Slow and Easy: a Theory of Browsing

ASSA, San Antonio, Texas, 2024

Evgenii Safonov, Queen Mary University of London

Motivation

- $\, \triangleright \, \, \mathsf{Window \, shopping/browsing} \, \,$
 - \checkmark Not urgent
 - √ Attention may jump from item to item
 - ✓ Not known what options are available
 - √ Multiple attributes

Motivation

- ▷ Window shopping/browsing
 - √ Not urgent
 - √ Attention may jump from item to item
 - √ Not known what options are available
 - √ Multiple attributes
- ▷ "Classical" search models: cost of the search
 - √ Direct: information cost
 - ✓ Indirect: waiting cost

Motivation

- ▷ Window shopping/browsing
 - √ Not urgent
 - √ Attention may jump from item to item
 - √ Not known what options are available
 - √ Multiple attributes
- ▷ "Classical" search models: cost of the search
 - √ Direct: information cost
 - ✓ Indirect: waiting cost

Attributes

$\, \triangleright \, \, \mathsf{Example} \text{--}\mathsf{new} \, \, \mathsf{TV} \,$

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42"

Attributes

▷ Example—new TV

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42"

- ▷ "Languages:"
 - √ Technology, sound quality

Attributes

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42"

- ▷ "Languages:"
 - √ Technology, sound quality
 - √ Technology, brand

▷ Objectives:

- √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
- $\checkmark\,$ Identify descriptions of items that make the search easy

▷ Objectives:

- √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
- \checkmark Identify descriptions of items that make the search easy

▶ Approach:

 \checkmark Use Automata Theory—automaton strategy as a decision making procedure

▷ Objectives:

- √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
- \checkmark Identify descriptions of items that make the search easy

▶ Approach:

- \checkmark Use Automata Theory—automaton strategy as a decision making procedure
- √ Consider zero waiting costs

- ▷ Objectives:
 - √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
 - ✓ Identify descriptions of items that make the search easy
- ▶ Approach:
 - √ Use Automata Theory—automaton strategy as a decision making procedure
 - √ Consider zero waiting costs
- ▶ Main insights:

▷ Objectives:

- √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
- \checkmark Identify descriptions of items that make the search easy

▶ Approach:

- ✓ Use Automata Theory—automaton strategy as a decision making procedure
- √ Consider zero waiting costs

▶ Main insights:

√ Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity

▷ Objectives:

- √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
- \checkmark Identify descriptions of items that make the search easy

▶ Approach:

- √ Use Automata Theory—automaton strategy as a decision making procedure
- √ Consider zero waiting costs

▶ Main insights:

- √ Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity
- √ System of attributes used to describe objects matters: languages that attain logarithmic/linear bounds in complexity

▷ Objectives:

- √ Find when the consumer can overcome the information processing
 constraints and achieve optimality if she takes her time
- \checkmark Identify descriptions of items that make the search easy

▶ Approach:

- √ Use Automata Theory—automaton strategy as a decision making procedure
- √ Consider zero waiting costs

▶ Main insights:

- √ Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity
- √ System of attributes used to describe objects matters: languages that attain logarithmic/linear bounds in complexity
- √ Simplest procedure: examine attributes sequentially, dismiss the item with
 positive probability if the attribute's value is bad

Model

Alternatives, Preference, and Menu

- ightharpoonup Complete and transitive non-trivial preference \succeq on A

Alternatives, Preference, and Menu

- ▶ Finite set of items A with generic element a
- ightharpoonup Complete and transitive non-trivial preference \succeq on A
- ightarrow Nature chooses a non-empty menu $B\subseteq A$, unknown to the agent

 $\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ In period t=1, a random item is drawn from the menu

- $\, \triangleright \,$ Agent investigates the item by examining its attributes:
 - √ One attribute (agent's choice) in a period
 - ✓ Can choose the item and stop the search
 - \checkmark Can continue to investigate the item
 - $\checkmark\,$ Can dismiss the item and draw a new one

- ho In period t=1, a random item is drawn from the menu
- ▷ Agent investigates the item by examining its attributes:
 - √ One attribute (agent's choice) in a period
 - √ Can choose the item and stop the search
 - √ Can continue to investigate the item
 - √ Can dismiss the item and draw a new one
- ▶ Each period during the search:
 - \checkmark With probability $\eta \in (0,1)$, a new item catches the agent's attention
 - \checkmark With probability $1-\eta$, the item remains the same

- \triangleright In period t = 1, a random item is drawn from the menu
- ▷ Agent investigates the item by examining its attributes:
 - √ One attribute (agent's choice) in a period
 - √ Can choose the item and stop the search
 - √ Can continue to investigate the item
 - ✓ Can dismiss the item and draw a new one
- ▶ Each period during the search:
 - \checkmark With probability $\eta \in (0,1)$, a new item catches the agent's attention
 - \checkmark With probability $1-\eta$, the item remains the same
- \triangleright Each time a random item is drawn according to the same distribution
 - ✓ Can encounter the same (or identical) item multiple times

Information Structures

- - \checkmark Each partition maps to a binary property (attribute) of items
 - \checkmark *N*—index set of partitions (attributes)
 - \checkmark $a_i \in \{0,1\}$ is the value of attribute $i \in N$

Information Structures

- - ✓ Each partition maps to a binary property (attribute) of items
 - ✓ *N*—index set of partitions (attributes)
 - \checkmark $a_i \in \{0,1\}$ is the value of attribute $i \in N$

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50''
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42"

