A Method to Characterize Reduced-Form Auctions

Charles Z. Zheng

University of Western Ontario

North American Econometric Society Meetings Jan 5, 2024

Figure 1: Plato's Cave

observed:

$$Q_{kj}(t_k) = \int_{T_{-k}} q_{kj}(t_k, t_{-k}) d\mu_{-k}(t_{-k}|t_k) \quad \forall k \forall t_k \forall t_k$$

(bidder k of type t_k to have object j)

observed:

$$?\exists q:$$

$$Q_{kj}(t_k) = \int_{T_{-k}} q_{kj}(t_k, t_{-k}) d\mu_{-k}(t_{-k}|t_k) \quad \forall k \forall t_k \forall j$$

interim allocation:

ex post allocation

$$Q_{kj}(t_k) = \int_{T_{-k}} q_{kj}(t_k, t_{-k}) d\mu_{-k}(t_{-k}|t_k) \quad \forall k \forall t_k \forall j$$

interim state (k, j, t_k)

ex post state

$$(t_1,\ldots,t_n)=:t$$

interim allocation:

ex post allocation

$$Q_{kj}(t_k) = \int_{T_{-k}} q_{kj}(t_k, t_{-k}) d\mu_{-k}(t_{-k}|t_k) \quad \forall k \forall t_k \forall j$$

interim state (k, j, t_k)

ex post state $(t_1, \ldots, t_n) =: t$

feasibility of $(q_{kj}(t))_{k,j} \forall t$ e.g., $\sum_{k} q_{kj}(t) \leq 1 \forall$ bidder k(assignment problems)

interim allocation:

ex post allocation

$$Q_{kj}(t_k) = \int_{T_{-k}} q_{kj}(t_k, t_{-k}) d\mu_{-k}(t_{-k}|t_k) \quad \forall k \forall t_k \forall j$$

interim state

$$(k,j,t_k)$$

ex post state

$$(t_1,\ldots,t_n)=:t$$

feasibility of $(q_{kj}(t))_{k,j} \forall t$ $\sum_{k} q_{kj}(t) \le 1 \ \forall \ \text{bidder } k$ (assignment problems)

interim allocation:

ex post allocation

$$Q_{kj}(t_k) = \int_{T_{-k}} q_{kj}(t_k, t_{-k}) d\mu_{-k}(t_{-k}|t_k) \quad \forall k \forall t_k \forall j$$
 interim state
$$(k, j, t_k) \qquad \qquad \text{ex post state}$$

$$(t_1, \dots, t_n) =: t$$

$$? \iff \qquad \text{feasibility of } (q_{kj}(t))_{k,j} \ \forall t$$

What is the set of $(Q_{kj})_{k,j}$ that are the reduced forms of some $(q_{kj})_{k,j}$?

The literature

- 1. Border (1991)
 - Border (2007), Manelli & Vincent (2010), Mierendorff (2011), Cai, Daskalakis & Weinberg (2011), Che, Kim & Mierendorff (2013), Goeree & Kushnir (2022), etc.
- 2. Majorization: Hart & Reny (2015), Kleiner, Moldovanu & Strack (2021), Kolesnikov, Sandomirskiy & Tsyvinski (2022), etc.
- 3. Contemporary: Lang & Yang (2022), Valenzuela-Stookey (2023)

The literature

- 1. Border (1991)
 Border (2007), Manelli & Vincent (2010), Mierendorff (2011), Cai,
 Daskalakis & Weinberg (2011), Che, Kim & Mierendorff (2013),
 Goeree & Kushnir (2022), etc.
- 2. Majorization: Hart & Reny (2015), Kleiner, Moldovanu & Strack (2021), Kolesnikov, Sandomirskiy & Tsyvinski (2022), etc.
- 3. Contemporary: Lang & Yang (2022), Valenzuela-Stookey (2023)
- 4. Frontier

