Food Security Risk and Structural Transformation

Chaoran Chen York University Trevor Tombe
University of Calgary

Xiaodong Zhu
University of Hong Kong

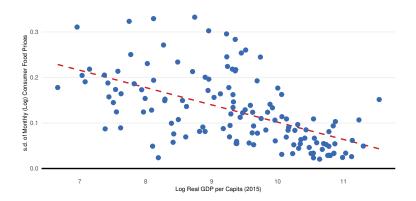
San Francisco January 5, 2025

Introduction

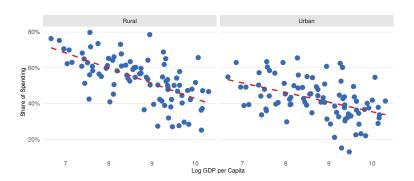
- Economic development is accompanied by structural change and rural-urban migration
- Yet, in less developed countries this process has been slow
- ...despite the large gap in labor productivity and wages between agriculture and non-agriculture
- Why aren't more people moving out of agriculture and into cities in less developed countries?
- Literature has offered many useful insights on structural change
- ► This paper: food security risk hinders structural change

What We Do

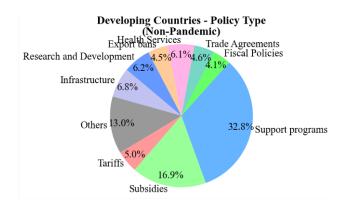
- Build a quantitative framework
- Two key ingredients of the framework:
 - Non-homothetic preferences: close to subsistence → risk aversion ↑
 - Heterogeneity among households in risk exposure
 - agr price volatility: income risk to rural households Vs. expenditure risk to urban households
- Competitive equilibrium is not efficient: gains from trade/insurance between households
- Policy implications: agriculture subsidy or migration barriers can be welfare improving


What We Find

- Calibrate our two-country model to a low-income country and ROW
- An insurance contract between rural and urban households
 - improves welfare by dampening agricultural consumption volatility
 - implies up to 6 p.p. higher agricultural employment share
 - lowers GDP and widens agricultural productivity gap, despite welfare gain
 - manifests itself as a barrier to agricultural good trade


Literature

- Large literature on agricultural productivity and structural change
 - Gollin-Parente-Rogerson '02, '05, '07, Restuccia-Yang-Zhu '08, Adamopoulos-Restuccia '14, Gollin-Lagakos-Waugh '14
 - None of these studies focus on the uncertainty on food price volatility, with the exception of Adamopoulos-Leibovici '24
- Internal migration and agricultural productivity gap
 - ▶ Ngai et al. '17, Lagakos et al. '20, Adamopoulos et al. '24, Gai et al. '24


Fact 1: Poor countries have higher volatility in food prices than other goods

Fact 2: Poor countries have higher expenditure share on food

Fact 3: Food security policies focus on subsidies

Data: FAO FAPDA Policy Database

A Model of Food Security Risk and Labor Allocation

- ▶ Open-economy structural change model (Sposi et al. or Caselli et al.)
- ▶ Two-country $i \in \{1, 2\}$, two sectors $k \in \{a, n\}$
- ► Rural household members make sectoral choices (Roy model)
- Urban households members only work in non-agriculture
- ▶ Both agr and non-agr goods tradable

The Rural Household's Problem

Non-homothetic CES utility (Comin et al.):

$$u(C) = \frac{C^{1-\sigma}-1}{1-\sigma},$$

$$\phi^{\frac{1}{\varepsilon}}C^{\frac{(1-\varepsilon)\mu_a}{\varepsilon}}C^{\frac{\varepsilon-1}{\varepsilon}}_a + (1-\phi)^{\frac{1}{\varepsilon}}C^{\frac{(1-\varepsilon)\mu_n}{\varepsilon}}C^{\frac{\varepsilon-1}{\varepsilon}}_n = 1$$

subject to budget constraint

$$P_aC_a+P_nC_n=e$$

▶ Rural household chooses consumption after prices are realized

The Rural Household's Problem

Solution:

$$\frac{C_a}{C_n} = \frac{\phi}{1 - \phi} \left(\frac{P_a}{P_n}\right)^{-\varepsilon} C^{(1 - \varepsilon)(\mu_a - \mu_n)}$$

