expectations

Regress ST and LT on characteristic x

$$\beta_{1 year} = \frac{cov(\mu_i, x_i) + cov(\eta_{1,i}, x_i)}{\sigma_{xs}(x_i)}$$

$$\beta_{10 year} = \frac{10cov(\mu_i, x_i) + cov(\eta_{1,i}, x_i) + \dots + cov(\eta_{10,i}, x_i)}{\sigma_{xs}(x_i)}$$

→ Characteristics better explain LT belief heterogeneity

Test 2: Characteristics will better explain LT expectations (standardized)

	E(r _{1-year})	E(r _{10-year})	Difference
Income	0.016	0.118	0.103
Education	0.081	0.148	0.067
Age	0.008	0.001	-0.007
Health	0.044	0.043	-0.001
Female	0.045	-0.281	-0.326
Married	-0.033	-0.076	-0.043
White	-0.029	0.124	0.153
Retired	0.112	0.150	0.038
Working	0.014	-0.024	-0.038
R ²	1.8%	11.1%	5.6%

Test 3: Risky share, NT expectations, and LT expectations

 If individuals are uncertain about their NT beliefs, then LT beliefs may matter (also frictions, noise in reported values)

- Baseline test: Regress %equity on 1- and 10-year expected returns
 - E(r_x) are standardized

Test 3: Risky share, NT expectations, and LT expectations

	(1)	(2)	(3)
E(r _{1-year})	2.686 (3.90)		0.674 (0.98)
E(r _{10-year})		6.964 (10.34)	6.762 (9.74)
P(equal)			0.01
R^2	5.3%	9.1%	9.1%

- ↑NT expected returns → ↑ risky share
- 2. LT expectations much more (10X) important than NT expectations
- 3. Coefficient on LT expectations much closer to theoretical value
 - NT is ~8% of theoretical value
 - LT is ~67% of theoretical value

Test 4: Participation, NT expectations, and LT expectations

- Baseline test: Regress stock market participation on 1and 10-year expected returns
 - E(r_x) are standardized

Test 4: Participation, NT expectations, and LT expectations

	(1)	(2)	(3)
E(r _{1-year})	0.055 (8.96)		0.022 (3.82)
E(r _{10-year})		0.115 (18.90)	0.109 (18.25)
P(equal)			0.01
R ^{2.}	2.5%	6.6%	6.8%

- 1. ↑NT expected returns → ↑ SMP
- 2. LT expectations much more (5X) important than NT expectations

Test 5: Trading, NT expectations, and LT expectations

- Previous work
 - Weak relation between beliefs and actions
 - Inertia
- Examine 27 trading windows (~90 days each)
 - o Do they trade? (In retirement? In direct?)
 - o Do they report changes in expectations?

Test 5: Trading, NT expectations, and LT expectations

	No trade	Buy	Sell	ΔE(r _{1-year})	ΔE(r _{10-year})
Retirement	85%	10%	5%	91%	89%
Direct	73%	17%	9%	92%	92%

- Most don't trade
 - **→**inertia
- Reported expected returns change almost always

Test 5: Multinomial logit of trading on E(r) and $\Delta E(R)$

	Buy	Sell	Buy	Sell
	Retirement accounts		Direct accounts	
$(A)E(r_{1-year})_{-1}$	-0.003	-0.013	-0.020	0.006
(B) E(r _{10-year}) ₋₁	0.017	0.011	0.029	0.015
(C) $\Delta E(r_{1-year})$	-0.001	-0.009	-0.004	0.000
(D) $\Delta E(r_{10-year})$	0.008	0.007	0.012	0.007
ρ(A=B)	0.01	0.01	0.01	0.19
P(C=D)	0.10	0.01	0.12	0.31

Test 5: Multinomial logit of trading on E(r) and $\Delta E(R)$

	Buy	Sell	Buy	Sell
	Retirement accounts		Direct accounts	
$(A)E(r_{1-year})_{-1}$	-0.003	-0.013	-0.020	0.006
(B) E(r _{10-year}) ₋₁	0.017	0.011	0.029	0.015
(C) $\Delta E(r_{1-year})$	-0.001	-0.009	-0.004	0.000
(D) $\Delta E(r_{10-year})$	0.008	0.007	0.012	0.007
ρ(A=B)	0.01	0.01	0.01	0.19
P(C=D)	0.10	0.01	0.12	0.31

