

Alternative Data Sources and Hedonic Price Indexes for High- Tech Products in the U.S. Consumer Price Index

Craig Brown

Senior Economist | Bureau of Labor Statistics | Consumer Price Index

Jeremy Smucker

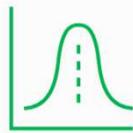
Economist | Bureau of Labor Statistics | Consumer Price Index

AEA · 2024 ASSA Annual Meeting · SGE Hosted Session

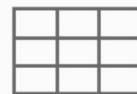
San Antonio, TX · January 7, 2024

Background – Non-Traditional Data

BLS has a goal of transitioning a portion of the CPI market basket from traditional data collection to non-traditional data sources and collection modes



Non-traditional data often contains a universe of prices, an improvement upon CPI's sample

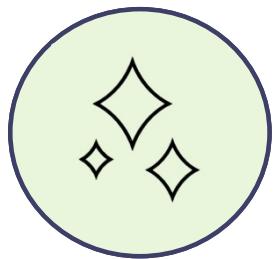


Non-Traditional data often includes more detailed, more accurate specification data, which can be used in hedonic indexing techniques

Using non-traditional data reduces both respondent burden and data collection costs

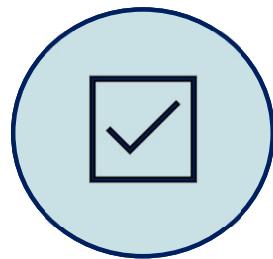
Non-traditional datasets often collect multiple prices per month, an improvement upon BLS's pricing strategy

Background – Methodology Choice



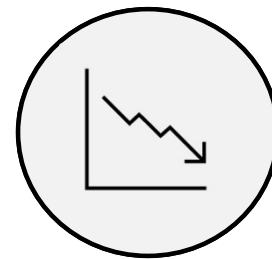
CPI Methodology

Tracks actual prices of the same item over time until it leaves the market. Then, calculates a quality-adjusted relative comparing the entering and exiting items.



Hedonic Imputation

Tracks predicted prices for items over time using a hedonic regression model. Can also impute relatives for entering and exiting goods.



Time Dummy

Estimates a single hedonic model where time periods are included as dummy variables.

Data Summary – Prices & Characteristics

Televisions

- Data collected from API of national retailer
- Prices collected 3 times per month
- Approximately 400 televisions per month
- No geographic information, but outlet has national pricing
- Each row a unique observation based on UPC/SKU
- 94 Unique Specification Variables

Wireless Telephone Services

- Data purchased from a 3rd party vendor
- Collected via web-scraping and non-automated methods
- Average of 170 plans per month
- High geographic and provider overlap w/ CPI
- Each row is a unique service plan package
- Detailed information about offer prices and service plan features

Data Summary – Weights

Televisions

- Panel survey market data
- Over 60,000 reported television purchases per year
- Purchases categorized by product specification including screen size, resolution, and brand
- Geographic and demographic information included but not used

Wireless Telephone Services

- Household survey data
- Approximately 30,000 surveys per year
- Service plans categorized by product specifications including type of account, number of serviced line per plan, amount of included data, and provider
- Geographic and demographic information included but not used

Hedonic Imputation Process

Both projects have the same core indexing process

01

CLEAN DATA AND ADD WEIGHTS

Datasets are cleaned (log of price, entering/exiting goods identified, ineligible obs removed) and weights are derived and added at this step.

02

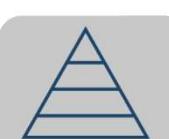
BUILD WEIGHTED REGRESSIONS FOR T & T-1

Weighted regressions are built for t and t-1 datasets with log(price) as the dependent variable and product specification variables as independent variables.

03

PREDICT LOG(PRICE) FOR ALL OBS IN T & T-1

Prices are predicted for observations in t and t-1. Prices are predicted for entering, exiting, & continuing obs in both periods. Residual change predicted for TVs



04

CALCULATE AND AGGREGATE RELATIVES

Calculate monthly obs-level relatives by comparing t and t-1 predicted prices. Aggregate obs-level relatives (Tornqvist aggregation) to create an index.

