Knowing your Lemon before You Dump it

Alessandro Pavan Jean Tirole

Motivation

- Situations where decision to "engage" carries information about what is at stake
 - trade
 - partnerships
 - entry
 - marriage
 - ...
- Lemons (Akerlof)
 - negative inferences
- Anti-lemons (Spence)
 - positive inferences
- Endogenous information
 - information acquisition/attention
 - cognition

This Paper

- Generalized lemons (and anti-lemons)
 - endogenous information
- Information choices
 - type of strategic interaction
 - opponent's beliefs over selected information (expectation conformity)
 - effect of information on severity of adverse selection
 - effect of friendliness of opponent's reaction on value of information
- Expectation traps
- Disclosure and cognitive style
- Welfare and policy implications
- Equilibrium analysis and comparative statics

Literature – Incomplete

- Endogenous info in lemons problem
 - Dang (2008), Thereze (2022), Lichtig and Weksler (2023)
 - \rightarrow EC, \neq bargaining game, timing, CS
- Payoffs in lemons problem
 - Levin (2001), Bar-Isaac et al. (2018), Kartik and Zhong (2023)...
 - → incentives analysis
- Policy in mkts with adverse selection
 - Philippon and Skreta (2012), Tirole (2012), Dang et al (2017)...
 - \rightarrow endogenous information
- Endogenous info in private-value bargaining
 - Ravid (2020), Ravid, Roesler, and Szentes (2021)...
 - \rightarrow lemons problem, competitive mkt
- Expectation conformity
 - Pavan and Tirole (2022)
 - → different class of games (generalized lemons and anti-lemons)
- Mandatory disclosure laws
 - Pavan and Tirole (2023b)
 - \rightarrow endogenous information

Plan

- Introduction
- Model
- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- Anti-lemons
- Onclusions

- Players
 - Leader
 - Follower
- Choices
 - Leader:
 - information structure, ρ (more below)
 - two actions:
 - adverse-selection-sensitive, a = 1 ("engage")
 - adverse-selection insensitive, a=0 ("not engage")
 - Follower:
 - reaction, $r \in \mathbb{R}$

State

- $\omega \sim \text{prior } G$
- mean: ω_0

Payoffs

- leader: $\delta_L(r, \omega) \equiv u_L(1, r, \omega) u_L(0, \omega)$
 - affine in ω
 - increasing in *r* (higher *r*: friendlier reaction)
 - decreasing in ω
 - benefit of friendlier reaction (weakly) increasing in state: $\frac{\partial^2 \delta_L}{\partial \omega \partial r} \geq 0$ (benefit of higher r largest in states in which L's value of engagement lowest)
- follower: $\delta_F(r, \omega) \equiv u_F(1, r, \omega) u_F(0, \omega)$
 - affine in ω

Akerlof Example

- Leader: seller
 - $u_L(1, r, \omega) = r$ (price)
 - $u_L(0, r, \omega) = \omega$ (asset value)
 - $\delta_L(r, \omega) = r \omega$

- Follower: competitive buyer
 - $u_F(0,\omega) = 0$
 - $u_F(1, r, \omega) = \omega + \Delta r$
 - $\delta_F(r, \omega) = u_F(1, r, \omega)$

- Information structures: $ho \in \mathbb{R}_+$
 - cdf $G(m; \rho)$ over posterior mean m (mean-preserving-contraction of G)
 - $C(\rho)$: information-acquisition cost

MPS

Definition

Information structures consistent with MPS order (mean-preserving spreads) if, for any $\rho'>\rho$, any $m^*\in\mathbb{R}$,

$$\int_{-\infty}^{m^*} G(m; \rho') dm \ge \int_{-\infty}^{m^*} G(m; \rho) dm$$

with
$$\int_{-\infty}^{+\infty} G(m; \rho') dm = \int_{-\infty}^{+\infty} G(m; \rho) dm = \omega_0$$
.

- MPS order and Blackwell informativeness:
 - $G(\cdot; \rho)$ obtained from experiment $q_{\rho}: \Omega \to \Delta(Z)$
 - $G(\cdot; \rho')$ obtained from experiment $q_{\rho'}: \Omega \to \Delta(Z)$
 - If ho'>
 ho means $q_{
 ho'}$ Blackwell more informative than $q_{
 ho}$, then

$$G(\cdot; \rho') \succeq_{MPS} G(\cdot; \rho)$$

Rotations

Definition

Information structures are **rotations** (or "simple mean-preserving spreads") if, for any ρ , there exists rotation point m_{ρ} s.t.

