Estimating Intra-Household Sharing from Time-Use Data

Francesca Arduini

UCL, IFS, Oxford

6th of January 2024

Motivation

- Contribute to growing lit on measuring intra-hh sharing and individual-level inequality
 - ▶ lit finds equal sharing does not hold
- Key to estimate inequality accurately
 - ► levels & dimensions of inequality
 - impact: policy targeting and evaluation
- Ultimate goal
 - wide application of methods by non-academic institutions
 - replace per-capita approach

- Estimation from one assignable good, typically clothing
 - Extension to time-use
 - Possibility of using private leisure as the assignable good
 - Increase accuracy of sharing rule estimates
- Private (shareable) goods only
 - Extension to public goods (key source of hh economies of scale)
 - Increase accuracy of individual-level inequality estimates
- Linear estimation from widely available data
 - With or without price variation
 - Can estimate sharing from time-use data alone

- Estimation from one assignable good, typically clothing
 - Extension to time-use
 - Possibility of using private leisure as the assignable good
 - Increase accuracy of sharing rule estimates
- Private (shareable) goods only
 - Extension to public goods (key source of hh economies of scale)
 - Increase accuracy of individual-level inequality estimates
- Linear estimation from widely available data
 - With or without price variation
 - Can estimate sharing from time-use data alone

- Estimation from one assignable good, typically clothing
 - Extension to time-use
 - Possibility of using private leisure as the assignable good
 - Increase accuracy of sharing rule estimates
- Private (shareable) goods only
 - Extension to public goods (key source of hh economies of scale)
 - Increase accuracy of individual-level inequality estimates
- Linear estimation from widely available data
 - With or without price variation
 - Can estimate sharing from time-use data alone

- Estimation from one assignable good, typically clothing
 - Extension to time-use
 - Possibility of using private leisure as the assignable good
 - Increase accuracy of sharing rule estimates
- Private (shareable) goods only
 - Extension to public goods (key source of hh economies of scale)
 - Increase accuracy of individual-level inequality estimates
- Linear estimation from widely available data
 - With or without price variation
 - Can estimate sharing from time-use data alone

Application to UK hetero working couples

Participating households only

- On average, women have fewer resources than men
- Average gender gap in consumption: 8.53%

Context: UK, working couples only

Application to UK hetero working couples

Participating households only

- On average, women have fewer resources than men
- Average gender gap in consumption: 8.53%

Context: UK, working couples only

Application to UK hetero working couples

Participating households only

- On average, women have fewer resources than men
- Average gender gap in consumption: 8.53%

Context: UK, working couples only

Outline

Model

2 Identification

3 Application to UK hetero working couples without cohabiting children

Outline

Model

2 Identification

Application to UK hetero working couples without cohabiting children

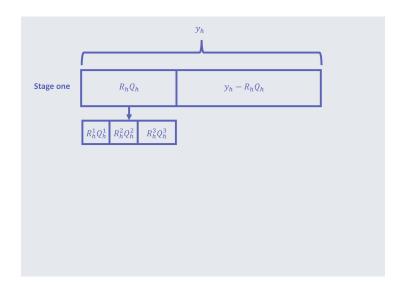
$$\max \sum_{t} \mu_{t,h}\left(\mathbf{z_h}\right) u_t\left(\mathbf{c_{t,h}}, \mathbf{X_h}, \ell_{t,h}, JT_h, D_h\right)$$

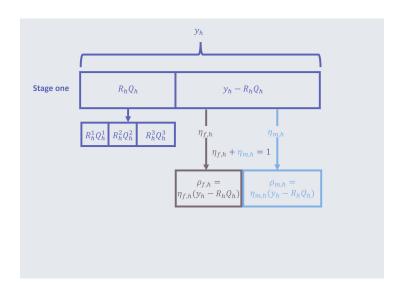
- Pareto weights $\sum_{t} \mu_{t,h} \left(\mathbf{z_h} \right) = 1$
- Private material goods c
- Public material goods X
- ullet Time feasibility constraint: $\ell_{t,h} + d_{t,h} + jt_{t,h} + m_{t,h} = 1$
- Budget constraint: $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h} \left(\ell_{t,h} + d_{t,h} + jt_{t,h} \right) \right) + \boldsymbol{rX_h} = y_h$ • $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h} \ell_{t,h} \right) + R_h Q_h = y_h$

$$\max \sum_{t} \mu_{t,h}\left(\mathbf{z_h}\right) u_t\left(\mathbf{c_{t,h}}, \mathbf{X_h}, \ell_{t,h}, JT_h, D_h\right)$$