1. LT expectations appear more important than NT expectations

Test 5: Multinomial logit of trading on E(r) and $\Delta E(R)$

	Buy	Sell	Buy	Sell
	Retirement accounts		Direct accounts	
$(A)E(r_{1-year})_{-1}$	-0.003	-0.013	-0.020	0.006
(B) E(r _{10-year}) ₋₁	0.017	0.011	0.029	0.015
(C) $\Delta E(r_{1-year})$	-0.001	-0.009	-0.004	0.000
(D) $\Delta E(r_{10-year})$	0.008	0.007	0.012	0.007
ρ(A=B)	0.01	0.01	0.01	0.19
P(C=D)	0.10	0.01	0.12	0.31

2. Buying associated with higher LT E(R) and increases in LT E(R)

Test 5: Multinomial logit of trading on E(r) and $\Delta E(R)$

	Buy	Sell	Buy	Sell
	Retirement accounts		Direct accounts	
$(A)E(r_{1-year})_{-1}$	-0.003	-0.013	-0.020	0.006
(B) E(r _{10-year}) ₋₁	0.017	0.011	0.029	0.015
(C) $\Delta E(r_{1-year})$	-0.001	-0.009	-0.004	0.000
(D) $\Delta E(r_{10-year})$	0.008	0.007	0.012	0.007
ρ(A=B)	0.01	0.01	0.01	0.19
P(C=D)	0.10	0.01	0.12	0.31

3. Selling appears to be associated with more bullish LT and bearish NT, i.e., difference matters

Test 5: Multinomial logit of trading on E(r) and $\Delta E(R)$

	Buy	Sell	Buy	Sell
	Retirement accounts		Direct accounts	
$(A)E(r_{1-year})_{-1}$	-0.003	-0.013	-0.020	0.006
(B) E(r _{10-year}) ₋₁	0.017	0.011	0.029	0.015
(C) $\Delta E(r_{1-year})$	-0.001	-0.009	-0.004	0.000
(D) $\Delta E(r_{10-year})$	0.008	0.007	0.012	0.007
ρ(A=B)	0.01	0.01	0.01	0.19
P(C=D)	0.10	0.01	0.12	0.31

4. Stronger for retirement accounts than direct trading

Summing up

- Evidence that temporary signals play a role in beliefs (especially 1-year beliefs)
 - (Scaled) cross-sectional variation in 10-year beliefs<1-year beliefs
 - Characteristics better explain 10-year beliefs (relative to 1-year beliefs)
- LT expectations are much more important (than NT) in explaining heterogeneity in:
 - Risky share
 - Equity market participation
- Expectations change constantly, but little trading
 - LT expectations, however, tend to be more important in explaining trading

Summing up

- Stronger relation between financial choices and LT expectations than NT expectations
 - → Can help explain attenuation puzzle
- Provides guidance for theory
 - Models of investor behavior (which typically assume horizon independence in beliefs)
 - Dispersion of beliefs models (models with dispersion in priors, models with dispersion in signals, and models with both dispersion in priors and signals)

Summing up

- Provides empirical support that cognitive uncertainty can help explain investor behavior
- Has normative implications (e.g., encouraging SMP via education regarding long-horizon returns)

Theoretical coefficient

- Let γ =6; $\sigma(r_1)$ =20%
- %equity = $[E(r_1) r_f]/\gamma \sigma^2(r_1)$
- %equity = $[1/\gamma \sigma^2(r_1)] \times [E(r_1) r_f]$
- %equity = $1/(6 \times 0.2^2) = 4.2$
- %equity = $[E(r_{10}) r_f]/\gamma \sigma^2(r_{10})$
- %equity = $[1/\gamma \sigma^2(r_{10})] \times [E(r_1) r_f]$
- %equity = $1/(6 \times 10 \times 0.2^2) = 0.42$