 Multiple objects with combinatorial constraints such as assignment problems with arbitrary numbers of types

This paper

Proposes a method to obtain an exact characterization with multiple objects & arbitrary distributions of types

- 1. Easy applications:
 - (a) Extension of Che et al. to multiple objects
 - (b) Counterpart to Lang and Lang
- 2. Application to assignment problems

 $N \ge 2$ objects, two bidders, arbitrary numbers of types

- (a) Full assignment
- (b) Partial assignment

Notations

- 1. I_1 : set of bidders; I_2 : set of objects; $I := I_1 \times I_2$
- 2. T_{i_1} : set of possible types of bidder i_1
- 3. $T := \prod_{i_1 \in I_1} T_{i_1}$; generic element $t := (t_{i_1})_{i_1 \in I_1}$; distribution μ
- 4. Ex post constraint X_t : nonempty compact $\subset \mathscr{R}^I$, \mathscr{R} either \mathbb{R} or \mathbb{Z} generic element $x := (x_i)_{i \in I} := (x_{i_1,i_2})_{(i_1,i_2) \in I_1 \times I_2}$
- 5. Ex post allocation: $(q_i)_{i \in I}$: $(q_{i_1,i_2}(t))_{(i_1,i_2)\in I} \in \Delta X_t \mu$ -a.e. $t \in T$
- 6. Interim allocation: $(Q_i)_{i \in I}$: $Q_{i_1,i_2}: T_{i_1} \to \mathbb{R} \ (\forall i = (i_1,i_2) \in I)$
- 7. $(Q_i)_{i \in I}$ a reduced form iff: $\forall i \in I \ \forall t_{i_1} \in T_{i_1}$,

$$Q_i(t_{i_1}) = \int_{T_{-i_1}} q_i(t_{i_1}, t_{-i_1}) d\mu_{-i_1}(t_{-i_1}|t_{i_1})$$

The interim perspective

- 1. $\mathscr{Z} := \bigcup_{(i_1,i_2)\in I} (\{(i_1,i_2)\} \times T_{i_1})$: the set of interim states $S \in \mathscr{Z}$: associated with an interim constraint
- 2. $\forall S \subseteq \mathscr{Z} \ \forall t := (t_{i_1})_{i_1 \in I_1} \in T$:
 - (a) $I(S,t) := \{(i_1,i_2) \in I \mid (i_1,i_2,t_{i_1}) \in S\}$ the set of bidder-object pairs due to which S is subject to some ex post constraints at ex post state t
 - (b) $f(S,t) := \max_{x \in X_t} \sum_{i \in I(S,t)} x_i$ upper bound of the total quantity that S can get for its members at ex post state t
 - (c) $g(S, t) := \min_{x \in X_t} \sum_{i \in I(S, t)} x_i$ lower bound thereof
- 3. Upper & lower bounds in expectation $\forall S \subseteq \mathscr{Z}$: $\int_T f(S,t) d\mu(t), \int_T g(S,t) d\mu(t)$

The interim constraints

For all $S \subseteq \mathscr{Z}$:

$$\int_{T} g(S, t) d\mu(t) \le \sum_{i \in I} \int_{T} Q_{i}(t_{i_{1}}) \chi_{S}(i, t_{i_{1}})) d\mu(t) \le \int_{T} f(S, t) d\mu(t)$$

Examples

1. Single-unit symmetric auction: for all $S \subseteq \mathcal{T}$:

$$0 \le \int_{\mathcal{T}} Q(\tau) \chi_S(\tau) d\nu(\tau) \le \frac{1}{|I_1|} \left(1 - (1 - \nu(S))^{|I_1|} \right)$$