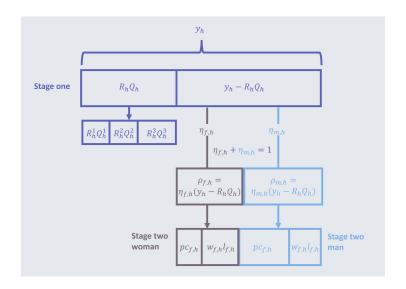
- ullet Pareto weights $\sum_t \mu_{t,h}\left(\mathbf{\emph{z}_h}\right) = 1$
- Private material goods c
- Public material goods X
- ullet Time feasibility constraint: $\ell_{t,h} + d_{t,h} + jt_{t,h} + m_{t,h} = 1$
- Budget constraint: $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h} \left(\ell_{t,h} + d_{t,h} + jt_{t,h} \right) \right) + \boldsymbol{rX_h} = y_h$ • $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h} \ell_{t,h} \right) + R_h Q_h = y_h$

$$\max \sum_{t} \mu_{t,h}\left(\mathbf{z_h}\right) u_t\left(\mathbf{c_{t,h}}, \mathbf{X_h}, \ell_{t,h}, JT_h, D_h\right)$$


- ullet Pareto weights $\sum_t \mu_{t,h}\left(\mathbf{\emph{z}_h}\right) = 1$
- ullet Private material goods $oldsymbol{c}$
- ullet Public material goods $oldsymbol{X}$
- ullet Time feasibility constraint: $\ell_{t,h} + d_{t,h} + jt_{t,h} + m_{t,h} = 1$
- Budget constraint: $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h} \left(\ell_{t,h} + d_{t,h} + jt_{t,h} \right) \right) + \boldsymbol{rX_h} = y_h$ • $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h}\ell_{t,h} \right) + R_h Q_h = y_h$


$$\max \sum_{t} \mu_{t,h}\left(\mathbf{z_h}\right) u_t\left(\mathbf{c_{t,h}}, \mathbf{X_h}, \ell_{t,h}, JT_h, D_h\right)$$

- Pareto weights $\sum_{t} \mu_{t,h}(\mathbf{z_h}) = 1$
- Private material goods c
- Public material goods X
- ullet Time feasibility constraint: $\ell_{t,h} + d_{t,h} + jt_{t,h} + m_{t,h} = 1$
- Budget constraint: $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h} \left(\ell_{t,h} + d_{t,h} + jt_{t,h} \right) \right) + \boldsymbol{rX_h} = y_h$ • $\sum_{t} \left(\boldsymbol{pc_{t,h}} + w_{t,h}\ell_{t,h} \right) + \boldsymbol{R_h} \boldsymbol{Q_h} = y_h$


Two-stage representation

Two-stage representation

Two-stage representation

Outline

Model

2 Identification

3 Application to UK hetero working couples without cohabiting children

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

- Sharing rule identified from second-stage demand for assignable good
 - $\blacktriangleright \ell_{t,h}(\boldsymbol{p}, w_{t,h}, \boldsymbol{Q_h}, (y_h \boldsymbol{R_h} \boldsymbol{Q_h}) \eta_{t,h})$
- Individual-level data on one good only
- Identifying assumptions: SAP or SAT
 - Alternative SRAT assumption
- General identification result with weak functional form restrictions
 - ▶ PIGLOG, PIGL, LES...
- Linear approximation of resource share (or Pareto weight and sub into resource share)
 - $\eta_{t,h} = \eta_t^0 + \sum_z \eta_t^z \hat{z}_h \\
 \star \sum_t \eta_t^0 = 1, \sum_t \eta_t^z = 0, \hat{z}_h = (z_h \bar{z})$
 - ► Test of model fit if inside unit interva

- Sharing rule identified from second-stage demand for assignable good
 - $\qquad \qquad \ell_{t,h}\left(\boldsymbol{p},w_{t,h},\boldsymbol{Q_h},(y_h-\boldsymbol{R_h}\boldsymbol{Q_h})\eta_{t,h}\right)$
- Individual-level data on one good only
- Identifying assumptions: SAP or SAT
 - Alternative SRAT assumption
- General identification result with weak functional form restrictions
 - PIGLOG, PIGL, LES...
- Linear approximation of resource share (or Pareto weight and sub into resource share)
 - $\eta_{t,h} = \eta_t^0 + \sum_z \eta_t^z \hat{z}_h \\
 * \sum_t \eta_t^0 = 1, \sum_t \eta_t^z = 0, \hat{z}_h = (z_h \bar{z})$
 - ► Test of model fit if inside unit interval