Aggregation Formula

Used in Step 4

$$\frac{P_t}{P_{t-1}} = \prod_{t-1}^n \left(\frac{p_{it}}{p_{i,t-1}} \right)^{\frac{1}{2} \left[\frac{p_{i,t-1} q_{i,t-1}}{p_{t-1} q_{t-1}} + \frac{p_{i,t} q_{i,t}}{p_t q_t} \right]}$$

Where:

i = an individual observation

p = predicted price

t = the current month

t-1 = the previous month

q = estimated expenditure

Weighting Scheme

Weights are estimated from expenditures

- Obtain 3rd party survey data which segments expenditures by product specifications
- Identify price-determining specifications and calculate expenditure shares for groups of specifications:
 - ▶ For example, of all TVs purchased, 2.5% of expenditures were for 4k, Medium Size, Brand Z TVs.
- The wireless telephone services project allocates spec group expenditure equally to all observations within a spec group
- Instead of equally weighting within a spec group, the televisions project allocates spec group expenditure to individual televisions by each observation's share of monthly reviews

$$\text{Televisions: } q_{i,t} = \text{group_expend} * \left(\frac{\text{review_count}_{i,t}}{\text{review_count}_{\text{group},t}} \right)$$

$$\text{Wireless Telephone: } q_{i,t} = \text{group_expend} * \left(\frac{1}{\text{observation_count}_{\text{group},t}} \right)$$

Where:

i = an individual observation

group_expend = expenditure in the observation's spec group from a base period

review_count_{i,t} = number of website reviews for the observation in time period t

review_count_{group,t} = sum of website review in the observation's spec group

observation_count_{group,t} = number of observations in a spec group

Methodological Variations

Televisions

- Uses methodology outlined in Erickson and Pakes (2011)
- Includes an adjustment for predicted residual change to capture the effect of unobserved characteristics

$$\text{Relative} = e^{(\text{predicted_logprice}_t - \text{predicted_logprice}_{t-1} + \text{predicted_residualchange})}$$

Wireless Telephone Services

- Uses methodology outlined in Pakes (2003)
- Calculates relatives through a simple comparison of predicted prices

$$\text{Relative} = e^{(\text{predicted_logprice}_t - \text{predicted_logprice}_{t-1})}$$

Both projects impute **entering goods** as well as exiting goods.

Neither Pakes (2003) or Erickson and Pakes (2011) imputes the prices of entering good.

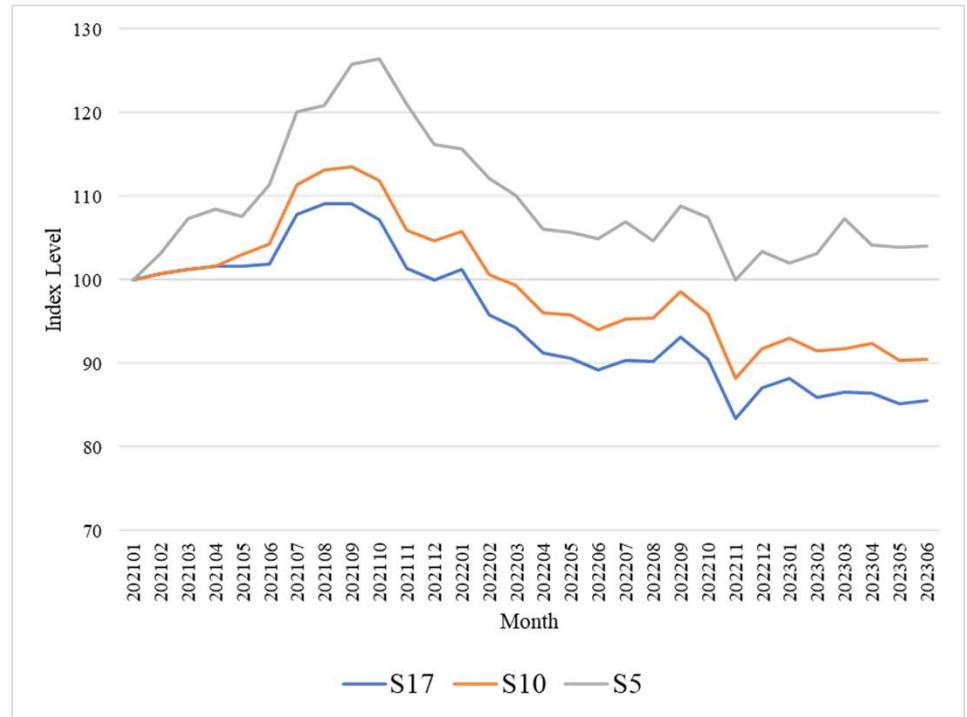
For Televisions, like Ehrlich, et al (2023), we assume the t-1 residual is 0 for entering goods.

