Terrorism and Voting: The Rise of Right-Wing Populism in Germany

Navid Sabet 1 Marius Liebald 1 Guido Friebel 1

¹Goethe University Frankfurt

Economics of National Security ASSA Meetings San Antonio January 2024

Right-Wing Authoritarian Populism

Right-wing populist movements threaten liberal democracy worldwide (Levitsky & Ziblatt 2019; Norris & Inglehart 2019):

- · In the past, the threat was explicit: coup, dictatorships.
- Today, the threat is more subtle: gradual erosion of trust.

Yet, right-wing movements thrive in Western societies (Norris & Inglehart 2019):

- They claimed 5 percent of vote in the 1960s;
- By the 2010s, they claimed more than 12 percent.

Understanding Populism

- A substantial literature has argued that the rise of right-wing populism can be attributed to:
 - · Economic insecurity and distress (Guiso et al. 2020, 2017);
 - · Globalization shocks (Rodrick 2018);
 - Identity and education (Bonomi et al. 2021, Gethin et al. 2021);
 - Cultural attitudes and migration (Norris and Inglehart 2019)

- Although this literature has examined role of cultural conflict, the role of violent conflict in has received less attention.
 - This is especially true in the context of Western democracies.
- Can acts of terror can actually shift the political landscape of a nation to the right: Can they, for example:

- Although this literature has examined role of cultural conflict, the role of violent conflict in has received less attention.
 - This is especially true in the context of Western democracies.
- Can acts of terror can actually shift the political landscape of a nation to the right: Can they, for example:
 - mobilize voters,

- Although this literature has examined role of cultural conflict, the role of violent conflict in has received less attention.
 - This is especially true in the context of Western democracies.
- Can acts of terror can actually shift the political landscape of a nation to the right: Can they, for example:
 - · mobilize voters,
 - · shape voter preferences and attitudes, and

- Although this literature has examined role of cultural conflict, the role of violent conflict in has received less attention.
 - This is especially true in the context of Western democracies.
- Can acts of terror can actually shift the political landscape of a nation to the right: Can they, for example:
 - · mobilize voters,
 - · shape voter preferences and attitudes, and
 - lead to differential voting behavior?

In this paper, we:

1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by \approx 6 pp in state elections;

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by pprox 6 pp in state elections;
 - Driven by right-wing nationalists targeting migrants;

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by \approx 6 pp in state elections;
 - Driven by right-wing nationalists targeting migrants;
- 2. We explain why terror bolsters AfD support. Acts of terror:

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by \approx 6 pp in state elections;
 - Driven by right-wing nationalists targeting migrants;
- 2. We explain why terror bolsters AfD support. Acts of terror:
 - Increase voter turnout, mostly captured by the AfD;

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by \approx 6 pp in state elections;
 - Driven by right-wing nationalists targeting migrants;
- 2. We explain why terror bolsters AfD support. Acts of terror:
 - Increase voter turnout, mostly captured by the AfD;
 - Shift individual attitudes significantly to the right;

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by \approx 6 pp in state elections;
 - · Driven by right-wing nationalists targeting migrants;
- 2. We explain why terror bolsters AfD support. Acts of terror:
 - · Increase voter turnout, mostly captured by the AfD;
 - Shift individual attitudes significantly to the right;
 - · Receive differential media coverage;

- 1. Identify the causal impact of small, local terror attacks on the vote share for the right-wing, populist AfD party.
 - Increases AfD support by \approx 6 pp in state elections;
 - Driven by right-wing nationalists targeting migrants;
- 2. We explain why terror bolsters AfD support. Acts of terror:
 - · Increase voter turnout, mostly captured by the AfD;
 - · Shift individual attitudes significantly to the right;
 - · Receive differential media coverage;
 - Realign the language used by political parties

Identification Strategy: Successful vs. Failed Attacks

- · Acts of terror are, obviously, endogenous.
- Similar to Brodeur (2018) and Jones and Olken (2009), we exploit the "randomness" of an attacks success.
- Conditional on being targeted, municipalities hit with successful and failed attacks are indistinguishable.
- We compare political outcomes in municipalities hit with successful attacks to those hit with failed attacks.

