Counterfactual Sensitivity in Quantitative Trade and Spatial Models

2025 North American Winter Meeting

Bas Sanders

January 4, 2025

Introduction

- Quantitative trade and spatial models allow us to write the counterfactual change in an endogenous variable of interest as a function solely of the observables.
- However, the observables are often noisily measured.
- ▶ We must account for estimation error, the direct effect of mismeasurement, and the indirect effect of mismeasurement through the estimation procedure.
- ▶ I propose an empirical Bayes (EB) approach for quantifying uncertainty about counterfactual predictions.

Introduction

Notation and Key Assumption

Empirical Bayes Uncertainty Quantification Introducing Estimation Error Introducing Measurement Error Quantifying Uncertainty about \hat{k} Widely Applicable Default Approach

Application 1: Adao et al. [2017]

Application 2: Allen and Arkolakis [2022]

Introduction

Notation and Key Assumption

Empirical Bayes Uncertainty Quantification Introducing Estimation Error Introducing Measurement Error Quantifying Uncertainty about \hat{k} Widely Applicable Default Approach

Application 1: Adao et al. [2017]

Application 2: Allen and Arkolakis [2022]

Notation

- First discuss the setting without estimation error or measurement error.
- ▶ Consider an equilibrium, denoted by (X_O, X_U, N_O, N_U) .
 - $lacksquare{X}_O \in \mathcal{X}_O \subseteq \mathbb{R}^{d_{X,O}}$ are exogenous observables
 - $lackbrack X_U \subseteq \mathbb{R}^{d_{X,U}}$ are exogenous unobservables
 - $lackbox{ extbf{N}}_O \in \mathcal{N}_O \subseteq \mathbb{R}^{d_{N,O}}$ are endogenous observables
 - ▶ $N_U \in \mathcal{N}_U \subseteq \mathbb{R}^{d_{N,U}}$ are endogenous unobservables.
- Equilibrium variables are connected to each other through the equilibrium conditions. For a given parameter $\theta \in \Theta \subseteq \mathbb{R}^{d_{\theta}}$, given by

$$f(X_O, X_U, N_O, N_U; \theta) = \mathbf{0},$$

for some function $f: \mathcal{X}_O \times \mathcal{X}_U \times \mathcal{N}_O \times \mathcal{N}_U \to \mathbb{R}^{d_{N,O} + d_{N,U}}$.

Notation

- We observe a single draw (X_O, N_O) from the distribution \mathcal{P}_O .
- ▶ Then interested in what happens to the endogenous variables (N_O, N_U) when we change the baseline exogenous variables (X_O, X_U) in a proportional way.
- For a given vector of exogenous change variables (\hat{X}_O, \hat{X}_U) , we want to find a corresponding vector of endogenous change variables (\hat{N}_O, \hat{N}_U) such that

$$f\left(X_O\odot\hat{X}_O,X_U\odot\hat{X}_U,N_O\odot\hat{N}_O,N_U\odot\hat{N}_U;\theta\right)=\mathbf{0},$$

where \odot denotes element-wise multiplication.

The ultimate object of interest, \hat{k} , will then be some transformation of the endogenous change variables (\hat{N}_O, \hat{N}_U) , the observables (X_O, N_O) and the structural parameter θ .

Key Assumption

Assumption

For a given counterfactual question of interest (\hat{X}_O, \hat{X}_U) and known θ , we can write \hat{k} as a function solely of the observables (X_O, N_O) :

$$\hat{k} = g_{\hat{k}}(X_O, N_O; \theta),$$

for some known function $g_{\hat{k}}: \mathcal{X}_O \times \mathcal{N}_O \to \mathbb{R}$.

- Implies that if (X_O, N_O) are observed without error and the structural parameter θ is known, we can perfectly recover \hat{k} .
- ▶ The exact functional form of $g_{\hat{k}}$ depends on the specific quantitative model that is considered.

