
Asymmetric Information in the Supply Chain of Mortgages

Jonathan Becker – UW-Madison Jean-François Houde – UW-Madison & NBER Kenneth Hendricks – UW-Madison & NBER Diwakar Raisingh – DOJ

December 30, 2023

Originate-to-Distribution (OTD) Supply Chain of Mortgages

Loan Values to Servicers

- Sellers in MBS market sell loans, but typically retain servicing rights
 - Collect monthly interest payment from borrower at note rate r
 - ▶ Pays the agency for insuring loan against default at rate g
 - ▶ Pays the MBS coupon *c* to investors
 - ▶ Keeps the difference: r g c (measured in p.p.)

Loan Values to Servicers

- Sellers in MBS market sell loans, but typically retain servicing rights
 - Collect monthly interest payment from borrower at note rate r
 - ▶ Pays the agency for insuring loan against default at rate g
 - ▶ Pays the MBS coupon *c* to investors
 - ▶ Keeps the difference: r g c (measured in p.p.)
- Sellers in the wholesale market sell loans + servicing rights.
 - Buyer's willingness-to-pay for the bundle depends upon resale price plus service income.
 - Service income depends upon (random) duration of the loan.
- Main source of risk: early prepayment (e.g., default, refinancing)

Loan Values to Servicers

- Sellers in MBS market sell loans, but typically retain servicing rights
 - Collect monthly interest payment from borrower at note rate r
 - ▶ Pays the agency for insuring loan against default at rate g
 - ▶ Pays the MBS coupon *c* to investors
 - ▶ Keeps the difference: r g c (measured in p.p.)
- Sellers in the wholesale market sell loans + servicing rights.
 - Buyer's willingness-to-pay for the bundle depends upon resale price plus service income.
 - Service income depends upon (random) duration of the loan.
- Main source of risk: early prepayment (e.g., default, refinancing)
- Key decisions by banks:
 - Security customization: (i) coupon, (ii) custom/multi-issuer pool
 - Acquisition price/bid: (i) wholesale price, (ii) upfront fee

Research question

• What is the *information structure* that generates wholesale prices and securitization decisions? Common or private value?

Research question

- What is the *information structure* that generates wholesale prices and securitization decisions? Common or private value?
- Why?
 - Private signals about pre-payment risk leads to a Winner's Curse in the wholesale market, and Lemon's problem in the MBS market
 - * Asymmetric information: Lower loan acquisition and MBS prices
 - ★ Borrowing costs are inversely proportional to loan value
 - IO/Bank competition literature:
 - * Banks have common beliefs about loan duration
 - ★ Price dispersion is due to idiosyncratic origination/servicing costs

What do we do?

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

What do we do?

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

- Adverse selection in the MBS market:
 - Variation: Limited ability to customize securities
 - Chiappori and Salanié's correlation test:
 - Do sellers place higher duration loans in low coupon (high service-income) securities?
 - ★ Do they sell higher-duration loans in a custom pool security?
 - Moral Hazard vs Adverse-selection

What do we do?

Case study: Wholesale/secondary markets for Ginnie Mae mortgages

- Adverse selection in the MBS market:
 - Variation: Limited ability to customize securities
 - Chiappori and Salanié's correlation test:
 - Do sellers place higher duration loans in low coupon (high service-income) securities?
 - ★ Do they sell higher-duration loans in a custom pool security?
 - Moral Hazard vs Adverse-selection
- Common-value test:
 - Auctions for loans without a coupon-choice option
 - Correlation between (residual) bids and loan duration (as in Hendricks, Pinkse and Porter)
 - Sources of asymmetric information: (i) private signal about loan quality, and (ii) accuracy of pricing model

Summary of Findings

- Main results:
 - Wholesale auctions have a significant common value component
 - Bidders differ in the quality of their pricing models
 - Asymmetric information leads to adverse selection in the MBS market
 - Ability to customize securities increases market power in auctions

Summary of Findings

• Main results:

- Wholesale auctions have a significant common value component
- 2 Bidders differ in the quality of their pricing models
- 3 Asymmetric information leads to adverse selection in the MBS market
- Ability to customize securities increases market power in auctions

• Implications:

- Auctions improve information available to upstream lenders, and lower securitization cost
- Market unraveling?
 - ★ Ability to customize MBS lower the value of "multi-issuer" pools
 - ★ Wholesale market design determines the size of the wholesale market
- ⇒ Information frictions *upstream* affect competition *downstream*

Outline

- Data and market description
- 2 Loan valuation model
- 3 Adverse selection test
- 4 Common value test
- Conclusion

Secondary (MBS) market

- To-Be-Announced (TBA) forward market: Multi-issuers
 - ▶ Bank agrees to delivery a pool of agency-insured loans to a buyer at a specified price, par value, coupon, maturity, and delivery date.
 - Identity of loans unknown to buyer at trade date.
- Custom pool market: Single-issuer.
 - ▶ Identities of the loans are known to buyer at the trade date.
 - ▶ Roughly 25% in our sample (up from less than 10% in 2010)
- Customization decisions:
 - **Coupon:** Service income (r c)
 - Pool: Custom or Multi-issuer