2. Partial assignment: N objects and 2 bidders, then RHS is equal to

$$2 - \prod_{(k,j)\in I_1\times I_2} (1 - \mu_k(S_{kj})) - \prod_{j\in I_2} \left(1 - \mu_1(S_{1j}) + \mu_1(S_{1j}) \prod_{j'\neq j} (1 - \mu_2(S_{2j'})) \right)$$

and LHS is equal to zero

The interim constraints

For all $S \subseteq \mathscr{Z}$:

$$\int_{T} g(S, t) d\mu(t) \le \sum_{i \in I} \int_{T} Q_{i}(t_{i_{1}}) \chi_{S}(i, t_{i_{1}})) d\mu(t) \le \int_{T} f(S, t) d\mu(t)$$

Examples

2. Partial assignment: N objects and 2 bidders, then RHS is equal to

$$2 - \prod_{(k,j)\in I_1\times I_2} (1 - \mu_k(S_{kj})) - \prod_{j\in I_2} \left(1 - \mu_1(S_{1j}) + \mu_1(S_{1j}) \prod_{j'\neq j} (1 - \mu_2(S_{2j'})) \right)$$

and LHS is equal to zero

3. Full assignment: Same N by two. RHS is same as above; LHS equals

$$\prod_{j \in I_2} \mu_1(S_{1j}) + \prod_{j \in I_2} \mu_2(S_{2j})$$

The characterization

$$\forall S \subseteq \mathscr{Z} : \int_{T} g(S, t) d\mu(t) \leq \sum_{i \in I} \int_{T} Q_{i}(t_{i_{1}}) \chi_{S}(i, t_{i_{1}})) d\mu(t) \leq \int_{T} f(S, t) d\mu(t)$$

$$\tag{1}$$

- 1. Trivial: Ineq. (1) is necessary for Q to be a feasible reduced form
- 2. Nontrivial: When is Ineq. (1) sufficient? I.e., when is $\mathcal{Q}_B \subseteq \mathcal{Q}$?
 - $\mathcal{Q}_{\mathrm{B}} :=$ the set of interim allocations Q that satisfy (1)
 - \mathcal{Q} := the set of feasible reduced forms

The basic idea

- 1. To characterize feasible reduced forms is to replace ex post feasibility constraints by their interim counterparts
- 2. To validate the characterization, suffices to show that any allocation on the boundary of \mathcal{Q} is just about to violate some interim constraint
- 3. Need a method to locate such binding interim constraints
- 4. An interim constraint corresponds to a set $S \subseteq \mathscr{Z}$
- 5. Theorem 1: Need only to search among the $S \subseteq \mathcal{Z}$ that satisfies a universal binding condition

$$\mathscr{Q}_{\mathrm{B}} \subseteq \mathscr{Q} \iff \forall \alpha \in \mathbb{R}^{\mathscr{Z}} \ \exists (p_+, p_-) : 2^{\mathscr{Z}} \to \mathbb{R}^2_+ \ \mathrm{and} \ (q_i^*)_{i \in I} \ \mathrm{such \ that}$$

$$\forall z \in \mathscr{Z} : \alpha(z) = \sum_{S \subset \mathscr{Z}} (p_{+}(S) - p_{-}(S)) \chi_{S}(z),$$

$$\forall t := (t_{i_1})_{i_1 \in I_1} \in T : (q_i^*(t))_{i \in I} \in \arg\max_{(x_i)_{i \in I} \in X_t} \sum_{i \in I} x_i \alpha(i, t_{i_1})$$

and, for all $S \subseteq \mathscr{Z}$,

$$p_{+}(S) > 0 \implies \forall t \in T \left[f(S, t) = \sum_{i \in I} q_{i}^{*}(t) \chi_{S}(i, t_{i_{1}}) \right]$$

