Deal or No Deal? The Time-on-Market, Time-to-Close, and Residential Transaction Prices

Marc Francke (University of Amsterdam, Ortec)
Martijn Dröes (University of Amsterdam, ASRE)
Yumei Wang (University of Amsterdam)

2024 AREUEA-ASSA conference, San Antonio

January 5, 2024

The purpose of this paper

- In contrast to other major asset classes: considerable time between buying a piece of real estate (physical asset) and legally owning it.
- This period the time-to-close (TTC) can easily be a couple of months (negotiable).
- The purpose of this paper is twofold:
 - ① Discuss the role of *TTC* in the real estate transaction process.
 - Versus for example the time-on-market (TOM).
 - Focus on residential real estate [nice Dutch data].
 - 2 Examine the effect of *TTC* on transaction prices.
 - Bargaining model + hedonic regressions.

Contribution and main results

- Previous studies on TTC are virtually non-existent (but Lu Han, 2022); the literature primarely focusses on the time-on-market (TOM) (Benefield and Harding, 2015).
- Role in the transaction process? The TTC is used for the buyer to obtain a mortgage and the seller to find a new home.
- We theoretically and empirically show that a higher TTC has a positive effect on transaction prices ($\overline{TTC}=73$ days, SD change in TTC==>2.4% higher transaction price).

The intuition:

- Mismatch: short term rental or double mortgage costs.
- Foregone capital appreciation.
- Forgot TTC? Overestimation bias TOM of 6.3 percent.

Introduction

Timing of events: TOM and TTC

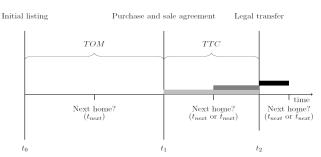


Figure 1. The transaction process: time-on-market and time-to-close.

- A seller list his house at t_0 , it is purchased at t_1 , and legally transferred at t_2 .
- TTC is part of the purchase agreement at t_1 , so look at the costs incurred from the perspective of t_1 .
- *3 main costs*: foregone price appreciation, double mortgage costs, short-term rental costs. Latter two depend on t_{next} .

Economic rationale I

- Successful bid: $P = P^* + \beta C^S (1 \beta)C^B$, $P > P^R$
 - P = final transaction price
 - P^* = price if $t_2 = t_1$, and proper marketing (TOM)
 - $!!!C^S$ = expected costs for the seller!!!
 - $C^B = F$, expected costs for the buyer (fixed)
 - β = Nash bargaining parameter, $0 < \beta < 1$
- C^S depends on
 - $(t_2 t_1) * g$ [price appreciation]
 - $(t_2 t_{next}) * m$ [bridge loan]
 - $(t_{next} t_2) * r$ [short-term rental costs]
 - -Assumption A1: Both seller/buyer know the cost function.
 - -Assumption A2: Both buyer and seller are risk neutral.

Conclusion

Economic rationale II

Introduction

- Two cases: t_{next} is known or not, latter one economically interesting to model (matching problem). t_{next} is known = corner solutions.
- $\tilde{t}_{next} \sim \exp(\lambda) = f_{\tilde{t}_{next}}(t)$
- Normalizing $t_1 = 0$, the expected cost function (C):

$$C(t_{2}; g, m, r, \lambda) = \underbrace{\int_{0}^{t_{2}} f_{\tilde{t}_{next}}(t) (gt_{2} + m(t_{2} - t)) dt}_{\tilde{t}_{next} < t_{2}} + \underbrace{\int_{t_{2}}^{\infty} f_{\tilde{t}_{next}}(t) (gt_{2} + r(t - t_{2})) dt}_{\tilde{t}_{next} > t_{2}}$$
$$= -\frac{m}{\lambda} + (g + m)t_{2} + \frac{m + r}{\lambda} e^{-\lambda t_{2}}.$$

Economic Rationale III

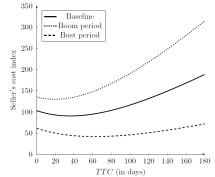


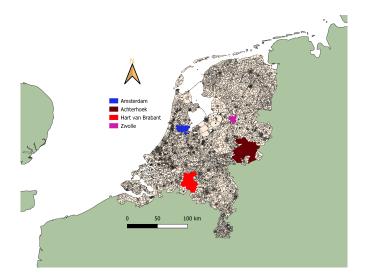
Figure 2 - Calibrated seller's cost function.

- Hypothesis 1: On average, *TTC* has a positive effect on transaction prices.
- Hypothesis 2: *TTC* has a larger effect on house prices during booms than during busts.

Conclusion

Those appendices that no one reads but are important

• A more formal exploration of the cost function:


Proposition

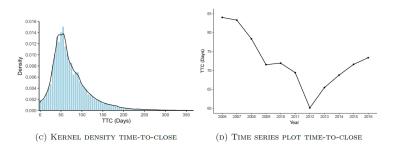
Introduction

Given Assumptions 1 and 2, and m > 0, r > 0, g > 0, and $t_2 >> 0$, the marginal effect of TTC on the final transaction price is positive.

- What if the buyer's costs are not fixed?
 - Symmetric and non-symmetric Nash bargaining solutions.
 - Optimal TTC: lower during busts.