Wholesale Market

- Two market segments:
 - Posted prices: Wholesale rate-sheets or Lock prices
 - ★ Lock price = Base (r, lock period) + Loan-level adjustments (LLPA)
 - ★ Base prices are updated daily
 - ★ LLPA are based on *coarse* information
 - Online auctions: Flexible real-time pricing
 - Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi

Wholesale Market

- Two market segments:
 - Posted prices: Wholesale rate-sheets or Lock prices
 - ★ Lock price = Base (r, lock period) + Loan-level adjustments (LLPA)
 - ★ Base prices are updated daily
 - ★ LLPA are based on *coarse* information
 - Online auctions: Flexible real-time pricing
 - Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi
- Optimal Blue (OB) loan exchange platform:
 - ▶ Active in both segments: $\approx 35\%$ market-share (prior to 2021)
 - ▶ 75% of loan exchanges done via auctions

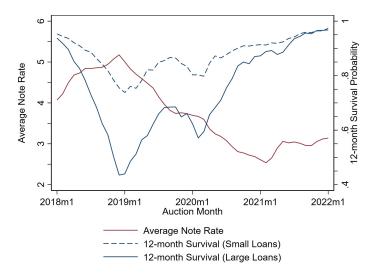
Wholesale Market

- Two market segments:
 - Posted prices: Wholesale rate-sheets or Lock prices
 - ★ Lock price = Base (r, lock period) + Loan-level adjustments (LLPA)
 - * Base prices are updated daily
 - ★ LLPA are based on *coarse* information
 - Online auctions: Flexible real-time pricing
 - Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi
- Optimal Blue (OB) loan exchange platform:
 - ▶ Active in both segments: $\approx 35\%$ market-share (prior to 2021)
 - ▶ 75% of loan exchanges done via auctions
- Auction design (since 2018):
 - ▶ Loan-level first-price sealed bid auction (\approx 1-2 hrs)
 - Sellers invite buyers form their network (fixed)
 - Buyer-specific reserve price: Bid = max{Bulk, Lock}

Data Sources

- eMBS: Provides detailed information on all agency MBSs and their component loans from January 2013 to present.
 - Loan performance: Monthly payment history until loan is prepaid.
 - Security information: (i) coupon choice, and (ii) multi-issuer or single-issuer pool
- Optimal Blue: Auction data from Jan 2018 to present.
 - ▶ Loan-level first-price sealed bid auction (\approx 1-2 hrs)
 - Buyer-specific reserve price: Bid = max{Bulk, Lock}
 - ► Information: Originator, Note-rate, Zip-code, Agency, Income, DTI, Size, FICO, Purchase/Refi

Sample

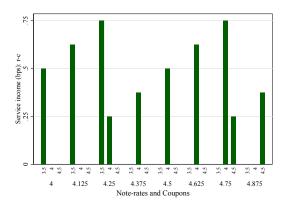

- 30 year fixed-rate mortgages that benefit from Federal housing subsidies (FHA and VA) and insured by Ginnie Mae
 - ► FHA: high LTV (max 96%); VA: zero down-payment
 - Ginnie does not securitize loans; banks deliver loan packages and incur the securitization costs.
- Why Ginnie?
 - No competition, loans not eligible for Fannie Mae, Freddie Mac
 - Riskier loans, higher default rates
 - Restrictions on coupon choice
 - Guarantee fee is fixed at 6 basis points for all lenders
- Ginne Mae $\simeq 25\%$ of agency loan origination.

Summary statistics

Source: eMBS + OB

	MBS		MBS		OB+MBS	
	Sample		Sample		Sample	
	mean	sd	mean	sd	mean	sd
Interest Rate	4.1	0.56	4.4	0.65	4.4	0.66
Loan Amount (100k)	2.2	1.1	2.4	1.1	2.4	1.1
Loan-to-Value	94.9	8.9	94.8	8.9	95.2	8.5
Credit Score (Min)	688	55	683	56	684	54
Debt-to-Income	36.4	15.9	39.4	14.4	40.2	13.9
1(DTI > 42)	0.44	0.50	0.52	0.50	0.54	0.50
1(VA-Backed)	0.36	0.48	0.38	0.49	0.35	0.48
1(Retail)	0.40	0.49	0.40	0.49	0.11	0.31
1(Correspondent)	0.47	0.50	0.47	0.50	0.85	0.36
Survival: 12-month	85.8	34.9	80.6	39.6	80.9	39.3
Survival: 36-month	0.51	0.50	0.25	0.43	0.17	0.38
Observations	8,517,991		2,821,131		112,510	
Period	2013-2019		2018-2019		2018-2019	