 $p_{-}(S) > 0 \implies \forall t \in T \left[g(S, t) = \sum_{i \in I} q_{i}^{*}(t) \chi_{S}(i, t_{i_{1}}) \right].$

$$\mathscr{Q}_{\mathrm{B}} \subseteq \mathscr{Q} \iff \forall_{\alpha} \in \mathbb{R}^{\mathscr{Z}} \ \exists (p_+, p_-) : 2^{\mathscr{Z}} \to \mathbb{R}^2_+ \ \mathrm{and} \ (q_i^*)_{i \in I} \ \mathrm{such \ that}$$

$$\forall z \in \mathscr{Z} : \alpha(z) = \sum_{S \subset \mathscr{Z}} (p_+(S) - p_-(S)) \chi_S(z),$$

$$\forall t := (t_{i_1})_{i_1 \in I_1} \in T : (q_i^*(t))_{i \in I} \in \arg\max_{(x_i)_{i \in I} \in X_t} \sum_{i \in I} x_i \alpha(i, t_{i_1})$$

and, for all $S \subseteq \mathscr{Z}$,

$$p_{+}(S) > 0 \implies \forall t \in T \left[f(S, t) = \sum_{i \in I} q_{i}^{*}(t) \chi_{S}(i, t_{i_{1}}) \right]$$

 $p_{-}(S) > 0 \implies \forall t \in T \left[g(S, t) = \sum_{i \in I} q_{i}^{*}(t) \chi_{S}(i, t_{i_{1}}) \right].$

• q^* : boundary point between the feasible set and supporting hyperplane normal to α ; "the social planner's solution"

$$\mathscr{Q}_{\mathrm{B}} \subseteq \mathscr{Q} \iff \forall \alpha \in \mathbb{R}^{\mathscr{Z}} \ \exists (p_+, p_-) : 2^{\mathscr{Z}} \to \mathbb{R}^2_+ \ \mathrm{and} \ (q_i^*)_{i \in I} \ \mathrm{such \ that}$$

$$\forall z \in \mathscr{Z} : \alpha(z) = \sum_{S \subset \mathscr{Z}} (p_{+}(S) - p_{-}(S)) \chi_{S}(z),$$

$$\forall t := (t_{i_1})_{i_1 \in I_1} \in T : (q_i^*(t))_{i \in I} \in \arg\max_{(x_i)_{i \in I} \in X_t} \sum_{i \in I} x_i \alpha(i, t_{i_1})$$

and, for all $S \subseteq \mathscr{Z}$,

$$p_{+}(S) > 0 \implies \forall t \in T \left[f(S, t) = \sum_{i \in I} q_i^*(t) \chi_S(i, t_{i_1}) \right]$$

 $p_{-}(S) > 0 \implies \forall t \in T \left[g(S, t) = \sum_{i \in I} q_i^*(t) \chi_S(i, t_{i_1}) \right].$

- $p_+(S)$: shadow price for the expected upper bound $\sum_{t \in T} f(S, t) \mu\{t\}$
- $p_{-}(S)$: shadow price for the expected lower bound $\sum_{t \in T} g(S, t) \mu\{t\}$

$$\mathcal{Q}_{\mathrm{B}} \subseteq \mathcal{Q} \iff \forall \alpha \in \mathbb{R}^{\mathscr{Z}} \ \exists (p_+, p_-) : 2^{\mathscr{Z}} \to \mathbb{R}^2_+ \ \text{and} \ (q_i^*)_{i \in I} \ \text{such that}$$

$$\forall z \in \mathscr{Z} : \alpha(z) = \sum_{S \subseteq \mathscr{Z}} \left(p_+(S) - p_-(S) \right) \chi_S(z),$$

$$\forall t := (t_{i_1})_{i_1 \in I_1} \in T : (q_i^*(t))_{i \in I} \in \arg\max_{(x_i)_{i \in I} \in X_t} \sum_{i \in I} x_i \alpha(i, t_{i_1})$$

and, for all $S \subseteq \mathcal{Z}$,

$$p_{+}(S) > 0 \implies \forall t \in T \left[f(S, t) = \sum_{i \in I} q_{i}^{*}(t) \chi_{S}(i, t_{i_{1}}) \right]$$

