VAGUE BY DESIGN:

PERFORMANCE EVALUATION AND LEARNING FROM WAGES

JAN 4, NAWMES - CONTRACT THEORY

Franz Ostrizek, Sciences Po

INTRODUCTION

Performance evaluation is a key aspect of labor contracts and organization design

- · Many ways to evaluate: Shop floor control, consumer scores, product testing, sales,...
- · Digitization and AI provide a growing number of possibilities

Performance evaluations are an important source of information in the workplace

- Inform the firm about the worker's performance
 - Necessary basis of incentivizing effort via performance pay
 - · Classic results show more information is better Holmström '79, Grossman&Hart '83
- Inform the worker about his performance
 - Learn about ability/match with the job
 - · Confidence in his capability to succeed and sense of agency

THIS PAPER

Dual role of performance evaluation: basis of incentives and agent learning

- How do these two aspects interact?
- · How to optimally design performance evaluation when it shapes worker confidence?

This talk: mostly binary case

RELATED LITERATURE

- Design of information
 Kolotilin '18, Kolotilin et al. '22, Doval&Skreta '23, ...
 and performance pay:
 Georgiadis&Szentes '20, Hoffmann et al. '21, Li&Yang '20
- Implicit incentives and information design: Ely&Szydlowski '20, Hörner&Lambert '21, Smolin '20
- More information can increase the cost of incentives: Fang&Moscarini '05, Jehiel '14, Meyer&Vickers '97, Nafziger '09

General Model

THE MODEL

- Two time periods $t \in \{1, 2\}$, common discount factor δ .
- Agent
 - risk averse with utility index u and reservation utility U
 - observable but nonverifiable effort $e_t \in \{0, 1\}$ at cost $c \cdot e$
 - · time-invariant ability $heta \in \Theta = \{ heta_{\tt L}, heta_{\tt H}\}$ (this talk), with prior μ_0
 - · realizes output $y \in Y \subset \mathbb{R}$, compact, according to $F(\cdot|e, \theta)$, mutually a.c.
- Principal
 - risk neutral
 - · implements high effort

INFORMATION, CONTRACTS AND COMMITMENT

- At the beginning of each period, the principal commits to a contract (S, p, w) consisting of
 - a signal structure $S, p(s|y_t)$, and
 - \cdot wages w as a function the signal.

INFORMATION, CONTRACTS AND COMMITMENT

- At the beginning of each period, the principal commits to a contract (S, p, w) consisting of
 - a signal structure $S, p(s|y_t)$, and
 - · wages w as a function the signal.
- · Agent observes the contract and makes participation and effort decision

INFORMATION, CONTRACTS AND COMMITMENT

- At the beginning of each period, the principal commits to a contract (S, p, w) consisting of
 - a signal structure $S, p(s|y_t)$, and
 - · wages w as a function the signal.
- · Agent observes the contract and makes participation and effort decision
- Output is not observed
- · Principal and agent observe the signal realization, wages, and effort
- Update beliefs to $\mu(s)$

• Output is high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$ heta = heta_{ extsf{L}}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a+b+\Delta a+\Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$ Log-Submodular: $\frac{\Delta b}{b} + \frac{\Delta a}{1-a} < 0$

• Output is high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$ heta = heta_{ extsf{L}}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a + b + \Delta a + \Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$ Log-Submodular: $\frac{\Delta b}{b} + \frac{\Delta a}{1-a} < 0$

• Output is high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$ heta = heta_{ extsf{L}}$	а	a + b
$ heta= heta_{H}$	$a + \Delta a$	$a+b+\Delta a+\Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

- Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$ Log-Submodular: $\frac{\Delta b}{b} + \frac{\Delta a}{1-a} < 0$

• Output is high or low, $y_t \in \{y_L, y_H\}$, high with probability

effort type	$e_t = 0$	$e_t = 1$
$\theta = \theta_{L}$	а	a + b
$ heta = heta_{H}$	$a + \Delta a$	$a+b+\Delta a+\Delta b$

• Effort is productive: $b \ge 0$

• Ability is productive: $\Delta a \geq 0$

• Complementarities: Δb Log-Supermodular: $\frac{\Delta b}{b} > \frac{\Delta a}{a}$ Log-Submodular: $\frac{\Delta b}{b} + \frac{\Delta a}{1-a} < 0$