Methodological Choice – Televisions

- Predicted television prices tend to fall at a slower rate than actual offer prices. This leads to declining residuals throughout the product life cycle.

Methodological Choice – Televisions

- Predicted television prices tend to fall at a slower rate than actual offer prices. This leads to declining residuals throughout the product life cycle.
- As discussed in Erickson and Pakes (2011), this is due to unobserved characteristics in the TVs market.
- We can simulate this effect by building hedonic indexes with more limited regressor sets and analyzing the results.
- To control for this effect, we introduce the 2nd-stage residual change adjustment.



Methodological Choice – Wireless Telephone Service

- Television prices drop during their product life cycle as they become obsoleted by higher-tech entrants.
- Wireless telephone service plans tend to be replaced by new plans with no overlap. Unique service plans tend to not change in price during the product life cycle.
- Since Erickson and Pakes (2011) relies on intertemporal price change, Erickson and Pakes (2003) was selected for wireless telephone services.

Direction of 1 Month Price Change (w/ Actual Prices)

Type of Price Change (1 Month Relative)	Televisions	Wireless Telephone Services
Positive	24.3%	0.8%
None	34.7%	97.6%
Negative	41.0%	1.6%

Hedonic Model – Wireless Telephone Services

Monthly Pricing data from Jan 2019 - Dec 2022

Expenditure data:

- 2018 used in 2019/20
- 2019 used in 2021/22

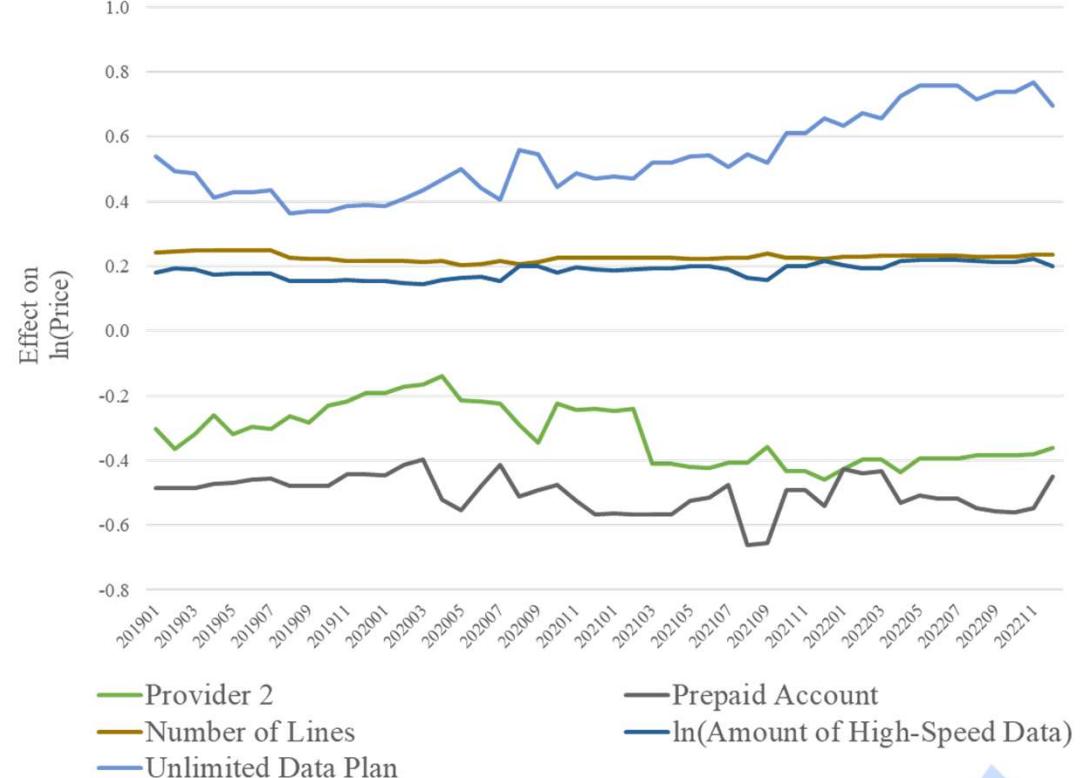
Hedonic Model is a monthly weighted regression on the log of plan price