Terrorism in Germany

Terror attacks in Germany

Terror data from Global Terror Database (GTD, 2021) collected by the University of Maryland, College Park.

- 232 attacks in Germany between 2010 and 2020.
 - Map on to 124 unique municipalities.
 - · Attacks in all 16 Federal states.
- · Most are small, local affairs.
 - Average population of targeted cities \approx 155, 000.
 - Majority are non-deadly (1 injury and .2 casualties)
- Most attacks are for right-wing causes.
 - 75 percent: right-wing extremism or anti-migration.
 - 25 percent: mixed motivations (left-wing, religious...)

Successful and Failed Attacks

A novel feature of the data is that it records whether an attack was successful or not.

232 attacks: 86% success, 14% failed

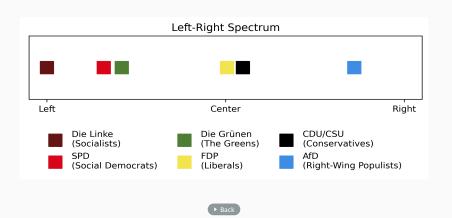
Successful and Failed Attacks

A novel feature of the data is that it records whether an attack was successful or not.

232 attacks: 86% success, 14% failed

Success is defined according to the tangible effects of the attack but not the realization of the perpetrators' overarching goals.

• i.e., it is decisive whether the bomb goes off or not. Examples


Right-wing populism

The AfD in Germany

- The AfD, established in 2013, sits on the far right of the German political landscape.
- · Founded in response to Euro crisis and the Greek bailout.
- Hard-right anti-migrant sentiments from the start.
- In 2015, for example, Björn Höcke and Andreas Kalbitz released the "Erfurt Declaration" in which they founded the far-right faction of the AfD (Der Flügel).
- The document describes the AfD as 'a resistance movement against the further erosion of the identity of Germany."
- Recent polls suggest that the AfD is the second strongest party on the Federal level (\approx 21% of the vote share).

The AfD in Germany

Data from the Manifesto Project shows the parties as follows:

Elections in Germany

Our data includes the following elections:

- 2013, 2017 and 2021 Federal elections.
- 2014 and 2019 European Parliament elections.
- State elections from 2013 to 2021.

All data from either the Bundeswahlleiter or Regional Data Bank service.

Empirical Analysis

Establishing Balance

Testing for Balance

- Our identification relies on the inherent randomness associated with whether an attack succeeds.
- To validate this assumption, we estimate β from the following:

$$X_{i,t < t_{ATTACK}} = \beta_0 + \beta_1 SUCCESS_i + \epsilon_i$$
 (1)

Our identification strategy is validated if:

$$\hat{eta}_1$$
 = 0

Testing for Balance: Municipality Characteristics I

Variable	(1)	(2)	(3)	
	\hat{eta}	p-value	N	
		$H_0: \beta = 0$	3 = o	
Panel A: Municipality Characteristics				
Economic:				
Per capita Income (000s)	1.427	0.284	411	
Unemployed (ooos)	-3.478	0.280	408	
Employed (ooos)	-24.401	0.345	405	
Tax revenue (pc)	0.165	0.669	353	
Demographic:				
Population (ooos)	-62.891	0.313	423	
Average age	0.409	0.615	401	
Share men	-0.003	0.437	423	
Migration:				
In-migration (000s)	-4.058	0.382	423	
Out-migration (ooos)	-4.143	0.328	423	
Asylum seekers	-791.335	0.585	402	
Asylum seekers, Syria	-28.494	0.908	397	
Education:				
University eligible	58.139	0.747	402	
No secondary education	-50.275	0.295	402	
Geographic:				
Surface area (km²)	-1.662	0.938	432	
Forest area (ha)	-263.798	0.736	389	
East Germany	-0.100	0.526	124	

