Immigrants, Imports, and Welfare: Evidence from Household Purchase Data

Brett McCully¹ (r) Torsten Jaccard² (r) Christoph Albert¹

¹Collegio Carlo Alberto

²Vancouver School of Economics

January 4, 2025

Immigrants, Real Wages, and Trade

- Political debates, and much of academic literature, tend to focus on nominal wage effects of immigration
 - ▶ But policy should be guided by the real wage effects of immigrants on native households

Immigrants, Real Wages, and Trade

- Political debates, and much of academic literature, tend to focus on nominal wage effects of immigration
 - ▶ But policy should be guided by the real wage effects of immigrants on native households
- Immigrants may affect consumption opportunities by changing:
 - ▶ the price of existing goods (Lach 2007; Cortes 2008; Zachariadis 2012)
 - the availability of new imported varieties

Immigrants, Real Wages, and Trade

- Political debates, and much of academic literature, tend to focus on nominal wage effects of immigration
 - ▶ But policy should be guided by the real wage effects of immigrants on native households
- Immigrants may affect consumption opportunities by changing:
 - ▶ the price of existing goods (Lach 2007; Cortes 2008; Zachariadis 2012)
 - the availability of new imported varieties
- But does immigrant-induced trade make native households better off?
 - If increased import expenditure simply reflects immigrant preferences, welfare effects for natives should be mediated

- This paper: Link household scanner data to barcode-specific origin country for >600k barcodes
 - ightharpoonup + country of birth for \sim 20k households
 - ► "Reduced-form" evidence for both immigrant preferences and spillover channel + structural model for counterfactual analysis

- This paper: Link household scanner data to barcode-specific origin country for >600k barcodes
 - ightharpoonup + country of birth for \sim 20k households
 - ► "Reduced-form" evidence for both immigrant preferences and spillover channel + structural model for counterfactual analysis
- Counterfactual exercise 1: turn immigrants into natives
 - ► Aggregate grocery import expenditure ↓ by 7.7%
 - ▶ No effect on nonimmigrants grocery consumption welfare

- This paper: Link household scanner data to barcode-specific origin country for >600k barcodes
 - ightharpoonup + country of birth for \sim 20k households
 - ► "Reduced-form" evidence for both immigrant preferences and spillover channel + structural model for counterfactual analysis
- Counterfactual exercise 1: turn immigrants into natives
 - ► Aggregate grocery import expenditure ↓ by 7.7%
 - ▶ No effect on nonimmigrants grocery consumption welfare
- Counterfactual exercise 2: remove immigrants
 - ▶ Aggregate grocery import expenditure ↓ by 26%
 - ▶ Welfare of natives due to groceries ↓ by 1%
 - ★ High-income, urban households benefit disproportionately

- This paper: Link household scanner data to barcode-specific origin country for >600k barcodes
 - ightharpoonup + country of birth for \sim 20k households
 - ► "Reduced-form" evidence for both immigrant preferences and spillover channel + structural model for counterfactual analysis
- Counterfactual exercise 1: turn immigrants into natives
 - ► Aggregate grocery import expenditure ↓ by 7.7%
 - ▶ No effect on nonimmigrants grocery consumption welfare
- Counterfactual exercise 2: remove immigrants
 - ▶ Aggregate grocery import expenditure ↓ by 26%
 - ▶ Welfare of natives due to groceries ↓ by 1%
 - * High-income, urban households benefit disproportionately
- Counterfactual exercise 3: rise in variable trade costs
 - welfare cost 25% higher for immigrants

Data

- Nielsen Homescanner dataset
 - ▶ Rotating panel of ~50k US households with detailed socio-demographic information
 - ▶ Date, barcode, and price of each purchased consumer packaged good

- Nielsen Homescanner dataset
 - ightharpoonup Rotating panel of \sim 50k US households with detailed socio-demographic information
 - ▶ Date, barcode, and price of each purchased consumer packaged good
 - Supplement with 2008 "Tell Me More About You" Survey
 - * Asks respondents place of birth
 - ★ ~20k respondents survive to our sample period