 $p_{-}(S) > 0 \implies \forall t \in T \left[g(S, t) = \sum_{i \in I} q_{i}^{*}(t) \chi_{S}(i, t_{i_{1}}) \right]$

- $p_+(S) > 0$ only if the total quantity that S gets for its members is maxed out to the ceiling at any ex post state t
- $p_{-}(S) > 0$ only if the total quantity that S gets for its members is reduced to the floor at any ex post state t

- 1. A boundary point q^* : a choice function among interim states
- 2. Lemma 2: If \succeq_Z is a preference relation that rationalizes q^* within $Z \subseteq \mathscr{Z}$, then any upper (lower) contour set within Z with respect to \succeq_Z is upward (downward) universally binding
- 3. Construct multiple \succeq_Z so that the family of upper/lower contour sets covers every interim state

- 1. A boundary point q^* : a choice function among interim states
 - (a) E.g., $q_{1j}^*(r,s) = 1$ and $q_{1j}(r,s') = q_{1j'}(r,s') = 0$ for objects $j' \neq j$
 - (b) $(1, j, r) \succ (1, j', r)$ when $t_2 = s$, and neither \succ nor \prec when $t_2 = s'$
- 2. Lemma 2: If \succeq_Z is a preference relation that rationalizes q^* within $Z \subseteq \mathscr{Z}$, then any upper (lower) contour set within Z with respect to \succeq_Z is upward (downward) universally binding
- 3. Construct multiple \succeq_Z so that the family of upper/lower contour sets covers every interim state

- 1. A boundary point q^* : a choice function among interim states
- 2. Lemma 2: If \succeq_Z is a preference relation that rationalizes q^* within $Z \subseteq \mathscr{Z}$, then any upper (lower) contour set within Z with respect to \succeq_Z is upward (downward) universally binding
 - (a) \succeq_Z rationalizing $q^*|_Z$: If $\varnothing = U^0 \subsetneq U^1 \subsetneq \cdots \subsetneq U^{n_*-1} \subsetneq U^{n_*} \subseteq Z$ are upper contour sets w.r.t. \succeq_Z , $t := (t_{i_1})_{i_1 \in I_1} \in T$ and $n = 1, \ldots, n_*$, then

$$\sum_{(i,t_{i_1})\in U^n\backslash U^{n-1}}q_i^*(t)=f(U^n,t)-f(U^{n-1},t);$$

and symmetrically for lower contour sets

3. Construct multiple \succeq_Z so that the family of upper/lower contour sets covers every interim state

- 1. A boundary point q^* : a choice function among interim states
- 2. Lemma 2: If \succeq_Z is a preference relation that rationalizes q^* within $Z \subseteq \mathscr{Z}$, then any upper (lower) contour set within Z with respect to \succeq_Z is upward (downward) universally binding
- 3. Construct multiple \succeq_Z so that the family of upper/lower contour sets covers every interim state
 - (a) \succeq_Z need not be total on \mathscr{Z} , nor directly from α
 - (b) In assignment problems, two kinds of rivals among interim states:
 - i. $\{(k, j, t_k) \in \mathcal{Z} \mid k \in I_1, t_k \in T_k\}$
 - ii. $\{(k, j, t_k) \in \mathcal{Z} \mid j \in I_2\}$
 - (c) For each set of rivals, derive from q^* a preference relation restricted therein

To verify the existence of the shadow prices

1. I.e., given a collection \mathscr{S}_+ (\mathscr{S}_-) of upper (lower) contour sets, prove existence of $(p_+, p_-) : \mathscr{S}_+ \times \mathscr{S}_- \to \mathbb{R}^2_+$ such that

$$\forall z \in \mathscr{Z} : \alpha(z) = \sum_{S \in \mathscr{S}_{+}} p_{+}(S)\chi_{S}(z) - \sum_{S \in \mathscr{S}_{-}} p_{-}(S)\chi_{S}(z)$$
 (2)