- Sharing rule identified from second-stage demand for assignable good
- Individual-level data on one good only
- Identifying assumptions: SAP or SAT
 - Alternative SRAT assumption
- General identification result with weak functional form restrictions
 - PIGLOG, PIGL, LES...
- Linear approximation of resource share (or Pareto weight and sub into resource share)

$$\eta_{t,h} = \eta_t^0 + \sum_z \eta_t^z \hat{z}_h \\
\star \sum_t \eta_t^0 = 1, \sum_t \eta_t^z = 0, \hat{z}_h = (z_h - \bar{z})$$

Test of model fit if inside unit interva

- Sharing rule identified from second-stage demand for assignable good
- Individual-level data on one good only
- Identifying assumptions: SAP or SAT
 - Alternative SRAT assumption
- General identification result with weak functional form restrictions
 - PIGLOG, PIGL, LES...
- Linear approximation of resource share (or Pareto weight and sub into resource share)
 - $\eta_{t,h} = \eta_t^0 + \sum_z \eta_t^z \hat{z}_h \\
 \star \sum_t \eta_t^0 = 1, \sum_t \eta_t^z = 0, \ \hat{z}_h = (z_h \bar{z})$
 - ▶ Test of model fit if inside unit interval

- Parsimonious specification: Cobb-Douglas
- Expenditure on private leisure: $E_{t,h}^{\ell} = b_t^0 y_h + \sum_z b_t^z y_h \hat{z_h}$
- Estimate by linear SUR
 - $b_t^0 = \alpha_t^\ell \eta_t^0$
 - $b_t^z = \alpha_t^\ell \eta_t^z$
- Assignable good CD-SAP $\rightarrow \alpha_t^\ell = \alpha^\ell$
 - Consistent with UK singles data
- Sharing rule: $\widehat{\eta_{t,h}} = \widehat{\eta_t^0} + \sum_z \widehat{\eta_t^z} \hat{z_h}$

- Parsimonious specification: Cobb-Douglas
- Expenditure on private leisure: $E_{t,h}^{\ell} = b_t^0 y_h + \sum_z b_t^z y_h \hat{z_h}$
- Estimate by linear SUR
 - $b_t^0 = \alpha_t^\ell \eta_t^0$
 - $b_t^z = \alpha_t^\ell \eta_t^z$
- Assignable good CD-SAP $\rightarrow \alpha_t^\ell = \alpha^\ell$
 - ► Consistent with UK singles data
- Sharing rule: $\widehat{\eta_{t,h}} = \widehat{\eta_t^0} + \sum_z \widehat{\eta_t^z} \hat{z_h}$

- Parsimonious specification: Cobb-Douglas
- Expenditure on private leisure: $E_{t,h}^\ell = b_t^0 y_h + \sum_z b_t^z y_h \hat{z_h}$
- Estimate by linear SUR
 - $b_t^0 = \alpha_t^\ell \eta_t^0$
 - $b_t^z = \alpha_t^\ell \eta_t^z$
- Assignable good CD-SAP $\rightarrow \alpha_t^\ell = \alpha^\ell$
 - Consistent with UK singles data
 - $\hat{\eta_t^0} = \frac{\hat{b_t^0}}{\sum_{i \in h} b_t^0} = \frac{\widehat{\alpha^\ell \eta_t^0}}{\sum_{s \in h} \widehat{\alpha^\ell \eta_s^0}}$
- Sharing rule: $\widehat{\eta_{t,h}} = \widehat{\eta_t^0} + \sum_z \widehat{\eta_t^z} \hat{z_h}$

- Parsimonious specification: Cobb-Douglas
- Expenditure on private leisure: $E_{t,h}^{\ell} = b_t^0 y_h + \sum_z b_t^z y_h \hat{z_h}$
- Estimate by linear SUR
 - $b_t^0 = \alpha_t^\ell \eta_t^0$
 - $b_t^z = \alpha_t^\ell \eta_t^z$
- Assignable good CD-SAP $\rightarrow \alpha_t^\ell = \alpha^\ell$
 - Consistent with UK singles data

$$\hat{\eta_t^0} = \frac{\hat{b_t^0}}{\sum_{i \in h} b_t^0} = \frac{\widehat{\alpha^\ell \eta_t^0}}{\sum_{s \in h} \widehat{\alpha^\ell \eta_s^0}}$$