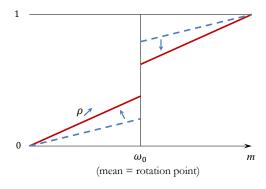
- $G(m; \rho)$ increasing in ρ for $m \leq m_{\rho}$
- $G(m; \rho)$ decreasing in ρ for $m \geq m_{\rho}$
 - Diamond and Stiglitz (1974), Johnston and Myatt (2006), Thereze (2022)...

Rotations Example: Non-directed Search

ullet L learns state with prob. ho (nothing with prob. 1ho)

$$G(m;
ho) = \left\{ egin{array}{ll}
ho G(m) & ext{for } m < \omega_0 \
ho G(m) + 1 -
ho & ext{for } m \geq \omega_0 \end{array}
ight.$$

• Rotation point: prior mean ω_0



Rotations

- Combination of rotations need not be a rotation
- But any MPS can be obtained through sequence of rotations
- Other (notable) examples
 - G Normal and $s = \omega + \varepsilon$ with $\varepsilon \sim \mathit{N}(0, \rho^{-1})$
 - Pareto, Exponential, Uniform $G(\cdot; \rho)$...

• For any (ρ, r) , leader engages (i.e., a = 1) iff

$$m \leq m^*(r)$$

with

$$\delta_L(r, m^*(r)) = 0$$

- $r(\rho)$: eq. reaction under information ρ (assumed to be unique)
- Assumption (lemons):

$$\frac{dr(\rho)}{d\rho} \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho)); \rho)$$

where

$$M^-(m^*; \rho) \equiv \mathbb{E}_{G(\cdot; \rho)}[m|m \leq m^*]$$

Akerlof Example

- Engagement threshold: $m^*(r) = r$
- Equilibrium price $r(\rho)$: solution to

$$r = M^-(r; \rho) + \Delta$$

Lemons:

$$\frac{dr(\rho)}{d\rho} \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho)); \rho)$$

• always if $G(m; \rho)/g(m; \rho)$ increasing in m

Other applications

- Partnerships
- Entry
- Marriage
- OTC mkts
- ..

Plan

- Introduction
- Model
- Expectation Conformity
- Expectation Traps
- O Disclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- Anti-lemons
- Onclusions

Expectation Conformity

Effect of information on adverse selection

- $r(\rho)$: eq. reaction under information ρ
- $M^-(m^*; \rho) \equiv \frac{\int_{-\infty}^{m^*} mdG(m; \rho)}{G(m^*; \rho)}$

Definition

Information

- aggravates adverse selection if $\frac{\partial}{\partial \rho} M^-(m^*(r(\rho)); \rho) < 0$
- alleviates adverse selection if $\frac{\partial}{\partial \rho} M^-(m^*(r(\rho)); \rho) > 0$

Effect of information on adverse selection

$$\frac{\partial}{\partial \rho} M^{-}(m^{*}; \rho) \stackrel{\text{sgn}}{=} A(m^{*}; \rho)$$

where

$$A(m^*;\rho) \equiv \left[m^* - M^-(m^*;\rho)\right] G_\rho(m^*;\rho) - \int_{-\infty}^{m^*} G_\rho(m;\rho) dm$$

with $G_{\rho}(m; \rho) \equiv \frac{\partial}{\partial \rho} G(m; \rho)$

- Two channels through which information affects AS:
 - prob. of trade, $G_{\rho}(m^*; \rho)$
 - dispersion of posterior mean, $\int_{-\infty}^{m^*} G_{\rho}(m; \rho) dm$
- $A(\rho) \equiv A(m^*(r(\rho)); \rho)$: adverse-selection effect

Effect of unfriendlier reactions on value of information

• L's payoff under information ρ and reaction r:

$$\Pi(\rho; r) \equiv \sup_{a(\cdot)} \left\{ \int_{-\infty}^{+\infty} a(m) \, \delta_L(r, m) dG(m; \rho) \right\}$$
$$= G(m^*(r); \rho) \delta_L(r, M^-(m^*(r); \rho))$$