Testing for Balance: Municipality Characteristics II

Variable	\hat{eta}	(2) p-value $H_0: \beta = 0$	(3)
Panel A: Municipality Characteristics (Cont'd)		p	
Social Assistance:			
Welfare recipeints (pc)	-0.556	0.381	402
Welfare recipients (foreingers),(pc)	-0.000	0.928	386
Road Accidents:			
Traffic accidents	-247.482	0.413	432
Deadly accidents	-202.472	0.433	432
Tourism:			
Number of hotels	-6.770	0.713	410
Tourists (ooos)	-69.541	0.872	374
Health:			
Number of hospitals	-0.337	0.852	393
Hospitals beds	-68.165	0.847	393
Political:			
Eligibe voters (000s)	-31.778	0.374	431
Turnout	0.017	0.422	429
AfD Vote Share	-0.007	0.533	326
1933 NSDAP Vote Share	-0.004	0.870	121
Days b/w Attack and Election	1.55	0.995	916

Testing for Balance: Attack Characteristics

Variable	(1)	(2)	(3)	
	\hat{eta}	p-value	N	
Panel B: Attack Characteristics				
Weapon Type:				
Explosives	-0.052	0.488	232	
Firearms	0.039	0.280	232	
Melee	0.027	0.564	232	
Casualties:				
Killed	0.204	0.027	232	
Wounded	1.054	0.001	231	
Motivation:				
Right-Wing	0.097	0.332	211	
Neo-Nazi	0.061	0.543	211	
Left-Wing	0.013	0.875	211	
Islamist	-0.108	0.172	211	

Baseline Effects of Terror on AfD

Estimating Equation

$$AfD_{i,e,t} = \beta_{0} + \beta_{1} [SUCCESS_{i} \times POST_{i,e,t} \times ELECTION_{e}] + \zeta \mathbf{X_{i,e,t}}$$

$$+ \lambda_{ie} + \alpha_{t} + \epsilon_{i,t}$$
(2)

 $AfD_{i,e,t}$: AfD vote share in municipality i in election type e in year t.

SUCCESS_i: 1 if successful attack, 0 if failed attack.

 $POST_{i,e,t}$: 1 if election e in year t was post attack, o otherwise.

ELECTION_e: Federal, European or State election.

 $X_{i,e,t}$: All lower order terms of the triple interaction.

 λ_{ie} : Municipality \times Election fixed effects.

 α_t : Year fixed effects.

 $\epsilon_{i,t}$: Standard errors clustered at the municipality level.

Baseline Estimates

Table 1: Successful Terror Attacks and AfD Vote Share

	Outcome: AfD Vote Share								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Baseline	East	Omit	Urban	Weapon	Attack	Omit	Omit	All
	Model	× Year	Berlin	× Year	× Year	Timing	Mulitple	Coordinated	Controls
$Success \times Post \times Federal$	0.0005 (0.0198)	0.0225 (0.0144)	0.0071 (0.0213)	-0.0068 (0.0169)	-0.0066 (0.0207)	0.0005 (0.0198)	0.0050 (0.0217)	0.0030 (0.0200)	0.0271 (0.0192)
$Success \times Post \times European$	-0.0116	0.0226	-0.0102	-0.0166	-0.0098	-0.0116	-0.0113	-0.0104	0.0066
	(0.0251)	(0.0177)	(0.0290)	(0.0208)	(0.0264)	(0.0251)	(0.0288)	(0.0253)	(0.0211)
$Success \times Post \times State$	0.0625**	0.0501***	0.0671***	0.0589**	0.0335***	0.0733**	0.0477***	0.0715**	0.0482**
	(0.0263)	(0.0132)	(0.0255)	(0.0228)	(0.0096)	(0.0308)	(0.0151)	(0.0307)	(0.0130)
N	734	734	664	734	723	734	534	664	511
Clusters	124	124	114	124	123	124	91	112	89
\bar{Y}_{State} [S.D]	.17	.17	.19	.17	.18	.17	.19	.17	.19
	[.1]	[.1]	[.1]	[.1]	[.1]	[.1]	[.11]	[.1]	[.1]

Baseline Estimates: Additional Results

Our baseline findings:

- 1. Are driven primarily by right-wing attacks targeted against migrants. Attack Motive Heterogeneity
- 2. Are robust to a range of additional checks:
 - Placebo tests → Placebos
 - Dropping 1 id at a time Propping
 - Alternative statistical inference
 - Heterogeneity-robust DiD estimators
 - Rolling window approach Rolling Window
- 3. Exhibit geographic spillover effects Spillovers

Why Does (Right-Wing) Terror Affect Right-Wing Voting?

