Blended Finance and Female Entrepreneurship

Halil I. Aydın (CBRT) Çağatay Bircan (EBRD & UCL) Ralph De Haas (EBRD, KU Leuven & CEPR)

ASSA 2024, San Antonio 6 January 2024

* The opinions expressed in this presentation are the authors' and not necessarily those of the CBRT or EBRD.

Female-owned firms suffer especially from lack of three C's

- Many small firms lack credit history, connections, collateral → financial frictions and credit rationing (Jaffee and Russell, 1976; Stiglitz and Weiss, 1981
- Many women-led small firms also face discriminatory laws (Naaraayanan, 2020) or lenders (Alesina et al., 2013; Brock and De Haas, 2022)

Female-owned firms suffer especially from lack of three C's

- Many small firms lack credit history, connections, collateral \rightarrow financial frictions and credit rationing (Jaffee and Russell, 1976; Stiglitz and Weiss, 1981
- Many women-led small firms also face discriminatory laws (Naaraayanan, 2020) or lenders (Alesina et al., 2013; Brock and De Haas, 2022)
- Removing barriers to female entrepreneurship can boost aggregate TFP (Chiplunkar and Goldberg, 2022; Morazzoni and Sy, 2022) and speed up economic convergence
- More credit to high-ARPK female firms would reduce gendered capital misallocation (Banerjee and Moll, 2010; David and Venkateswaran, 2019)

• <u>Public</u> development bank provides credit lines to <u>private</u> commercial banks for on-lending to a specific target segment (Eslava and Freixas, 2016) • <u>Public</u> development bank provides credit lines to <u>private</u> commercial banks for on-lending to a specific target segment (Eslava and Freixas, 2016)

- Typically combines:
 - 1. Senior credit lines with a use-of-proceeds clause, complemented by banks
 - 2. First-loss risk cover \rightarrow partial credit guarantee
 - 3. Training and technical assistance

Blended finance: A new consensus in the development community?

• Increasingly popular

- ${\tt IFC}:$ Women Entrepreneurs Opportunity Fund \rightarrow USD 1.45 billion
- ${\tt IFC}:$ Banking on Women Program \rightarrow USD 3 billion
- ${\tt ISS}\,$ AfDB: Affirmative Finance Action for Women in Africa \rightarrow USD 1.3 billion
- ${\tt ISP}$ EIB: SheInvest Program \rightarrow USD 2 billion
- ${\tt IADB}:$ Women Entrepreneurship Banking Programme \rightarrow USD 0.8 billion
- ${\tt ISP}$ Women Entrepreneurs Finance Initiative (We-Fi) \rightarrow USD 1 billion
- Unclear whether blended finance helps target segments to access credit and to become more productive (World Bank, 2005/2014, Eurodad, 2013)

Merge several micro datasets to trace the financial and real impacts, and uncover the underlying mechanisms, of a blended finance program for Turkish female entrepreneurs:

Merge several micro datasets to trace the financial and real impacts, and uncover the underlying mechanisms, of a blended finance program for Turkish female entrepreneurs:

- 1. Can blended finance durably increase bank lending to female entrepreneurs?
- 2. Which types of women-owned businesses (if any) gain better access to credit?
- 3. What are the real economic impacts (if any) of the easing of credit constraints?

The Women in Business (WIB) program

- 1. Credit lines (EUR 300 million) to five commercial banks for on-lending to female entrepreneurs during the 2015-2017 period
 - Banks to blend with own funding
 - Total of EUR 417 million by end of 2017
 - Banks' stock of lending was around EUR 5 billion by end of 2014

The Women in Business (WIB) program

- 1. Credit lines (EUR 300 million) to five commercial banks for on-lending to female entrepreneurs during the 2015-2017 period
 - Banks to blend with own funding
 - Total of EUR 417 million by end of 2017
 - Banks' stock of lending was around EUR 5 billion by end of 2014
- 2. Risk mitigation (first-loss risk cover): partial credit guarantee (up to 10%)