Prepayment risk between 2018 and 2022


Summary statistics: Wholesale auctions

Bids are for \$100 loan; resale price = TBA price

		(1)	
	mean	sd	count
Client network size	17	4.7	63,464
Fraction network invited	.66	.2	63,464
TBA Price (\$)	103	1	693,310
Bid (\$)	104	1.3	693,310
Bulk - TBA (\$)	1.6	.83	493,008
Lock price - TBA (\$)	1.2	.97	200,302
Fraction bulk bids	.69	.22	63,464
Winning bid: Bid - TBA (\$)	2.1	.73	63,464
1(Bulk winning bid)	.9	.31	63,464
Winning margin: 1st - 2nd bid (\$)	.23	.25	63,464
Gain: Winning bid - Highest lock (\$)	.72	.85	57,387
Observations	693310		

Stylized fact 1: Security customization

- r is quoted in 1/8 increments, c in 0.5 increments.
- Regulation: $(r-c) \in \{0.25, 0.375, 0.5, 0.625, 0.75\}$
- Natural experiment: Loans with note rates ending in 0.25 and 0.75 can be pooled in a low or a high coupon with margins of .75 or .25.

Stylized fact 2: Pricing of prepayment risk

 $\Pr(Survival|Z_i) = \Phi(Z_i\beta + \text{Auction month} + \text{State})$ Net $\text{bid}_i = \lambda \Pr(Survival|Z_i) + \text{Date} \times \text{Rate} + \epsilon_i$

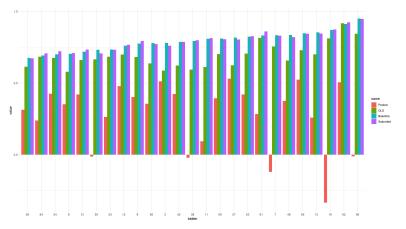
(1)	(2)	(3)
Bulk Bid	Lock Price	Winning Bid
0.183*	0.136*	0.230*
(0.0013)	(0.0023)	(0.0030)
445,484	184,733	56,896
0.245	0.278	0.389
0.60	0.60	0.60
0.16	0.16	0.16
	Bulk Bid 0.183* (0.0013) 445,484 0.245 0.60	Bulk Bid Lock Price 0.183* 0.136* (0.0013) (0.0023) 445,484 184,733 0.245 0.278 0.60 0.60

Takeaway

- Bulk bids price pre-payment risk more accurately than lock
- Cost of 12-month survival risk: 16% increase in survival probability = \$0.23 (38% of across auctions bid dispersion).

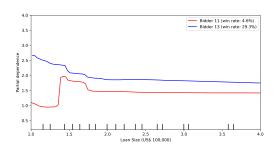
Hedonic bid regression

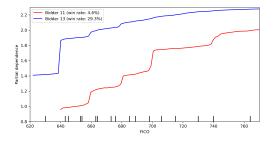
Stylized fact 3: Bid dispersion


Sample: Loans with no coupon choice

	(1)	(2)	(3)	(4)
Baseline	\checkmark	\checkmark	\checkmark	\checkmark
Buyer FE		\checkmark	\checkmark	\checkmark
Buyer-specific slopes			\checkmark	\checkmark
Buyer-seller FE				\checkmark
R-squared	0.33	0.43	0.65	0.67
Standard-deviation residual	0.75	0.69	0.55	0.53

- Baseline: Loan size, FICO, DTI, Income, Purchase, FHA, Fixed-effects (Sellers, date x rate, county)
- Bidder asymmetries:
 - ▶ 30-point increase from bidder-specific intercepts and slopes
 - 4-point increase from seller-specific relationships


Stylized fact 4: Banks use different pricing models


Bar heights = R^2 from Random-forest regression

- Sample: 25 bidders who won at least 100 auctions + No coupon choice
- Banks put different weights on observed attributes
- AND do not use all information available. E.g. location, income, seller.

Stylized fact 4: Banks use different pricing models

Loan Valuations: Ex-post

• Realized cash flows for \$100 loan i (omitting time period):

$$R_i(c) = P_i(c) + \underbrace{\sum_{ au=1}^{ ilde{T}_i} \left(rac{1}{1+
ho_ au}
ight)^ au}_{ ext{service multiple } (M_i)} imes \underbrace{rac{r_i - g - c}{1200}}_{ ext{service fee}} + ext{Match value}$$

- \triangleright $P_i(c)$ is the MBS security price
- ▶ $L_{\tau,i}$ is unpaid balance at end of month τ .
- $\tilde{T}_i \leq 360$ is the (random) duration of the loan.
- Security price:
 - ▶ *Multi-issuer pool:* TBA price depends on c, but not on (z, r).
 - ► *Single-issuer pool:* Pool price depends on *c* AND pool composition