• Sharing rule: $\widehat{\eta_{t,h}} = \widehat{\eta_t^0} + \sum_z \widehat{\eta_t^z} \hat{z_h}$

Outline

Model

2 Identification

3 Application to UK hetero working couples without cohabiting children

UK data

UKTUS (pooled 2000, 2014)

- 711 households (1,422 individuals)
- Very high-quality time-use data for everyone in the hh
- ullet Activity, co-presence o accurate private leisure
- Characteristics including wages

LCF (2014)

- Large representative dataset used for official stats
- 583 households (i.e. 1,166 individuals)
- Detailed expenditure categories → categorise into private, public, to exclude

Resource share estimates

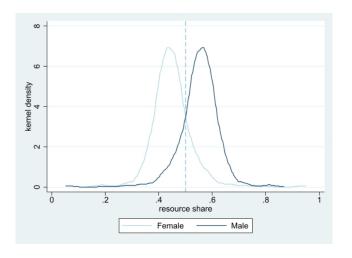


Figure: UKTUS 2000, 2014

Applications

- Individual-level material consumption
 - ▶ On average, gender gap in LCF: 8.53%
 - ▶ Much higher than 0%... Equal sharing does not hold.
 - ▶ Gini: 0.21
 - ▶ 6% live in relative poverty
- Individual-level overall consumption (including time-use)
- Money-metric welfare estimates Chiappori, Okuyama, Meghir (2023)
- Impact of distribution of resources on some outcome of interestrement
 - Impact of female empowerment on household emissions Arduini & Le Henaff (wip)

Applications

- Individual-level material consumption
 - ▶ On average, gender gap in LCF: 8.53%
 - ▶ Much higher than 0%... Equal sharing does not hold.
 - ▶ Gini: 0.21
 - ▶ 6% live in relative poverty
- Individual-level overall consumption (including time-use)
- Money-metric welfare estimates Chiappori, Okuyama, Meghir (2023)
- Impact of distribution of resources on some outcome of interest
 - ► Impact of female empowerment on household emissions Arduini & Le Henaff (wip)

Applications

- Individual-level material consumption
 - ▶ On average, gender gap in LCF: 8.53%
 - ▶ Much higher than 0%... Equal sharing does not hold.
 - ▶ Gini: 0.21
 - ▶ 6% live in relative poverty
- Individual-level overall consumption (including time-use)
- Money-metric welfare estimates Chiappori, Okuyama, Meghir (2023)
- Impact of distribution of resources on some outcome of interest
 - Impact of female empowerment on household emissions Arduini & Le Henaff (wip)

Regression results

Dependent variable	leisure expenditure	
Equation	male	female
Budget	0.243***	0.198***
	(0.00262)	(0.00236)
Budget * dev. fem. hourly pay	-0.00559***	0.00559***
	(0.000198)	(0.000198)
Budget * dev. mal. hourly pay	0.00215***	-0.00215***
	(6.87e-05)	(6.87e-05)
Budget * dev. fem. qualification	-0.00295	0.00295
	(0.00253)	(0.00253)
Budget * dev. mal. qualification	0.0154***	-0.0154***
	(0.00237)	(0.00237)
Budget * dev. average age	0.000905***	-0.000905***
	(0.000151)	(0.000151)
Budget * dev. age gap	0.000481	-0.000481
	(0.000338)	(0.000338)
Budget * dev. regional wealth	-5.44e-07**	5.44e-07**
	(2.19e-07)	(2.19e-07)
	((
Observations (households)	711	711
R-squared	0.937	0.931

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Leisure, clothing, and adjusted clothing estimates

- Clothing CD-SAP rejected in UK singles data (unlike leisure)
- ullet Incorrect identifying assumption o overestimate women's shares
- Drop CD-SAP, adopt CD-SRAT: $\alpha_{\it m}^{\ell}=2\alpha_{\it f}^{\ell}$

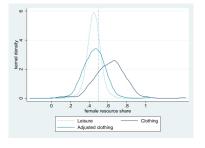


Figure: LCF 2014

...but clothing expenditure patterns are inconsistent with it being a
private good. Negative correlation of clothing-based resource share
estimates and (i) own share of budget, and (ii) baseline estimates