- - ✓ Language includes "technology" and "sound" attributes

 $ight. Strategy (S, \iota, \tau)$

- $\, \triangleright \, \, \mathsf{Strategy} \, \left(\mathcal{S}, \iota, \tau \right) \,$
- $\quad \triangleright \ \, \mathsf{State} \,\, \mathsf{space} \,\, \mathcal{S} = \mathcal{S}^o \cup \{\mathit{choose}\} \cup \{\mathit{dismiss}\}$
 - \checkmark $S^o = \{1, ..., m\}$ —memory states
 - $\checkmark \ \ \{\textit{choose}, \textit{dismiss}\} \\ \text{—special states}$

- \triangleright Strategy (S, ι, τ)
- \triangleright State space $S = S^{\circ} \cup \{choose\} \cup \{dismiss\}$
 - \checkmark $S^o = \{1, ..., m\}$ —memory states
 - $\checkmark \ \ \{\textit{choose}, \textit{dismiss}\} \\ \text{—special states}$
- riangleright Interrogation rule $\iota: \mathcal{S}^o o \mathcal{N}$
 - \checkmark $\iota(s)$ —attribute of the item investigated in state s

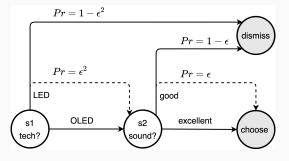
- \triangleright Strategy (S, ι, τ)
- \triangleright State space $S = S^o \cup \{choose\} \cup \{dismiss\}$
 - \checkmark $S^o = \{1, ..., m\}$ —memory states
 - $\checkmark \{choose, dismiss\}$ —special states
- \triangleright Interrogation rule $\iota: S^o \to N$
 - \checkmark $\iota(s)$ —attribute of the item investigated in state s
- ${\scriptstyle \vartriangleright} \ \, \mathsf{Stochastic} \,\, \mathsf{transition} \,\, \mathsf{rule} \,\, \tau : \mathcal{S}^o \times \{0,1\} \to \triangle(\mathcal{S})$
 - \checkmark $\tau(s,v,j)$ —probability to transition from s to v if attribute $\iota(s)$ has value j

- \triangleright Strategy (S, ι, τ)
- \triangleright State space $S = S^o \cup \{choose\} \cup \{dismiss\}$
 - \checkmark $S^o = \{1, ..., m\}$ —memory states
 - √ {choose, dismiss}—special states
- ightharpoonup Interrogation rule $\iota: S^o o N$
 - $\checkmark \iota(s)$ —attribute of the item investigated in state s
- ho Stochastic transition rule $au: S^{\circ} \times \{0,1\} o \triangle(S)$
 - $\checkmark \tau(s, v, j)$ —probability to transition from s to v if attribute $\iota(s)$ has value j
- \triangleright Each time a new alternative is drawn, state initializes at s=1
 - ✓ Agent focuses on the current item, no recall of the past investigations
 - √ In the paper, we relax this assumption for part of the analysis

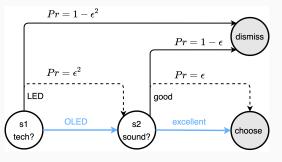
► Formal Dynamics

- $\, \, \triangleright \, \, \mathsf{TV}\text{-}\mathsf{set} \,\, \mathsf{example}, \, \mathsf{language:} \,\, \{ \textit{technology}, \textit{sound} \}$
- $\quad \qquad \text{$\lor$ Utility: $u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$}$

- $\, \, \triangleright \, \, \mathsf{TV}\text{-}\mathsf{set} \,\, \mathsf{example}, \, \mathsf{language} \colon \, \{ \mathit{technology}, \mathit{sound} \}$
- $\quad \qquad \text{$\lor$ Utility: $u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$}$



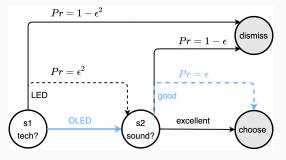
- ∇V-set example, language: {technology, sound}
- \triangleright Utility: $u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$



> Probability of choosing an item during an investigation:

$$\begin{array}{lll} \textit{q(OLED, excellent)} & = & 1 - \eta & \textit{q(OLED, good)} & = & (1 - \eta) \cdot \epsilon \\ \textit{q(LED, excellent)} & = & (1 - \eta) \cdot \epsilon^2 & \textit{q(LED, good)} & = & (1 - \eta) \cdot \epsilon^3 \end{array}$$

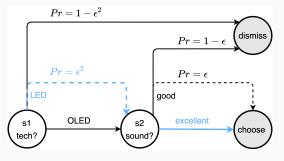
- ▷ TV-set example, language: {technology, sound}
- \triangleright Utility: $u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$



▶ Probability of choosing an item during an investigation:

$$q(\textit{OLED}, \textit{excellent}) = 1 - \eta$$
 $q(\textit{OLED}, \textit{good}) = (1 - \eta) \cdot \epsilon$ $q(\textit{LED}, \textit{excellent}) = (1 - \eta) \cdot \epsilon^2$ $q(\textit{LED}, \textit{good}) = (1 - \eta) \cdot \epsilon^3$

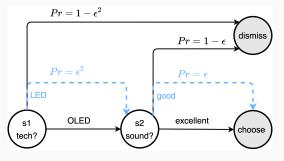
- ▷ TV-set example, language: {technology, sound}
- \triangleright Utility: $u(tech, sound) = 2 \cdot 1\{tech = OLED\} + 1 \cdot 1\{sound = excellent\}$



▶ Probability of choosing an item during an investigation:

$$\begin{array}{lll} \textit{q(OLED, excellent)} & = & 1 - \eta & \textit{q(OLED, good)} & = & (1 - \eta) \cdot \epsilon \\ \textit{q(LED, excellent)} & = & (1 - \eta) \cdot \epsilon^2 & \textit{q(LED, good)} & = & (1 - \eta) \cdot \epsilon^3 \end{array}$$