Loan Valuations: Ex-post

• Realized cash flows for \$100 loan i (omitting time period):

$$R_i(c) = P_i(c) + \underbrace{\sum_{ au=1}^{ ilde{T}_i} \left(rac{1}{1+
ho_ au}
ight)^ au}_{ ext{service multiple } (M_i)} imes \underbrace{rac{r_i - g - c}{1200}}_{ ext{service fee}} + ext{Match value}$$

- \triangleright $P_i(c)$ is the MBS security price
- ▶ $L_{\tau,i}$ is unpaid balance at end of month τ .
- $\tilde{T}_i \leq 360$ is the (random) duration of the loan.
- Security price:
 - ▶ *Multi-issuer pool:* TBA price depends on c, but not on (z, r).
 - ► *Single-issuer pool:* Pool price depends on *c* AND pool composition
- Two-stage decision:
 - Bidding
 - Security customization choice

Two Models of Loan Valuation

- PV model:
 - ▶ Bidders have common beliefs about duration, $\overline{M}_{ij} = E[M_i|Z_i]$ for all j
 - ightharpoonup Plus additive, idiosyncratic cost/value shock S_{ij} over match value

Match value =
$$Z_i \gamma + S_{ij}$$

Implication: Differences in bids and securitization choices reflect dispersion in costs.

Two Models of Loan Valuation

- PV model:
 - ▶ Bidders have common beliefs about duration, $\overline{M}_{ij} = E[M_i|Z_i]$ for all j
 - ightharpoonup Plus additive, idiosyncratic cost/value shock S_{ij} over match value

Match value =
$$Z_i \gamma + S_{ii}$$

- Implication: Differences in bids and securitization choices reflect dispersion in costs.
- CV model:
 - lacktriangle Each bidder j receives an informative private signal S_{ij} about M_i

$$\Rightarrow \overline{M}_{ij} = E[M_i|Z_i,S_{ij}]$$

 Implication: Dispersion in bids and securitization choices reflect heterogeneity in expectations of loan duration

Security choice: Testable implications

- Customization options:
 - 1 Service income: High vs Low coupon
 - 2 Pool: Custom vs Multi-issuer

Security choice: Testable implications

- Customization options:
 - Service income: High vs Low coupon
 - Pool: Custom vs Multi-issuer
- Testable implication 1: Markup vs Upfront TBA price

$$c_i = c_H \text{ if } \overline{M}_{ij} \le \frac{P_H^{tba} - P_L^{tba}}{(c_H - c_L)/1200}$$

▶ Under CV, loans placed in High-coupon securities (*low service income*) are more likely to be pre-paid early

Security choice: Testable implications

- Customization options:
 - Service income: High vs Low coupon
 - Pool: Custom vs Multi-issuer
- Testable implication 1: Markup vs Upfront TBA price

$$c_i = c_H \text{ if } \overline{M}_{ij} \leq rac{P_H^{tba} - P_L^{tba}}{(c_H - c_L)/1200}$$

- Under CV, loans placed in High-coupon securities (low service income) are more likely to be pre-paid early
- Testable implication 2: Security price vs Securitization cost/diversification

$$P_c^{custom} = c \times E[M_i | \text{Bank } j' | \text{pool}] > P_c^{tba} = c \times E[M_i | \text{Multi pool}]$$

▶ Rank loans in portfolio for coupon *c*:

$$\overline{M}_1 > \overline{M}_2 > \cdots > \overline{M}_n$$

▶ Under CV, loans with $\overline{M}_{ij} > m_i^*(c)$ are placed in custom-pool

Bidding stage: Willingness to pay

Bidder willingness to pay conditional on selecting coupon c:

$$WTP_{j}(c|Z,S) = \begin{cases} P_{j,c}^{custom} + \overline{M}_{ij} \frac{r-c-g}{1200} & \text{if } \overline{M}_{ij} \geq m_{j}^{*}(c) \\ P_{c}^{tba} + \overline{M}_{ij} \frac{r-c-g}{1200} & \text{if } \overline{M}_{ij} < m_{j}^{*}(c) \end{cases}$$

Bidder valuation:

$$WTP_j(Z,S) = \max_{c \in \{c_H,c_L\}} WTP_j(c|Z,S) + \text{Match value}$$

Bidding stage: Willingness to pay

Bidder willingness to pay conditional on selecting coupon c:

$$WTP_{j}(c|Z,S) = \begin{cases} P_{j,c}^{custom} + \overline{M}_{ij} \frac{r-c-g}{1200} & \text{if } \overline{M}_{ij} \geq m_{j}^{*}(c) \\ P_{c}^{tba} + \overline{M}_{ij} \frac{r-c-g}{1200} & \text{if } \overline{M}_{ij} < m_{j}^{*}(c) \end{cases}$$

Bidder valuation:

$$WTP_j(Z,S) = \max_{c \in \{c_H,c_L\}} WTP_j(c|Z,S) + \mathsf{Match}$$
 value

• **Special case:** Note rates with digits $d \in \{0, 1/8, 3/8, 4/8, 5/8, 7/8\}$ do not have a coupon choice.

