DEMAND-BASED EXPECTED RETURNS

Alessandro Crescini, Fabio Trojani, Andrea Vedolin January 5, 2025 - AFA

TABLE OF CONTENTS

1. Introduction

- 2. Theory
- 3. Empirics
- 4. Conclusions

INTRODUCTION

MOTIVATION

- · (Subjective) Expected Returns are not observable
- Canonical estimates based on asset prices don't match survey data properties
 - · High volatility, time-varying cyclicality
- This Paper: use asset prices + holdings

RECOVERY PROBLEMS

subjective probability
$$\mathbb{P}^i = \frac{\text{risk-neutral probability } \mathbb{Q}}{\text{stochastic discount factor } M_i}$$

- Q is determined by sufficiently large arbitrage-free cross-section of options (Breeden and Litzenberger, 1978)
- look for a way to pin down M_i
- extract \mathbb{P}^i and compute $\mathbb{E}^i[\cdot]$
- potentially recover any quantities

KEY IDEA

subjective probability
$$\mathbb{P}^i = \frac{\text{risk-neutral probability } \mathbb{Q}}{\text{stochastic discount factor } M_i}$$

- $\cdot \mathbb{Q}$ is known from asset prices
- canonical estimates formulate assumptions on M_i based on asset prices
- prices are informative about beliefs on aggregate, quantities are available individually
- \Rightarrow use **demand-based** information to characterize (M_i, \mathbb{P}^i) without relying on ad hoc asset pricing models

THIS PAPER

- Theoretical framework for recovering subjective moments under data-driven beliefs
- Theoretical contributions:
 - 1. Demand-compatible SDF without ad hoc assumptions
 - 2. Demand information to identify beliefs of heterogeneous investors
 - 3. Extension to the case of measurement errors and convex frictions
- · Empirical contributions:
 - 1. Subjective expectations may vary widely across investor classes
 - 2. Rationale to explain why statistical properties of survey data differ from price-based measures
 - 3. Reconcile non-monotonic SDF shapes

THEORY

DEMAND-BASED RECOVERY

- · Risky asset, continuum set of options, risk-free asset
- Heterogeneous unconstrained investors with $M_i = 1/\theta_i'R$ maximizing long-run wealth under their subjective beliefs \mathbb{P}^i
- No arbitrage: $\mathbb{E}_t^i[M_iR] = \mathbf{0}$
- $\cdot \mathbb{P}^i$ equivalent to \mathbb{Q}
- · Subjective expected return:

$$\mathbb{E}_t^i[R_m] = \mathbb{E}_t^{\mathbb{Q}}[\boldsymbol{\theta}_i' \boldsymbol{R} R_m]$$

- θ_i are investors portfolio holdings
- · data-driven, real-time recovery

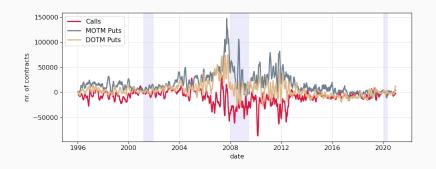
SUBJECTIVE EXPECTED RETURNS

$$\mathbb{E}_t^i[R_m] = \theta_m \mathbb{V}ar_t^{\mathbb{Q}}(R_m) + \boldsymbol{\theta}_{opt}'\mathbb{C}ov_t^{\mathbb{Q}}(\boldsymbol{R}_{opt},R_m) + 1$$

- Portfolio adjustment (with options) \rightarrow Belief distortion
- Variance term is positive, counter-cyclical
- · Covariance term is not predetermined in size, sign and cyclicality
- Generate data-compatible models for belief distortions
- For $M_i = 1/R_m$ we recover the SVIX (Martin, 2017)

EMPIRICS

OPTION HOLDINGS



- CBOE data with daily-level transactions on SPX Options by Customers and Market Makers
- Invest θ_0 in S&P 500 and 1 $-\theta_0$ in observed portfolio of OTM options; the rest in the risk-free

$$\theta_0 = \theta_0^{min} + \alpha \cdot (1 - \theta_0^{min})$$

CUSTOMERS' EXPECTED RETURNS

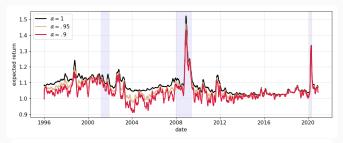


Table 2. Summary statistics of Customers' expected returns $\mathbb{E}^i[R]$, for various choices of α .