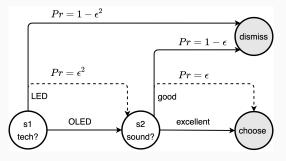
- ▷ TV-set example, language: {technology, sound}
- \triangleright Utility: $u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$



▶ Probability of choosing an item during an investigation:

$$\begin{array}{lll} \textit{q(OLED, excellent)} & = & 1 - \eta & \textit{q(OLED, good)} & = & (1 - \eta) \cdot \epsilon \\ \textit{q(LED, excellent)} & = & (1 - \eta) \cdot \epsilon^2 & \textit{q(LED, good)} & = & (1 - \eta) \cdot \epsilon^3 \end{array}$$

- ▷ TV-set example, language: {technology, sound}
- \triangleright Utility: $u(tech, sound) = 2 \cdot 1\{tech = OLED\} + 1 \cdot 1\{sound = excellent\}$

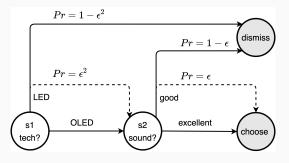


▶ Probability of choosing an item during an investigation:

$$\begin{array}{lll} \textit{q(OLED, excellent)} & = & 1 - \eta & \textit{q(OLED, good)} & = & (1 - \eta) \cdot \epsilon \\ \textit{q(LED, excellent)} & = & (1 - \eta) \cdot \epsilon^2 & \textit{q(LED, good)} & = & (1 - \eta) \cdot \epsilon^3 \end{array}$$

▷ Imagine, the realized menu includes all but the best TV-set

- ∇V-set example, language: {technology, sound}
- \triangleright Utility: $u(tech, sound) = 2 \cdot 1\{tech = OLED\} + 1 \cdot 1\{sound = excellent\}$



▷ Probability of choosing an item during an investigation:

$$q(\textit{OLED}, \textit{excellent}) = 1 - \eta$$
 $q(\textit{OLED}, \textit{good}) = (1 - \eta) \cdot \epsilon$ $q(\textit{LED}, \textit{excellent}) = (1 - \eta) \cdot \epsilon^2$ $q(\textit{LED}, \textit{good}) = (1 - \eta) \cdot \epsilon^3$

 $ho \ \epsilon \longrightarrow 0$, optimal choice from any menu with probability 1

ightharpoonup Choice problem (Q,\succeq)

- \triangleright Choice problem (Q, \succeq)
- ightharpoonup Transitions of the automaton: $\mathcal{T} = \big\{ (s,v,j) \; \big| \; au(s,v,j) > 0 \big\}$

- \triangleright Choice problem (Q, \succeq)
- ightharpoonup Transitions of the automaton: $\mathcal{T} = \big\{ (s,v,j) \; \big| \; au(s,v,j) > 0 \big\}$
- \triangleright Decision rule $\psi = \{(S, \iota, \tau_r)\}_{r=1,2,...}$
 - ✓ Fixed state space S
 - ✓ Fixed interrogation rule ι
 - ✓ Fixed transitions $T_r = T$, r = 1, 2, ...

- \triangleright Choice problem (Q, \succeq)
- ho Transitions of the automaton: $\mathcal{T} = \{(s, v, j) \mid \tau(s, v, j) > 0\}$
- \triangleright Decision rule $\psi = \{(S, \iota, \tau_r)\}_{r=1,2,...}$
 - √ Fixed state space S
 - ✓ Fixed interrogation rule ι
 - ✓ Fixed transitions $T_r = T$, r = 1, 2, ...

Definition. A decision rule ψ solves the choice problem (Q,\succeq) if

$$\lim_{r\to\infty} \Pr \big(\text{choose } \succeq \text{-best item from menu } B \big) = 1 \qquad \forall B$$

9

Existence of a Solution

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_i \neq b_i$ for some $i \in N$.

Existence of a Solution

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_i \neq b_i$ for some $i \in N$.

 $\, \triangleright \,$ We consider languages that allow the agent to solve her choice problem

Existence of a Solution

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_i \neq b_i$ for some $i \in N$.

- $\,\,\vartriangleright\,\,$ We consider languages that allow the agent to solve her choice problem
- ▷ Given the agent's language, what is the minimum amount of cognitive resources required to solve the choice problem?

In the paper:

- ightarrow Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^o|$
 - \checkmark Represents an "operational" memory required to implement the procedure
- ▷ Memory load of a language (given \(\subsete \):

$$\mathcal{M}_\succeq(\mathcal{Q}) := \min_{\psi \; ext{solves} \; (\mathcal{Q},\succeq)} \mathcal{M}(\psi)$$

In the paper:

- ightharpoonup Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^o|$
 - \checkmark Represents an "operational" memory required to implement the procedure
- ▶ Memory load of a language (given ≥):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi \text{ solves } (\mathcal{Q},\succeq)} \mathcal{M}(\psi)$$

This talk:

ho Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$

In the paper:

- ightarrow Memory load of a decision rule: $\mathcal{M}(\psi) = |S^{\circ}|$
 - \checkmark Represents an "operational" memory required to implement the procedure
- ▷ Memory load of a language (given \(\subsete \):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi \text{ solves } (\mathcal{Q},\succeq)} \mathcal{M}(\psi)$$

- ${\scriptstyle \rhd\ } \mathsf{Complexity} \mathsf{ of a decision rule:} \ \kappa(\psi) = |\{(s,v,j) \ \big| \ \tau(s,v,j) > 0\}|$
 - \checkmark Represents "length of instructions" of the procedure

In the paper:

- ightarrow Memory load of a decision rule: $\mathcal{M}(\psi) = |S^{\circ}|$
 - \checkmark Represents an "operational" memory required to implement the procedure
- ▶ Memory load of a language (given ≥):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi \text{ solves } (\mathcal{Q},\succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - √ Represents "length of instructions" of the procedure
 - ✓ Considered for repeated games in Banks and Sundaram (1990)