- Nielsen Homescanner dataset
 - ightharpoonup Rotating panel of \sim 50k US households with detailed socio-demographic information
 - ▶ Date, barcode, and price of each purchased consumer packaged good
 - Supplement with 2008 "Tell Me More About You" Survey
 - * Asks respondents place of birth
 - ★ ~20k respondents survive to our sample period
- Barcode-specific information from Label Insight Inc.
 - ► Text information from packaging is extracted via machine learning
 - ▶ Imported goods and origin county identified from statements like "Made in ..."

- Nielsen Homescanner dataset
 - ▶ Rotating panel of ~50k US households with detailed socio-demographic information
 - ▶ Date, barcode, and price of each purchased consumer packaged good
 - Supplement with 2008 "Tell Me More About You" Survey
 - * Asks respondents place of birth
 - ★ ~20k respondents survive to our sample period
- Barcode-specific information from Label Insight Inc.
 - ► Text information from packaging is extracted via machine learning
 - ▶ Imported goods and origin county identified from statements like "Made in ..."
- Merged data:
 - \triangleright Covers \sim 20% of consumer expenditure on tradeables
 - ► Construct single cross-section using pooled data from 2014-2016

General Gravity Model

General Gravity Model

Goal: separate immigrant preferences from spillovers in the effect of immigrants on imports

• Derive estimating equation from general gravity model at household-level

General Gravity Model

Goal: separate immigrant preferences from spillovers in the effect of immigrants on imports

• Derive estimating equation from general gravity model at household-level

Expenditure by household h on goods from origin country o, X_{oh} :

$$X_{oh} = \alpha_o \left(\frac{X_h}{\Phi_h}\right) \phi_{oc}^B z_{oh}$$

- X_h : Grocery expenditure by household h
- α_o : size, cost of production, trade policy vis-a-vis origin o
- Φ_h : Household h price index
- \bullet ϕ_{oc}^B : trade barriers between producers in o and consumers in county c
- z_{oh} : Demand shifter for goods from o by household h

General Gravity Estimating Equation: Import Supply

Assume $\phi_{us,c}^B=1$ and $z_{us,h}=1$ for all households h and counties c

• Define $\tilde{x}_o = x_o/x_{us}$ for any variable x

General gravity equation can be expressed as:

$$\tilde{X}_{oh} = \tilde{\alpha}_o \phi^B_{oc} z_{oh}$$

General Gravity Estimating Equation: Import Supply

Assume $\phi_{us,c}^B = 1$ and $z_{us,h} = 1$ for all households h and counties c

• Define $\tilde{x}_o = x_o/x_{us}$ for any variable x

General gravity equation can be expressed as:

$$\tilde{X}_{oh} = \tilde{\alpha}_o \phi_{oc}^B z_{oh}$$

• Allow immigrant population share l_{oc} and distance vector d_{oc} to affect trade costs:

$$\phi_{oc}^{B} = \exp\left(\rho d_{oc} + \beta^{b} I_{oc} + \eta_{oc}^{b}\right)$$

General Gravity Estimating Equation: Import Demand

In paramaterizing demand shifter z_{oh} , we fully leverage household demographic information:

$$z_{oh} = \exp(\beta^z I_{oc}) \exp(\delta J_h + \zeta_1 \mathbf{1}[o(h) \neq o] + \zeta_2 \mathbf{1}[o(h) = o] + \eta_{oh}^z)$$

- β^z : average effect of immigrants on preferences \rightarrow cultural diffusion channel
- ullet J_h : vector of household characteristics (income, education, etc.) o parameter vector δ
- ζ_1 : immigrant demand-shifter for all origin countries,
- ζ_2 : immigrant demand-shifter for one's own origin country (homophily) (as in Logan & Rhode 2010 and Atkin 2016)