Running Example: Armington Model

▶ Using the notation outlined above:

$$X_{O} = \{\}$$

$$X_{U} = (\{Q_{i}\}, \{\tau_{ij}\})$$

$$N_{O} = (\{Y_{i}\}, \{\lambda_{ij}\})$$

$$N_{U} = \{\}$$

$$\theta = \varepsilon.$$

Equilibrium conditions:

$$egin{aligned} Y_i &= \sum_j \lambda_{ij} Y_j, & i = 1,...,n, \ \ \lambda_{ij} &= rac{(au_{ij} Y_i)^{-arepsilon} Q_i^arepsilon}{\sum_k (au_{ki} Y_k)^{-arepsilon} Q_k^arepsilon}, & i,j = 1,...,n. \end{aligned}$$

Running Example: Armington

▶ Change variable system of equations when changing $\{\tau_{ij}\}$ proportionally by $\{\hat{\tau}_{ij}\}$ (keep $\{Q_i\}$ constant):

$$egin{aligned} \hat{Y}_i Y_i &= \sum_j \hat{\lambda}_{ij} \lambda_{ij} \hat{Y}_j Y_j, & i = 1,...,n, \ & \\ \hat{\lambda}_{ij} &= rac{\left(\hat{ au}_{ij} \hat{Y}_i
ight)^{-arepsilon}}{\sum_k \left(\hat{ au}_{kj} \hat{Y}_k
ight)^{-arepsilon} \lambda_{kj}}, & i,j = 1,...,n. \end{aligned}$$

- lackbox Counterfactual change variables of interest are welfare: $\left\{\hat{\mathcal{C}}_i\right\} = \left\{\hat{\lambda}_{ii}^{-1/arepsilon}
 ight\}$.
- For example, focusing on the change in welfare in the first country, we have

$$\hat{C}_{1} = g_{\hat{C}_{1}}(\{\lambda_{ij}\}, \{Y_{i}\}; \varepsilon).$$

Introduction

Notation and Key Assumption

Empirical Bayes Uncertainty Quantification Introducing Estimation Error Introducing Measurement Error Quantifying Uncertainty about \hat{k} Widely Applicable Default Approach

Application 1: Adao et al. [2017]

Application 2: Allen and Arkolakis [2022]

Introducing Estimation Error

- ▶ The counterfactual change variable of interest will generally depend on the structural parameter θ .
- ▶ In practice, we do not know the structural parameter exactly and we hence have to use an estimator $\tilde{\theta}(X_O, N_O)$.
- Will take a Bayesian approach and assume that the posterior distribution of the true structural parameter θ given the observables (X_O, N_O) is approximately normal:

$$\pi^{\textit{EE}}\left(\theta|X_{O},N_{O}\right) \approx \mathcal{N}\left(\tilde{\theta}\left(X_{O},N_{O}\right),\tilde{\Sigma}\left(X_{O},N_{O}\right)\right),$$

where $\tilde{\Sigma}(X_O, N_O)$ is a consistent estimator of the sampling variance of $\tilde{\theta}(X_O, N_O)$.

- \triangleright Can generate draws from this posterior distribution of θ given (X_O, N_O) .
- ▶ Using the relationship $\hat{k} = g_{\hat{k}}(X_O, N_O; \theta)$, can find the posterior distribution of \hat{k} given the true data,

$$\pi^{EE}\left(\hat{k}|X_O,N_O\right)$$
 .