We offer 4 explanations as to why *successful* terror increases support for the AfD:

1. Mobilizes new voters who support the AfD. Petails

- 1. Mobilizes new voters who support the AfD. Details
- 2. Shifts individual voter preferences to more populist positions.

- 1. Mobilizes new voters who support the AfD. Petails
- 2. Shifts individual voter preferences to more populist positions.
- 3. Receives differential media coverage in terms of *quantity*, *tone*, and *content*.

- 1. Mobilizes new voters who support the AfD. Petails
- 2. Shifts individual voter preferences to more populist positions.
- 3. Receives differential media coverage in terms of *quantity*, *tone*, and *content*.
- 4. Realigns the language of political parties on key issues. Details

Terror and Individual of Voter Preferences: German SOEP

- We test terror's effects on people's political and social attitudes using the German Socio-Economic Panel (SOEP).
- This enables us to study the political preferences and attitudes of the *same person* before and after an attack.
- For each person, p, residing in municipality i surveyed in period t, we estimate the parameters of the following model:

$$y_{p,i,t} = \beta_0 + \beta[SUCCESS_i \times POST_{p,t}] + \delta_p + \alpha_t + \epsilon_{i,t}$$
 (3)

Terror and Individual Attitudes: German SOEP

Table 2: Successful Terror and Individual Political Attitudes

	Dependent Variable: Individual Attitudes and Prefereces										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
	Identify	Identify	Prefer	Prefer	Prefer	Participate	Worried	Worried			
	Right-Wing	Hard-Right	AfD	CDU	SPD	Local Politcs	Immigration	Terrorism			
Success × Post	0.0652*** (0.0206)	0.0438** (0.0179)	0.0234** (0.0104)	-0.00693 (0.0185)	0.0314* (0.0178)	0.0205*** (0.00693)	0.0361*** (0.0174)	0.00204 (0.0261)			
N	4,572	4,572	13,279	13,279	13,279	14,298	29,610	9,587			
Clusters	87	87	89	89	89	95	95	88			
People in Sample	2,286	2,286	2,401	2,401	2,401	3,715	4,102	2,682			
Ÿ	0.176	0.0956	0.0297	0.318	0.307	0.0254	0.289	0.84			
[S.D]	[0.381]	[0.294]	[0.170]	[0.466]	[0.461]	[0.157]	[0.453]	[0.367]			

Terror and Individual Attitudes: Additional Findings

Using the SOEP, we document further important findings:

- · Heterogeneous Effects:
 - Along dimensions of Cultural Conflict
 - Voter migration and political activation

Balance in the SOEP

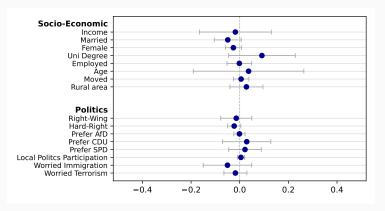


Figure 1: Characteristics of people in successful v. failed municipalities

Terror is politically impactful because it shapes political attitudes and not because it targets different types of people.

Conclusion

Conclusions

- A striking feature of our results is that the AfD benefits from right-wing acts of terror against migrants.
- · In response to successful attacks:
 - Otherwise similar municipalities vote more for the far-right.
 - Otherwise similar people worry about migration and prefer AfD.
 - News reports use different vocabulary to describe otherwise similar attacks:
 - They highlight Islam and downplay right-wing populism.
- Results demonstrate that political attitudes, preferences and outcomes can be shaped by powerful social forces like media.

That's all!

Thank you! sabet@econ.uni-frankfurt.de

Details on the GTD

For an event to be included in the GTD it must:

- Be intentional; entail some levels of violence, be conducted by non-state actors.
- 2. Aimed at political, religious or economic goal; have intention to send a larger message; not in the context of war.
- 3. Plots of conspiracies that are *not* attempted are not included in the GTD.