General Gravity Estimating Equation

Plug definitions of ϕ_{oc}^{B} and z_{oh} back into expenditure equation and take logarithm:

$$\ln \tilde{X}_{oh} = \ln \tilde{\alpha}_o + \rho d_{oc} + \beta I_{oc} + \delta J_h + \zeta_1 \mathbf{1}[o(h) \neq o] + \zeta_2 \mathbf{1}[o(h) = o] + \eta_{oh}$$

$$\beta = \beta^b + \beta^z$$
 $\eta_{oh} = \eta_{oc}^b + \eta_{oh}^z$

- ζ_1 and ζ_2 shape immigrant preference effect
- ullet captures spillover channel: immigrants affect natives' purchases of imports

General Gravity Estimating Equation

Plug definitions of ϕ_{oc}^{B} and z_{oh} back into expenditure equation and take logarithm:

$$\ln \tilde{X}_{oh} = \ln \tilde{\alpha}_o + \rho d_{oc} + \beta I_{oc} + \delta J_h + \zeta_1 \mathbf{1}[o(h) \neq o] + \zeta_2 \mathbf{1}[o(h) = o] + \eta_{oh}$$

$$\beta = \beta^b + \beta^z$$
 $\eta_{oh} = \eta_{oc}^b + \eta_{oh}^z$

- ζ_1 and ζ_2 shape immigrant preference effect
- ullet captures spillover channel: immigrants affect natives' purchases of imports
- Concern: $cov[I_{oc}, \eta_{oh}] \neq 0$
 - ▶ If immigrants sort into locations with idiosyncratically low trade costs to origin, for example, estimates of β biased upwards
 - → Use Burchardi et al. (2019) push-pull IV Detail

General Gravity Estimates

	Dependent variable: Exp. share on goods from o relative to US		
	(1)	(2)	
Immigrants/Pop. 2010	1.29***	1.15***	
	(0.22)	(0.24)	
First-stage residuals		0.18	
		(0.31)	
=1 if immigrant from anywhere	0.23***	0.23***	
	(0.030)	(0.030)	
=1 if immigrant from origin o	0.60***	0.61***	
	(0.069)	(0.071)	
N	1,461,130	1,461,130	
Country FE	\checkmark	✓	
Household controls	✓	✓	
Distance & latitude difference	\checkmark	✓	
1st-stage F-statistic		19.5	

Notes: Level of observation: household-origin. Estimator: pseudo-Poisson maximum likelihood. First-stage residual is from first-stage regression of all instruments on immigrant-population share in column 2. Weights: NielsenIQ household weights. Standard errors: clustered two-ways at household and county-country levels.

*, **, and ***: 10%, 5%, and 1% levels, respectively. Interpretations

Model + Counterfactual Exercises

Need for additional theory

Counterfactual Exercises

 $Melitz \ model \ w/ \ heterogeneous \ consumers + immigrant \ effects \ on \ trade \ costs, \ preferences$

Detail Estimation

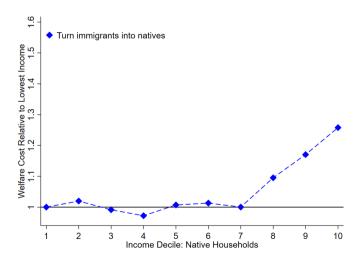
- Counterfactual 1: Turn immigrants into natives
 - ▶ ↑ fixed costs
 - ▶ ↓ preference-driven market size
 - ightharpoonup preferences for imports z_{oh} ,
 - ★ Through immigrants' preferences ζ_1 , ζ_2
- Counterfactual 2: Remove all immigrants (channels + expenditure)
 - All the above effects
 - + ↓ county-specific expenditure market size
- Counterfactual 3: Trade cost shock
 - ▶ 10% increase in variable trade costs