THE CONTRACTING PROBLEM

 $\Pi_1 = \max_{S \cap W} \iint (y - w(S) + \delta \Pi_2(\mu(S))) dp(S|y) dF(y|1, \mu_0)$ irst Period (1) s.t. $\iint u(w(s)) dp(s|y) dF(y|1, \mu_0) - c \ge U$ (P_1) $\iint u(w(s)) \, \mathrm{d}p(s|y) \, \mathrm{d}F(y|1, \mu_0) - c \ge \iint u(w(s)) \, \mathrm{d}p(s|y) \, \mathrm{d}F(y|0, \mu_0)$ (IC_1) $\Pi_2(\mu) = \max_{S \ D \ W} \iint (y - w(s)) \ dp(s|y) \ dF(y|1, \mu)$ Second Perioc (2)s.t. $\iint u(w(s)) dp(s|y) dF(y|1, \mu) - c \ge U$ (P_2) $\iint u(w(s)) \, \mathrm{d}p(s|y) \, \mathrm{d}F(y|1,\mu) - c \ge \iint u(w(s)) \, \mathrm{d}p(s|y) \, \mathrm{d}F(y|0,\mu)$

(IC₂)

2nd Period and Continuation Value

THE FINAL PERIOD

- · Pure incentive problem, no motive to shape learning
- · Classic result:

Proposition

The optimal evaluation in the final period is fully informative.

THE FINAL PERIOD

- · Pure incentive problem, no motive to shape learning
- · Classic result:

Proposition

The optimal evaluation in the final period is fully informative.

$$\int \Pi_2(\mu) \, \mathrm{d} m(\mu)$$

- What determines the shape of the continuation value?
- Easy to compute, but hard to characterize in general.
- Important special case: binary

THE BINARY CASE: THE IMPACT OF INFORMATION

 $\boldsymbol{\cdot}$ What is the impact of more information about the agent's type?

THE BINARY CASE: THE IMPACT OF INFORMATION

- What is the impact of more information about the agent's type?
 - 1. Principal can tailor the contract to the agent's ability
 - Filter out the impact of ability: contract less risky
 - Increases continuation profit
 - 2. Agent has more information when choosing effort
 - More expensive to satisfy incentive compatibility
 - Decreases continuation profit

THE BINARY CASE: THE IMPACT OF INFORMATION

- · What is the impact of more information about the agent's type?
 - 1. Principal can tailor the contract to the agent's ability
 - Filter out the impact of ability: contract less risky
 - Increases continuation profit
 - 2. Agent has more information when choosing effort
 - More expensive to satisfy incentive compatibility
 - · Decreases continuation profit

....

scales with Δb : interaction of effort and ability

THE BINARY CASE: THE IMPACT OF AGENT LEARNING

· Second-period IC:

$$u(w_H) - u(w_L) = \frac{c}{b + \mu \Delta b}$$

THE BINARY CASE: THE IMPACT OF AGENT LEARNING

· Second-period IC:

$$u(w_H) - u(w_L) = \frac{c}{b + \mu \Delta b}$$

- · Required bonus inversely proportional to a linear function of beliefs
 - Agent with high impact $(b + \mu \Delta b)$ cheaper to motivate
 - · Uncertain agent is cheaper to motivate
 - · Given change in belief: larger effect at low impact

THE BINARY CASE: LEARNING IS COSTLY

Proposition

In the binary case (under a bound on u^{-1} "):

If the technology is log-supermodular, Π_2 is strictly concave and it is more concave at low posteriors, $\Pi_2'''>0$.

If the technology is log-submodular, Π_2 is strictly concave and it is more concave at high posteriors, $\Pi_2''' < 0$.

- Strong interaction of effort and ability: Agent learning dominates
- · Principal has an incentive to conceal information
- · Avoid agents who think they have no impact: pessimism and complacency

The Optimal Evaluation Structure

SOLVING THE FULL PROBLEM

- · First period: Incentives and learning
 - · Incentives: More informative evaluation decreases agency cost this period
 - \cdot Learning: More informative evaluation $\it may\ increase$ agency cost $\it next\ period$

SOLVING THE FULL PROBLEM

- First period: Incentives and learning
 - · Incentives: More informative evaluation decreases agency cost this period
 - · Learning: More informative evaluation may increase agency cost next period
- Transform problem to an information design problem, with:
 - Endogenous payoffs (wages are designed)
 - Additional constraints (participation and incentive compatibility)
- Maintained assumptions:
 - · MLRP
 - no incentives at infinity: $\frac{u^{-1}(x)}{x} \to \infty$ as $x \to \infty$