Contribution I

Literature on electoral consequences of terrorism. Most of these studies focus on

- Israel (Gould and Klor 2010; Berrebi and Klor 2008; Getmansky and Zeitzoff 2014)
- less stable, non-Western democracies (Rehman and Vanin 2017; Kibris 2011)
- Cross country settings which include a wide range of democracies (Jones and Olken 2009; Rees and Smith 2022; Larsen, Cutts, and Goodwin 2020; Gassebner, Jong-A-Pin, and Mierau 2008)
- \rightarrow Our point of departure from this literature is twofold:
 - 1. We examine the effect of terrorism on far-right voting in the context of an advanced, multi-party Western democracy.
 - 2. our analysis includes a full account of why terror influences political outcomes.

Contribution II

Literature on the recent rise of populist movements. The majority of related articles emphasizes

Economic factors

- Economic insecurity and distress (Guiso et al. 2020; Guiso et al. 2017b; Bo' et al. 2023; Dehdari 2021)
- Globalization shocks (Rodrick 2018)
- Government austerity (Fetzer 2019)

Cultural Factors

- Identity and education (Bonomi et al. 2021, Gethin et al. 2022)
- Cultural attitudes and migration (Norris and Inglehart 2019)
- ightarrow We advance this literature by shedding light on the causal role of violence in explaining the rise of, or at least the added support for, right-wing populism.

Contribution III

Literature that documents the important role of media — including radio, newspapers, and cable news — in shaping political outcomes

 Strömberg 2004; Gentzkow, Shapiro, and Sinkinson 2011; DellaVigna and Kaplan 2007; Durante, Pinotti, and Tesei 2019

It also adds to scholarship that illustrates the specific impact of media attention in amplifying terror's effects

Alfano and Görlach 2022; Brodeur 2018; Jetter 2017, 2019

Example of Successful Attack from the GTD

04/22/2015: An assailant threw fire crackers at the home of an asylum seeker, and stabbed him in Brand-Erbisdorf, Saxony, Germany. The asylum seeker was injured in the assault. Authorities identified the assailant as a right-wing extremist and noted that he shouted "I will kill you" and "I will remove the foreigners" during the attack.

Example of Failed Attack from the GTD

03/23/2015: Assailants **threw an incendiary device** that landed near Paul-Loebe-Haus and **failed to ignite** in Tiergarten neighborhood, Berlin. An unknown right-wing extremist group claimed responsibility for the attack.

Baseline Effects According to Attack Motive

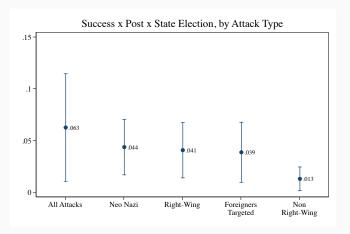
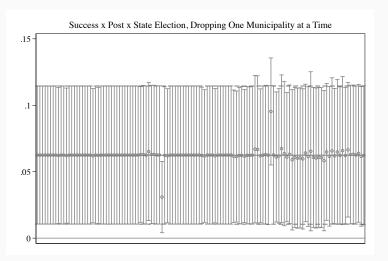


Figure 2: Heterogeneous effects according to attack type or target



Placebo Tests

Table 3: Effects of Successful and Failed Attacks

	Balan	ce Test	Baseline	Estimate
	(1) Success v. Placebo Fail	(2) Failed v. Placebo Fail	(3) Success v. Placebo Fail	(4) Failed v. Placebo Fail
Success	0.0090			
Failed		0.0162 (0.0155)		
$Success \times Post \times Federal$			0.0132 (0.0085)	
$Success \times Post \times European$			-0.0033 (0.0132)	
$Success \times Post \times State$			0.0505*** (0.0161)	
$Failed \times Post \times Federal$				0.0107 (0.0184)
$Failed \times Post \times European$				0.0083 (0.0259)
$Failed \times Post \times State$				-0.0007 (0.0357)
N	1,993	1,334	1,828	1,214
Clusters	316	214	314	212
Ῡ _{State} [S.D]	.14 [.083]	.14 [.074]	.17 [.091]	.17 [.08]

Baseline Specification, Dropping one ID at a time

Figure 3: Success \times Post \times State, dropping One Municipality at a time

Alternative Inference

Table 4: Alternative inference

(1)
0.0625
734
124
.019
.034
.000

► Back to baseline

Heterogeneity Robust DiD Estimators

Table 5: Heterogeneity Robust DiD Estimation

	Coefficient on Success \times Post \times State Election							
	(1)	(2)						
	Baseline	DiD Imputation						
β	0.0741***							
	(0.0280)							
au		0.0938***						
		(0.0022)						
N	734	623						
Clusters	124	105						
Estimator	reghdfe	DID imputation						
		·						