Counterfactual Outcomes: Removing Immigrant Effects

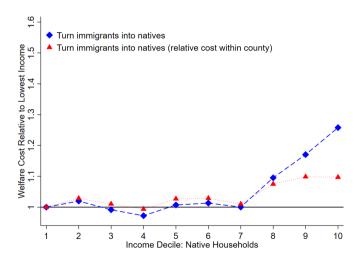
Counterfactual exercise:	(1)	(2)	(3)
	Change (%)	Change (%)	Change (\$)
	import	welfare	welfare per
	expenditure	natives	native HH
Turning immigrants into natives	-7.7	-0.039	-2.9

Counterfactual Outcomes: Removing Immigrant Effects

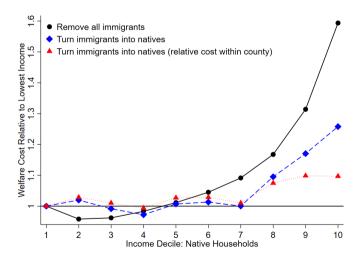
Counterfactual exercise:	(1) Change (%) import expenditure	(2) Change (%) welfare natives	(3) Change (\$) welfare per native HH
Turning immigrants into natives	-7.7	-0.039	-2.9
Shutting down			
fixed trade cost channel	-2.0	-0.035	-2.6
market size channel	-0.3	-0.005	-0.3
composition channel	-5.7	_	_
homophily channel	-1.4	_	_


Counterfactual Outcomes: Removing Immigrant Effects

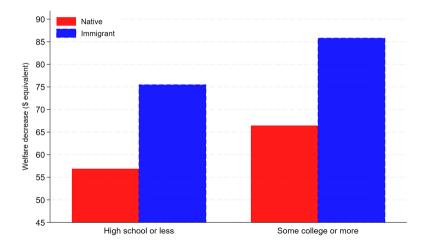
Counterfactual exercise:	(1) Change (%) import expenditure	(2) Change (%) welfare natives	(3) Change (\$) welfare per native HH
Turning immigrants into natives	-7.7	-0.039	-2.9
Shutting down			
fixed trade cost channel	-2.0	-0.035	-2.6
market size channel	-0.3	-0.005	-0.3
composition channel	-5.7	_	_
homophily channel	-1.4	-	-
Removing all immigrants	-26	-0.932	-70


Distributional Effects on Consumption of Immigrants

Immigrants benefit highest income group ${\sim}60\%$ more than low-to-middle income groups


Distributional Effects on Consumption of Immigrants

Immigrants benefit highest income group ~60% more than low-to-middle income groups


Distributional Effects on Consumption of Immigrants

Immigrants benefit highest income group \sim 60% more than low-to-middle income groups

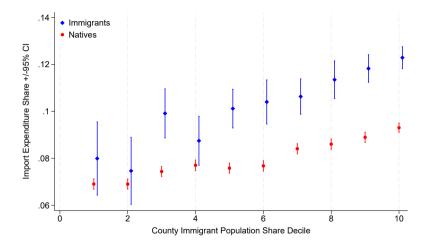
The Distributional Costs of Increased Variable Trade Costs

Figure: Relative Costs of 10%↑ in Variable Trade Costs on All Imports (\$ per hh-year)

Summary and Conclusion

- First paper to provide direct evidence for local immigrant effects on non-immigrant household consumption choices
 - Link novel data on household consumption, nativity, and product origins
 - Effect due to lower fixed cost, larger market size
 - ► Market-size channel key for welfare effects
- Immigrant preferences important in driving trade flows
- Higher-income, urban households gain disproportionately
- Immigrants disproportionately harmed by increases in trade costs