Indicator Variables: Prepaid Plans, Unlimited Data Plans, Provider Dummy

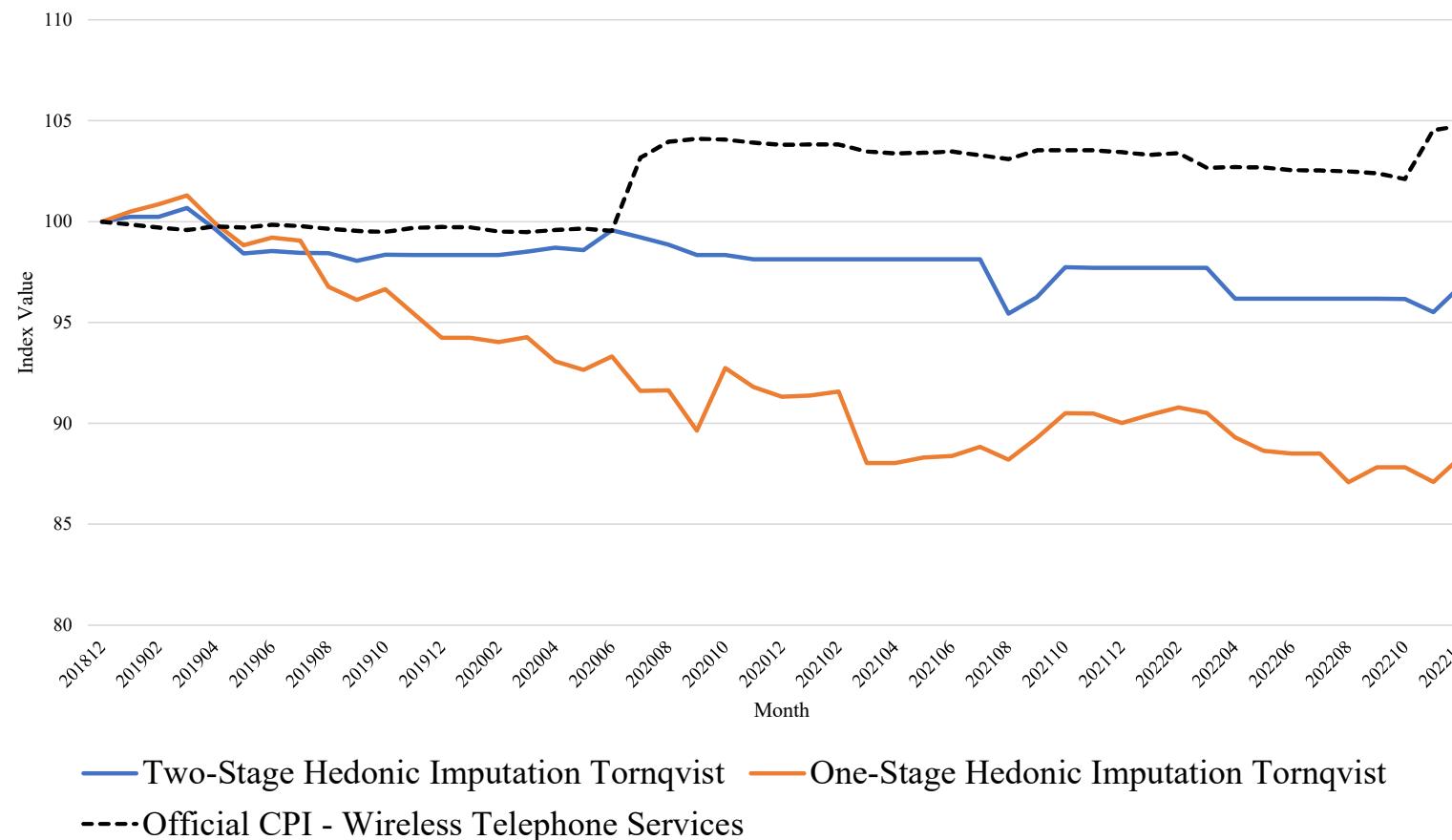
Continuous Variables: Number of Serviced Lines, Amount of High-Speed Data

One parsimonious model specification used over the entire four-year period

- Average adjusted R-squared = 0.843
- Average root mean squared error = 0.158



Index Results – Wireless Telephone Services



Hedonic Model – Televisions

Monthly Pricing data from Jan 2020 - Jun 2023

Expenditure data:

