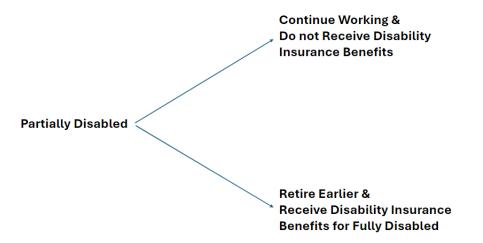
# All or Nothing: Health and the U.S. Social Security Disability Insurance

Ivan Suvorov

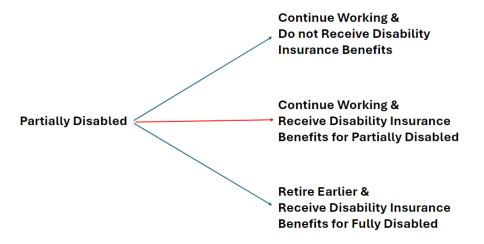
UNC-Chapel Hill

December 29, 2024

# Public Disability Insurance Program in the US


- One of the most fundamental questions in health and public economics is how income from government programs influences beneficiaries' health
- The Social Security Disability Insurance (SSDI) program is the main disability insurance program for disabled individuals in the US
- 10M Americans receive SSDI benefits at a cost of \$12B/month
- The most recent reform of SSDI was introduced in 1999

# Public Disability Insurance Program in the US


SSDI eligibility criteria treat health as a binary outcome:
 a person is either considered to be fully disabled or not disabled

- This dichotomy incentivizes applicants to exaggerate or even exacerbate their health problems and leave the labor force prematurely
  - Around 20% of SSDI beneficiaries have some capability to return to work they are not fully disabled.
  - Less than 1% of SSDI recipients return to the labor force

# Public Disability Insurance Program in the US



# Public Disability Insurance Program in Other Countries



# Disability Insurance Program for the Partially Disabled

The extension of the SSDI program to the partially disabled will affect health through three main channels:

• Labor supply (reservation wage changes)

• Income (additional SSDI benefits)

• Health insurance coverage (employer-sponsored and early Medicare)

# Research Question

How will the extension of disability insurance to the individuals with the partial disability impact the longevity and disability propensity of the nearly elderly and the elderly?

## Preview of the Results

The introduction of partial disability insurance (DI) in the US will

- Increase labor supply of partially disabled individuals
  The share of the partially disabled working part-time rises by up to 14 p.p.
- Decrease the number of disabled Americans by around 1%
- Increase the life span of  $\sim 30,000$  people by 5 years, extend lives of  $\sim 20,000$  by 15 years, and raise life longevity of  $\sim 10,000$  by 20 years
- Cost of extending the life of one person by one year is \$17K



# Literature on Disability Insurance

| Empirical approach         | Focus on effects of disability insurance on |                     |  |
|----------------------------|---------------------------------------------|---------------------|--|
|                            | Health                                      | Labor supply        |  |
|                            | Borsch-Supan et al. (2017)                  |                     |  |
| Reduced form models        | Black et al. (2021)                         | Gilleskie & Hoffman |  |
|                            | Gelber et al. (2023)                        | (2014)              |  |
| Individual decision-making |                                             |                     |  |
| models that permit the     |                                             |                     |  |
| prediction of effects of   | This paper                                  | Yin (2015)          |  |
| modifications of SSDI      |                                             |                     |  |
| design                     |                                             |                     |  |

# Data and Sample Design

#### Two sources of the data:

- Health and Retirement Study (HRS) Public Survey Data (1994–2016)
- Social Security Administration (SSA) Administrative Data

#### Estimation sample restrictions:

- The age range is from 50 to 90
- No missing data on key health-related variables and age
- No missing initial conditions

# HRS Questions on Disabilities Preventing Work

HRS has the following questions on disabilities preventing work:

- Do you have any impairment or health problem that limits the kind or amount of paid work you could do?
- Does this limitation keep you from working altogether?

I classify individuals by disability statuses as follows:

- partially disabled those who have limitations that limit their work but do not prevent them from working altogether
- fully disabled those who have limitations keeping them from working altogether

# Self-Reported Disability Status is Unreliable

Questions on disabilities preventing work are unreliable because:

- People report themselves in poor health as a rationalization for what might otherwise be seen as socially unacceptable early retirement (Bound, 1991)
- 20% of HRS respondents who reported receiving SSDI benefits also reported that their disability does not prevent them from working altogether (Benitez-Silva et al., 2004)
  - So, 20% of SSDI beneficiaries admit they are cheating
  - How many respondents decided not to admit their fraud?