In the paper:

- ightharpoonup Memory load of a decision rule: $\mathcal{M}(\psi) = |S^o|$
 - \checkmark Represents an "operational" memory required to implement the procedure
- ▶ Memory load of a language (given ≥):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi \text{ solves } (\mathcal{Q},\succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - √ Represents "length of instructions" of the procedure
 - ✓ Considered for repeated games in Banks and Sundaram (1990)
 - √ Experimentally in Oprea (2020)

In the paper:

- ightarrow Memory load of a decision rule: $\mathcal{M}(\psi) = |S^{\circ}|$
 - \checkmark Represents an "operational" memory required to implement the procedure
- ▶ Memory load of a language (given ≥):

$$\mathcal{M}_{\succeq}(\mathit{Q}) := \min_{\psi \ \mathrm{solves} \ (\mathit{Q},\succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - √ Represents "length of instructions" of the procedure
 - ✓ Considered for repeated games in Banks and Sundaram (1990)
 - √ Experimentally in Oprea (2020)
- \triangleright Complexity (transitional) of a language (given \succeq):

$$\kappa_\succeq(Q) := \min_{\psi \text{ solves } (Q,\succeq)} \kappa(\psi)$$

Complexity of Languages for 4 Items and Strict Preference

Consider $A = \{a, b, c, d\}$, and $a \succ b \succ c \succ d$

	Language	Preference	\mathcal{M}	κ
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	2	6
R	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	2	7
S	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11\succ 00\succ 10\succ 01$	3	9
Т	$ \{\{a\}, \{b, c, d\}\}, \{\{b\}, \{a, c, d\}\}, \\ \{\{c\}, \{a, b, d\}\} $	100 ≻ 010 ≻ 001 ≻ 000	3	9

▶ Some details

Maximum Complexity

Theorem (Upper Bound). If there are k = |A| items, then for any \succeq :

- (i) For any language Q, $\kappa_{\succ}(Q) \leq 3k 3$;
- (ii) There exists a language Q such that $\kappa_{\succeq}(Q) \geq k-2$.

Proof Idea for (i)

Minimum Complexity

Theorem (Lower Bound). Let \succeq have m indifference classes, then:

- (i) For any language Q, $\kappa_{\succeq}(Q) \geq 3\lceil \log_2 m \rceil$;
- (ii) There exists a language Q such that $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$;
- (iii) If ψ solves (Q,\succeq) , and $\kappa(\psi)=3\lceil\log_2 m\rceil$, then $\mathcal{M}(\psi)$ is minimum among the rules that solve the choice problem (\widetilde{Q},\succeq) for any language \widetilde{Q} ,

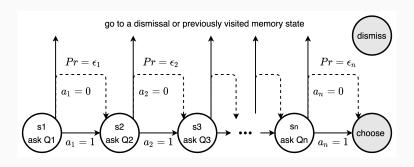
where $\lceil x \rceil$ denotes the smallest natural number weakly greater than x.

▶ Proof Idea for (i)

Simplest Languages and Decision Rules

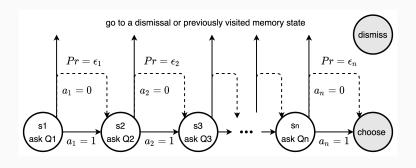
Separable Decision Rules

 \triangleright Consider the following decision rules with $\{\epsilon_i\}_{r=1,2,...} \in (0,1)$



Separable Decision Rules

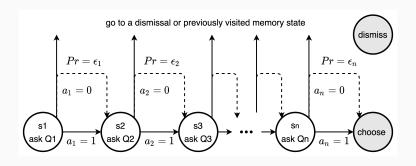
 \triangleright Consider the following decision rules with $\{\epsilon_i\}_{r=1,2,...} \in (0,1)$



> Can enumerate attributes and attributes' values arbitrarily

Separable Decision Rules

 \triangleright Consider the following decision rules with $\{\epsilon_i\}_{r=1,2,...} \in (0,1)$

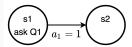


- ▷ Can enumerate attributes and attributes' values arbitrarily
- \triangleright Call Ψ_n^+ the set of such rules with n memory states

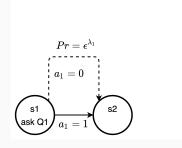
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

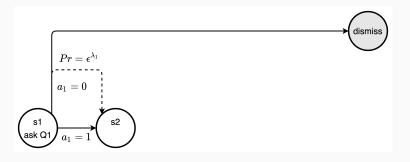
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$



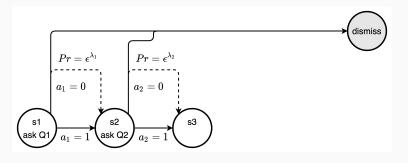
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$



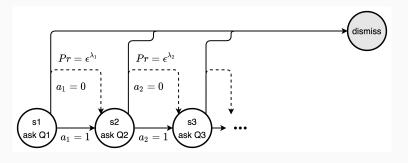
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$



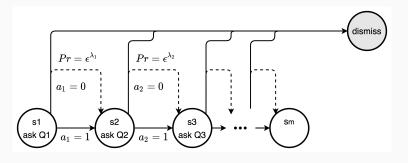
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$



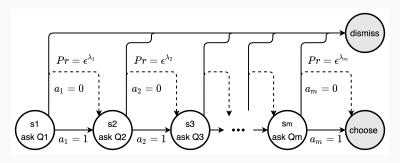
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$



$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

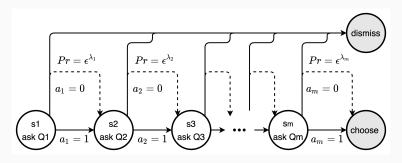


$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$



▷ Suppose the agent's language facilitates usage of an additive utility:

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad \text{(WLOG) } \lambda_i \geq 0$$



ho Pr(choose item a during single investigation)= $(1-\eta)^{m-1} \cdot \epsilon^{\sum \lambda_i (1-a_i)}$

Adapted Languages

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^N$ such that:

(i)
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii)
$$|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 m \rceil$$

Adapted Languages

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^N$ such that:

$$(i) \quad a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii)
$$|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 m \rceil$$

Proposition. There exists an adapted language.