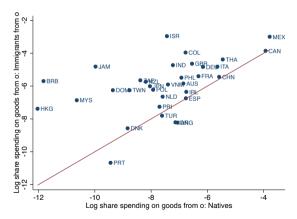
Appendix


Contribution to the Literature

- Quantify import, variety welfare effect of immigrants across households
 - ▶ Research on trade-immigrant link uses data aggregated to region/industry level Gould 1994; Head & Ries 1998; Rauch & Trindade 2002; Combes et al. 2005; Peri & Requena-Silvente 2010; Parsons & Vezina 2018; Burchardi et al. 2019
 - ▶ When using disaggregated data, often no distributional effects
 Iranzo and Peri 2009; Di Giovanni et al. 2015; Aubry et al. 2016; Bonadio 2024
- Estimate household-level effect of immigrants on price index
 - Prior work looks at aggregate/sectoral price changes Lach 2007; Cortes 2008; Zachariadis 2012
 - ▶ Distributional effects primarily focus on labor market e.g., Dustmann et al. 2013, Llull 2018
- New dimension of heterogeneity in import demand: immigrant status
 - ► Literature has focused on income/geography
 Fajgelbaum & Khandelwal 2016, Borusyak & Jaravel 2021, Auer et al. 2023; Jaccard 2024
 - ► Key result: immigrant preferences are persistent Bronnenberg et al. 2012, Atkin 2016

Immigrants Spend 34% More on Imported Goods than Natives

Stylized Fact 1



Immigrants Spend 2.2 Times More on Origin Imports

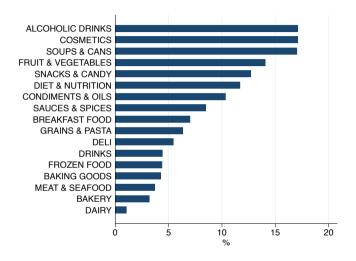
Stylized Fact 2

Figure: Consumption Homophily

Estimating β^f and β^z using Deflated \tilde{X}_{oh} and Deflated Extensive Margin

	$ ilde{X}_{oh}/\mathcal{Z}_{oh}$		$ ilde{N}_{oh}/\mathcal{Z}_{oh}$	
	(1)	(2)	(3)	(4)
Immigrants/Pop. 2010	1.50*** (0.22)	1.36*** (0.29)	1.29*** (0.12)	1.30*** (0.16)
First-stage residuals		0.18 (0.38)		-0.0089 (0.23)
N	1,461,130	1,461,130	1,461,130	1,461,130
Country FE	\checkmark	\checkmark	\checkmark	\checkmark
Distance & latitude difference	\checkmark	\checkmark	\checkmark	\checkmark
1st-stage F-statistic		20.2		20.2

Notes: The table presents regression results at the household-country level. We estimate each specification using pseudo-Poisson maximum likelihood estimation. The first-stage residual term is taken from a first-stage regression of all the instruments on the immigrant-population share in column 2. Observations are weighted using NielsenIQ household weights. Standard errors clustered two-ways at the household and origin-by-destination levels. *, ***, and **** denote statistical significance at the 10%, 5%, and 1% levels, respectively.


Estimating β^{τ} using Marginal Cost Expression

	Dependent variable: Log Average Barcode Price				
	(1)	(2)	(3)	(4)	
Immigrants/Pop. 2010	-0.041*** (0.013)	-0.017 (0.031)	-0.058*** (0.016)	-0.040 (0.044)	
N	2,261,777	2,261,777	1,601,674	1,601,674	
Barcode FE	✓	\checkmark	✓	✓	
County FE	\checkmark	✓	✓	✓	
Distance & latitude difference	✓	\checkmark	✓	✓	
1st-stage F-statistic		17.3		17.5	
Sample	All	All	¿100 Counties	¿100 Counties	

Notes: The table presents two-stage least square regression results at the barcode-county level. The instrumental variables strategy is described in Section ??. Standard errors are clustered at the barcode and country level. *, ***, and **** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Variation in Share of Expenditures on Imported Varieties Across Products