## Health Index Construction

I construct a health index summarizing all available data on the individual health using principal component analysis for the following HRS health-related variables:

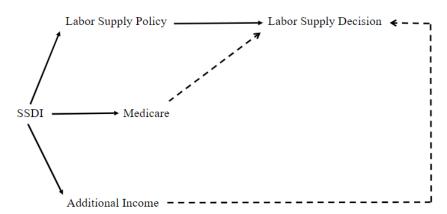
- Self-reported health status (excellent/very good/good/fair/poor)
- 2 variables related to healthcare utilization
- 8 variables related to mental health issues
- 8 variables related to doctor-diagnosed health problems
- 10 variables related to difficulties with the activities of daily living and instrumental activities of daily living
- Self-reported back pain



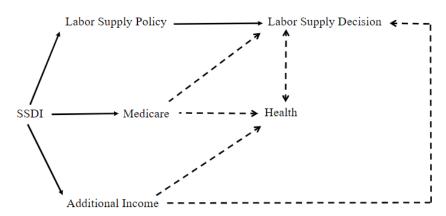
#### Decisions of Agents and Health Measures

- Agents make decisions about:
  - Labor supply: full-time,  $w_t^i = 1$ , part-time,  $w_t^i = 2$ , no work,  $w_t^i = 0$
  - Disability insurance benefits application,  $a_t^i$ :
    - $oldsymbol{a}_t^i=1$ , if an individual is eligible for full SSDI benefits and claims them
    - $oldsymbol{a}_t^i=2$ , if an individual is eligible for partial SSDI benefits and claims them
    - $a_t^i = 0$ , otherwise
  - ullet Social Security Old-age (SSOA) benefits receipt starting year,  $s_t^i$ 
    - ullet  $s_t^i=1$ , if an individual is eligible for SSOA benefits and starts benefits this year
    - $s_t^i = 1$ , otherwise
- Health measures
  - Disability status: fully disabled (FD),  $D_t^i=1$ , partially disabled (PD),  $D_t^i=2$ , not disabled,  $D_t^i=0$
  - ullet Health index,  $H_t^i$ , a continuous measure of health

**Utility Function** 


Utility=log(Consumption)(Marginal utility of consumption) +

+ Utility of employment transitions +


+ Utility of SSDI application by disability and SSOA statuses,

All utilities are the sums of a constant and a coefficient times the health index

#### SSDI and Labor Supply Decision



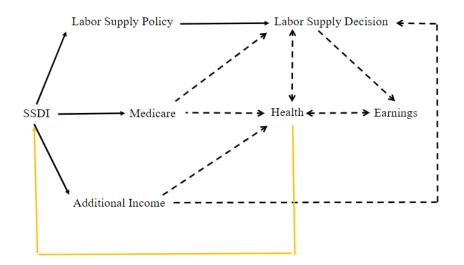
#### Labor Supply Decision and Health

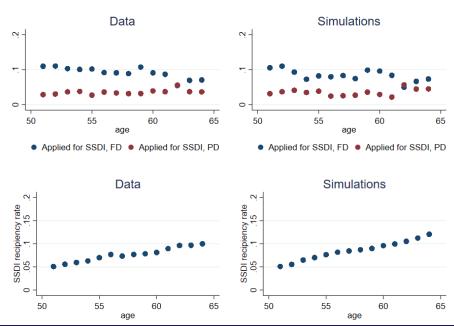


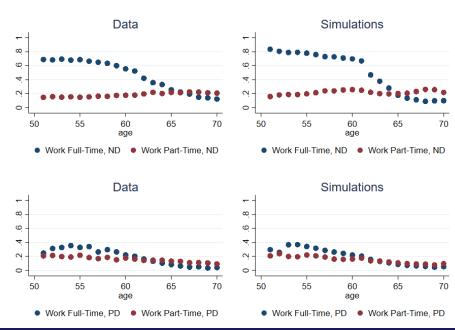
#### Health measures

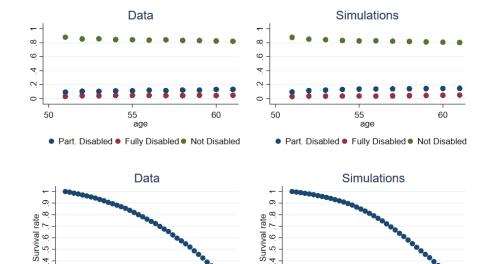
Mortality rate,  $M^i_{t+1}(\cdot)$ , disability status,  $D^i_{t+1}(\cdot)$ , health index,  $H^i_{t+1}(\cdot)$ , are the functions of previous

- ullet labor supply decisions,  $w_t^i$ , by disability status,  $D_t^i$ , and education,  $E_t^i$
- $\bullet$  health insurance:  $I_t^i,$  by disability status,  $D_t^i,$  and education,  $E_t^i$
- ullet consumption:  $C_t^i$ , by disability status,  $D_t^i$ , and education,  $E_t^i$
- ullet disability status:  $D_t^i$
- health index:  $H_t^i$
- age:  $A_t^i$
- college education:  $E_t^i$