- features both income effect and price effect ($\mu_a < \mu_n, \varepsilon > 0$)
- relative risk aversion $\in [1 (1 \sigma)/\mu_n, 1 (1 \sigma)/\mu_a]$, decreases in C
- ▶ Denote the indirect utility as $V(e, P_a, P_n)$

The Rural Household's Problem

- ▶ Household members are heterogeneous in abilities (z_a, z_n)
 - ightharpoonup Drawn from a Frechet distribution with dispersion parameter κ
 - ▶ Wage income associated with agr (nonagr): $w_a z_a$ ($w_n z_n$)
- Allocate members into sectors by comparative advantage before prices/wages are realized
 - Choose agricultural employment share to maximize expected utility
- ▶ Without uncertainty: a member chooses agriculture if $z_a/z_n > w_n/w_a$
- ▶ With uncertainty: the cut-off may be higher or lower than w_n/w_a

Urban Household's Problem

- No access to agricultural production
- ► Members are homogeneous in ability with income $w_n \bar{z}$
- Utility function is identical to that of the rural household

Production and Trade

- ► A continuum of goods in agriculture (a) and non-agriculture (n)
- ▶ Good $z \in [0, 1]$ in sector $k \in \{a, n\}$ of country i is produced by

$$Y_{ik}(z) = A_{ik}(z)L_{ik}(z)^{\beta_k} \left[M_{ika}^{\gamma_{ka}}(z)M_{ikn}^{\gamma_{kn}}(z)\right]^{1-\beta_k},$$

- ▶ The mean of the distribution of $A_{ik}(z)$ is volatile
- ▶ Both goods tradable but subject to iceberg trade costs $\tau_{ijk} \geqslant 1$
- ▶ The composite good in each sector *k* is an aggregator of varieties:

$$Q_{ik}=\int_0^1\left(q_{ik}(z)^{rac{\eta-1}{\eta}}dz
ight)^{rac{\eta}{\eta-1}}$$

▶ Trade balance: $P_{ia}Q_{ia}\pi_{ija} + P_{in}Q_{in}\pi_{ijn} = \pi_{jia}P_{ja}Q_{ja} + \pi_{jin}P_{jn}Q_{jn}$

Risk Associated with Agricultural Price Volatility

- Rural and urban households have different risk exposures
- Consider a simple example:
 - $ightharpoonup P_a \propto w_a$, volatility σ_a
 - $ightharpoonup P_n \propto w_n$, constant
- Urban households face expenditure risk arising from P_a
 - σ_a ↑ ⇒ hopes the rural households to supply more labor to agriculture to dampen the volatility
- Rural households face income risk arising from w_a
 - $\sigma_a \uparrow \Rightarrow$ chooses a smaller agricultural employment share

On the Efficiency

Social welfare function:

$$(1 - \lambda)N\mathbb{E}[U(C)] + \lambda N^{\text{urban}}\mathbb{E}[U(C^{\text{urban}})]$$

- Efficiency requires equating the marginal utility of consumption between households
- Structural change models with rural and urban households are generally not efficient for two reasons
 - income levels differ between rural and urban HH (common in literature)
 - different risks (novel in this paper)
- Potential social surplus from policies

Calibration

- ▶ We calibrate no-insurance economy to data moments in 2018
- Country i as "average" low-income and country j as ROW
- For simplicity, assume all uncertainty arises from T_{ia} , the location parameter of the Frechet distribution of $A_{ia}(z)$, perfectly correlated between two countries