▶ Back to baseline

Rolling Window

Table 6: Terror Attacks and AfD Vote Share Using a Rolling Window

	7.1	(-)	/-\	(.)	(-)	(c)	(-\	(a)	(-)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Baseline	East	Omit	Urban	Weapon	Attack	Omit	Omit	All
	Model	× Year	Berlin	× Year	× Year	Timing	Mulitple	Coordinated	Controls
$Success \times Post \times Federal$	0.0019	0.0106	0.0118	-0.0053	-0.0031	0.0060	0.0050	0.0039	0.0122
	(0.0159)	(0.0125)	(0.0180)	(0.0138)	(0.0166)	(0.0162)	(0.0217)	(0.0162)	(0.0172)
$Success \times Post \times European$	-0.0184	0.0028	-0.0075	-0.0251	-0.0156	-0.0154	-0.0113	-0.0166	0.0104
	(0.0222)	(0.0183)	(0.0291)	(0.0190)	(0.0234)	(0.0220)	(0.0288)	(0.0223)	(0.0206)
$Success \times Post \times State$	0.0571**	0.0436***	0.0533**	0.0563**	0.0441	0.0683**	0.0477***	0.0588**	0.0436***
	(0.0252)	(0.0115)	(0.0237)	(0.0236)	(0.0272)	(0.0300)	(0.0151)	(0.0266)	(0.0123)
N	787	787	693	787	776	787	534	711	549
Clusters	124	124	114	124	123	124	91	112	92
\bar{Y}_{State}	.16	.16	.18	.16	.17	.16	.19	.16	.18
[S.D]	[.099]	[.099]	[.1]	[.099]	[.1]	[.099]	[.11]	[.1]	[.1]

▶ Back to baseline

Spillovers

- We next investigate whether our effects spillover to neighboring municipalities.
- We code untargeted municipalities within an 80 km radius of targeted municipalities as either success or failed depending on their distance to the nearest successful or failed attack.
- We then re-run our baseline estimating equation in samples of municipalities according to their distance to an actual attack and plot the coefficient of interest for state elections.

► Back to baseline

Spillovers

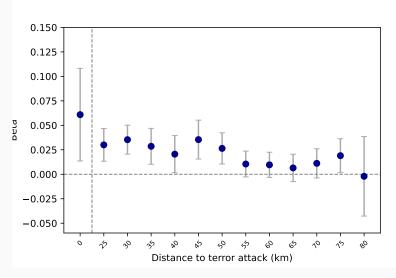
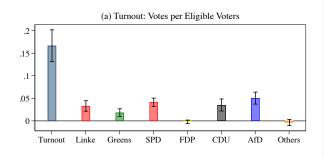
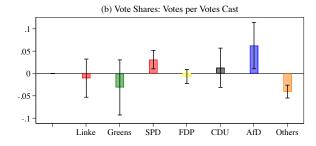
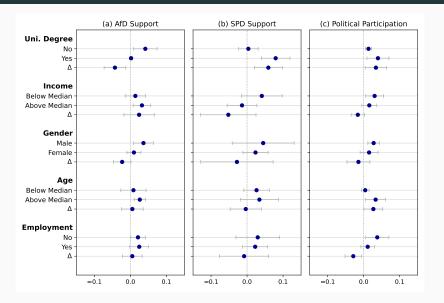




Figure 4: Geographic Spillovers of Successful Terror



Heterogeneous Effects of Terror

Using the SOEP, we also find that terror increases preference for AfD for people without university education.

- Consistent with "authoritarian reflex" (Norris and Inglehart 2019).
- Groups in society who are "left behind" by globalization react defensively to shocks that undermine security by adopting more extreme ideological positions.