Health measures


The effects of labor supply  $(w_t^i)$ , consumption  $(C_t^i)$ , and health insurance  $(I_t^i)$  on mortality rate,  $M_{t+1}^i(\cdot)$ , disability status,  $D_{t+1}^i(\cdot)$ , and health index,  $H_t^i(\cdot)$ , are  $\beta_t^{kli}$ , where  $k \in \{w,C,I\}$  and  $l \in \{M,D,H\}$ 


These effects are heterogeneous for the partially disabled:


$$\beta_{it}^{kl} = \gamma^{kl} + \epsilon_{it}^{kl},$$

where  $\gamma^{kl}$  is a constant and  $\epsilon^{kl}_{it}$  is i.i.d. normal shock









ej -

7

50

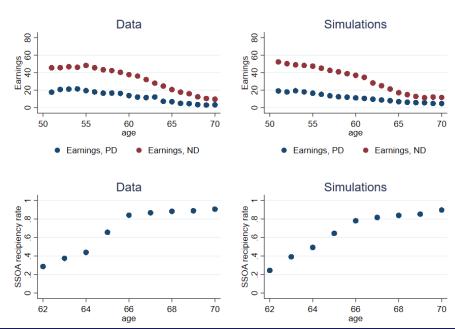
60

70

age

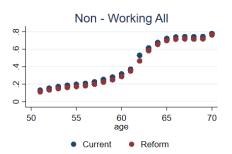
70

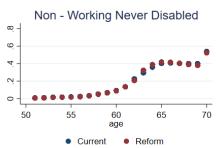
age

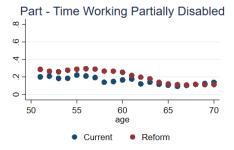

80

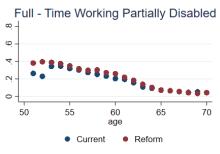
90

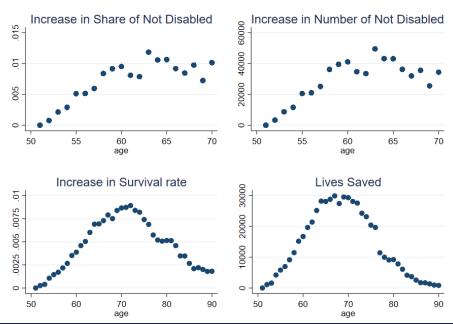
60

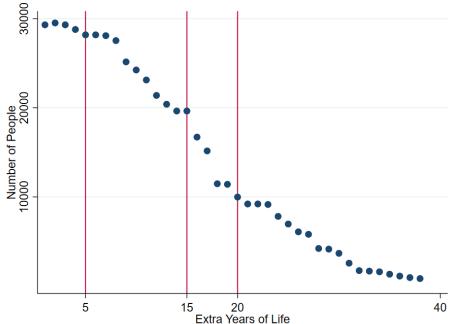

2.3


50





# Counterfactual Partial Disability Insurance Reform


- Those who apply for and those who receive partial DI must continue working (either part-time or full-time)
- If earnings of a partially disabled person are above SGA amount (Substantial Gainful Activity amount, \$1,130/month in 2018), then their benefits are decreased by \$1 for each extra \$1
- Partial DI beneficiaries are not awarded Medicare
- If the partial disability insurance recipients claim they developed full disability and applied for full SSDI benefits, they are granted full SSDI benefits for the period of application














## Costs and Benefits of 5 Alternatives

| Reform                            | People | Years   | Cost per Year |
|-----------------------------------|--------|---------|---------------|
| Primary                           | 29,889 | 553,100 | \$17K         |
| \$2 Earned Reduce Benefits By \$1 | 30,297 | 558,960 | \$20K         |
| Early Medicare                    | 32,492 | 612,097 | \$40K         |
| No Insurance from Full Disability | 21,251 | 352,533 | \$3K          |
| Work is not Required              | 15,962 | 330,513 | \$105K        |

### The value of a life-year is:

- > \$100K for people below 90 (Murphy and Topel, 2006)
- \$120K (Miller et al., 1990)
- \$175K (Moore and Viscusi, 1988)



# Partial Disability Insurance Reform Conclusion

The introduction of partial disability insurance (DI) in the US will

- Increase labor supply of partially disabled individuals
  The share of the partially disabled working part-time rises by up to 14 p.p.
- Increase the life span of  $\sim 30,000$  people by 5 years, extend lives of  $\sim 20,000$  by 15 years, and raise life longevity of  $\sim 10,000$  by 20 years
- Decrease the number of disabled Americans by around 1%
- Cost of extending the life of one person by one year is \$17K