County-Level Immigrant-Import Semi-Elasticity

Plugging functional form assumptions back into \tilde{X}_{oh} and aggregating to county-level \tilde{X}_{oc} :

$$\begin{split} \frac{\partial \ln \tilde{X}_{oc}}{\partial I_{oc}} &= \frac{\partial \ln \phi_{oc}^{B}}{\partial I_{oc}} + \frac{\partial \ln \phi_{oc}^{Z}}{\partial I_{oc}} \\ &= \underbrace{\left[\beta^{\tau} + \beta^{f}\right]}_{\text{Trade cost}} + \underbrace{\left[\frac{\theta}{\sigma - 1} - 1\right] \left(\beta^{z} + \frac{\partial \ln \bar{z}_{oc}}{\partial I_{oc}}\right)}_{\text{Market size channel}} + \underbrace{\frac{\beta^{z}}{\partial I_{oc}}}_{\substack{\text{Cultural diffusion channel} \\ \text{channel}}} + \underbrace{\frac{\partial \ln \bar{z}_{oc}}{\partial I_{oc}}}_{\substack{\text{Composition channel} \\ \text{channel}}} \end{split}$$

• Two keys:

- Only first two channels are welfare-relevant for native households
- ▶ Data contains empirical moments needed to estimate each channel separately

Model Primitives: Heterogeneous Firms with Heterogeneous Consumers

Preferences: CES w/ $\sigma > 1$ and z_{oh} demand shifter identical as in general gravity.

Production: Variable trade costs $\tau_{o,c(h)}$ and fixed costs $f_{o,c(h)}$; productivity drawn from Pareto distribution with shape parameter $\theta > \sigma - 1$.

• Additional Assumptions: (1) monopolistic competition; (2) potential entrants proportional to country size

Model Primitives: Heterogeneous Firms with Heterogeneous Consumers

Preferences: CES w/ $\sigma > 1$ and z_{oh} demand shifter identical as in general gravity.

Production: Variable trade costs $\tau_{o,c(h)}$ and fixed costs $f_{o,c(h)}$; productivity drawn from Pareto distribution with shape parameter $\theta > \sigma - 1$.

- Additional Assumptions: (1) monopolistic competition; (2) potential entrants proportional to country size
- Equilibrium expenditure:

$$\tilde{X}_{oh} = \underbrace{\tilde{Y}_{o}\tilde{w}_{o}^{-\theta}}_{\tilde{\alpha}_{o}} \underbrace{(\tilde{\tau}_{o,c(h)})^{-\theta}(\tilde{f}_{o,c(h)})^{-[\frac{\theta}{\sigma-1}-1]}(z_{o,c(h)})^{[\frac{\theta}{\sigma-1}-1]}}_{\phi_{oh}^{B}} \underbrace{z_{oh}}_{\phi_{oh}^{Z}}$$

• $z_{o,c(h)}$: Average demand shifter of all households in county c

• Collect all origin-county terms into ψ_{oc} fixed effect and estimate δ , ζ_1 , and ζ_2 :

$$\ln \tilde{X}_{oh} = \psi_{oc} + \delta J_h + \zeta_1 + \zeta_2 + \eta_{oh}^z$$

① Collect all origin-county terms into ψ_{oc} fixed effect and estimate δ , ζ_1 , and ζ_2 :

$$\ln \tilde{X}_{oh} = \psi_{oc} + \delta J_h + \zeta_1 + \zeta_2 + \eta_{oh}^z$$

② Use estimates and Census data to construct household- and county-level preferences \hat{z}_{oh} and \hat{z}_{oc} : $\mathcal{Z}_{oh} = \hat{z}_{oh}\hat{z}_{o,c(h)}^{(\theta/\sigma-1)-1}$ (assume $\theta = \sigma = 5$)

① Collect all origin-county terms into ψ_{oc} fixed effect and estimate δ , ζ_1 , and ζ_2 :

$$\ln \tilde{X}_{oh} = \psi_{oc} + \delta J_h + \zeta_1 + \zeta_2 + \eta_{oh}^z$$