Adapted Languages

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^N$ such that:

$$(i) \quad a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii)
$$|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 m \rceil$$

Proposition. There exists an adapted language.

▶ Proof

Remark. The utility function $u(a) = \sum_{i \in N} \lambda_i a_i$ induces a preference that might break ties in the original preference \succeq .

Simplest Decision Rules and Adapted Languages

Proposition. Let \succeq have m indifference classes, then Q is adapted for \succeq if and only if there exists $\psi \in \Psi^+_{\lceil \log_2 m \rceil}$ that solves (Q,\succeq) .

Simplest Languages

Theorem (Simplest Languages). Let \succeq have m indifference classes, then:

- (i) If Q is adapted for \succeq , then $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$;
- (ii) If $(3/4) \cdot 2^n < m \le 2^n$ for a natural n, then:
 - (a) $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$ if and only if Q is adapted for \succeq ;
 - (b) If ψ solves (Q,\succeq) , and $\kappa(\psi)=3\lceil\log_2 m\rceil$, then $\psi\in\Psi^+_{\lceil\log_2 m\rceil}$.

▶ Proof Sketch

Literature Review and Conclusion

Literature Review

- ▶ Optimal search: Kohn and Shavell (1974); Weitzman (1979); Morgan and Manning (1985); Klabjan, Olszewski, and Wolinsky (2014); Sanjurjo (2017)
- ▶ Memory-constrained search: Dow (1991); Sanjurjo (2015), (2019)
- ▶ Stochastic Browsing: Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini (2020), Rustichini (2020)
- ▶ Hypothesis testing and learning with finite memory: Cover (1969); Cover and Hellman (1970); Hellman and Cover (1970), (1971)
- Automata and simple algorithms in Economics: Abreu and Rubinstein (1988); Kalai and Stanford (1988); Banks and Sundaram (1990); Kalai and Solan (2003); Börgers and Morales (2004); Kocer (2010); Salant (2011); Mandler, Manzini, Mariotti (2012); Wilson (2014); Oprea (2020)

Conclusion

- Simple stochastic strategies achieve near optimality when time is not of the essence
- Descriptions that facilitate additive utility with few attributes are key for simplicity
- ▷ In the simplest procedures, "higher" memory state indicate higher quality of the item relative to the menu

Supplementary Slides

Maximum and Minimum Memory Load

Theorem (Upper Bound). If there are k = |A| items, then for any \succeq :

- (i) For any language Q, $\kappa_{\succ}(Q) \leq k-1$;
- (ii) There exists a language Q such that $\kappa_{\succeq}(Q) \geq k/2 1$.

Theorem (Lower Bound). Let \succeq have m indifference classes, then:

- (i) For any language Q, $\kappa_{\succeq}(Q) \geq \lceil \log_2 m \rceil$;
- (ii) There exists a language Q such that $\kappa_{\succeq}(Q) = \lceil \log_2 m \rceil$;

where $\lceil x \rceil$ denotes the smallest natural number weakly greater than x.

Extension: Relaxing Memory Initialization Assumption

 \triangleright Baseline model: a state initializes at s=1 with each new item

- \triangleright Baseline model: a state initializes at s=1 with each new item
- ▶ General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state

- \triangleright Baseline model: a state initializes at s=1 with each new item
- ▷ General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state
- \triangleright State space $S = S^o \cup \{choose\}$

- \triangleright Baseline model: a state initializes at s=1 with each new item
- ▶ General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state
- \triangleright State space $S = S^{\circ} \cup \{choose\}$
- Specify probabilities:
 - To choose the current item, conditional on the current state and the learned attribute's value
 - √ To continue the investigation of the item and move to a memory state, conditional on the current state and the learned attribute's value
 - √ To dismiss the item, pick a new random item, and move to a memory state, conditional on the current state and the learned attribute's value
 - √ To move to a memory state, conditional on the current state and the event that a new item catches the agent's attention

Maximal Memory Load

Theorem (Upper Bound). Consider a general model. Let k be the total number of items, then for any non-trivial \succeq :

- (i) For any language Q, $\mathcal{M}(Q) \leq k-1$;
- (ii) There exists a language Q such that $\mathcal{M}(Q) = k/2 1$.

Minimal Memory Load

Theorem (Lower Bound). Consider a general model. Let $m \ge 2$ be the total number of indifference classes of \succeq , then:

- (i) For any language Q, $\mathcal{M}(Q) \geq \lceil \log_2 m \rceil$;
- (ii) There exists a language Q such that $\mathcal{M}(Q) = \lceil \log_2 m \rceil$.