- Benefit of friendlier reaction effect

 - ρ^{\dagger} : anticipated choice (by F)

$$B(\rho; \rho^{\dagger}) \equiv -\frac{\partial^2}{\partial \rho \partial r} \Pi(\rho; r(\rho^{\dagger}))$$

- Starting from $r(\rho^{\dagger})$, reduction in r
 - raises value of information at ρ if $B(\rho; \rho^{\dagger}) > 0$
 - lowers value of information at ρ if $B(\rho; \rho^{\dagger}) < 0$

Effect of unfriendlier reactions on value of information

$$B(\rho; \rho^{\dagger}) = -\frac{\partial \delta_L(r, m^*(r(\rho^{\dagger})))}{\partial r} G_{\rho}(m^*(r(\rho^{\dagger}); \rho) + \int_{-\infty}^{m^*(r(\rho^{\dagger}))} \frac{\partial^2 \delta_L(r, m)}{\partial r \partial m} G_{\rho}(m; \rho) dm$$

- Two channels through which, starting from $r(\rho^{\dagger})$, reduction in r affects value of information at ρ :
 - prob. of trade, $G_{\rho}\left(m^*(r(\rho^{\dagger}); \rho\right)$
 - dispersion of posterior mean, $\int_{-\infty}^{m^*(r(\rho^{\dagger}))} \frac{\partial^2 \delta_L(r,m)}{\partial r \partial m} G_{\rho}(m;\rho) dm$

Expectation Conformity

• L's value function when actual information is ρ and F expects information ρ^{\dagger} :

$$V_L(\rho; \rho^{\dagger}) \equiv \Pi(\rho; r(\rho^{\dagger}))$$

Definition

Expectation conformity holds at (ρ, ρ^{\dagger}) iff

$$\frac{\partial^2 V_L(\rho;\rho^{\dagger})}{\partial \rho \partial \rho^{\dagger}} > 0$$

Key forces...

•
$$A(\rho^{\dagger}) \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho^{\dagger})); \rho^{\dagger})$$
: adverse-selection effect

•
$$B(\rho; \rho^{\dagger}) = -\frac{\partial^2 \Pi(\rho; r(\rho^{\dagger}))}{\partial \rho \partial r}$$
: benefit-of-friendlier-reactions effect

Expectation Conformity

Proposition

Assume MPS order.

- (i) EC at (ρ, ρ^{\dagger}) iff $A(\rho^{\dagger})B(\rho; \rho^{\dagger}) < 0$.
- (ii) Information aggravates AS at ρ^{\dagger} (i.e., $A(\rho^{\dagger}) < 0$) for Uniform, Pareto, Exponential $G(\cdot; \rho)$, or, more generally, when $G_{\rho}(m^*(r(\rho^{\dagger}); \rho^{\dagger}) < 0$.
- (iii) Lower r raises incentive for information at (ρ, ρ^{\dagger}) (i.e., $B(\rho; \rho^{\dagger}) > 0$) if $G_{\rho}(m^*(r(\rho^{\dagger}); \rho) < 0$.
- (iv) Therefore EC at (ρ, ρ^{\dagger}) if

$$\max\left\{ \mathsf{G}_{\rho}(\mathsf{m}^*(\mathsf{r}(\rho^\dagger));\rho^\dagger), \mathsf{G}_{\rho}(\mathsf{m}^*(\mathsf{r}(\rho^\dagger));\rho) \right\} < 0$$

(v) Suppose, for any m^* , $M^-(m^*;\rho)$ decreasing in ρ (e.g., Uniform, Pareto, Exponential) and $\partial^2 \delta_L(r,m)/\partial r \partial m = 0$ (e.g., Akerlof). Then, $G_\rho(m^*(r(\rho^\dagger);\rho) < 0$ NSC for EC at (ρ,ρ^\dagger) .