- 3rd party survey data from concurrent quarter

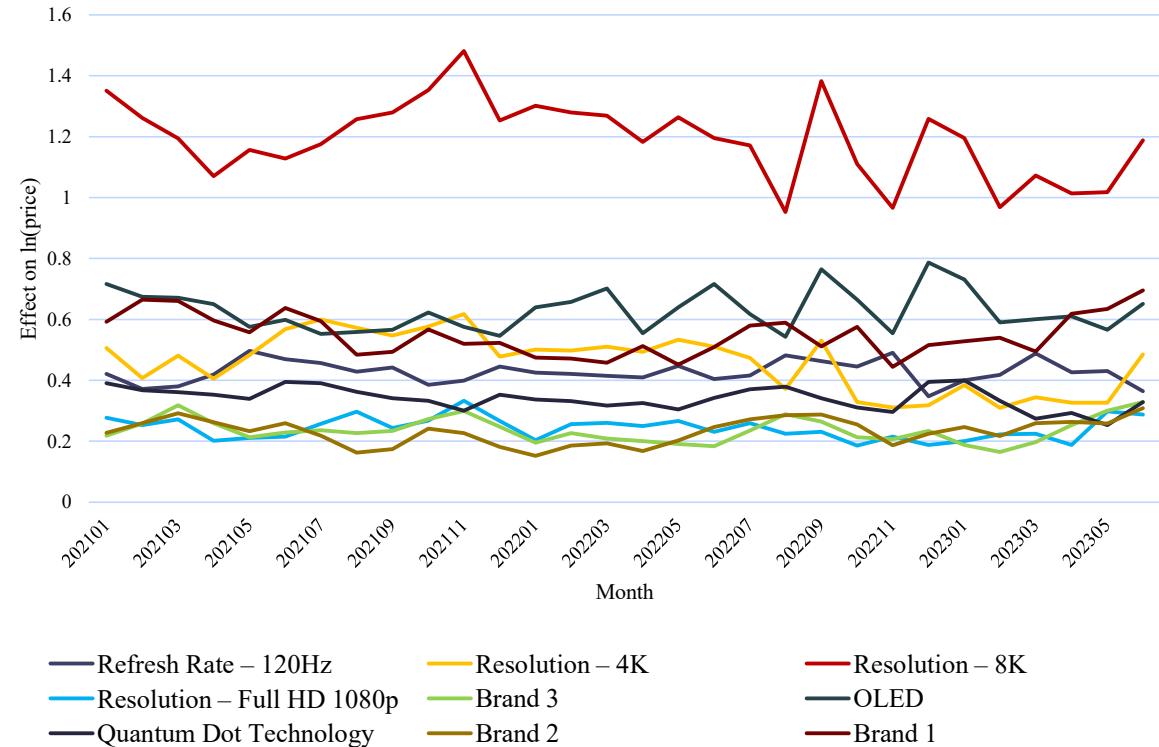
Hedonic Model is a monthly weighted regression on the log of television price

Indicator Variables: Quantum Dot, OLED, 120 Hz Refresh Rate, 8k, 4k, 1080p, Brand Variables