Running Example: Armington Model

- ▶ Log trade flows {log F_{ij} } are the underlying data that determine the expenditure shares through $\lambda_{ij} = \frac{F_{ij}}{\sum_{\ell} F_{\ell i}}$.
- ▶ These log trade flows are also used to estimate the trade elasticity ε .
- ▶ For example, $\tilde{\varepsilon}(\{\log F_{ij}\})$ and $\tilde{\Sigma}(\{\log F_{ij}\})$ can be obtained from the regression

$$\log F_{ij} = -\varepsilon \log \tilde{\tau}_{ij} + \gamma_i + \gamma_j + \phi_{ij}.$$

We can then find the approximate posterior distribution of our object of interest \hat{C}_1 given the true data, $\pi^{EE}\left(\hat{C}_1|\left\{\log F_{ij}\right\}\right)$ using $g_{\hat{C}_1}\left(\left\{\lambda_{ij}\right\},\left\{Y_i\right\};\varepsilon\right)$ and

$$\pi^{\textit{EE}}\left(arepsilon|\left\{\log F_{ij}
ight\}
ight)pprox\mathcal{N}\left(ilde{arepsilon}\left(\left\{\log F_{ij}
ight\}
ight), ilde{\Sigma}\left(\left\{\log F_{ij}
ight\}
ight)
ight).$$

Introducing Measurement Error

- ▶ The observables are economic variables which are often measured with error.
- ► Take an empirical Bayes (EB) approach, and introduce a model for the measurement error and estimate a prior distribution for the true underlying data:

$$\left\{ \begin{array}{ll} \text{prior}: & \pi\left(X_O,N_O\right) \\ \text{measurement error}: & \pi\left(\tilde{X}_O,\tilde{N}_O|X_O,N_O\right), \end{array} \right.$$

 Use Bayes' rule to find the posterior distribution of the true data given the noisy data,

$$\pi^{ME}\left(X_{O},N_{O}|\tilde{X}_{O},\tilde{N}_{O}\right) = \frac{\pi\left(\tilde{X}_{O},\tilde{N}_{O}|X_{O},N_{O}\right)\pi\left(X_{O},N_{O}\right)}{\int\pi\left(\tilde{X}_{O},\tilde{N}_{O}|X_{O},N_{O}\right)\pi\left(X_{O},N_{O}\right)dX_{O}dN_{O}}.$$

► This posterior distribution then allows us to generate draws from our posterior distribution for the true data given the noisy data.

Running Example: Armington Model

- ▶ Assume that there is measurement error in log bilateral trade flows $\{\log F_{ij}\}$.
- If we specify a prior $\pi\left(\{\log F_{ij}\}\right)$ and a measurement error model $\pi\left(\left\{\log \tilde{F}_{ij}\right\} \mid \{\log F_{ij}\}\right)$, we can use Bayes' rule to find the posterior $\pi^{ME}\left(\{\log F_{ij}\} \mid \left\{\log \tilde{F}_{ij}\right\}\right)$.

Quantifying Uncertainty about \hat{k}

- Recall that we have obtained two different posteriors.
 - 1. $\pi^{EE}\left(\hat{k}|X_O,N_O\right)$ incorporates estimation error.
 - 2. $\pi^{ME}\left(X_O,N_O|\tilde{X}_O,\tilde{N}_O\right)$ incorporates measurement error.
- ightharpoonup We can combine these two posteriors to quantify uncertainty about \hat{k} .
- Aim to find an interval $\mathcal C$ to which, in posterior expectation over (X_O,N_O) , the posterior $\pi^{EE}\left(\hat k|X_O,N_O\right)$ assigns probability $1-\alpha$:

$$\mathbb{E}_{\pi^{\textit{ME}}}\left[\textit{Pr}_{\pi^{\textit{EE}}}\left\{\hat{\textit{k}} \in \mathcal{C}|\textit{X}_{\textit{O}},\textit{N}_{\textit{O}}\right\}|\tilde{\textit{X}}_{\textit{O}},\tilde{\textit{N}}_{\textit{O}}\right] \geq 1-\alpha.$$

- ► In practice:
 - ▶ Given $(\tilde{X}_O, \tilde{N}_O)$, generate draws from $\pi^{ME}(X_O, N_O | \tilde{X}_O, \tilde{N}_O)$.
 - ▶ For each of these draws obtain a corresponding draw from $\pi^{EE}(\hat{k}|X_O, N_O)$.
 - ▶ Report the $\alpha/2$ and $1 \alpha/2$ quantiles of this second set of draws.