Non-directed search in Akerlof model

• Akerlof model under non-directed search (ρ =prob. seller learns state)

$$G(m;
ho) = \left\{ egin{array}{ll}
ho G(m) & ext{for } m < \omega_0 \
ho G(m) + 1 -
ho & ext{for } m \geq \omega_0 \end{array}
ight.$$

Corollary

EC holds holds at (ρ, ρ^{\dagger}) iff $r(\rho^{\dagger}) > \omega_0$, i.e., iff gains from trade Δ large.

Non-directed search in Akerlof model

- Large Δ : $r(\rho^{\dagger}) > \omega_0$
- Increase in anticipated information ρ^{\dagger}
 - ightarrow seller engages more selectively, $G_{
 ho}(m;
 ho^{\dagger}) < 0$
 - ightarrow exacerbated AS (lower $M^-(m^*(r(\rho^{\dagger})); \rho^{\dagger}))$
 - $\rightarrow \text{lower price}$
 - ightarrow higher cost for S of parting with valuable item
 - → higher value in learning state

Non-directed search in Akerlof model

- Small Δ : $r(\rho^{\dagger}) < \omega_0$
- S engages only when **informed** and $\omega < r(\rho^{\dagger})$
- ullet variations in anticipated information $ho^\dagger
 ightarrow$ no effect on AS
- No EC

Gains from Engagement

Proposition

Suppose info structures are rotations and L's payoff is $\delta_L(m,r) = \tilde{\delta}_L(m,r) + \theta$. For all (ρ, ρ^{\dagger}) , there exists $\theta^*(\rho, \rho^{\dagger})$ s.t., for all $\theta \geq \theta^*(\rho, \rho^{\dagger})$, EC holds at (ρ, ρ^{\dagger}) .

• EC more likely when gains from engagement are large.

Gains from Engagement

- Previous result driven by AS
- Fixing r,

$$\frac{\partial^2 \Pi}{\partial \theta \partial \rho} = G_{\rho}(m^*(r,\theta);\rho)$$

 Hence, marginal value of information decreases with gains from engagement under suff. condition for EC

$$G_{\rho}(m^*(r(\rho^{\dagger};\theta),\theta);\rho)<0$$

ullet Larger gains o smaller benefit from learning state

Plan

- Introduction
- Model
- Expectation Conformity
- Expectation Traps
- O Disclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- Anti-lemons
- Onclusions

Expectation Traps

Expectation Traps

Proposition

Suppose ρ_1 and $\rho_2 > \rho_1$ are eq. levels and information aggravates AS, i.e., $A(\rho) < 0$ for all $\rho \in [\rho_1, \rho_2]$. Then L better off in low-information equilibrium ρ_1 . Converse true when information alleviates AS, i.e., $A(\rho) > 0$.

Expectation Traps: Non-direct search in Akerlof model

- ρ : prob Seller learns state
- G uniform over [0, 1]
- $C(\rho) = \rho^2/20$
- $\Delta = 0.25$
- Eq. conditions

$$r = M^{-}(r; \rho) + \Delta$$

$$-\int_{r}^{+\infty} G_{\rho}(m; \rho) dm = C'(\rho)$$

Two equilibria:

$$\rho_1 \approx 0.48 \qquad r_1 \approx 0.69
\rho_2 \approx 0.88 \qquad r_2 \approx 0.58$$

- For any $m^* > \omega_0$, $G_{\rho}(m^*; \rho) < 0 \Rightarrow A(\rho) < 0$ (info aggravates AS)
- Seller better off in low-information eq.

Expectation Traps

- Expectation traps
 - driven by AS effect
 - friendliness of F's reaction decreasing in L's information
 - expectation traps emerge even if information is free

- Contrast to private values + screening (Ravid et al. 2022)
 - equilibria Pareto ranked
 - eq. payoffs increasing in informativeness of signal

plan

- Introduction
- Model
- Section Expectation Conformity
- Expectation Traps
- O Disclosure and Cognitive Style
- O Policy Interventions
- Flexible Information
- Anti-lemons
- Onclusions

Policy Interventions

Subsidies to Trade

Welfare (competitive F):

$$W \equiv \int_{-\infty}^{m^*} \left(\delta_L(r,m) + s\right) dG(m;\rho) - C(\rho) - (1+\lambda)sG(m^*;\rho)$$

where

- s: subsidy to trade
- λ : cost of public funds (DWL of taxation)
- Subsidy impacts:
 - engagement, m*
 - friendliness of F's reaction, r
 - ullet information, ho

Subsidies: Akerlof

- Subsidies optimal in Akerlof model when
 - 1. Small cost λ of public funds
 - 2. Information aggravates AS $(A(\rho) < 0)$
 - 3. CS of eq. same as BR: Subsidies reduce information

 Proposition 6 (in paper) identifies precise conditions for optimality of subsidies/taxes in generalized lemons/anti-lemons problems.