If Preference is Strict, a Language May Require k-1 Memory States

- \triangleright Let $A = \{a^1, ..., a^k\}, a^1 \succ ... \succ a^k$
- ${\triangleright} \ \ \mathsf{Consider} \ \ Q = \{Q_1,...,Q_{k-1}\} \ \ \mathsf{with} \ \ Q_l = \{\{a^l\},\{a^1,...,a^{l-1},a^{l+1},...,a^k\}\}$
- \triangleright Need at least k-1 attributes to differentiate any pair of items

Proof Ideas

Lower Bound in Transitional Complexity—Simple Paths

- \triangleright Focus on simple paths from s=1 to s=choose
- ▷ Item-dependent probability that the path occurs
- \triangleright For $a \in A$, $\omega(a)$ the highest probability among all simple paths

Lemma. A decision rule solves the choice problem if and only if:

(i)
$$a \succ b$$
 implies $\omega(b)/\omega(a) \longrightarrow 0$ for all $a, b \in A$;

(ii)
$$\omega(a) > 0$$
 for all $a \in A$.

▷ Similar to "Z-tree" technique in Kandori, Mailath, Rob (1993)

Strong and Weak Transitions

- \triangleright Strong link $(s, v, j) \in \mathcal{T}$ if $\lim \tau(s, v, j) > 0$
- \triangleright Weak link $(s, v, j) \in \mathcal{T}$ if $\lim \tau(s, v, j) = 0$

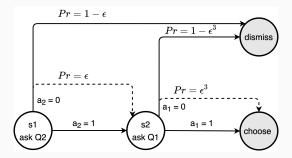
Lemma. If the decision rule solves the choice problem, then highest-probability paths for different alternatives use different sets of weak links.

Lower Bound in Transitional Complexity—Proof Idea

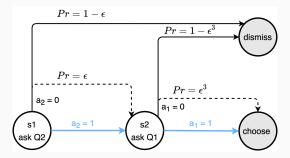
- \triangleright Let ψ solves (Q, \succeq) with k items, $n = \lceil \log_2 k \rceil$
- $\triangleright \psi$ should have at least 2n strong links
 - \checkmark At least n attributes should be examined in n states
 - √ Each state has at least 2 outgoing strong links
- $\triangleright \psi$ should have at least n weak links
 - √ Each item maps to a distinct set of weak links
 - ✓ Hence $2^{\text{#weak links}} \ge k$
- \triangleright The total number of links in ψ is at least 2n+n, i.e. $\kappa(Q) \geq 3n$
- \triangleright If $\kappa(\psi)=3n$, there are exactly 2n strong and n weak links

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$ \{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\} $		$\mathcal{M}(Q^{**})=3$
			N Root

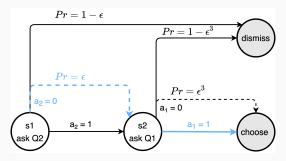
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**})=3$



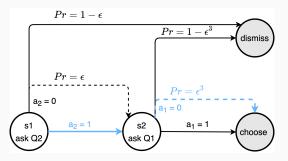
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**})=3$



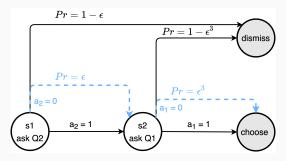
	Language	Preference	Memory load
	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$		$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\},\ \{\{a,d\},\{b,c\}\}$		



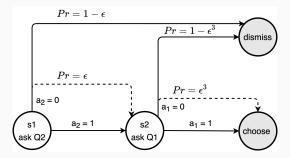
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$		



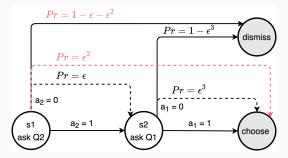
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$		



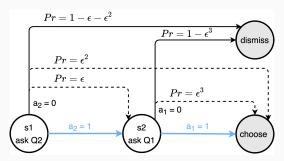
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$		$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**})=3$



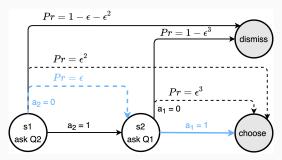
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$		$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**})=3$



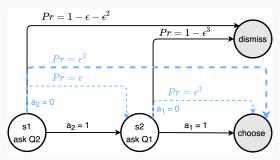
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**})=3$



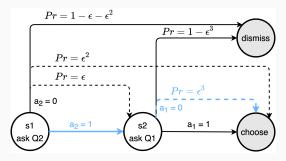
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		



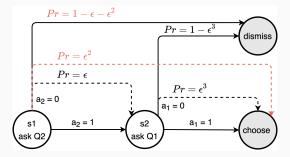
	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\ \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		



	Language	Preference	Memory load
	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$		$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		



	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\ \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**})=3$



Dynamics (Baseline Model)

- ightharpoonup Markov Chain $m{Y}=(Y_1,Y_2,...)$ with realizations $(y_1,y_2,...)$
- ▷ Interpretation: $y_t = (a, s) \in A \times (S^o \cup \{choose\})$
- \triangleright Starting state: $Pr(Y_1 = (a, s)) = \rho^B(a) \cdot \delta_1^s$
- ▶ Transitional probabilities

$$\begin{split} Pr\Big(Y_t = (\textbf{a}, \textbf{s}) \mid Y_{t-1} = (\textbf{b}, \textbf{v})\Big) &= (1 - \eta) \cdot \delta_{\textbf{b}}^{\textbf{a}} \cdot \tau\big(\textbf{v}, \textbf{s}, \textbf{b}_{\iota(\textbf{v})}\big) + \\ &\qquad \qquad (1 - \eta) \cdot \tau\big(\textbf{v}, \textit{dismiss}, \textbf{b}_{\iota(\textbf{v})}\big) \cdot \rho^{\textbf{B}}(\textbf{a}) \cdot \delta_{1}^{\textbf{s}} + \\ &\qquad \qquad \left[1 - \tau\big(\textbf{v}, \textit{choose}, \textbf{b}_{\iota(\textbf{v})}\big)\right] \cdot \eta \cdot \rho^{\textbf{B}}(\textbf{a}) \cdot \delta_{1}^{\textbf{s}} \end{split}$$

$$Pr(Y_t = (a, choose) \mid Y_{t-1} = (b, v)) = \tau(v, choose, b_{\iota(v)}) \cdot \delta_b^a$$

$$Pr(Y_t = (a, s) \mid Y_{t-1} = (b, choose)) = \delta_b^a \cdot \delta_{choose}^s$$

 \triangleright Where $\rho^B(a)$ is the probability to draw item a from menu B

Stochastic Choice

- $\triangleright \rho^B(b)$ —probability to draw item b from menu B
- $\triangleright q(b)$ —probability to choose item b during a single investigation
- $\triangleright p^B(b)$ —probability to choose item b from menu B

Lemma (Generalized Luce Rule).