POSTERIOR SPACE

Proposition (Linear Distribution Function)

Suppose that the distribution over output $\mathit{F}(\cdot|e,\mu) \in \Delta \mathit{Y}$ can be decomposed as

$$F(\cdot|e,\mu) = F(\cdot|0,0) + (\Delta a\mu + e(b + \Delta b\mu)) \Delta F(\cdot).$$

Then, there is a bijection between posteriors and scores, $x : \mu \mapsto \frac{1}{\mu_0(1-\mu_0)} \frac{b+\Delta b\mu_0}{\Delta a+\Delta b} (\mu-\mu_0)$

POSTERIOR SPACE

Proposition (Linear Distribution Function)

Suppose that the distribution over output $F(\cdot|e,\mu) \in \Delta Y$ can be decomposed as

$$F(\cdot|e,\mu) = F(\cdot|0,0) + (\Delta a\mu + e(b + \Delta b\mu)) \Delta F(\cdot).$$

Then, there is a bijection between posteriors and scores, $x: \mu \mapsto \frac{1}{\mu_0(1-\mu_0)} \frac{b+\Delta b\mu_0}{\Delta a+\Delta b} (\mu-\mu_0)$

- Rewrite the program as a choice of $m \in \Delta\Delta\Theta$
- \cdot \bar{m} : distribution of posterior with fully informative evaluation

$$\Pi_{1} = \max_{w,m \in \Delta[0,1]} \mathbb{E}_{m} \left[y - w(\mu) + \delta \Pi_{2}(\mu) \right]$$
 (3)

s.t.
$$\mathbb{E}_m[u(w(\mu))] - c \ge U$$
 (P₁)

$$\mathbb{E}_{m}\left[x(\mu)u(w(\mu))\right] \ge c \tag{IC}_{1}$$

$$m \leq_{\mathsf{MPS}} \bar{m}$$
 (BP)

THE OPTIMAL CONTRACT

• An evaluation features **lower censorship** if realizations below a cutoff are pooled and those above the cutoff fully revealed.

Theorem

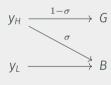
Suppose that F satisfies the LCDF condition and let $v = u^{-1}$.

- If $\Pi_2'''>0$ and \mathbf{v}'' is decreasing, the optimal evaluation structure features lower censorship.
- If $\Pi_2''' < 0$ and \mathbf{v}'' is increasing, the optimal evaluation structure features upper censorship.

THE OPTIMAL CONTRACT: BINARY CASE

Corollary

In the binary case with log-complements, the optimal evaluation is binary ($S = \{G, B\}$) and tough. The optimal contract consists of



- a good evaluation and associated high wage, only if output was good,
- a bad evaluation and associated low wage: always after output was bad, with prob. σ after output was good.

PROOF OF THEOREM 1: OUTLINE

$$\mathcal{L}(w, m; \underbrace{(\lambda_P, \lambda_{IC})}_{\lambda})$$

Lagrangian of the contracting problem including (P) and (IC)

Information design on the partially maximized Lagrangian (Georgiadis&Szentes '20)

PROOF OF THEOREM 1: OUTLINE

$$\mathcal{L}(w, m; \lambda)$$

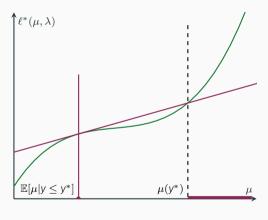
Optimal Wages given m, λ : Standard moral hazard problem $\mapsto w^*(\hat{\mu}; \lambda)$ objective is an expectation given λ : $\mathcal{L}(w^*(\hat{\mu}; \lambda), m; \lambda) = \int \ell^*(\hat{\mu}; \lambda) m(\hat{\mu}) \, \mathrm{d}\hat{\mu}$

Information Design given λ : Shape of $\ell^* \mapsto m^*(\hat{\mu}; \lambda)$

$$\frac{\partial^3}{\partial \hat{\mu}^3} \ell^*(\hat{\mu}; \lambda) = \lambda_{\text{IC}}^3[\cdot] \rho''(\lambda_{\text{P}} + \lambda_{\text{IC}}[\cdot](\hat{\mu} - \mu)) + \delta \Pi_2'''(\hat{\mu})$$