Subsidies: Double Dividend

Corollary

In Akerlof model, endogeneity of information calls for larger subsidy when information reduces prob. of trade.

Same condition for EC

- Double dividend of subsidy
 - more engagement
 - less information acquisition
- Implication for Gov. asset repurchases programs: more generous terms

Plan

- Introduction
- Model
- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style
- O Policy
- Flexible Information
- Anti-lemons
- Onclusions

Flexible Information

Flexible

- Entropy cost:
 - $oldsymbol{
 ho}$ parametrizes MC of entropy reduction (alternatively, capacity)
 - L invests in ability to process info (MC or capacity)
 - ullet then chooses experiment $q:\Omega o\Delta(Z)$ at cost

$$\frac{1}{\rho}c(I^q)$$

where I^q is mutual information between z and ω

- Max-slope cost:
 - ρ parametrizes max slope of stochastic choice rule $\sigma:\Omega\to[0,1]$ specifying prob. L engages
 - L chooses ρ at cost $C(\rho)$
 - then selects experiment $q:\Omega\to\Delta(Z)$ and engagement strategy $a:Z\to[0,1]$ among those inducing stochastic choice rule with slope less than ρ
- Key insights similar to those under MPS order

Equilibrium under Entropy Cost

Seller's problem

$$\int_{\omega} (r-\omega)q(1|\omega)dG(\omega) + \mathbb{E}[\omega] - rac{I^q}{
ho}$$

where

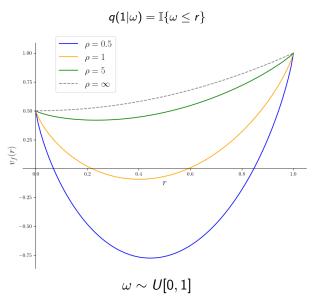
$$I^q = \int_{\omega} \phi(q(1|\omega)) dG(\omega) - \phi(q(1))$$

is entropy reduction, with

$$\phi(q) \equiv q \ln(q) + (1-q) \ln(1-q)$$

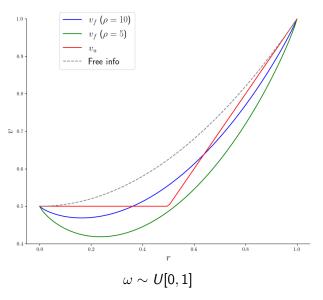
$$q(1) \equiv \int_{\omega} q(1|\omega) dG(\omega)$$

Value of "Full Information"



Losses maximal for intermediate prices

Value of Information



Full info better than no info for intermediate r and low MC

Seller's Optimality

If

$$\int_\omega e^{\rho(r-\omega)}g(\omega)d\omega\le 1, \qquad \int_\omega e^{-\rho(r-\omega)}g(\omega)d\omega>1$$
 never engage $\to q(1)=0$

If

$$\int_\omega e^{-\rho(r-\omega)}g(\omega)d\omega\le 1, \qquad \int_\omega e^{\rho(r-\omega)}g(\omega)d\omega>1$$
 always engage $\to q(1)=1$

If

$$\int_{\omega} e^{\rho(r-\omega)} g(\omega) d\omega > 1, \quad \int_{\omega} e^{-\rho(r-\omega)} g(\omega) d\omega > 1$$

interior solution with some information acquisition

Seller's Optimality - Interior Solution

• Interior $q(1|\omega)$ solves functional eq.