Widely Applicable Default Approach

- Consider the setting where we can write $\hat{k} = g_{\hat{k}} \left(\{ \log F_{ij} \}; \theta \right)$, for $\{ F_{ij} \}$ a set of positive flows between locations. We have an estimator $\tilde{\theta} \left(\{ \log F_{ij} \} \right)$ with estimated sampling variance $\tilde{\Sigma} \left(\{ \log F_{ij} \} \right)$.
- Assume

$$\left\{ \begin{array}{ll} \text{prior:} & \log F_{ij} \sim \mathcal{N} \left(\beta \log \operatorname{dist}_{ij} + \alpha_i^{\operatorname{orig}} + \alpha_j^{\operatorname{dest}}, s^2 \right) \\ \text{measurement error:} & \log \tilde{F}_{ij} | \log F_{ij} \sim \mathcal{N} \left(\log F_{ij}, \varsigma^2 \right). \end{array} \right.$$

It follows that the posterior distribution for the true log flow between location i and j, $\log F_{ij}$, given its noisy version, $\log \tilde{F}_{ij}$, is given by

$$\mathcal{N}\left(\frac{s^2}{s^2+\varsigma^2}\log \tilde{F}_{ij} + \frac{\varsigma^2}{s^2+\varsigma^2}\left\{\beta\log\operatorname{dist} + \alpha_i^{\operatorname{orig}} + \alpha_j^{\operatorname{dest}}\right\}, \left(\frac{1}{s^2} + \frac{1}{\varsigma^2}\right)^{-1}\right).$$

Widely Applicable Default Approach

Algorithm

- 1. Estimate the parameters $\vartheta = \left(\beta, \left\{\alpha_i^{\text{orig}}\right\}, \left\{\alpha_i^{\text{dest}}\right\}, s^2, \varsigma^2\right)$ using a specific data structure or domain knowledge.
- 2. Take B draws from the estimated posterior distribution of $\log F_{ij}$ given $\log F_{ij}$ that uses $\hat{\vartheta}$ for i,j=1,...,n and indicate them by $\log F_{ij,1},...,\log F_{ij,B}$ for i,j=1,...,n.
- 3. For b = 1, ..., B, sample θ_b from

$$\mathcal{N}\left(\tilde{\theta}\left(\left\{\log F_{ij,b}\right\}_{i,j=1}^{n}\right), \tilde{\Sigma}\left(\left\{\log F_{ij,b}\right\}_{i,j=1}^{n}\right)\right).$$

- 4. For b = 1, ..., B, compute $\hat{k}_b = g_{\hat{k}} \left(\{ \log F_{ij,b} \}_{i,j=1}^n ; \theta_b \right)$.
- 5. Sort these draws to obtain $\left\{\hat{k}^{(b)}\right\}_{b=1}^{B}$ with $\hat{k}^{(1)} \leq \hat{k}^{(2)} \leq ... \leq \hat{k}^{(B)}$.
- 6. Report $\left[\hat{k}^{(\alpha/2\cdot B)}, \hat{k}^{((1-\alpha/2)\cdot B)}\right]$.

Introduction

Notation and Key Assumption

Empirical Bayes Uncertainty Quantification Introducing Estimation Error Introducing Measurement Error Quantifying Uncertainty about \hat{k} Widely Applicable Default Approach

Application 1: Adao et al. [2017]

Application 2: Allen and Arkolakis [2022]