$$\Rightarrow WTP_j(Z_i, S_{ij}) = P_j^*(c|Z_i, S_{ij}) + \overline{M}_j(Z_i, S_{ij}) \frac{r - c - g}{1200}$$

Bidding stage: Strategies

• In practice, bids are additive in a reference price:

Bulk Price_{ij} = Base price + Loan-level adj. =
$$\overline{B}_j(Z_i) + B_{ij}$$

Lock Price_{ij} = Base price = $\overline{B}_j(Z_i)$

Bidding stage: Strategies

• In practice, bids are additive in a reference price:

Bulk Price_{ij} = Base price + Loan-level adj. =
$$\overline{B}_j(Z_i) + B_{ij}$$

Lock Price_{ij} = Base price = $\overline{B}_j(Z_i)$

 Assumption: Existence of an equilibrium in monotone increasing strategies,

$$B_{ij} \equiv \beta_j(Z_i, S_{ij})$$
 is increasing in S_{ij} .

Bidding strategy:

$$\operatorname{Bid}_{ij} = \overline{B}_j(Z_i) + \begin{cases} B_{ij} & \text{If } B_{ij} \geq 0 \\ 0 & \text{If } B_{ij} < 0 \end{cases}$$

ullet Cutoff: Bulk bid if $S_{ij}>s_j^*(Z_i)=eta_j^{-1}(Z_i,0)$

Bidding stage: Testable implications

Participation:

Positive selection: Under CV,

$$E[M_i|1\{B_{ij}>0\},Z_i]>E[M_i|Z_i]$$

Rival selection: Under CV,

$$E[M_i|1\{B_{ij}>0\},\sum_{j'\neq j}1\{B_{ij'}>0\},Z_i]$$

is increasing in second argument (invariant under PV).

Bidding stage: Testable implications

Participation:

Positive selection: Under CV,

$$E[M_i|1\{B_{ij}>0\},Z_i]>E[M_i|Z_i]$$

▶ Rival selection: Under CV,

$$E[M_i|1\{B_{ij}>0\},\sum_{j'\neq j}1\{B_{ij'}>0\},Z_i]$$

is increasing in second argument (invariant under PV).

- **Bid levels:** For any $S_{ij} > s_j^*(Z_i)$
 - ▶ Monotonicity: $E[M_i|B_{ij}=b,Z_i]$ in increasing wrt to b if CV, invariant if PV
 - ▶ Winner's curse: $E[M_i|B_{ij}=b, \max\{B_{i,-j}\}=b', Z_i]$ is increasing wrt to max rival bid if CV

Empirical question: Are banks' actions informative about prepayment risk?

Survival regression:

$$100 \times 1(\tilde{T}_i > 12) = \lambda [Banks actions] + FE_i + \gamma Z_i + \epsilon_i$$

- Adverse selection in the MBS market:
 - Variation: Limited ability to customize securities
 - Chiappori and Salanié's correlation test:
 - ★ Do sellers place higher-duration loans in low coupon securities?
 - ★ Do they sell higher-duration loans in a custom pool security?
- Common-value test:
 - Auctions for loans without a coupon-choice option
 - Correlation between (residual) bids/participation and loan duration (as in Hendricks, Pinkse and Porter)
- What is the impact of bank asymmetries on loan allocation?

Empirical implementation: Adverse selection

- Sample: All Ginnie-Mae loans securitized between 2013 and 2019
- Two tests:
 - ► Coupon choice: Loans with a coupon option securitized in multi-issuer securities (i.e. TBA-eligible)
 - Mutli vs custom pool: Loans without a coupon choice option
- Estimating equation:

$$100 \times 1(\tilde{T}_i > 12) = \lambda \left\{ \begin{array}{c} \mathsf{High\text{-}coupon} \\ \mathsf{or} \; \mathsf{Multi\text{-}issuer} \; \mathsf{MBS} \end{array}
ight\} + \mathit{FE}_i + \gamma \mathit{Z}_i + \epsilon_i$$

- We use three sets of controls (in addition to Month x Rate FE):
 - ► Selection on observables and unobservables: Z_i includes only loan size
 - ▶ Selection on unobservables: Z_i includes full set of loan characteristics
 - ▶ Selection on unobservables within firms: Issuer FE
- List of controls

Results: Adverse-selection (1)

	(1)	(2)	(3)	(4)	(5)	
VARIABLES	. ,	. ,		Retail	Wholesale	
Panel A: Coupon choice						
1(High coupon)	-3.96	-2.63	-1.61	-0.93	-0.90	
	(0.35)	(0.33)	(0.26)	(0.31)	(0.28)	
Obs.	2,627,016	2,627,016	2,619,080	1,067,970	1,481,475	
Loan charact.	loan size	yes	yes	yes	yes	
Fixed effects	$r \times t$	$r \times t$	$r \times t \times f$	$r \times t \times f$	$r \times t \times f$	
Mean dep. var.	89.2	89.2	89.2	89.1	89.6	
% Multi-issuer pool	0.83	0.83	0.83	0.86	0.78	
% High Coupon	0.87	0.87	0.87	0.87	0.87	