Calibration: Parameters Common Across Countries

- 9 parameters governing production and trade
 - ▶ Trade elasticities $\theta_a = \theta_n = 4$
 - ▶ EOS across varieties within each industry $\eta = 4$
 - ▶ Labor shares: $\beta_a = \beta_n = 0.33$
 - Intermediate shares

$$\begin{bmatrix} \gamma_{aa} & \gamma_{an} \\ \gamma_{na} & \gamma_{nn} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.4 \\ 0 & 0 \end{bmatrix}$$

- 5 parameters on preferences
 - $\phi = 0.350, \, \mu_a = 1, \, \mu_n = 3.678, \, \text{and} \, \varepsilon = 0.197 \, \text{from Yao-Zhu '21}$
 - We set $\sigma = 4$
 - implied relative risk aversion ranging from 1.8 to 4
 - We set $\kappa = 3$
 - implied migration elasticity around 1.6 (risk consideration lowers the elasticity)

Calibration: Country-Specific Parameters

- $\{N_1, N_1^u, N_2, N_2^u\} = \{0.673, 0.327, 3.797, 7.296\}$ to match population shares
- $T_{1a} = T_{1n} = -2.845$ to match home agr. emp. share
- ▶ $\{T_{2a}, T_{2n}\} = \{0.558, -0.312\}$ to match foreign agr. emp. share and the ratio of GDP per capita
- $ightharpoonup \sigma_{1a} = \sigma_{2a} = 0.930$ to match the price volatility of agr good
- Trade costs chosen to match trade shares

$$\begin{bmatrix} \tau_{11a} & \tau_{12a} \\ \tau_{21a} & \tau_{22a} \end{bmatrix} = \begin{bmatrix} 1 & 0.161 \\ 0.630 & 1 \end{bmatrix}, \quad \begin{bmatrix} \tau_{11n} & \tau_{12n} \\ \tau_{21n} & \tau_{22n} \end{bmatrix} = \begin{bmatrix} 1 & 0.311 \\ 0.311 & 1 \end{bmatrix}$$

Quantitative Analysis: Food Security Policy

- Allowing for Arrow-Debreu securities to be traded among households
 - addresses the inefficiency from risk perfectly
 - does not address the inefficiency from level differences (no net transfer)
 - ▶ A-D economy can be the first best (with $\lambda = 0.94$ requiring no net transfer)
- Real-world policies subsidizing agricultural employment to improve food security may also be welfare-improving
 - ▶ The urban household pays τ_1 (flat) per unit of agricultural labor to the rural household
 - ▶ The rural household is subject to an income tax of rate τ_2 , tax revenue rebated to the urban household
 - ightharpoonup does not directly affect sectoral choice, but reallocates surplus
 - ▶ A stand-in government chooses τ_1 and τ_2 to maximize social welfare

	No risk	Baseline			nsurance	
			A-D	Urban bias	Rural bias	Utilitarian
				$\lambda = 1$, IR	$\lambda = 0$, IR	$\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		-				
Agr. emp. share (%)		46.3				
Real GDP (Δ, %)		_				
Real agr. productivity $(\Delta, \%)$		_				
Nominal APG		2.40				
Agr. import (% total import)		12.8				

<u> </u>	No risk	Baseline				
			A-D	Urban bias $\lambda = 1$, IR	Rural bias $\lambda = 0$, IR	Utilitarian $\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		-				
Agr. emp. share (%)	44.4	46.3				
Real GDP $(\Delta, \%)$ Real agr. productivity $(\Delta, \%)$ Nominal APG		- - 2.40				
Agr. import (% total import)		12.8				

	No risk	Baseline	A-D	With insurance A-D Urban bias Rural bias		
			ΛD	$\lambda = 1$, IR	$\lambda = 0$, IR	Utilitarian $\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		-	0			
Agr. emp. share (%)		46.3	48.9			
Real GDP (Δ, %)		_				
Real agr. productivity (Δ , %) Nominal APG		2.40				
Agr. import (% total import)		12.8				