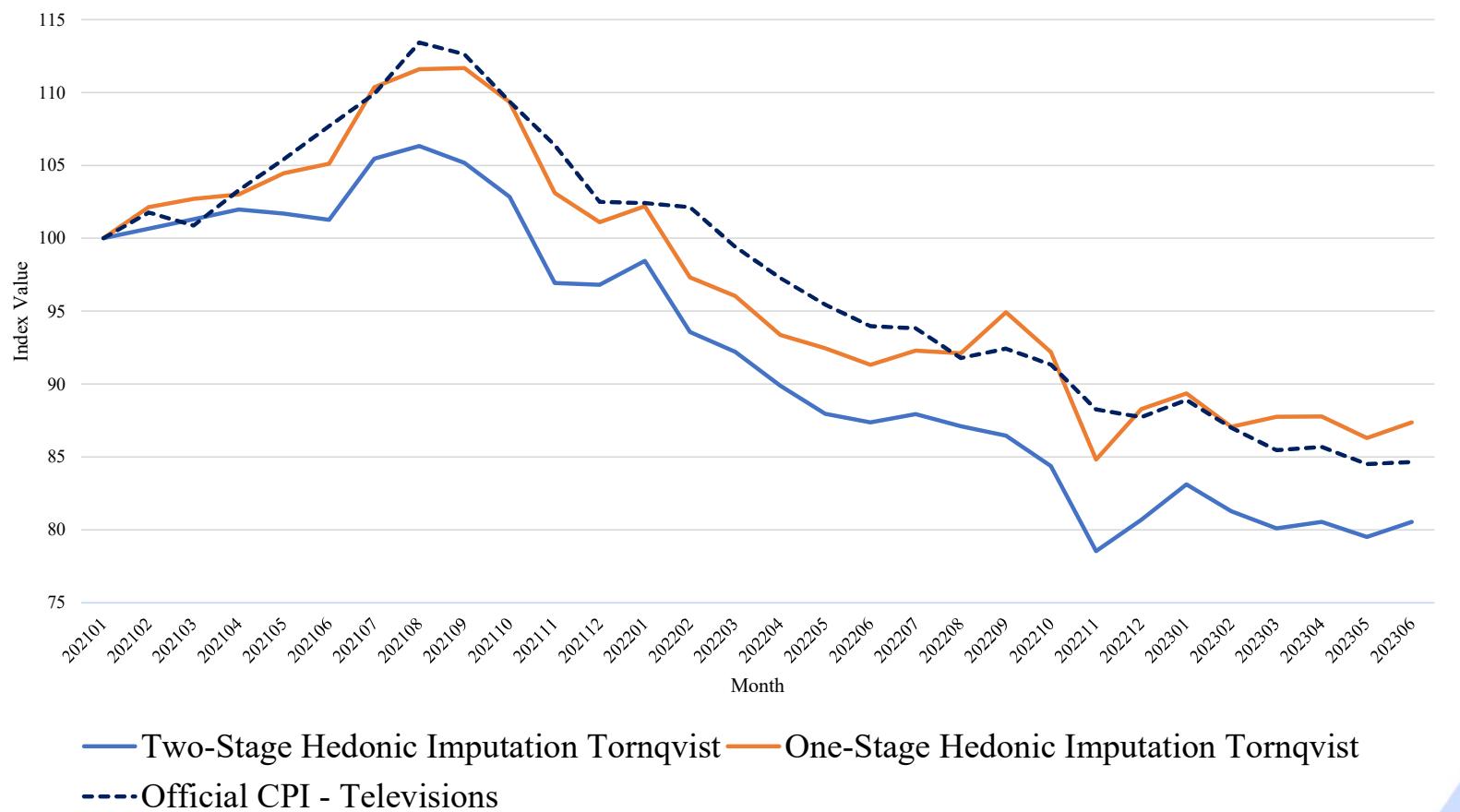
Continuous Variables: Screen Area, Screen Area Squared, Depth