- 2. I.e., \exists nonnegative solution of $\boldsymbol{p}:=[(p_+(S))_{S\in\mathscr{S}_+},(p_-(S))_{S\in\mathscr{S}_-}]^\mathsf{T}$ for $[\mathbf{M}_+,\mathbf{M}_-,-\boldsymbol{\alpha}]\,\boldsymbol{p}=\mathbf{0}$
 - (a) \mathbf{M}_+ : $|\mathscr{Z}|$ -by- $|\mathscr{S}_+|$ matrix, $\mathbf{M}_+(z,S):=\chi_S(z)$
 - (b) \mathbf{M}_{-} : $|\mathcal{Z}|$ -by- $|\mathcal{S}_{-}|$ matrix, $\mathbf{M}_{-}(z,S):=-\chi_{S}(z)$
 - (c) $\boldsymbol{\alpha} := [(\alpha(z))_{z \in \mathscr{Z}}]^{\mathsf{T}}$
- 3. Lemma 3: There exists $(p_+, p_-) : \mathscr{S}_+ \times \mathscr{S}_- \to \mathbb{R}^2_+$ satisfying (3) if no Gaussian elimination on the matrix $[\mathbf{M}_+, \mathbf{M}_-, -\alpha]$ can produce any nonnegative row whose entry at the $-\alpha$ position is (strictly) positive.

To verify the existence of the shadow prices

1. I.e., given a collection \mathscr{S}_+ (\mathscr{S}_-) of upper (lower) contour sets, prove existence of $(p_+, p_-) : \mathscr{S}_+ \times \mathscr{S}_- \to \mathbb{R}^2_+$ such that

$$\forall z \in \mathscr{Z} : \alpha(z) = \sum_{S \in \mathscr{S}_{+}} p_{+}(S)\chi_{S}(z) - \sum_{S \in \mathscr{S}_{-}} p_{-}(S)\chi_{S}(z)$$
 (3)

- 2. I.e., \exists nonnegative solution of $\boldsymbol{p} := [(p_+(S))_{S \in \mathscr{S}_+}, (p_-(S))_{S \in \mathscr{S}_-}]^\mathsf{T}$ for $[\mathbf{M}_+, \mathbf{M}_-, -\boldsymbol{\alpha}] \, \boldsymbol{p} = \mathbf{0}$
- 3. Lemma 3: There exists $(p_+, p_-): \mathscr{S}_+ \times \mathscr{S}_- \to \mathbb{R}^2_+$ satisfying (3) if no Gaussian elimination on the matrix $[\mathbf{M}_+, \mathbf{M}_-, -\alpha]$ can produce any nonnegative row whose entry at the $-\alpha$ position is (strictly) positive.
 - (a) The condition makes it impossible for a Gaussian elimination to produce an equation contradictory to (3)
 - (b) Suffices due to Chu et al.'s (2023) hyper-rectangle cover theory

The method

- 1. For any linear valuation $\alpha \in \mathbb{R}^{\mathscr{Z}}$, find a solution q^* to the social planner's problem
- 2. Derive from q^* some partial orders \succeq_Z on \mathscr{Z} that partially rationalizes q^* ; the upper or lower contour sets with respect to \succeq_Z satisfy the universal binding condition.
- 3. Prove that (3) has a nonnegative solution for (p_+, p_-) such that p_+ is supported by the upper contour sets, and p_- supported by the lower contour sets

Applications

- 1. If a constraint structure is paramodular and if |T| is finite, $\mathcal{Q}_{\mathrm{B}} \subseteq \mathcal{Q}$ (Theorem 2)
- 2. If a constraint structure is decomposable, linear and it fully characterizes $\text{cv}X_t$, and if |T| is finite, then $\mathcal{Q}_{\text{B}} \subseteq \mathcal{Q}$ (Theorem 3)
- 3. In the assignment model with $N \geq 2$ objects and two bidders, and |T| finite, $\mathcal{Q}_{\mathrm{B}} \subseteq \mathcal{Q}$
 - (a) Full assignment: each bidder gets exactly one object (Theorem 4)
 - (b) Partial assignment: each gets at most one object (Theorem 5)
- 4. Theorems 2 and 5 are extended to allow for infinite |T|