The Women in Business (WIB) program

- 1. Credit lines (EUR 300 million) to five commercial banks for on-lending to female entrepreneurs during the 2015-2017 period
 - Banks to blend with own funding
 - Total of EUR 417 million by end of 2017
 - Banks' stock of lending was around EUR 5 billion by end of 2014
- 2. Risk mitigation (first-loss risk cover): partial credit guarantee (up to 10%)
- 3. Technical assistance to banks
 - Consulting on how to increase exposure to female entrepreneurs
 - Baseline assessment, gender-responsive sales, training-of-trainers modules
 - Optimisation of MIS to gather, monitor, and analyse gender-disaggregated data

Market share of participating banks in each district

We combine three administrative datasets

- 1. Turkey's credit register (CBRT)
 - \checkmark No reporting threshold
 - ✓ Borrower gender observable
 - ✓ Classify borrowers into repeat, poached, or first-time
- 2. Firm-level VAT tax records (Ministry of Treasury and Finance)
 - ✓ Covers all buyer-supplier links in Turkey
 - ✓ Allows focus on real effects
- 3. Firm financials (Ministry of Treasury and Finance)
 - \checkmark Also includes gender so we can track the universe of female (and male) entrepreneurs

ightarrow 1/5 entrepreneurs is a woman; but 1/10 entrepreneurs with credit access is a woman

Banks joined the program at different times

Lending share to female entrepreneurs increased after program start

10

Bank-level identification: Staggered DiD

- 5 treated and 21 control banks Balance table
- Aggregate loan-level data (new issuance) to the bank(b)-time(t) level:

 $y_{bt} = \alpha + \beta_1 WIB_b * Post_{bt} + \beta_2 x_{bt} + \gamma_b + \delta_t + \epsilon_{bt}$

- Exploit staggered program roll-out (restrict to window of -/+8 quarters)
- TWFE biased? Use stacking (Cengiz et al., 2019; Gormley and Matsa, 2014)
 - Compare WIB participating banks to never-participating banks
 - Interact controls and FE with cohort indicators

Bank-level results: Lending to female firms

	All borrowers	Repeat	Poached	First-time
	(1)	(2)	(3)	borrowers (4)
A. Lending to female entr	epreneurs	(-)	(0)	()
Post × WiB Bank	1.302*** (0.282)	1.217*** (0.310)	1.051*** (0.249)	0.840*** (0.192)
Adjusted R-squared	0.960	0.860	0.870	0.918
Observations	1,870	1,870	1,870	1,870
Mean dep. var.	8.350	7.742	6.205	5.911
B. Number of female entr	epreneurs			
Post × WiB Bank	0.747*** (0.141)	0.679*** (0.157)	0.518*** (0.136)	0.448*** (0.125)
Adjusted R-squared	0.961	0.960	0.944	0.951
Observations	1,870	1,870	1,870	1,870
Mean dep. var.	4.655	4.231	3.107	3.094
Bank controls × Cohort FE	У	У	У	У
Bank × Cohort FE	У	У	У	У
Quarter × Cohort FE	У	У	У	У

Bank-level results: Share of lending to female firms

	All borrowers	Repeat borrowers	Poached borrowers	First-time borrowers
	(1)	(2)	(3)	(4)
A. Share of female lending	5			
Post × WiB Bank	0.020*** (0.007)	0.011 (0.009)	0.035*** (0.008)	0.040*** (0.011)
Adjusted R-squared	0.236	0.109	0.145	0.208
Observations	1,870	1,870	1,870	1,870
Mean dep. var.	0.086	0.075	0.081	0.141
B. Share of female entrep	reneurs			
Post × WiB Bank	0.015* (0.008)	0.012 (0.009)	0.031*** (0.010)	0.040*** (0.011)
Adjusted R-squared	0.339	0.200	0.121	0.248
Observations	1,870	1,870	1,870	1,870
Mean dep. var.	0.100	0.092	0.094	0.144
Bank controls × Cohort FE	У	у	У	У
Bank × Cohort FE	У	У	У	У
Quarter × Cohort FE	У	У	У	У