α	mean	std	min	median	max	corr (%)	AR(1)	index (avg.)
1	1.082	0.058	1.017	1.069	1.521	100	0.82	1
95%	1.061	0.056	0.977	1.049	1.472	96	0.77	0.99
90%	1.041	0.058	0.911	1.032	1.433	85	0.69	0.97
80%	1.004	0.071	0.792	1.006	1.366	59	0.58	0.94
50%	0.913	0.124	0.520	0.933	1.337	20	0.51	0.86
0	0.810	0.194	0.258	0.838	1.345	5	0.49	0.72

 More leveraged in options ⇒ exp. returns get smaller, more volatile, a-cyclical as in survey data

MARKET MAKERS' EXPECTED RETURNS

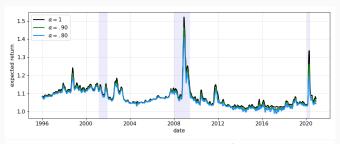


Table 3. Summary statistics of Market Makers' expected returns $\mathbb{E}^i[R]$, for various choices of α .

α	mean	std	min	median	max	corr (%)	AR(1)	index (avg.)
1	1.082	0.058	1.017	1.069	1.521	100	0.82	1
95%	1.078	0.056	1.011	1.067	1.493	100	0.83	0.93
90%	1.074	0.053	1.006	1.065	1.465	99	0.85	0.86
80%	1.045	0.049	0.989	1.059	1.410	97	0.87	0.72
50%	1.045	0.043	0.936	1.043	1.262	78	0.86	0.30
0	1.012	0.048	0.779	1.021	1.104	29	0.69	-0.40

• Δ -hedging neutralizes first-order belief corrections \implies exp. returns aligned with price-based measures

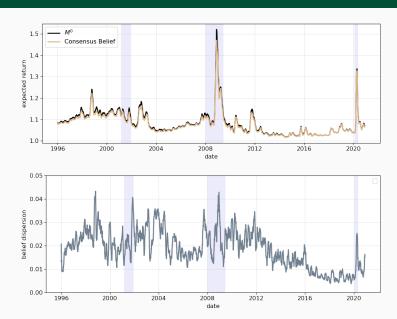
AN APPLICATION

Definition

Given the subset \mathcal{J} of unconstrained optimally-invested agents, and $\omega_i > 0 \ \forall i$, we define:

- $CB_t = SVIX$ if all the market participants are in \mathcal{J}
- · ...but many agents (like market makers) are constrained!
- Interesting to measure deviations from CB_t (without frictions) or the market aggregate view CB_t (with frictions)

CONSENSUS BELIEF & DISAGREEMENT



CONCLUSIONS

CONCLUSIONS

- Holdings affect the SDF and hence measures of recovered moments significantly
- Time-series properties of beliefs vary across investors because they substantially depend on the holdings (in line with survey literature)
- · Rich belief heterogeneity can be captured

Thank You for listening!