- ② Use estimates and Census data to construct household- and county-level preferences \hat{z}_{oh} and \hat{z}_{oc} : $\mathcal{Z}_{oh} = \hat{\bar{z}}_{oh}\hat{z}_{o,c(h)}^{(\theta/\sigma-1)-1}$ (assume $\theta = \sigma = 5$)
- **③** Deflate expenditure by \mathcal{Z}_{oh} and estimate β using same IV as general gravity model

$$\ln \frac{\tilde{X}_{oh}}{\mathcal{Z}_{oh}} = \alpha_o + \rho d_{o,c(h)} + \beta I_{o,c(h)} + \eta_{o,c(h)} + \eta_{oh}^z$$

• Collect all origin-county terms into ψ_{oc} fixed effect and estimate δ , ζ_1 , and ζ_2 :

$$\ln \tilde{X}_{oh} = \psi_{oc} + \delta J_h + \zeta_1 + \zeta_2 + \eta_{oh}^z$$

- ② Use estimates and Census data to construct household- and county-level preferences \hat{z}_{oh} and \hat{z}_{oc} : $\mathcal{Z}_{oh} = \hat{z}_{oh}\hat{z}_{o,c(h)}^{(\theta/\sigma-1)-1}$ (assume $\theta = \sigma = 5$)
- **③** Deflate expenditure by \mathcal{Z}_{oh} and estimate β using same IV as general gravity model

$$\ln \frac{\tilde{X}_{oh}}{\mathcal{Z}_{oh}} = \alpha_o + \rho d_{o,c(h)} + \beta I_{o,c(h)} + \eta_{o,c(h)} + \eta_{oh}^z$$

- **4** Separately identify components of β :
 - \triangleright β^{τ} : Elasticity of barcode-level price to immigration population
 - $\triangleright \beta^f$ and β^z : Extensive margin elasticity versus total elasticity

Parameter Estimate Summary

- Preference parameters:
 - $\hat{\zeta}_1 = 0.23 \ (0.03); \ \hat{\zeta}_2 = 0.64 \ (0.07)$
 - $ightharpoonup \hat{\delta}$: import preference generally increasing in income and education
- Spillover parameters: $\hat{\beta} = 1.36^{***}$:
 - $lackbox{}\hat{eta}^{ au}
 ightarrow ext{indistinguishable from zero}$
 - $\hat{\beta}^f = 1.28$
 - $\hat{\beta}^z = 0.06$
- - ▶ Note that this channel is welfare-relevant

Instrumental Variables for Immigrant Population Share $I_{o,c}$

We make use of IV strategy from Burchardi, Chaney, and Hassan (2019, REStud)

- Predict immigrant stock using vector of historic inflows
 - ▶ Use interaction between origin-specific immigrant flows to US by decade and attractiveness of counties to all immigrants by decade, for decades 1880–2000
 - ▶ Leave-out all countries in continent of origin o and all counties in Census region of c

Instrumental Variables for Immigrant Population Share $I_{o,c}$

We make use of IV strategy from Burchardi, Chaney, and Hassan (2019, REStud)

- Predict immigrant stock using vector of historic inflows
 - ▶ Use interaction between origin-specific immigrant flows to US by decade and attractiveness of counties to all immigrants by decade, for decades 1880–2000
 - Leave-out all countries in continent of origin o and all counties in Census region of c
- For each decade D, county c, and origin o, construct following instrument:

$$\widetilde{IV}_{o,c}^{D} = I_{o,-r(c)}^{D} \times \frac{I_{-C(o),c}^{D}}{I_{-C(o)}^{D}}$$

- One IV for each decade-origin-county triplet, so 12 IV's for each origin-county pair
 - ▶ Implement control function approach with PPML (Atalay et al. 2019)