$$r-\omega = \frac{1}{\rho} \left[\ln \left(\frac{q(1|\omega)}{1-q(1|\omega)} \right) - \ln \left(\frac{q(1)}{1-q(1)} \right) \right]$$

with

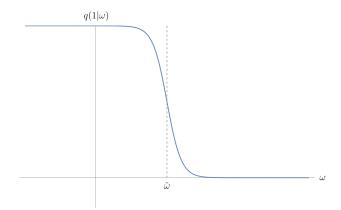
$$q(1) = \int_{\omega} q(1|\omega) dG(\omega)$$

ullet Let $ilde{\omega} \in \mathbb{R}$ solve

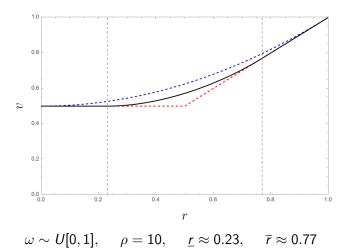
$$ilde{\omega} = r + rac{1}{
ho} \ln \left(rac{\int_{\omega} rac{1}{1 + e^{
ho(\omega - ilde{\omega})}} dG(\omega)}{1 - \int_{\omega} rac{1}{1 + e^{
ho(\omega - ilde{\omega})}} dG(\omega)}
ight)$$

Seller's Optimality - Interior Solution

$$q(1|\omega)=rac{1}{1+e^{
ho(\omega- ilde{\omega})}}, ~~ ilde{\omega}=r+rac{1}{
ho}\ln\left(rac{q(1)}{1-q(1)}
ight)$$



Seller's Optimality - Value of Information



- Dashed blue line: free full information
- Dashed red line: no information
- Black line: optimal signal

Equilibrium

There exists \underline{r} , \overline{r} such that seller's optimality:

Buyer's optimality:

$$r = \int_{\omega} \omega rac{q(1|\omega)}{\int_{\omega} q(1|\omega) dG(\omega)} dG(\omega) + \Delta$$

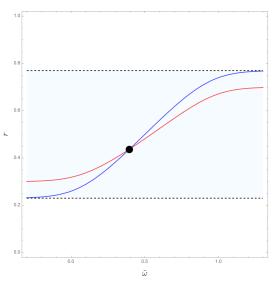
Equilibrium - Interior

Best-response analysis in \mathbb{R}^2

$$\begin{cases} \tilde{\omega} = r + \frac{1}{\rho} \ln \left(\frac{\int_{\omega} \frac{1}{1 + e^{\rho(\omega - \tilde{\omega})}} dG(\omega)}{1 - \int_{\omega} \frac{1}{1 + e^{\rho(\omega - \tilde{\omega})}} dG(\omega)} \right) & (\textit{seller}) \end{cases}$$

$$r = \int_{\omega} \omega \frac{\frac{1}{1 + e^{\rho(\omega - \tilde{\omega})}}}{\int_{\omega} \frac{1}{1 + e^{\rho(\omega - \tilde{\omega})}} dG(\omega)} dG(\omega) + \Delta \quad (\textit{buyer})$$

Equilibrium - Example



$$\omega \sim U[0,1], \quad \rho = 10, \quad \Delta = 0.2, \quad r^* \approx 0.44, \quad \tilde{\omega}^* \approx 0.4$$

Multiple Equilibria: Corner and Interior

- Interior solutions can coexist with corner solutions with no information acquisition and no engagement
- Need to specify buyer's off-path beliefs

$$q^\dagger(1|\omega) = egin{cases} 1 & ext{if } \omega = 0 \ 0 & ext{if } \omega
eq 0 \end{cases}$$

- ullet Buyer offers: $\mathbb{E}[\omega|a=1;q^{\dagger}]+\Delta=\Delta$
- If $\Delta < \underline{r}$ seller does not deviate
- ullet In previous slide: interior equilibrium with $ilde{\omega}^* pprox 0.4$ (q(1)pprox 0.4) and $r^*pprox 0.44$
- Also have a "corner" equilibrium with $q(1|\omega)=0$ $\forall \omega$ and $r^{**}=\Delta=0.2<\underline{r}\approx0.23$

Comparative Statics - Lower Δ



$$\omega \sim U[0,1], \quad \rho = 10, \quad \Delta = 0.15, \quad r^* \approx 0.28, \quad \tilde{\omega}^* \approx 0.09$$

Endogenous cost of entropy reduction

- Seller first invests in absorbing information
- $C(\rho)$: Cost of ρ
- ullet Given ρ , seller chooses any signal
- Total cost:

$$\frac{1}{\rho}I(q)+C(
ho)$$

- \bullet Advantage of this formalism: higher ρ plays role similar to "more info" with rigid info
- Interaction between seller's choice and buyer's expectation in (ρ, ρ^\dagger) as in baseline model