Takeaway

- Holding fixed r, loans placed in high-coupon (low service income) are $\approx 4\%$ more likely to get pre-paid within 12 mo.
- Pricing of MBS: 65% of adverse-selection is due to observables
- Firm asymmetries: Banks who <u>never</u> use low-coupon (i.e. high liquidity needs) supply <u>lower</u> duration loans

Results: Adverse-selection (2)

	(1)	(2)	(3)	(4)	(5)
VARIABLES				Retail	Wholesale
Panel B: Pool type					_
1(Multi-issuer pool)	-10.0	-4.27	-2.87	-3.07	-2.62
	(0.29)	(0.22)	(0.22)	(0.23)	(0.22)
Obs.	8,469,486	8,469,486	8,438,337	3,348,467	3,959,362
Loan charact.	loan size	yes	yes	yes	yes
Fixed effects	$r \times t$	$r \times t$	$r \times t \times f$	$r \times t \times f$	$r \times t \times f$
Mean dep. var.	89.2	89.2	89.2	89.1	89.6
% Multi-issuer pool	0.83	0.83	0.83	0.86	0.78
% High Coupon	0.87	0.87	0.87	0.87	0.87

Takeaway

- Adverse-selection: Loans placed in multi-issuer pools are adverse-selected
- About 1/3 of the adverse-selection is due to private signals about loan duration
- Firm asymmetries: Banks who <u>never</u> use multi-issuer pools (i.e. small lenders) supply <u>lower</u> duration loans

Moral Hazard or Adverse Selection?

- Do lenders encourage borrowers to refinance their loans early so they can earn higher service income on new loan?
- Test using sample of loans **not** eligible for a coupon choice i.e., note rates that end in 0.375, 0.5, and 0.625.
- Regression:

$$Y_i = \lambda_1 1\{r_i - c_i = 0.5\} + \lambda_2 1\{r_i - c_i = 0.625\} + g(r_i) + Z_i \beta + \text{Fixed Effects} + u_i$$

- ▶ Loans with higher rates get pre-paid early: g'(r) < 0
- ▶ Loans with higher spread r c likely to be pre-paid if hypothesis is true $\Rightarrow \lambda_2 > \lambda_1 > 0$.

Results: Moral Hazard

	(1)	(2)	(3)	(4)	(5)	
VARIABLES		. ,	. ,	Retail	Wholesale	
Panel C: Service income						
r - c = 500 bbs	0.40	0.046	-0.39	-0.31	-0.45	
	(0.15)	(0.15)	(0.11)	(0.12)	(0.13)	
r - c = 625 bbs	1.05	0.60	-0.065	-0.11	-0.046	
	(0.16)	(0.16)	(0.11)	(0.13)	(0.13)	
Observations	4,385,138	4,385,138	4,384,537	1,819,522	1,970,036	
Loan characteristics	rate + loan	all	all	all	all	
Fixed effects	t	t	$t \times f$	$t \times f$	$t \times f$	
Mean dep. var.	89.2	89.2	89.2	89.1	89.6	

Takeaway

- Reject Moral Hazard hypothesis:
 - More profitable loans are slightly more likely to survive
 - Difference is fully explained by observed differences cross loans/banks

Common value test: Empirical implementation

Sample: Loans without a coupon choice sold between 2018-2019

Recall that WTP and observed bids are given by:

$$WTP_{j}(Z_{i}, S_{ij}) = P_{j}^{*}(c|Z_{i}, S_{ij}) + \overline{M}_{j}(Z_{i}, S_{ij}) \frac{r - c - g}{1200}$$

$$Price_{ij} = \overline{B}_{j}(Z_{i}) + \max\{\beta_{j}(Z_{i}, S_{ij}), 0\}$$

$$1\{Bulk_{ij} = 1\} = 1\{S_{ij} \geq s_{j}^{*}(Z_{ij})\}$$

- Challenges:
 - We do not observe B_{ij} or $\overline{B}_i(Z_i)$ directly
 - $oldsymbol{e}$ We do not observe counter-factual security choice: $P_j^*(c|Z_i,S_{ij})$

Common value test: Empirical implementation (continued)

Sample: Loans without a coupon choice sold between 2018-2019

• Solution: Estimate pricing model separately for each bank j

Net price
$$_{ij} = \mathsf{Price}_{ij} - P_i^{tba}(c) = \mu_j(Z_i, \mathsf{Bulk}_{ij}) + \hat{S}_{ij}$$

- Random Forest pricing model for bidder j, $\hat{\mu}_j(Z_i, \text{Bulk}_{ij})$:
 - Control variables: Auction date, Note Rate, Service income, Loan size, FICO, LTV, DTV, Purchase/Refi, VA/FHA