Data: 4 regions in the Netherlands, 2006-2016

Data: descriptive statistics


Table: Descriptive statistics

Variables	Mean	Std.Dev.	Min	Max	
Dependent Variables					
P (in euros)	265, 443	168,632	50,000	2,000,000	
TOM (in days)	155	195	1	1,095	
TTC (in days)	73	47	0	366	
TOM + TTC (in days)	229	200	1	1, 361	

Number of observations, N = 115, 279.

 Housing characteristics: size, plot area, construction period, house type, maintenance condition, monument, garden, parking, attic, exact location.

Data: TTC

 After controling for housing characteristics, year and location fixed effects, location-specific trends: 90 percent of the variation in TTC remains unexplained. Introduction

Hedonic approach (OLS):

 $\log P_{i,t} = \beta_{ttc} \log TTC_{i,t} + \beta_{tom} \log TOM_{i,t} + x'_{i,t}\beta_X + \alpha_i + \tau_t + \varepsilon^p_{i,t}$

• Spatio-temporal lagged IV (500m, 90 days):

$$\log P_{i,t} = \beta_{ttc} \log \hat{T}TC_{i,t} + \beta_{tom} \log \hat{T}OM_{i,t} + x'_{i,t}\beta_x + \alpha_j + \tau_t + \varepsilon_{i,t}^p.$$

 Results robust to repeat sales, difference with listing price, location x year FE, different spatio-temporal lagged IV's and ... Seemingly unrelated regression (SUR):

$$\begin{bmatrix} \log P_{i,t} \\ \log TOM_{i,t} \\ \log TTC_{i,t} \end{bmatrix} = \begin{bmatrix} X_p & 0 & 0 \\ 0 & X_{tom} & 0 \\ 0 & 0 & X_{ttc} \end{bmatrix} \begin{bmatrix} \beta_p \\ \beta_{tom} \\ \beta_{ttc} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i,t}^p \\ \varepsilon_{i,t}^{tom} \\ \varepsilon_{i,t}^{ttc} \end{bmatrix}.$$

Empirical results

Table: The effect of TTC on house prices (2SLS)

		•	`			
(Dependent variable: log house price)						
	(1)	(2)	(3)			
	2SLS	2SLS	2SLS			
log TTC	0.0479***					
	(0.0024)					
log TOM	-0.0377***	-0.0401^{***}				
	(0.0012)	(0.0012)				
log(TOM + TTC)			-0.0382***			
			(0.0019)			
Housing characteristics	Yes	Yes	Yes			
Fixed effects: Zip code	Yes	Yes	Yes			
Fixed effects: $Year_{t_1}$	Yes	Yes	Yes			
Observations	115,279	115,279	115,279			
R^2	0.8656	0.8683	0.8675			

- Hyp. 1: A SD increase in *TTC* (1.5 months) evaluated at the average *TTC* increases house prices by 2.4% (€6,400).
- SD increase in TOM: -3.0%.
- Overestimation bias TOM: 6.3 and 1.3 percent.

Heterogeneity

Table: Boom-bust and regional markets

(Dependent variable: log house price)

	Market Phases		Regional Markets			
	Bust	Boom	Achterhoek	Amsterdam	Hart van Brabant	Zwolle
	(1)	(2)	(3)	(4)	(5)	(6)
log TÔM	-0.0061***	-0.0435***	-0.0065***	-0.0482***	-0.0066***	-0.0138***
	(0.0018)	(0.0017)	(0.0020)	(0.0020)	(0.0018)	(0.0030)
log TTC	0.0380***	0.0653***	0.0399***	0.0421***	0.0434***	0.0272***
	(0.0034)	(0.0034)	(0.0040)	(0.0037)	(0.0036)	(0.0056)
Durbin-Wu-Hausman χ ² -test	33.84***	459.82***	8.46***	272.50***	10.14***	2.33*
$t\text{-test}$ on endogeneity of $\log TOM$	-0.52	19.69***	-1.26	18.74***	-1.91*	1.71*
$t\text{-test}$ on endogeneity of $\log TTC$	-8.22***	-19.05***	-4.05***	-11.49***	-4.35***	-1.07
Housing characteristics	Yes	Yes	Yes	Yes	Yes	Yes
Fixed effects: Zip code	Yes	Yes	Yes	Yes	Yes	Yes
Fixed effects: Year _{t1}	Yes	Yes	Yes	Yes	Yes	Yes
Observations	41,456	73,823	13,703	62,559	28,449	10,568
Residual Std. Error	0.1497	0.1769	0.1517	0.1528	0.1370	0.1227
R^2	0.8852	0.8566	0.8568	0.9065	0.8821	0.8871

• Hypothesis 2: TTC effect 20% lower during busts, 35% higher during booms. Effect higher in a place like Amsterdam.

Results

Conclusion

Conclusion

Introduction

- TTC plays an important role in the transaction process of residential real estate.
- Allows seller to find his next home and buyer to arrange financing.
- TTC is expected to have a positive effect on house prices (capital appreciation + matching problem).
- TTC is quite sizeable and inversely related to TOM over time.
- SD increase in *TTC* increases house prices by 2.4%, higher during booms.
- Given that TTC has an opposite effect to TOM and ignoring TTC leads to estimation bias in TOM: add TTC separately when examining house prices.

Thank you for listening!

University of Amsterdam, Amsterdam Business School, Finance department

&

Amsterdam School of Real Estate

www.martijndroes.com m.i.droes@uva.nl