Paramodularity (Theorem 2)

- 1. The application is easy
- 2. Paramodularity includes
 - (a) Single-unit auctions
 - (b) Multiunit auctions (Che et al., 2013)
 - (c) Two-player bargaining
 - (d) Multiple-object auctions subject to paramodularity
- 3. Paramodularity guarantees that the social planner's problem is solved by the greedy-generous algorithm wrt the α -values, hence easy

Decomposability (Theorem 3)

- 1. The application is relatively easy
- 2. Decomposability and full characterization of cvX_t are implications of Lang and Yang's (2023) total unimodularity assumption
- 3. With the linearity assumption, Lang and Yang's characterization reduces to mine; without it, their conclusion is slightly weaker
- 4. Decomposability decomposes the social planner's revealed preferences into multiple ones, each partitioning the interim states into only three indifference sets, the good, the bad), and the neutral; then it is trivial to construct the upper or lower contour sets and prove existence of shadow prices

- 1. The social planner's solution q^*
 - (a) Pair the first- or second-highest $\alpha(1, j, t_1)$ among $j \in I_2$ with the first- or second-highest $\alpha(2, j, t_2)$ among $j \in I_2$ so that the pair refer to different j
 - (b) E.g., q^* : good 1 \rightarrow bidder 2, and good 2 \rightarrow bidder 1 at (t_1, t_2) ; good 2 \rightarrow bidder 2, and good 3 \rightarrow bidder 1 at (t_1, t_2)

	$\left (1,t_1) \right $	$(2,t_2)$	$\left \left(1,t_{1}\right) \right $	$(2,t_2')$
1	-1	3	-1	1/2
2	4	0	4	3
3	2	1/2	2	0

(c) α -value differential: $\delta(k, j, t_k) := \alpha(k, j, t_k) - \max_{j' \in I_2 \setminus \{j\}} \alpha(k, j', t_k)$

- 1. The social planner's solution q^*
- 2. Revealed preferences
 - (a) \succeq_{k,t_k} among those referring to the same bidder-type (k,t_k) : ranked by their α -values except the top two contenders, which are \sim_{k,t_k}
 - (b) \succ_j among those referring to the same object j: ranked by $\delta(k, j, t_k)$
 - (c) Upper/lower contour sets

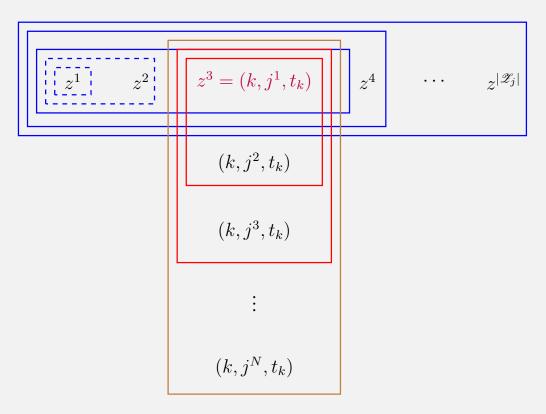


Figure 2: Regarding interim state z^3 , top in the "column" and 3rd in the "row"