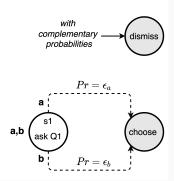
$$p^{B}(a) = \frac{\rho^{B}(a) \cdot q(a)}{\sum_{b \in B} \rho^{B}(b) \cdot q(b)}$$

with the convention that $p^{B}(a) = 0$ if the denominator assumes value zero.

ightharpoonup Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation

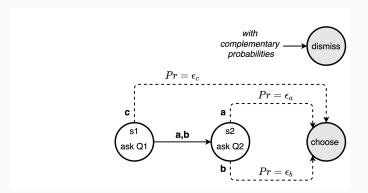
- ightharpoonup Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

- \triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k-1 states are sufficient
- $\triangleright f(2) = 1$



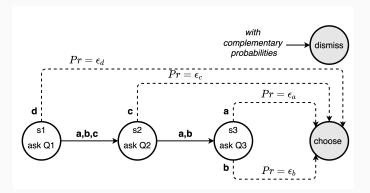
- \triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

$$\Rightarrow f(k+1) = 1 + f(k) = 1 + k - 1 = k$$



- \triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

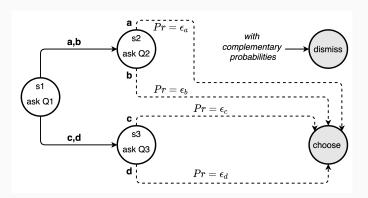
$$\Rightarrow f(k+1) = 1 + f(k) = 1 + k - 1 = k$$



Intuition for the Upper Bound

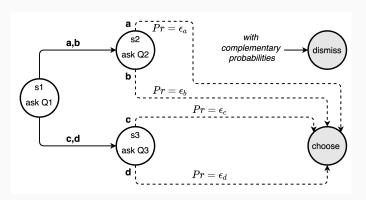
- ightharpoonup Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

$$f(k_1 + k_2) = 1 + f(k_1) + f(k_2) = k_1 + k_2 - 1$$



Intuition for the Upper Bound

- \triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient
- \triangleright Pick sequences $\{\epsilon_a\}_{r=1,2,..}$ for $a\in A$ that solve the choice problem



Existence of Adapted Languages

- \triangleright WLOG, \succeq is strict:
- ▷ Adapted language for *k* items:

$$(i) \quad a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii)
$$|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 k \rceil$$

Proof 1:

- ▷ Augment the set of items to make $|A| = 2^n$, where $n = \lceil \log_2 k \rceil$
- ▷ Consider some collection $\lambda_i > 0$, $i \in \{1, ..., n\}$
- ightharpoonup Utility $u(a) = \sum_i \lambda_i a_i$ induces a (strict) preference on vectors of attributes
- \triangleright Label items in set A accordingly, get an adapted language

Existence of Adapted Languages

- \triangleright WLOG, \succeq is strict:
- ▷ Adapted language for k items:

(i)
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii)
$$|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 k \rceil$$

Proof 2:

- \triangleright Example: consider $a \succ b \succ c \succ d \succ e \succ f \succ g \succ h$
- $hd \ \ \mathsf{Language}\ \mathsf{Q} = \{ \mathsf{Q}_1, \mathsf{Q}_2, \mathsf{Q}_3 \}$
 - $\checkmark Q_1: a, b, c, d, e, f, g, h$
 - $\checkmark Q_2: a, b, c, d, e, f, g, h$
 - $\sqrt{Q_3: a, b, c, d, e, f, g, h}$
- \triangleright Linear utility: $u(x) = 2^2 \cdot x_1 + 2^1 \cdot x_2 + 2^0 \cdot x_3 = 4x_1 + 2x_2 + x_3$

Lower Bound Characterization Theorem-proof idea for (ii.a)

Theorem (Simplest Languages). Let \succeq have m indifference classes, then:

- (i) If Q is adapted for \succeq , then $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$;
- (ii) If $(3/4) \cdot 2^n < m \le 2^n$ for a natural n, then:
 - (a) $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$ if and only if Q is adapted for \succeq ;
 - (b) If ψ solves (Q,\succeq) , and $\kappa(\psi)=3\lceil\log_2 m\rceil$, then $\psi\in\Psi^+_{\lceil\log_2 m\rceil}$.

Recall **Proposition:** Let \succeq have m indifference classes, then Q is adapted for \succeq if and only if there exists $\psi \in \Psi^+_{\lceil \log_2 m \rceil}$ that solves (Q,\succeq) .

Want to prove that when $(3/4) \cdot 2^n < k \le 2^n$, if ψ solves the choice problem and $\kappa(\psi) \le 3\lceil \log_2 m \rceil$, then $\psi \in \Psi^+_{3\lceil \log_2 m \rceil}$

Lower Bound Characterization Theorem: Proof Sketch (1)

- \triangleright For each item a, consider a highest-probability path from s=1 to s=choose
- ▷ Say that $(s, v, j) \in \mathcal{T}$ is a weak link, if $\lim \tau_r(s, v, j) \longrightarrow 0$, otherwise it is a strong link

Lemma. If the decision rule solves the choice problem, then highest-probability paths for different alternatives use different sets of weak links.