Model and Counterfactual Question of Interest

- ► The empirical application of Adao et al. [2017] investigates the effects of China joining the WTO, the so-called China shock.
- ➤ Specifically, what would have happened to China's welfare if China's trade costs would stay constant at their 1995 levels:

$$\hat{\tau}_{ij,t} = \frac{\tau_{ij,95}}{\tau_{ij,t}}, \quad \text{if } i \text{ or } j \text{ is China},$$

$$\hat{\tau}_{ij,t} = 1, \quad \text{otherwise}.$$

We can express the change in China's welfare in period t, denoted by $\hat{W}_{\text{China},t}$, as a function of log bilateral trade flows $\{\log F_{ij,t}\}$ and the trade elasticity:

$$\hat{W}_{\mathrm{China},t} = g_{\hat{W}_{\mathrm{China},t}}\left(\left\{\log F_{ij,t}\right\};\varepsilon\right),$$

for t=1,...,T and for a known function $g_{\hat{W}_{\mathrm{China.}t}}: \mathbb{R}_{+}^{\mathit{Tn(n-1)}} o \mathbb{R}.$

Measurement Error Model and Prior

Use the (panel data version of the) default approach:

$$\begin{cases} & \text{prior :} & \log F_{ij,t} \sim \mathcal{N}\left(\beta_t \log \operatorname{dist}_{ij} + \alpha_{i,t}^{\text{orig}} + \alpha_{j,t}^{\text{dest}}, s_{ij}^2\right) \\ & \text{measurement error :} & \log \tilde{F}_{ij,t} | \log F_{ij,t} \sim \mathcal{N}\left(\log F_{ij,t}, \varsigma_{ij}^2\right). \end{cases}$$

- $\begin{tabular}{l} \blacksquare & \text{Estimate } \vartheta = \left(\left\{\beta_t\right\}, \left\{\alpha_{i,t}^{\text{orig}}\right\}, \left\{\alpha_{j,t}^{\text{dest}}\right\}, \left\{s_{ij}^2\right\}, \left\{\varsigma_{ij}^2\right\} \right) \text{ using a distance dataset} \\ & \text{and the mirror trade dataset from Linsi et al. [2023]}. \\ \end{tabular}$
- Mirror trade dataset has two estimates of each bilateral trade flow, both as reported by the exporter and as by the importer.
- Interpret this as observing two independent noisy observations per time period for each bilateral trade flow: $\left\{\left\{\tilde{F}_{ij,t}^{1},\tilde{F}_{ij,t}^{2}\right\}_{t=1}^{T}\right\}_{i\neq i}$.

Results

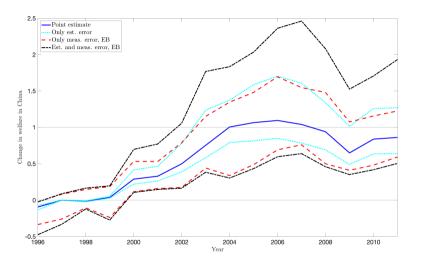


Figure: Change in welfare in China as a result of the China shock. • GFT

Introduction

Notation and Key Assumption

Empirical Bayes Uncertainty Quantification Introducing Estimation Error Introducing Measurement Error Quantifying Uncertainty about \hat{k} Widely Applicable Default Approach

Application 1: Adao et al. [2017]

Application 2: Allen and Arkolakis [2022]

Model and Counterfactual Question of Interest

- ► The empirical application of Allen and Arkolakis [2022] investigates what the returns on investment are of the highway segments of the US Interstate Highway network.
- ▶ Authors report the ten links with the highest return on investment. Top three are:
 - 1. Kingsport-Bristol (TN-VA) to Johnson City (TN)
 - 2. Greensboro-High Point (NC) to Winston-Salem (NC)
 - 3. Rochester (NY) to Batavia (NY).
- ▶ The key relation maps the log average annual daily traffic (AADT) flows $\{\log F_{ij}\}$ and the strength of traffic congestion δ to the change in welfare \hat{W} :

$$\hat{W} = g_{\hat{W}}\left(\{\log F_{ij}\};\delta\right),\,$$

for a known function $g_{\hat{W}}: \mathbb{R}^{n(n-1)}_+ \to \mathbb{R}$.