First approach to deal with selection: Synthetic DiD

- SDiD estimator combines features of DiD and synthetic control approach (Arkhangelsky et al., 2021)
- Use time and unit weights to match pre-program trends \rightarrow reduces reliance on parallel trends in the raw data (cf. SC)
- Allows for valid large-panel inference (cf. DiD)
- Can produce event-study plots for each individual treated bank

Synthetic DiD: Program impact on lending to female firms

	All borrowers	Repeat	Poached	First-time
		borrowers	borrowers	borrowers
	(1)	(2)	(3)	(4)
A. Lending to female entreprene	eurs			
ATT	1.382***	1.347***	0.890***	0.574**
	(0.434)	(0.437)	(0.318)	(0.278)
B. Number of female entreprene	eurs			
ATT	0.444***	0.501***	0.329**	0.194
	(0.142)	(0.165)	(0.135)	(0.229)
C. Share of female lending				
ATT	0.018***	0.014**	0.016	0.041***
	(0.005)	(0.007)	(0.010)	(0.014)
D. Share of female entrepreneur	s			
ATT	0.019**	0.014	0.020*	0.052***
	(0.009)	(0.011)	(0.011)	(0.015)

Synthetic DiD: Event-study plot for all lending

• Aggregate loan-level data to the bank(b)-gender(g)-time(t) level:

$$y_{bgt} = \alpha + \beta_1 WIB_b * Post_{bt} * Female_g + \gamma_{bg} + \delta_{bt} + \epsilon_{bgt}$$

- Allows for bank×gender FE and bank×time FE to capture unobservables
- Use stacking methodology as before
- Confirm results

Do WIB lenders target female entrepreneurs most in need of credit?

- <u>Objective 1</u>: Identify the impact of WIB-induced credit-supply shocks on firms' borrowing and real outcomes
- Objective 2: Study how the increase in credit supply was allocated across firms

Do WIB lenders target female entrepreneurs most in need of credit?

- <u>Objective 1</u>: Identify the impact of WIB-induced credit-supply shocks on firms' borrowing and real outcomes
- Objective 2: Study how the increase in credit supply was allocated across firms
- Challenge: Disentangle changes in borrowing driven by supply vs. demand forces

Do WIB lenders target female entrepreneurs most in need of credit?

- <u>Objective 1</u>: Identify the impact of WIB-induced credit-supply shocks on firms' borrowing and real outcomes
- Objective 2: Study how the increase in credit supply was allocated across firms
- Challenge: Disentangle changes in borrowing driven by supply vs. demand forces
- <u>Solution</u>: Isolate credit supply shocks to individual female entrepreneurs by exploiting variation in bank lending at the national level (Chodorow-Reich, 2014 and Cong et al., 2019):

$$\Delta \hat{L}_{idst} = \sum_{b \in B} \omega_{bi,t=0} imes \Delta \log L_{b,-ds,t}$$

where ω is the relationship strength between firm *i* and bank *b* in the baseline year

We rely on two assumptions for identification

- 1. Bank-firm relationships are persistent over time
 - Likely in the context of small business lending
 - Test: regress new relationship (0/1) on all possible pairs
- Cross-sectional variation in bank lending only reflects supply forces due to WIB or observable borrower characteristics, but is uncorrelated with unobservable borrower characteristics that affect credit demand
 - We show the stability of our estimates to adding a set of controls, including observables and set of fixed effects
 - We exploit variation in change in lending across banks within the same firm (Khwaja and Mian, 2008)
 - Test: regress Δ credit at firm-bank level on bank-level supply shocks