Plan

- Introduction
- Model
- Expectation Conformity
- Expectation Traps
- Oisclosure and Cognitive Style
- Policy
- Flexible Information
- 4 Anti-lemons
- Onclusions

(Anti-lemons)

Conclusions

- Endogenous information in mks with adverse selection
- Expectation conformity
 - prob of engagement decreasing in informativemess of signal
 - large gains from interaction
- Expectation traps
- Welfare and policy implications
 - endogeneous info: larger subsidies

Conclusions

- Ongoing work:
 - bilateral information acquisition
 - public information disclosures
 - ...

Most Important Slide

THANKS!

Disclosure

• Suppose L can prove signal informativeness above $\hat{\rho}$

Hard Information

- $\hat{\rho}(\rho^*)$: hard information disclosed in eq. supporting ρ^*
- **Regularity**: Equilibrium supporting ρ^* is regular if, after disclosing $\hat{\rho} < \hat{\rho}(\rho^*)$, informativeness of L's signal lower than ρ^*
- Monotone equilibrium selection

Disclosure

Proposition

Assume information aggravates AS $(A(\rho^{\dagger}) < 0$ for all $\rho^{\dagger})$

- ullet Any pure-strategy eq. ho of no-disclosure game also eq. level of disclosure game
- Largest and smallest equilibrium levels in regular set of disclosure game also eq. levels of no-disclosure game.
- Result driven by AS effect
 - ullet disclosing less than eq. level o inconsequential
 - disclosing more → unfriendlier reactions
- Without regularity, eq. in disclosure game supporting $\rho^* > \sup\{eq.\rho \text{ no disclosure game}\}$
 - sustained by F expecting large ρ when F discloses $\hat{\rho} < \hat{\rho}(\rho^*)$

Cognitive Style

• L's cost $C(\rho; \xi)$ decreasing in ξ

Corollary

Suppose L can acquire information cheaply (ξ_H) or expensively (ξ_L) and can disclose only ξ_H (IQ interpretation) or only ξ_L (work load). Further assume that, in eq., player F's reaction is decreasing in posterior that $\xi = \xi_H$. Then L poses as "information puppy dog", i.e., does not disclose in IQ interpretation and discloses in work load one.

Prop-FI

- $q^{\rho,r}(1|\omega)$: prob. signal recommends a=1 at ω
- $q^{\rho,r}(1)$: tot prob. signal recommends a=1
- Entropy:

$$\delta_{\mathit{L}}(r,\omega) = \frac{1}{\rho} \left[\ln \left(\frac{q^{\rho,r}(1|\omega)}{1 - q^{\rho,r}(1|\omega)} \right) - \ln \left(\frac{q^{\rho,r}(1)}{1 - q^{\rho,r}(1)} \right) \right]$$

Max-slope:

$$q^{\rho,r}(1|\omega) = \begin{cases} 1 & \text{if} \qquad \omega \leq m^*(r) - \frac{1}{2\rho} \\ \frac{1}{2} - \rho(\omega - m^*(r)) & \text{if} \quad m^*(r) - \frac{1}{2\rho} < \omega \leq m^*(r) + \frac{1}{2\rho} \\ 0 & \text{if} \qquad \omega > m^*(r) + \frac{1}{2\rho} \end{cases}$$

Prop-FI

Proposition

Fix (ρ, ρ^{\dagger}) .

- (i) EC holds at (ρ, ρ^{\dagger}) iff $A(\rho^{\dagger})B(\rho; \rho^{\dagger}) < 0$.
- (ii) Information aggravates AS at ρ^{\dagger} if $q^{\rho,r(\rho^{\dagger})}(1|\omega)/q^{\rho,r(\rho^{\dagger})}(1)$ increasing in ρ for $\omega < m^*(r(\rho^{\dagger}))$, decreasing in ρ for $\omega > m^*(r(\rho^{\dagger}))$, at $\rho = \rho^{\dagger}$.
- (iii) Reduction in r at $r(\rho^{\dagger})$ raises L's value of information at ρ if condition in (ii) holds and $q^{\rho,r(\rho^{\dagger})}(1)$ non-increasing in ρ .
- (iv) Suppose $M^-(m^*(r(\rho^{\dagger})); \rho)$ decreasing in ρ at $\rho = \rho^{\dagger}$ and $\partial^2 \delta_L(r, m)/\partial r \partial m = 0$ (e.g., Akerlof). Then $q^{\rho, r(\rho^{\dagger})}(1)$ decreasing in ρ at $\rho = \rho^{\dagger}$ NSC for EC at (ρ, ρ^{\dagger}) .