Measurement Error Model and Prior

- Musunuru and Porter [2019] estimates that the measurement error variance of the logarithm of the average annual daily traffic (AADT) flows is between 0.05 and 0.20.
- ▶ I will use a uniform measurement error variance of 0.05.
- Again follow the default approach:

$$\left\{ \begin{array}{ll} \text{prior:} & \log F_{ij} \sim \mathcal{N} \left(\beta \log \operatorname{dist}_{ij} + \alpha_i^{\operatorname{orig}} + \alpha_j^{\operatorname{dest}}, s^2 \right) \\ \text{measurement error:} & \log \tilde{F}_{ij} | \log F_{ij} \sim \mathcal{N} \left(\log F_{ij}, 0.05 \right). \end{array} \right.$$

▶ Results in the following posterior:

$$\mathcal{N}\left(0.669 \cdot \log \tilde{\mathcal{F}}_{ij} + 0.331 \cdot \left\{ \hat{\beta} \mathrm{dist}_{ij} + \hat{\alpha}_i^{\mathrm{orig}} + \hat{\alpha}_j^{\mathrm{dest}} \right\}, 0.033 \right).$$

Results

	Link 1	Link 2	Link 3
Point estimate	10.43	9.54	7.31
Only est. error	[8.33, 11.47]	[7.02, 10.76]	[5.05, 8.57]
Only meas. error, EB	[8.69, 14.15]	[7.31, 10.83]	[6.78, 8.18]
Est. and meas. error, EB	[7.86, 14.89]	[6.60, 11.32]	[5.30, 8.90]

Table: The three links with the highest return on investment.

	Link 1-Link 2	Link 2-Link 3
Point estimate	0.89	2.23
Only est. error	[0.61, 1.29]	[1.96, 2.25]
Only meas. error, EB	[0.38, 5.39]	[-0.05, 3.27]
Est. and meas. error, EB	[0.38, 5.66]	[0.02, 3.49]

Table: Differences between the links with the highest return on investment.

Introduction

Notation and Key Assumption

Empirical Bayes Uncertainty Quantification Introducing Estimation Error Introducing Measurement Error Quantifying Uncertainty about \hat{k} Widely Applicable Default Approach

Application 1: Adao et al. [2017]

Application 2: Allen and Arkolakis [2022]

- ▶ I provide an econometric framework for examining the effect of parameter uncertainty and measurement error for an important class of quantitative trade and spatial models.
- ▶ I take an empirical Bayes approach to uncertainty quantification and show how to quantify uncertainty about the counterfactual change variables of interest.
- ► The proposed method accounts for the fact that the structural parameter is often estimated using the noisy data.
- ► For both my applications, I find substantial uncertainty in important economic quantities, which highlights the importance of uncertainty quantification.

Thank you!

- ► Any comments or questions?
- bas_sanders@g.harvard.edu

References I

- R. Adao, A. Costinot, and D. Donaldson. Nonparametric counterfactual predictions in neoclassical models of international trade. *American Economic Review*, 107(3): 633–689, 2017.
- T. Allen and C. Arkolakis. The welfare effects of transportation infrastructure improvements. *The Review of Economic Studies*, 89(6):2911–2957, 2022.
- L. Linsi, B. Burgoon, and D. K. Mügge. The problem with trade measurement in international relations. *International Studies Quarterly*, 67(2):sqad020, 2023.
- A. Musunuru and R. J. Porter. Applications of measurement error correction approaches in statistical road safety modeling. *Transportation research record*, 2673 (8):125–135, 2019.

Results

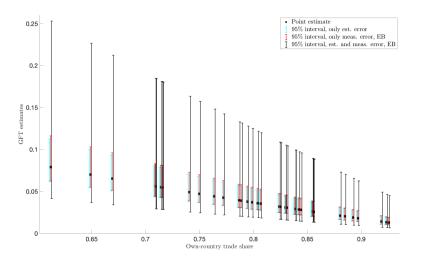


Figure: Gains from trade in 2011.

Back