Dependent variable:	ependent variable: New Ioan								
Sample:	All possible firm-bank relationship pairs								
_	(1)	(2)	(3)	(4)					
Pre-existing relationship	0.980***	0.993***	0.898***	0.911***					
	(0.001)	(0.001)	(0.001)	(0.001)					
R-squared	0.480	0.486	0.525	0.530					
Observations	14,012,300	14,012,300	14,012,300	14,012,300					
District FE	У	n	У	n					
Industry FE	У	n	У	n					
Year FE	У	У	У	У					
Bank FE	n	n	У	У					
Firm FE	n	У	n	У					

Testing (2): credit supply shocks lead to more firm borrowing

$\Delta(log)$ Credit to female entrepreneur					
All f	irms	Multi-len	der firms		
(1)	(2)	(3)	(4)		
0.194*** (0.071)	0.188** (0.088)	0.268*** (0.073)	0.279*** (0.063)		
0.025 783,176	0.244 702,740	0.188 253,491	0.456 217,530		
y y n n	n y y n	n y y n	n n n y		
	△ All f (1) 0.194*** (0.071) 0.025 783,176 y y y y y y n n	$\begin{array}{c c} & \Delta(\log) \mbox{ Credit to f} \\ & All \mbox{ firms} \end{array}$	Δ(log) Credit to female entreprenet Multi-len All firms Multi-len (1) (2) (3) 0.194*** 0.188** 0.268*** (0.071) (0.088) (0.073) 0.025 0.244 0.188 783,176 702,740 253,491 y n n y y y y y y y y y y n n y y y n y y n y y n n n		

• We estimate the following equation at the firm-level:

$$\Delta y_{it} = \alpha + \beta_1 \mathsf{WIB} \times \Delta \hat{L}_{idst} + \beta_2 \mathsf{Non-WIB} \times \Delta \hat{L}_{idst} + \gamma_i + \delta_t + \epsilon_{it}$$

where $\Delta \hat{L}_{idst}$ is the firm-level credit supply shock

- We differentiate between the effect of WIB and non-WIB shocks
- We look at Δy_{it} over 1-, 2-, and 3-year horizon

Credit supply by WIB participation and firm-level borrowing

Dependent variable:		$\Delta Credit$	
	(1)	(2)	(3)
$\Delta \hat{L}_{idst}$	0.667***		
	(0.058)		
WiB $ imes \Delta \hat{L}_{idst}$		0.871***	0.693***
		(0.067)	(0.093)
Non-WiB $\times \Delta \hat{L}_{idst}$		0.611**	0.659***
		(0.064)	(0.093)
WiB $ imes \Delta \hat{L}_{idst} imes$ pre-program ARPK			0.065**
			(0.031)
Non-WiB $ imes \Delta \hat{L}_{idst} imes$ pre-program ARPK			-0.017
			(0.029)
R-squared	0.281	0.281	0.281
Observations	51,842	51,842	51,842
Mean dep. var.	-0.005	-0.005	-0.005
$F\text{-test}~WiB\times\Delta\hat{L}_{\mathit{idst}}=Non\text{-WiB}\times\Delta\hat{L}_{\mathit{idst}}$		11.23	
<i>p</i> -value		0.001	
Year FE	У	У	У
Firm FE	У	У	У

Impact of credit supply on firm-level outcomes

Dependent variable:	Investment	ΔARPK	ΔCOGS	Δ Sales	$\Delta Profit$	Exit	Δ Customers	Δ Suppliers
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$WiB imes \Delta \hat{L}_{idst}$	0.133**	-0.016	0.166	0.127***	0.815**	-0.024*	0.060	0.139***
	(0.062)	(0.068)	(0.119)	(0.040)	(0.360)	(0.013)	(0.053)	(0.043)
Non-WiB $ imes \Delta \hat{L}_{idst}$	0.012	-0.051	-0.067	-0.034	0.214	-0.009	0.020	0.054*
	(0.041)	(0.049)	(0.059)	(0.028)	(0.208)	(0.008)	(0.035)	(0.032)
R-squared	0.258	0.246	0.217	0.303	0.178	0.376	0.234	0.218
Observations	51,842	51,842	51,842	51,842	51,842	51,842	42,080	47,502
Mean dep. var.	0.102	-0.049	0.050	0.052	-0.190	0.034	0.006	-0.007
$F\text{-test}\;WiB\times\Delta\hat{L}_{idst}=Non\text{-WiB}\times\Delta\hat{L}_{idst}$	3.933	0.255	3.758	15.375	3.219	1.356	0.557	3.837
<i>p</i> -value	0.048	0.613	0.053	0.000	0.073	0.245	0.456	0.051
Year FE	У	У	У	У	У	У	у	У
Firm FE	У	У	У	У	У	У	У	У