Common value test: Empirical implementation (continued)

Sample: Loans without a coupon choice sold between 2018-2019

• Solution: Estimate pricing model separately for each bank j

Net price_{$$ij$$} = Price _{ij} - $P_i^{tba}(c) = \mu_j(Z_i, \text{Bulk}_{ij}) + \hat{S}_{ij}$

- Random Forest pricing model for bidder j, $\hat{\mu}_j(Z_i, \text{Bulk}_{ij})$:
 - Control variables: Auction date, Note Rate, Service income, Loan size, FICO, LTV, DTV, Purchase/Refi, VA/FHA
- What is in \hat{S}_{ii} ?
 - ▶ Pricing model error: $\mu_j(Z_i, \mathsf{Bulk}_{ij}) \left[\overline{B}_j(Z_i) 1\{\mathsf{Bulk}_{ij} = 0\}\mu_{0j}\right]$
 - lacktriangle Monotonic transformation of signal S_{ij}
- Importantly: The event $1\{S_{ij} \geq s_j^*(Z_{ij})\}$ is a "clean" measure of banks' private signal S_{ij}

Results: Common Value Test

	(1)	(2)
VARIABLES		
1(Bulk bid)	0.523*	0.428*
	(0.141)	(0.111)
Fraction bulk bids (rivals)		3.408*
		(1.019)
Observations	652,601	652,563
R-squared	0.158	0.158
Sample	All Bids	All Bids
Mean dependent variable	80.13	80.13
Fraction bulk bids	0.779	0.779
Fraction rival bulk bids (SD)		0.196

Takeaway

- Common Value: Participation is positively correlated with duration
- Winner's Curse: Rivals' participation is informative about duration

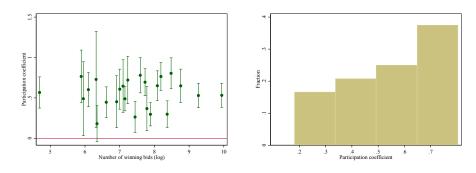
Bidder Asymmetries: Are bidders differentially informed?

- Three measures of information quality:
 - **Participation signal:** Measure informativeness of signal S_{ij}

$$Y_i = \hat{\lambda}_i^p \mathbb{1}\{Bulk_{ij} = 1\} + FE_i + \gamma Z_i + \epsilon_i$$

▶ Bid residual: Informativeness of signal + pricing model error

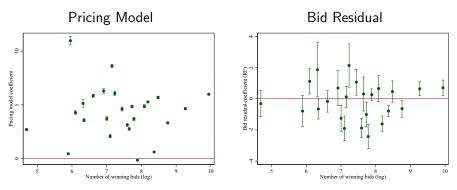
$$Y_i = \widehat{\lambda}_j^s \widehat{S}_{ij} + FE_i + \gamma Z_i + \epsilon_i$$


▶ **Model quality**: How well does bidder *j* forecast loan duration based on observables?

$$\overline{Y}_i = \widehat{\lambda}_j^m \widehat{\mu}_{ij} + \mathsf{Buyer} \; \mathsf{FE} + \mathsf{Seller} \; \mathsf{FE} + \mathsf{Note} \; \mathsf{rate} \; \mathsf{x} \; \mathsf{Month} \; \mathsf{FE} + \epsilon_i$$

where \overline{Y}_i is a predicted survival score: $\overline{Y}_i = \widehat{\gamma} Z_i + F E_i$.

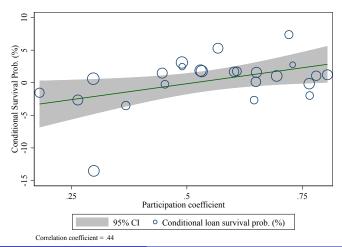
Is participation informative about loan duration?


• Participation signal: $Y_i = \lambda_j^p 1$ (Bulk bid)_{ij} + $Z_i \beta$ + Fixed effects + ϵ

Note: Figures exclude bidders who won less than 100 auctions. Total sample = 25 banks

Are bidding strategies informative about loan duration?

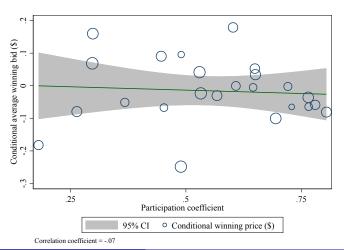
- Model quality: $\bar{Y}_i = \frac{\lambda_j}{m} \hat{\mu}_{ij} + \text{Fixed effects} + \epsilon$ Signal quality: $Y_i = \frac{\lambda_j}{m} \text{Bid residual}_{ij} + Z_i \beta + \text{Fixed effects} + \epsilon$



Note: Figures exclude bidders who won less than 100 auctions. Total sample = 25 banks

Do informed bidders win better loans?