One parsimonious model specification used over the entire four-year period

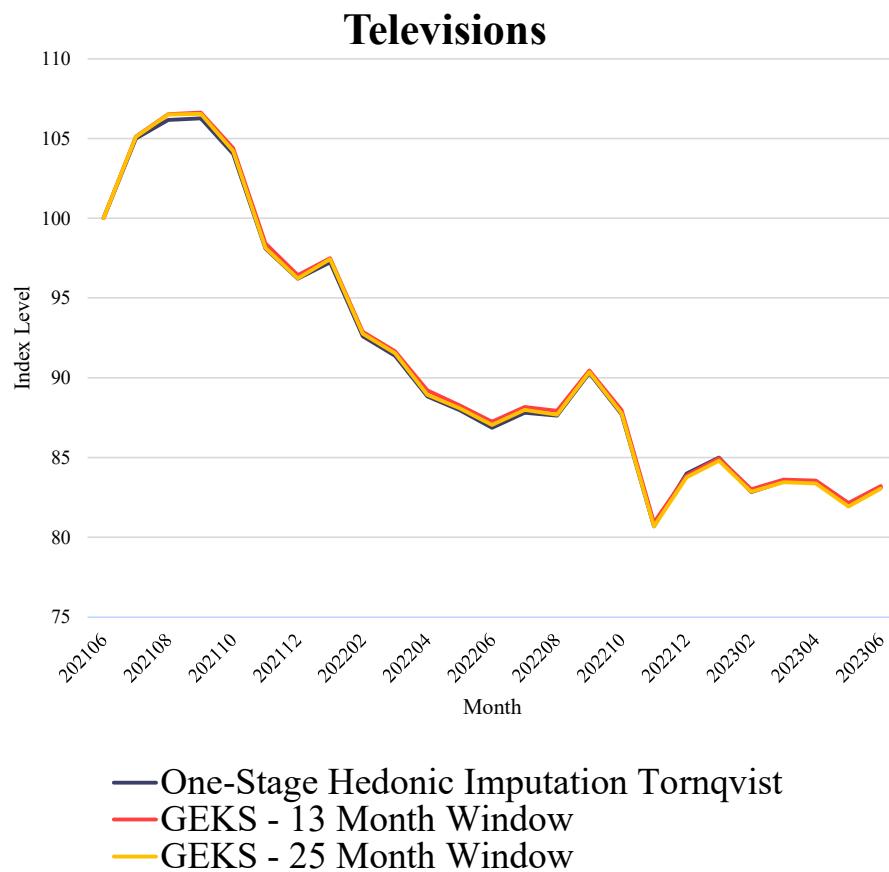
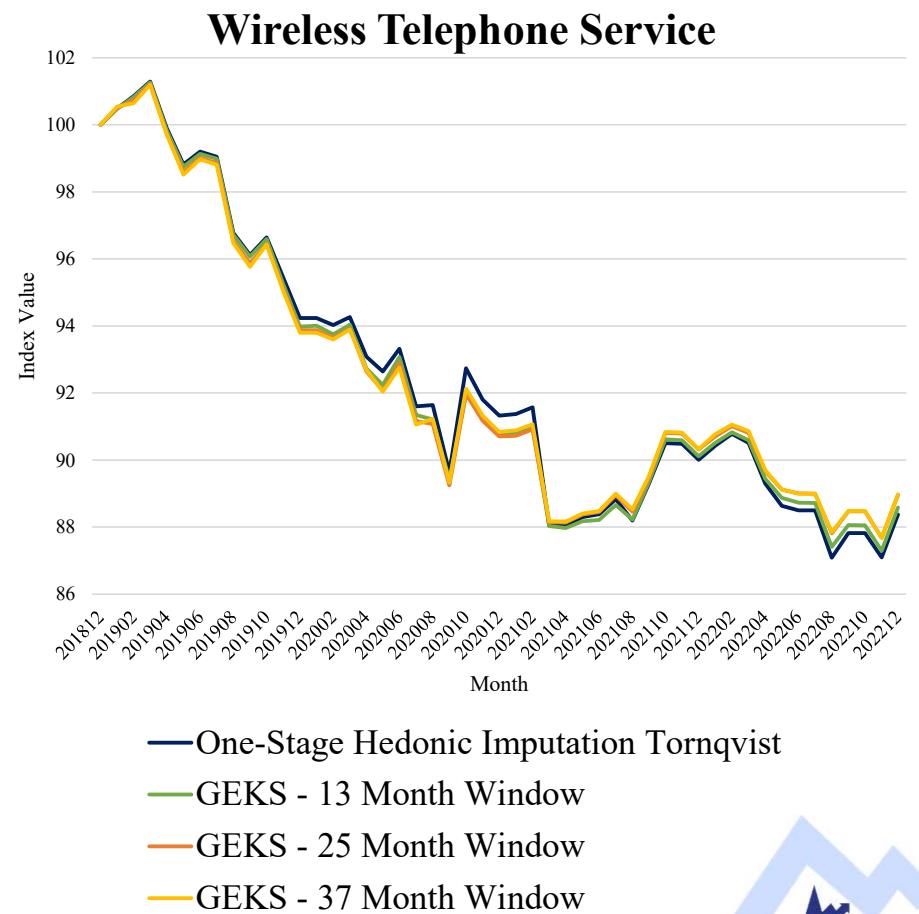
- Average adjusted R-squared = 0.958
- Average root mean squared error = 0.056



Index Results - Televisions



Multilateral Comparisons



Conclusion

Hedonic Indexes built with non-traditional data improve component indexes for the CPI in many ways

- ✓ These non-traditional data sources, which contain a universe of prices collected frequently, are more representative than the CPI's sample
- ✓ Non-traditional data sources, in conjunction with hedonic methods, incorporate new goods immediately
- ✓ Hedonic methods better capture quality change, especially for unobserved characteristics
- ✓ Incorporating 3rd party weights is an improvement over our traditional disaggregation process used in the initiation of goods

Thank you

brown.craig@bls.gov

smucker.jeremiah.@bls.gov