Impact of credit supply on firm-level outcomes: dynamic estimates

25

• We estimate the following equation at the firm-level:

$$\Delta y_{it} = \alpha + \beta_1 \text{WIB} \times \Delta \hat{L}_{idst} + \beta_2 \text{WIB} \times \Delta \hat{L}_{idst} \times \text{pre-program ARPK} + \beta_3 \text{Non-WIB} \times \Delta \hat{L}_{idst} + \beta_4 \text{Non-WIB} \times \Delta \hat{L}_{idst} \times \text{pre-program ARPK}$$
(1)
+ $\gamma_i + \delta_t + \epsilon_{it}$

where $\Delta \hat{L}_{\textit{idst}}$ is the firm-level credit supply shock

Targeting of credit & outcomes based on pre-program ARPK: 1-year

Dependent variable:	Investment (1)	ΔARPK (2)	ΔCOGS (3)	∆Sales (4)	ΔProfit (5)	Exit (6)	$\Delta Customers$ (7)	∆Suppliers (8)
WiB $ imes \Delta \hat{L}_{idst}$	-0.034 (0.080)	0.413*** (0.110)	0.322 (0.250)	2.318*** (0.723)	0.386*** (0.069)	-0.003 (0.023)	0.315*** (0.086)	0.134 (0.082)
WiB $ imes \Delta \hat{L}_{idst}$ $ imes$ initial ARPK	0.060* (0.032)	-0.155*** (0.041)	-0.056 (0.066)	-0.546*** (0.189)	-0.094*** (0.021)	-0.008 (0.006)	-0.092*** (0.025)	0.002 (0.022)
Non-WiB $ imes \Delta \hat{L}_{idst}$	-0.269*** (0.057)	0.300*** (0.090)	0.035 (0.143)	0.582 (0.468)	0.008 (0.058)	-0.005 (0.015)	0.108* (0.057)	0.014 (0.079)
Non-WiB $ imes \Delta \hat{L}_{idst}$ $ imes$ initial ARPK	0.096*** (0.023)	-0.120*** (0.031)	-0.035 (0.037)	-0.123 (0.111)	-0.014 (0.015)	-0.001 (0.004)	-0.030* (0.017)	0.013 (0.021)
R-squared	0.259	0.247	0.217	0.178	0.304	0.376	0.235	0.218
Observations	51,842	51,842	51,842	51,842	51,842	51,842	42,080	47,502
Mean dep. var.	0.102	-0.049	0.050	0.052	-0.190	0.034	0.006	-0.007
Year FE	у	у	У	У	У	у	у	У
Firm FE	У	У	У	У	У	У	У	У

- Adopt a similar approach to Greenstone et al. (2020) & Berton et al. (2018) in relating district-level credit supply shocks (\hat{L}_{dt}) to district-level outcomes
- Calculate district-level outcomes for all female entrepreneurs (regardless of access to credit):

$$\Delta \mathsf{X}_{dt} = rac{\mathsf{X}_{dt} - \mathsf{X}_{d,t-1}}{0.5 imes \mathsf{X}_{dt} + 0.5 imes \mathsf{X}_{d,t-1}}$$

• Symmetric and bounded between -2 and +2.