Anti-lemons

Assumption (anti-lemons). Friendliness of F's reaction to an increase in L's information depends negatively on impact of L's information on adverse selection:

$$\frac{dr(\rho^{\dagger})}{d\rho^{\dagger}} \stackrel{\text{sgn}}{=} -\frac{\partial}{\partial \rho^{\dagger}} \, \mathbf{M}^{-} \big(\mathbf{m}^{*} (\mathbf{r}(\rho^{\dagger})); \; \rho^{\dagger} \big).$$

Anti-lemons: Spencian signaling

- L: agent choosing between enrolling in MBA (a = 1) or not (a = 0)
- Cost of enrolling p
- ullet Disutility from studying: ω
- F: representative of competitive set of employers
- Agent's productivity when employed $\theta = a b\omega$, b > 0
- r : wage offered
- $\delta_L : r (\omega + p)$
- Engagement threshold: $m^*(r) = r p$
- Equilibrium $r(\rho)$:

$$r = a - bM^{-}(m^{*}(r); \rho)$$

Anti-lemons: Start-up example

- Entrepreneur (L) chooses whether to start a business (a = 1) at cost $c_L > 0$
- ullet $1-\omega$: probability projects succeeds (delivering 1 unit of cash flows)
- L may need to liquidate prematurely with prob. p (as in Diamond and Dybvig (1983))
- r: price offered by competitive investors (F) in case of liquidation
- L's payoff from engagement

$$\delta_L = (1-p)(1-m) + pr - c_L$$

• Hence, L engages iff

$$m \leq m^*(r) = \frac{1-p+pr-c_L}{1-p}$$

- Value of assets for $F: 1 \omega$
- E. price $r(\rho)$

$$r = 1 - M^{-}(m^{*}(r); \rho)$$

Anti-lemons: Warfare example

- Country L: potential invader
- ω : probability country F wins fight
- r: probability F surrenders without fighting
- L's payoff in case of victory: 1; L's cost of defeat: c_L

$$\delta_L(r,m) = r + (1-r)(1-m-mc_L)$$

• Hence, L engages iff

$$m \leq m^*(r) = \frac{1}{(1-r)(1+c_L)}$$

- F's payoff from victory: 1; F's defeat cost c_F drawn from cdf H
- Prob. $r(\rho)$ F surrenders

$$r = 1 - H\left(\frac{M^{-}(m^{*}(r); \rho)}{1 - M^{-}(m^{*}(r); \rho)}\right)$$

Anti-lemons: Hermalin (1998)'s leadership model

- r: prob F joins leader's project
- $\delta_L(r, m) = (1 m) + r c_L$
- 1-m: probability project succeeds
- F observes whether L starts project
- F's payoff from joining: $1 m c_F$, with c_F drawn from cdf H
- Equilibrium $r(\rho)$

$$r = H\left(2 - M^{-}\left(1 + r - c_{L}; \rho\right)\right)$$

Anti lemons

Proposition

Assume MPS order and information aggravates AS at ρ^{\dagger} (i.e., $A(\rho^{\dagger}) < 0$). EC holds at (ρ, ρ^{\dagger}) only if $G_{\rho}\Big(m^*\big(r(\rho^{\dagger})\big); \rho\Big) > 0$, which, in the case of rotations, happens iff

$$m^*(r(\rho^{\dagger})) < m_{\rho}.$$

Furthermore, $G_{\rho}\left(m^*\left(r(\rho^{\dagger})\right);\rho\right)>0$ necessary and sufficient for EC if $\partial^2\delta_L(m,r)/\partial m\partial r=0$ (e.g., Spence).

opposite of lemons case