Heterogeneous Effects of Terror

Terror and Voter Migration and Activiation:

We estimate the parameters of the following two estimating equations:

$$\begin{split} \text{Prefer AfD}_{p,i,t} &= \beta_{\text{O}} + \beta_{\text{1}} \big[\textit{SUCCESS}_{i} \times \textit{POST}_{i,t} \times \textit{PARTISAN}_{p} \big] \\ &+ \zeta \mathbf{X}_{p,i,t} + \delta_{p} + \alpha_{t} + \epsilon_{m,t} \\ \text{Prefer AfD}_{p,i,t} &= \gamma_{\text{O}} + \gamma_{\text{1}} \big[\textit{SUCCESS}_{i} \times \textit{POST}_{i,t} \times \textit{ACTIVE}_{p} \big] \\ &+ \zeta \mathbf{X}_{p,i,t} + \delta_{p} + \alpha_{t} + \epsilon_{m,t} \end{split} \tag{5}$$

- PARTISAN_p is 1 if a person prefers a particular party in all pre-attack surveys. It is 0 if an individual states more than one party as their preferred political party in pre-attack surveys.
- ACTIVE_p is 1 if a person participates in local politics frequently in all pre-attack surveys. It is 0 for individuals who, pre-attack, participate in local politics seldom or never.

Heterogeneous Effects of Terror II:

Table 7: Political Commitment, Political Activation and the AfD

		Dependent Variable: Individual Prefer's AfD									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)				
	CDU	SPD	FDP	Linke	Greens	Ultra Right	Politically Active				
${\sf Success} \times {\sf Post} \times {\sf Non\text{-}partisan}$	0.0253*	0.0281***	0.0230**	0.0230**	0.0257**	0.0219**					
	(0.0145)	(0.00895)	(0.0109)	(0.0110)	(0.0125)	(0.0106)					
$Success \times Post \times Partisan$	0.0166***	0.0109	0.0715	0.0381**	0.00806	0.267**					
	(0.00475)	(0.0262)	(0.0525)	(0.0188)	(0.00623)	(0.125)					
$Success \times Post \times Inactive$							0.0259**				
							(0.0115)				
$Success \times Post \times Active$							-0.0116				
							(0.00868)				
N	9,089	9,089	9,089	9,089	9,089	9,089	9,162				
Clusters	76	76	76	76	76	76	76				
People in Sample	1,591	1,591	1,591	1,591	1,591	1,591	1,647				

We test if successful attacks receive differential media coverage.

· We find that successful attacks:

- · We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.

- · We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.
 - 2. Receive significantly *more* coverage than failed attacks.

- · We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.
 - 2. Receive significantly more coverage than failed attacks.
- · We find that stories that cover successful attacks:

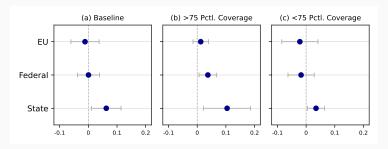
- · We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.
 - 2. Receive significantly *more* coverage than failed attacks.
- · We find that stories that cover successful attacks:
 - 1. Receive significantly lower sentiment scores (i.e., worse tone).

- We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.
 - 2. Receive significantly *more* coverage than failed attacks.
- · We find that stories that cover successful attacks:
 - 1. Receive significantly lower sentiment scores (i.e., worse tone).
 - 2. Use words related to Islam and terror significantly more.

- We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.
 - 2. Receive significantly more coverage than failed attacks.
- · We find that stories that cover successful attacks:
 - 1. Receive significantly lower sentiment scores (i.e., worse tone).
 - 2. Use words related to Islam and terror significantly more.
 - 3. Use words related to right-wing populism significantly less.

- · We find that successful attacks:
 - 1. Are no more likely to receive coverage than failed attacks.
 - 2. Receive significantly more coverage than failed attacks.
- · We find that stories that cover successful attacks:
 - 1. Receive significantly lower sentiment scores (i.e., worse tone).
 - 2. Use words related to Islam and terror significantly more.
 - 3. Use words related to right-wing populism significantly less.
- These patterns hold for regional and local news stories.