GE effects of WIB on district-level outcomes are minimal

Dependent variable:	Δ Credit	Exit rate	Δ En-	Δ Sales	Δ Profit
			trepreneurs		
	(1)	(2)	(3)	(4)	(5)
WiB $ imes \Delta \hat{L}_{dt}$	0.243***	-0.028	-0.044	-0.101	-0.253
	(0.080)	(0.038)	(0.078)	(0.136)	(0.521)
Non-WiB $ imes \Delta \hat{L}_{dt}$	0.122**	-0.001	-0.020	-0.015	-0.082
	(0.050)	(0.011)	(0.031)	(0.034)	(0.088)
R-squared	0.328	0.264	0.266	0.230	0.171
Observations	3,352	3,352	3,352	3,352	3,352
Mean dep. var.	0.225	0.112	0.116	0.194	0.181
Year FE	у	У	У	У	у
District FE	У	У	У	У	У

Durable increase in credit to female entrepreneurs (absolute and relative to men)

- Durable increase in credit to female entrepreneurs (absolute and relative to men)
- Treated banks expand credit to pre-existing female borrowers (50%); poach clients from competitors (31%); but also crowd in first-time borrowers (19%)

- Durable increase in credit to female entrepreneurs (absolute and relative to men)
- Treated banks expand credit to pre-existing female borrowers (50%); poach clients from competitors (31%); but also crowd in first-time borrowers (19%)
- Banks shift lending to female-owned firms with relatively high capital productivity

- Durable increase in credit to female entrepreneurs (absolute and relative to men)
- Treated banks expand credit to pre-existing female borrowers (50%); poach clients from competitors (31%); but also crowd in first-time borrowers (19%)
- Banks shift lending to female-owned firms with relatively high capital productivity
- Recipient entrepreneurs use credit from WIB banks to increase investment, sales, profitability and survival probability

- Durable increase in credit to female entrepreneurs (absolute and relative to men)
- Treated banks expand credit to pre-existing female borrowers (50%); poach clients from competitors (31%); but also crowd in first-time borrowers (19%)
- Banks shift lending to female-owned firms with relatively high capital productivity
- Recipient entrepreneurs use credit from WIB banks to increase investment, sales, profitability and survival probability
- But there are limited aggregate effects

	Treated banks	Mean	Control banks	Mean	Diff.
Asset size	5	18.663	21	16.902	-1.762**
Market share in corporate credit	5	0.078	21	0.027	-0.051***
Market share in entrepreneurial credit	5	0.056	21	0.034	-0.022
Share of female lending	5	0.090	21	0.102	0.012
Liquidity	5	0.144	21	0.184	0.040
Profitability	5	0.009	21	0.008	-0.002
Non-performing loans	5	0.021	21	0.021	0.000
Loan-loss reserves	5	0.009	21	0.008	-0.001
Capital adequacy	5	0.106	21	0.108	0.002

back

• Nudging (while not training) loan officers to accept more credit risk at the extensive margin may backfire (Augsburg et al., 2015)

• How did first-time female borrowers who enter the system via WIB banks fare compared with those who enter via non-WIB banks?

 $y_{i(b)dz} = \beta * First-time WiB \ borrower_{i(b)dz} + FE_{bd} + FE_{dz} + \epsilon_{i(b)dz}$

Dependent variable:	Check default	Loan default	Loans from entry bank	Termination of entry	New banking relationship	Loans from new banks
				bank		
_	(1)	(2)	(3)	(4)	(5)	(6)
First-time WiB borrower	0.002	-0.003	0.012	-0.014	0.146***	0.213***
	(0.003)	(0.002)	(0.029)	(0.011)	(0.031)	(0.031)
R-squared	0.105	0.120	0.093	0.209	0.103	0.089
Observations	400,237	400,237	400,237	400,237	400,237	400,237
Mean dep. var.	0.002	0.0002	0.624	0.329	0.147	0.123
Bank × District × Cohort FE	У	У	У	У	У	У
District \times First Quarter \times Cohort FE	У	У	У	У	У	У

back