Lemma. If ψ solves choice problem with m items, and $\kappa(\psi) = 3\lceil \log_2 k \rceil$, then ψ has n states, 2n strong, and n weak links, where $n = \lceil \log_2 k \rceil$.

Characterization Theorem: Sketch of the Proof (2)

Delta A simple path contains at most 1 link outgoing from a given state

Lemma. Let the total number of items be k, $n = \lceil \log_2 k \rceil$, and $k > (3/4) \cdot 2^n$. If ψ solves the choice problem and $\kappa(\psi) = 3n$, then for each pair of weak links there is a highest-probability path that use both these links.

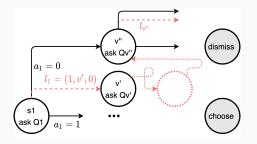
Corollary. Let the total number of items be k, $n = \lceil \log_2 k \rceil$, and $k > (3/4) \cdot 2^n$. If ψ solves the choice problem and $\kappa(\psi) = 3n$, then in every state, ψ has exactly one outgoing weak link and exactly two outgoing strong links.

Characterization Theorem: Sketch of the Proof (3)

- - $\checkmark \ \tau(s,v,1)=1 \text{ for some } v$
 - $\checkmark \ \tau(s,v',0)=\epsilon_s \text{ and } \tau(s,v'',0)=1-\epsilon_s \text{ for some } v',v'' \text{, and } \epsilon_s \longrightarrow 0$
- \triangleright Recall: to show that $\psi \in \Psi_n^+$, we need to show additionally that there is a labeling of the states such that in the formula above:
 - $\sqrt{v} = v' = s + 1$, where state n + 1 denotes *choose*
 - $\checkmark v'' \in \{1,..,s\} \cup \{\textit{dismiss}\}$
- ▷ Idea: use induction in n, where $n = \lceil \log_2 k \rceil$, k is the number of items, and condition $k > (3/4) \cdot 2^n$ holds
 - √ Induction base: n = 1, straightforward
 - √ Induction step?

Characterization Theorem: Sketch of the Proof (4)

- ho Consider s=1, have au(1,v,1)=1, $au(1,v',0)=\epsilon_1$, $au(1,v'',0)=1-\epsilon_1$
- $\triangleright v \notin \{1, choose, dismiss\}$, since more than 1 item has $a_1 = 1$
- $\lor v' \notin \{1, choose, dismiss\}, v'' \neq choose;$ otherwise, no more than $2^{n-1} + 1 \leq (3/4) \cdot 2^n$ different subsets of weak links used
- \triangleright Towards a contradiction, assume $v'' \notin \{1, dismiss\}$



 \triangleright Highest-probability path cannot include both weak links l_1 and $l_{v''}$, in contradiction

Characterization Theorem: Sketch of the Proof (5)

- ightharpoonup We know: au(1, v, 1) = 1, $au(1, v', 0) = \epsilon_1$, $au(1, v'', 0) = 1 \epsilon_1$
 - $\checkmark \ \ v,v'\not\in \{1,\textit{choose},\textit{dismiss}\},\ v''\in \{1,\textit{dismiss}\}$
- ▷ At least one of the two statements should hold:

$$\checkmark |\{a \in A | a_i = 1\}| > (3/4) \cdot 2^{n-1}$$

$$\checkmark |\{a \in A | a_i = 0\}| > (3/4) \cdot 2^{n-1}$$

- \triangleright Let $|\{a \in A | a_i = 1\}| > (3/4) \cdot 2^{n-1}$, consider rule ψ' :
 - \checkmark Delete state s=1 in rule ψ and its outgoing links
 - \checkmark Redirect each link that ends at s=1 in ψ to s= dismiss in ψ'
 - \checkmark Make state v the first state in ψ'
- $\triangleright \psi'$ solves the problem constrained to items $\{a \in A | a_i = 1\}$
 - $\checkmark \kappa(\psi') \leq 3n 3$
 - \checkmark Use induction assumption to find configuration of links outgoing from all other states except of s=1 in ψ

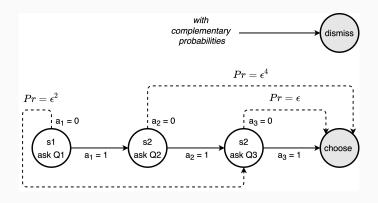
Characterization Theorem: Sketch of the Proof (6)

- \triangleright Last statement to prove: that v' = v.
- \triangleright Assume $v' \neq v$, then weak link (1, v', 0) and weak link l_v , outgoing from state v, cannot be in the same highest-probability path, contradiction

- \triangleright Similar arguments work if $|\{a \in A | a_i = 0\}| > (3/4) \cdot 2^{n-1}$
 - \checkmark Note that $\left|\left\{a\in A|a_i=0\right\}\right|\leq (1/2)\cdot 2^n$
 - ✓ Hence $|\{a \in A | a_i = 0\}| > (1/4) \cdot 2^n$
 - \checkmark If $v \neq v'$, a weak link outgoing from v' is not used in any highest-probability paths for items with $a_1 = 1$
 - ✓ Thus, no more than $(1/4) \cdot 2^n$ sets of weak links used in highest-probability paths for items with $a_1 = 1$, contradiction

$$k = 5$$
, so $n = \lceil \log_2 5 \rceil = 3$, $k = 5 \le (3/4) \cdot 2^3 = 6$

$$\triangleright$$
 111 \succ 110 \succ 011 \succ 000 \succ 100



$$\vartriangleright \ 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000$$

$$\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000$$