Estimating Equation at Household-Origin Level

$$\ln \tilde{X}_{oh} = \alpha_o + \rho d_{o,c(h)} + \beta I_{o,c(h)} + \ln \bar{z}_{o,c(h)}^{\frac{\theta}{\sigma-1}-1}$$

$$+ \delta J_h + \zeta_1 \mathbf{1} \left[o(h) \neq US \right] + \zeta_2 \mathbf{1} \left[o(h) = o \right] + \eta_{o,c(h)} + \eta_{oh}^z$$

$$\beta = \beta^f + \beta^\tau + \left(\frac{\theta}{\sigma - 1} \right) \beta^z$$

$$\rho = \rho^\tau + \rho^f \qquad \eta_{o,c(h)} = \eta_{o,c(h)}^\tau + \eta_{o,c(h)}^f$$

$$\bar{z}_{o,c(h)} = \sum_{h \in \Lambda_c} \kappa_h e^{\left[\delta J_h + \zeta_1 \mathbf{1} \left[o(h) \neq US \right] + \zeta_2 \mathbf{1} \left[o(h) = o \right] + \eta_{oh}^z \right]}$$

General Gravity Estimation Summary

- $\hat{\beta} = 1.15$:
 - ▶ 1 ppt increase in I_{oc} ↑ expenditure on imports from o by 1.15% for all households
 - ightharpoonup Aggregate immigrant population share $\sim \! \! 15\%$ in US
- $\hat{\zeta}_1 = 0.23$:
 - ▶ Immigrants have stronger preferences for all imported varieties, regardless of origin
 - ▶ 26% higher expenditure on all import origins than otherwise identical native household
- $\hat{\zeta}_2 = 0.61$:
 - ▶ Immigrants have stronger preference for imports specifically from their origin country
 - ▶ 132% higher expenditure on imports from specific origin

Model Primitives

Preferences: utility of consumer *h* in us county *c*

$$U_h = (q_{0,h})^{\mu_0} \Bigg[\sum_{o \in \mathcal{O}} z_{oh}^{rac{1}{\sigma}} \int\limits_{\omega \in \Omega_{o,c(h)}} \left(q_{oh}(\omega)
ight)^{rac{\sigma-1}{\sigma}} d\omega \Bigg]^{rac{\sigma}{\sigma-1}(1-\mu_0)}$$

- Expenditure on groceries: $X_h = (1 \mu_0)Y_h$ on groceries
- Heterogeneous preferences z_{oh} s.t. $z_{us,h}=1$ for all $\omega \in \Omega_{US,c(h)}$

Production: cost of providing q units to consumers in c for producer in country o with productivity ϕ

$$c_{oc}(q) = \frac{w_o \tau_{oc}}{\phi} q + f_{oc}$$

Need for Additional Theory

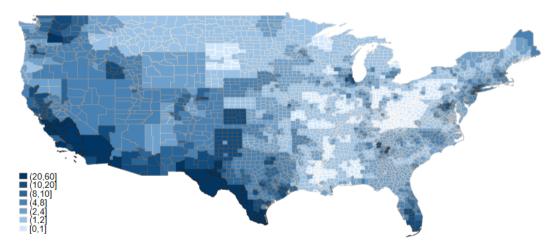
Strong evidence for both composition and spillover effects of immigrants on import expenditure

Need for Additional Theory

Strong evidence for both composition and spillover effects of immigrants on import expenditure

- Cannot disentangle welfare-relevant component of spillover (β^b) from preferences/sorting of native households (β^z)
- If market size effects matter, immigrant preference for all imports $(\zeta_1>0)$ suggests reduced form is mis-specified
 - Regressing origin-specific expenditure on origin-specific population misses level effect of immigrants increasing import expenditure from all origins

Need for Additional Theory


Strong evidence for both composition and spillover effects of immigrants on import expenditure

- Cannot disentangle welfare-relevant component of spillover (β^b) from preferences/sorting of native households (β^z)
- ullet If market size effects matter, immigrant preference for all imports $(\zeta_1>0)$ suggests reduced form is mis-specified
 - ► Regressing origin-specific expenditure on origin-specific population misses level effect of immigrants increasing import expenditure from all origins
- Rest of talk: modify heterogeneous firms model of trade to identify separate channels and run counterfactual exercises

The Trade-Creating Effect of Immigrants

Magnitude of Percentage Decrease in Import Expenditure of Removing Immigrant Effects