Duality: \mapsto Solution exists and features of m^* hold in the optimal contract

INFORMATION DESIGN



- Unconstrained information design with $\ell^*(\mu;\lambda)$
- New difficulty: m̄ with atoms and gaps in support
 ⇒ generalize KMZ '22

Theorem 2

Suppose V'''>0. Then, generalized lower censorship is the essentially unique solution to $\max_{H\leq_{MPSF}}\int_0^1 V(s) \, \mathrm{d}H(s)$.

$$\cdot \ \tfrac{\partial^3}{\partial \hat{\mu}^3} \ell^*(\hat{\mu}; \lambda) = \lambda_{\text{IC}}^3[\cdot] \rho''(\lambda_{\text{P}} + \lambda_{\text{IC}}[\cdot](\hat{\mu} - \mu)) + \delta \Pi_2'''(\hat{\mu})$$

- Convex \implies m fully informative
- Concave-convex ⇒ lower-censorship
- This for given λ , but $\lambda(m)$!

OPTIMAL EVALUATION: DISCUSSION

- Noisy evaluation can be optimal
 - Preserve agent's uncertainty
- · Complements:
 - · Base wage + substantial, tailored bonuses for high performance / tough evaluation
 - Binary case: "Drill-sergeant mentality" is part of optimal organization design avoid unwarranted praise, embrace unwarranted reprimand
- Substitutes:
 - · Capped performance pay (rich Y) / lenient evaluation
- Prevent very low expected impact of effort
 - · Costly to motivate, change in posterior has a large effect
- · Result of joint design of evaluation and wages

Extensions

EXTENSIONS

- Principal can acquire private information
 - \cdot Principal-preferred outcome: equivalent to optimal contract
 - \cdot EQ if observable information choice, sometimes passive beliefs

EXTENSIONS -

- Principal can acquire private information
 - · Principal-preferred outcome: equivalent to optimal contract
 - EQ if observable information choice, sometimes passive beliefs
- Effort not observable (binary case)
 - · Potentially 3rd, uninformative, evaluation
 - Tough and binary structure preserved conditional on informative evaluation

- Principal can acquire private information
 - · Principal-preferred outcome: equivalent to optimal contract
 - EQ if observable information choice, sometimes passive beliefs
- Effort not observable (binary case)
 - · Potentially 3rd, uninformative, evaluation
 - · Tough and binary structure preserved conditional on informative evaluation
- Long-run commitment
 - · Robust to commitment to continuation value, observed by the agent
 - Full-commitment difficult: belief-manipulation & belief-dependent costs of delay

- Principal can acquire private information
 - · Principal-preferred outcome: equivalent to optimal contract
 - EQ if observable information choice, sometimes passive beliefs
- Effort not observable (binary case)
 - · Potentially 3rd, uninformative, evaluation
 - · Tough and binary structure preserved conditional on informative evaluation
- · Long-run commitment
 - · Robust to commitment to continuation value, observed by the agent
 - · Full-commitment difficult: belief-manipulation & belief-dependent costs of delay
- Many periods
 - · Not analytically tractable: lack of control over shape of continuation value
 - · Numerically: Same structure within period; noisier evaluation early in the relationship

CONCLUSION

- Outcome of performance evaluation is a crucial source of information
 - · about effort: Incentives
 - · about the agent's ability: Confidence

CONCLUSION

- · Outcome of performance evaluation is a crucial source of information
 - · about effort: Incentives
 - · about the agent's ability: Confidence
- · Tension between those two channels (learning about the importance of effort)
 - · As much information as possible about effort
 - Often as little information as possible about ability

- · Outcome of performance evaluation is a crucial source of information
 - · about effort: Incentives
 - · about the agent's ability: Confidence
- Tension between those two channels (learning about the importance of effort)
 - · As much information as possible about effort
 - · Often as little information as possible about ability
- Optimal Performance Evaluation
 - · Noisy, even though wages could condition on true y
 - Strong complementarity: avoid very low posterior beliefs (tough/lower-censorship)

OUTLOOK

- · Preference across given information sources: conduct, not results!
 - · Salary differences between workers: mostly driven by types, so should be concealed
- · Affects task design: Harder/easier to keep agents motivated
- Career Concerns: informationally opposite forces
 - information about effort and ability inseparably intertwined
 - · here: source of friction; CC: source of incentives