BACKUP SLIDES

NEGATIVE COVARIANCE CONDITION

Suppose for some \mathbb{P}^* the NCC holds at order p

$$Cov^*(M^*\theta'R, R_m^p) \leq 0$$

$$\implies \mathbb{E}^{\star}[R_m^{\rho}] \geq \left(\frac{\mathbb{E}^{\mathbb{Q}}[\boldsymbol{\theta}'\boldsymbol{R}R_m^{\rho}]}{\mathbb{E}^{\mathbb{Q}}[\boldsymbol{\theta}'\boldsymbol{R}]}\right)^{\rho} = \mathbb{E}^{i}[R_m^{\rho}]^{\rho}$$

For $p \rightarrow 1$, we naturally recognize

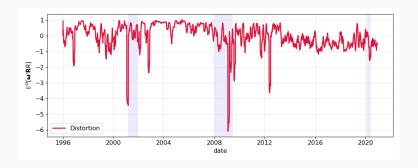
$$\frac{\boldsymbol{\theta}'\boldsymbol{R}}{\mathbb{E}^{\mathbb{Q}}[\boldsymbol{\theta}'\boldsymbol{R}]} = \frac{1}{M_i}$$

as the change of measure from \mathbb{Q} to \mathbb{P}_i . M_i has the form of a log-utility investor's SDF. \mathbb{P}_i is the probability belonging to set spanned by θ and p that supports the lower bound.

Proposition

The $\mathbb{E}^i[R]$ we extract under the log-utility assumption provides a lower bound for the subjective moment of the agent holding the same portfolio but with non-log utility.

CUSTOMERS' BELIEF DISTORTION



- Max. distortion for $\theta_0=0$: always negative (avg. -0.7), very volatile (std. 3), a-cyclical (-12%)
- Implausible results do not support subjective beliefs because $M_i(\theta_i)$ is **not** valid SDF

What if we don't observe θ ?

- The true market exposure is likely different from what we measure
- · We can still characterize economically meaningful \mathbb{P}^i
- Approximate holdings with θ solving:

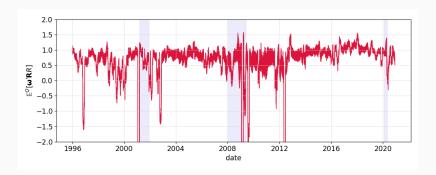
$$\inf_{\boldsymbol{\theta}} \left\{ \mathbb{E}_{t}^{\mathbb{Q}} [\boldsymbol{\theta}' \boldsymbol{R} \boldsymbol{R}_{m}] + \lambda \left(\frac{1}{2} \| \boldsymbol{\theta}^{\star} - \boldsymbol{\theta} \|_{2}^{2} - \delta \right) \right\}$$

Proposition (Bounds on Subjective Expected Returns)

$$\mathbb{E}^{i}[R_{m}] \geq \mathbb{E}^{\mathbb{Q}}[R_{m}] + \boldsymbol{\theta}' \mathbb{E}^{\mathbb{Q}}[\mathbf{R}^{e}R_{m}] - \sqrt{2\delta} \|\mathbb{E}^{\mathbb{Q}}[\mathbf{R}^{e}R_{m}]\|_{2}$$

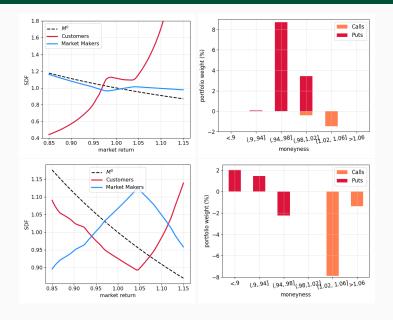
$$\mathbb{E}^{i}[R_{m}] \leq \mathbb{E}^{\mathbb{Q}}[R_{m}] + \boldsymbol{\theta}' \mathbb{E}^{\mathbb{Q}}[\mathbf{R}^{e}R_{m}] + \sqrt{2\delta} \|\mathbb{E}^{\mathbb{Q}}[\mathbf{R}^{e}R_{m}]\|_{2}$$

BOUNDS ON CUSTOMERS' BELIEF DISTORTION



- · Belief heterogeneity increases in bad times
- Pro-cyclical lower bound ("most pessimistic" investor / "worst-case" expectation) (corr. -34%)
- More leveraged in options

HOLDINGS AFFECT SDF



SUBJECTIVE MEASURES OF RISK