Table 8: Successful Terror and Media Coverage


	Art	icles	Sent	iment	Topics						
	(1)	(2)	(3)	(4)	(5) Right-wing	(6)	(7)	(8)	(9)		
	Found	Count	Title	Body	Populism	Migration	Crime	Islam	Terror		
Panel A: LexisNexis											
Success	.0756	8.246**	0339	0321**	3467***	1185	8085***	.6186***	.1895***		
	(.1754)	(4.015)	(.0232)	(.0145)	(.091)	(.0995)	(.1641)	(.0818)	(.0684)		
State \times Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓		
Publisher FE			✓	✓	✓	✓	✓	✓	✓		
N	232	232	4,683	4,683	4,683	4,683	4,683	4,683	4,683		
Clusters	124	124	1,303	1,303	1,303	1,303	1,303	1,303	1,303		
Ϋ́	0.642	11.125	-0.091	-0.114	0.544	0.440	1.162	0.314	0.607		
Panel B: FAZ											
Success	.0241	017	0251	.0338	2848	.1211	4963*	.3178***	.1145		
	(.1531)	(.3378)	(.042)	(.029)	(.212)	(.0963)	(.2774)	(.1052)	(.1023)		
State \times Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓		
N	186	186	338	338	338	338	338	338	338		
Ÿ	0.457	0.828	-0.053	-0.105	0.715	0.576	1.229	0.298	0.515		
Unit of Observation	Attack				Story						

Highly Covered Attacks and the AfD

- Next we test the extent to which news coverage of attacks actually drives our results.
- To do this exercise, we identify the number of news reports received by each attack.
- We then carry out our baseline estimate in samples split by media coverage:
 - · Does terror have a larger impact for more highly-covered attacks?

Highly Covered Attacks and the AfD

Figure 5: Baseline Effects of Terror on AfD Vote Share in Samples Split by Media Coverage

Realignment of Political Parties:

- We collect the Election Manifesto (Wahlprogramm) for each party in each state election from 2013 to 2019.
- These documents articulate each party's policy goals and ideological commitments.
- Identify trigger words related to crime, terror and migration.
- We collect the 2009 Federal election manifesto of the CDU which we use as a reference point.

Political Realignment of Political Parties:

Using these documents, we estimate π_3 from the following model:

$$\Delta TR_{p,t} = \pi_0 + \pi_1 \sum_{s} SUCCESS_{s,t-1} + \pi_2 \mathbb{1} \{Party = p\} + \pi_3 \left[\sum_{s} SUCCESS_{s,t-1} \times \mathbb{1} \{Party = p\} \right] + \alpha_t + \zeta_s + \epsilon_{s,t}$$
(6)

 $\Delta TR_{p,t}$ Difference in trigger words in party p's state elec-

tion manifesto in year t compared to the 2009

Federal election manifesto of the CDU.

SUCCESS_{s,t-1}: Successful attacks in state s in t-1. 1{Party = p}: 1 for party p, 0 for all other parties.

 α_t, ζ_s : Year and state fixed effects.

 $\epsilon_{s,t}$: Bootstrapped standard errors, state level.

Realignment of Political Parties in Response to Terror

Attack	-0.106	-0.082	0.095	-0.111	-0.101	0.306
	(0.076)	(0.024)	(0.103)	(0.059)	(0.116)	(0.19)
Naturalization	-0.092	-0.055	-0.138	0.048	-0.109	0.331
	(0.063)	(0.041)	(0.023)	(0.041)	(0.022)	(0.104)
Integration	-0.048	-0.128	-0.011	-0.052	-0.012	0.262
	(0.061)	(0.054)	(0.167)	(0.074)	(0.035)	(0.06)
Criminal (adj)	-0.114 (0.033)	-0.147 (0.031)	-0.066 (0.033)	-0.009 (0.054)	0.011 (0.033)	0.294 (0.032)
Crime	-0.037	-0.026	0.049	-0.053	-0.052	0.092
	(0.11)	(0.059)	(0.033)	(0.081)	(0.098)	(0.031)
Asylum	-0.03	-0.066	-0.047	-0.023	-0.086	0.196
	(0.035)	(0.051)	(0.061)	(0.045)	(0.094)	(0.209)
Terror	-0.043	-0.001	0.069	-0.019	0.075	-0.098
	(0.132)	(0.046)	(0.09)	(0.048)	(0.073)	(0.097)
	Linke	Grünen	SPD	FDP	CDU/CSU	AfD

► Back to Mechanisms