• Conditional survival FE: Measure of bank "residual productivity" (centered at zero)


$$Y_i = Z_i \beta + \text{Fixed effects} + \omega_i 1(\text{Bank } j \text{ wins}) + \epsilon$$

Do informed bidders pay higher prices?

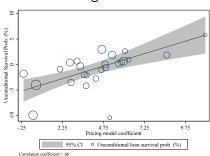
 Conditional survival FE: Measure of bank "residual productivity" (centered at zero)

$$Y_i = Z_i \beta + \text{Fixed effects} + \omega_i 1(\text{Bank } j \text{ wins}) + \epsilon$$

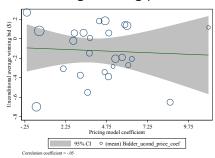
What about bidders with "better" pricing models?

Unconditional average survival and prices:

$$ar{Y}_i = ext{Fixed effects} + m{\omega_j} 1 (ext{Bank } j ext{ wins}) + \epsilon$$
 $\hat{\mu}_{ij} = ext{Fixed effects} + m{\omega_j} 1 (ext{Bank } j ext{ wins}) + \epsilon$


What about bidders with "better" pricing models?

• Unconditional average survival and prices:


$$ar{Y}_i = \text{Fixed effects} + \omega_j 1(\text{Bank } j \text{ wins}) + \epsilon$$

$$\hat{\mu}_{ij} = \text{Fixed effects} + \omega_j 1(\text{Bank } j \text{ wins}) + \epsilon$$

Average survival

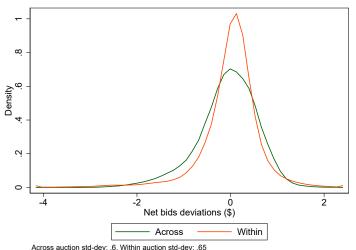
Average winning price

Common-value test results: Takeaways

- Evidence of common-value:
 - Participation "signal" is correlated with loan duration
 - ▶ Rival participation is informative conditional on *own* participation
- Bank asymmetries:
 - ▶ Weak evidence that banks differ in the precision of their signals
 - Strong evidence that asymmetries in pricing model affect allocation
- Winner's Curse?
 - More informed bidders over pay for loans
 - ► Banks with better pricing models *cream skim* the market, and earn higher profit margins

Conclusion

Main Results


- Banks value loan duration, and price it more efficiently in the auction than in the posted price market.
- Auction is a common value auction with differentially informed bidders.
- Asymmetric information leads to adverse selection in the MBS market.
- Ability to customize securities increases market-power in the wholesale market

To Do

- ▶ Source of bank asymmetries: Preference for liquidity or information?
- Adverse selection in wholesale market: Do originators sell higher duration loans in MBS market, lower duration loans in wholesale market?
- Impact of the auction on borrowing costs: how much of the gain is passed on to borrower?

APPENDIX

Bid dispersion: Within and across auctions

Across auction std-dev: .b. vvitnin auction std-dev: .b5

Pricing of Risk Attributes

Regression: $Y_i = Z_i\beta + \mathsf{Date} \times \mathsf{Rate} + \mathsf{County} + \mathsf{Seller} + \epsilon_i$

	(1)	(2)	(3)	(4)
	Survival (12mo)	Survival (36mo)	Bulk Bid	Lock Price
LogLoanAmount	-19.3*	-23.4*	-0.41*	-0.10*
	(0.45)	(0.46)	(0.0029)	(0.0052)
1(Purchase Loan)	4.04*	5.40*	0.057*	0.082*
	(0.51)	(0.53)	(0.0033)	(0.0058)
FICO Score (/1000)	-60.8*	-28.6*	5.21*	6.56*
	(3.59)	(3.71)	(0.023)	(0.041)
Loan-to-Value (/100)	20.0*	6.14*	0.0095	0.21*
	(2.62)	(2.72)	(0.017)	(0.029)
1(VA-Backed)	-13.3*	-5.90*	-0.33*	-0.37*
	(0.41)	(0.42)	(0.0026)	(0.0045)
$1(Debt-to-Income \ge 50)$	-0.79*	-0.28	-0.021*	-0.00086
	(0.37)	(0.38)	(0.0024)	(0.0043)
Observations	65199	65199	502953	203703
R^2	0.160	0.121	0.304	0.338

Standard errors in parentheses

* p < 0.05

- Bulk: Hedonic prices match main survival attributes (expt. FICO)
- Lock prices not as well, but fit is better.

Control Variables

- Baseline specifications: Period x Note-rate fixed effects
 - ▶ MBS sample: Issuance month
 - Auction sample: Auction date
- Loan attributes:
 - Loan size, FICO, LTV, Refi/Purchase, Income (auction), DTI, Agency (VA/FHA), Zip-code house value
 - Geography: County (Auction), State (MBS)
- Origination channel:
 - Auction: Originator (Seller) fixed-effects
 - ► MBS: Channel, Issuer fixed-effects