	No risk	sk Baseline With insurance					
			A-D	Urban bias $\lambda = 1$, IR	Rural bias $\lambda = 0$, IR	Utilitarian $\lambda = 0.5$	
Subsidy rate $(\tau_1/w_a, \%)$		-	0				
Agr. emp. share (%)		46.3	48.9				
Real GDP $(\Delta, \%)$ Real agr. productivity $(\Delta, \%)$ Nominal APG		_ _ 2.40	-0.6 -4.2 2.66				
Agr. import (% total import)		12.8					

	No risk	Baseline	A-D	With i Urban bias $\lambda = 1$, IR	nsurance Rural bias $\lambda = 0$, IR	Utilitarian $\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		_	0	., .,	-, -,	
Agr. emp. share (%)		46.3	48.9			
Real GDP $(\Delta, \%)$ Real agr. productivity $(\Delta, \%)$ Nominal APG		_ _ 2.40				
Agr. import (% total import)		12.8	11.6			

	No risk	Baseline	With insurance			
			A-D	Urban bias $\lambda = 1$, IR	Rural bias $\lambda = 0$, IR	Utilitarian $\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		-	0	33.2		
Agr. emp. share (%)		46.3	48.9	52.8		
Real GDP (Δ , %) Real agr. productivity (Δ , %) Nominal APG		- - 2.40	-0.6 -4.2 2.66	-1.5 -9.6 3.10		
Agr. import (% total import)		12.8	11.6	10.3		

	No risk	Baseline	A-D	Urban bias	nsurance Rural bias	Utilitarian
				$\lambda = 1$, IR	$\lambda = 0$, IR	$\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		-	0	33.2	25.6	
Agr. emp. share (%)		46.3	48.9	52.8	53.0	
Real GDP $(\Delta, \%)$ Real agr. productivity $(\Delta, \%)$ Nominal APG		- - 2.40	-0.6 -4.2 2.66	-1.5 -9.6 3.10	−1.5 −9.7 3.11	
Agr. import (% total import)		12.8	11.6	10.3	10.3	

	No risk	Baseline	A-D	With i Urban bias $\lambda=1$, IR	nsurance Rural bias $\lambda=0$, IR	Utilitarian $\lambda = 0.5$
Subsidy rate $(\tau_1/w_a, \%)$		-	0	33.2	25.6	108.7
Agr. emp. share (%)		46.3	48.9	52.8	53.0	62.3
Real GDP (Δ , %) Real agr. productivity (Δ , %) Nominal APG		- - 2.40	-0.6 -4.2 2.66	-1.5 -9.6 3.10	-1.5 -9.7 3.11	-4.1 -18.2 4.20
Agr. import (% total import)		12.8	11.6	10.3	10.3	9.2

	No risk	Baseline	With insurance				
			A-D	Urban bias $\lambda = 1$, IR	Rural bias $\lambda = 0$, IR	Utilitarian $\lambda=0.5$	
Subsidy rate $(\tau_1/w_a, \%)$	-	-	0	33.2	25.6	108.7	
Agr. emp. share (%)		46.3	48.9	52.8	53.0	62.3	
Real GDP $(\Delta, \%)$ Real agr. productivity $(\Delta, \%)$ Nominal APG	-1.8 -5.0 2.34	- - 2.40	-0.6 -4.2 2.66	-1.5 -9.6 3.10	-1.5 -9.7 3.11	-4.1 -18.2 4.20	
Agr. import (% total import)	13.6	12.8	11.6	10.3	10.3	9.2	

Conclusion

- Larger food price volatility in poor countries
 - Another source of barrier to rural-urban migration
- ➤ We provide a framework to examine the role of food security, where the competitive equilibrium is not efficient due to different risk exposures between rural and urban households
- ► An insurance contract between rural and urban households mitigates the risk and improves welfare, but...
 - reduces GDP and enlarges the agricultural productivity gap
 - manifests itself as an implicit barrier to agricultural good trade