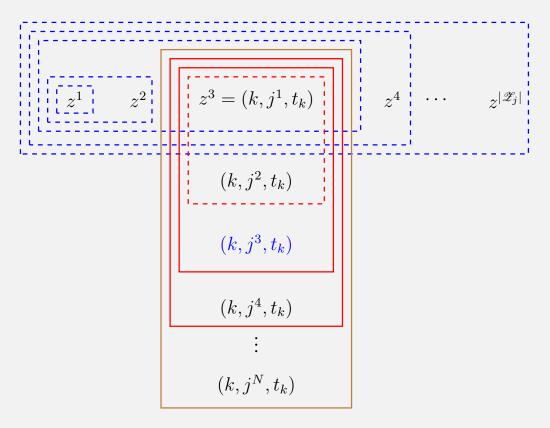


Figure 3: Regarding interim state (k, j^3, t_k) , 3rd in the "column"

- 1. The social planner's solution q^*
- 2. Revealed preferences
- 3. Existence of the shadow prices
 - (a) $\forall z \in \mathcal{Z}$, [z] := the row in $[\mathbf{M}_+, \mathbf{M}_-, \boldsymbol{\alpha}]$ corresponding to z
 - (b) By Lemma 2, suffices to prove there exist no $Z \subseteq \mathscr{Z}$ and $(\beta_z)_{z \in Z} \in (\mathbb{R} \setminus \{0\})^Z$ for which

$$\sum_{z \in Z} \beta_z[z](S) \ge 0 \quad \forall S \in \mathscr{S}_+ \sqcup \mathscr{S}_- \quad \text{and} \quad \sum_{z \in Z} \beta_z \alpha(z) < 0.$$

- 1. The social planner's solution q^*
- 2. Revealed preferences
- 3. Existence of the shadow prices
 - c. Intuition: "differences of differences" quadruples
 - i. Suppose $[z'] [z] \ge 0$ and $([z'] [z])(-\alpha) > 0$
 - ii. Then $\alpha(z) > \alpha(z')$, and z and z' refer to the same (k, t_k) , and so z is the top contender, and z' the second, for the same (k, t_k)
 - iii. But then $([z'] [z])(U_j^n) = -1$ for some $U_j^n \ni z$; then nonnegavity requires $+[z'_*]$ to [z'] [z] for some $z'_* \succeq_j z$
 - iv. Then $\delta(z'_*) \geq \delta(z)$, so even if the α -value added of z'_* is minimized by subtracting from it its highest rival z_* , the "difference of differences" $[z'_*] [z_*] ([z] [z'])$ still has a nonnegative net value, to the opposite of (4).

Partial assignment

- 1. The social planner's solution q^*
 - (a) Pair the first- or second-highest positive $\alpha(1, j, t_1)$ among $j \in I_2$ with the first- or second-highest positive $\alpha(2, j, t_2)$ among $j \in I_2$ so that the two refer to different j
 - (b) E.g., q^* : good 1 to bidder 2, and none t bidder 1 at (t_1, t_2)

	$ (1,t_1) $	$(2,t_2)$
1	2	3
2	-4	0
3	-1	1/2

(c) α differential: $\delta(k, j, t_k) := \alpha(k, j, t_k) - \max_{j' \in I_2 \setminus \{j\}} \max\{0, \alpha(k, j', t_k)\}$

Partial assignment

- 1. The social planner's solution q^*
- 2. Partial revealed preferences
 - (a) \succeq_{k,t_k} : similar to that in the full assignment model
 - (b) \succeq_j : similar to that in the full assignment model except that only those with $\alpha(k, j, t_k) > 0$ need to be ranked
- 3. Upper/lower contour sets: similar to those in the full assignment model except that the lower contour sets are $\{z\}$ for any $\alpha(z) \leq 0$
- 4. Existence of shadow prices
 - (a) Can exclude any [z] for which $\alpha(z) \leq 0$
 - (b) The rest mimics its counterpart in the full assignment model

Conclusion

- 1. A method to characterize feasible reduced forms
- 2. Generalization of the mainstream result (paramodularity) and a counterpart to a contemporary result (total unimodularity)
- 3. New results in assignment models, making the mechanism design method available to a nontrivial set of assignment problems