Stop Believing in Reserves*

Sriya Anbil1 Alyssa Anderson1
Ethan Cohen2 Romina Ruprecht1

1Federal Reserve Board 2University of Minnesota

American Finance Association
January 6, 2024

*Disclaimer: The views expressed here are solely those of the authors and should not be interpreted as reflecting the views of the Board of Governors, its staff, or anyone associated with the Federal Reserve System
Motivation

How has the Federal Reserve (Fed)’s ample reserve framework changed the demand for money in the financial system?
Motivation

How has the Federal Reserve (Fed)’s ample reserve framework changed the demand for money in the financial system?

- Central banks typically use interest rates and the size of their balance sheets to conduct monetary policy.
Motivation

How has the Federal Reserve (Fed)’s ample reserve framework changed the demand for money in the financial system?

▶ Central banks typically use interest rates and the size of their balance sheets to conduct monetary policy.
▶ Two channels of monetary policy known for interest rates: the “bank deposit channel” and the “non-bank deposit channel”.
 ▶ Drechsler, Schnabl, Savov (QJE, 2017): ↑ interest rates, ↓ bank deposits and lending.
 ▶ Xiao (RFS, 2020): ↑ interest rates, ↑ non-bank deposits.
Research Question

- How do banks and non-banks demand money when the Fed uses its balance sheet (BS) to tighten monetary policy?
What We Find

Two Main Results:

- The demand for money by non-banks, and the capacity of the repo market to absorb this demand, is the binding constraint on the size of the Fed’s balance sheet.

- Not the demand for money (reserves) by banks.

- At IORB = 4.65%, we estimate that the Fed could reduce its balance sheet by $2.3 trillion while maintaining an ample reserve framework.

- The higher the Fed sets its policy rate, the smaller its balance sheet can be.
Monetary Policy at the Fed

- Banks deposit money at the Fed and receive the Interest on Reserve Balances (IORB) rate.
- Money market mutual funds (MMFs) deposit money at the Fed and receive the Overnight Reverse Repo Facility (ON RRP) rate.
Empirical Observations

Quantitative Tightening Begins

- Bank reserves (weekly, left)
- Non-bank reserves (left)
- Repo volumes (right)
The model builds upon Armenter & Lester (2017) and Xiao (2020).

- Static two-period model.
- Five types of agents: banks, money market mutual funds (MMFs), broker-dealers (dealers), households and firms.
- Unit mass for each type of agent.
- The central bank implements monetary policy:
 - It sets the interest on reserves (IORB), R;
 - and the overnight reverse repo (ONRRP) rate, r.
 - It chooses how many government bonds to buy from households b^{CB}.

Balance Sheets of the Agents

<table>
<thead>
<tr>
<th>Central Bank</th>
<th>Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds b^{CB}</td>
<td>Loans ℓ</td>
</tr>
<tr>
<td>General goods P_x</td>
<td>Reserves m_r</td>
</tr>
<tr>
<td>ON RRP d^{ONRRP}</td>
<td>Bank deposits d^b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MMF</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repo z^m</td>
<td>Bank deposits d^b</td>
</tr>
<tr>
<td>ON RRP d^{ONRRP}</td>
<td>MMF deposits d^m</td>
</tr>
<tr>
<td>MMF deposits d^m</td>
<td>Equity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dealers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds b^d</td>
</tr>
</tbody>
</table>
The Deposit Market

- The pass-through of an increase in the policy rate is going to be larger for MMF deposit rates, i_{dm}, than for bank deposit rates, i_{db}.
- As a result, money flows from bank deposits to MMF deposits when the policy rate increases.
Banks

\[
\max_{\ell} \phi \ell (i_{\ell} - R) - \phi \chi(\ell) + \phi d^b (R - k^b - i_{d^b})
\]

s.t. \(m - \delta d^b \geq 0 \).

- Banks can use deposits to hold reserves or loans.
- We impose \(\delta \) as the minimum level of reserves to deposits that banks must hold.
The Repo Market

Demand for liquidity:

▶ Demand for money is created in the repo market by dealers who need to finance their Treasury bond holdings.
The Repo Market

Demand for liquidity:

- Demand for money is created in the repo market by dealers who need to finance their Treasury bond holdings.
- When the CB reduces the size of its balance sheet, it reduces the amount of Treasury securities it holds. Then, dealers purchase those bonds that the CB no longer holds.

Supply of liquidity is determined by MMF’s maximization problem:

\[
\max_{d^m, z^m} z^m (\rho - r) + d^m (r - k^m - i_{d^m}).
\]

s.t. \(d^m - z^m \geq 0. \)
Two Equilibriums

- We define Excess Liquidity (ample reserves) in the repo market in the following way:
 - Demand for liquidity by dealers is low relative to the supply of liquidity by MMFs such that \(\rho = r \) and \(d^{ONRRP} \geq 0 \).
Two Equilibriums

- We define Excess Liquidity (ample reserves) in the repo market in the following way:
 - Demand for liquidity by dealers is low relative to the supply of liquidity by MMFs such that $\rho = r$ and $d^{\text{ONRRP}} \geq 0$.

- Scarce Liquidity in the repo market implies $\rho > r$ and $d^{\text{ONRRP}} = 0$.
Two Equilibriums

- We define Excess Liquidity (ample reserves) in the repo market in the following way:
 - Demand for liquidity by dealers is low relative to the supply of liquidity by MMFs such that $\rho = r$ and $d^{ONRRP} \geq 0$.

- Scarce Liquidity in the repo market implies $\rho > r$ and $d^{ONRRP} = 0$.

- There exists a critical threshold of central bank bond holdings $b^{CB} = \tilde{b}^{CB}$, such that $\rho = r$ and $d^{ONRRP} = 0$.
 - We refer to this threshold as the minimal size of the balance sheet consistent with an Excess Liquidity regime.
Decrease in b^{CB} (Excess Liquidity Regime)

Central Bank

Bonds b^{CB} \downarrow
General goods P_X

Reserves m_r
ON RRP d^{ONRRP} \downarrow

Bonds b^d \uparrow

MMF

Repo z^m \uparrow
ON RRP d^{ONRRP} \downarrow

MMF deposits d^m

Banks

Loans ℓ
Reserves m_r

Bank deposits d^b

Households

Bank deposits d^b
MMF deposits d^m

Equity

Dealers

Repo z^d \uparrow
Decrease in b^{CB} (Scarce Liquidity Regime)

\[
\begin{array}{l}
\text{Central Bank} \\
\text{Bonds } b^{CB} \downarrow \\
\text{Reserves } m_r \downarrow \\
\text{General goods } P_x \\
\text{ON RRP } d^{ONRRP} \\
\hline
\text{Banks} \\
\text{Loans } \ell \\
\text{Reserves } m_r \downarrow \\
\text{Bank deposits } d^b \downarrow \\
\hline
\text{MMF} \\
\text{Repo } z^m \uparrow \\
\text{ON RRP } d^{ONRRP} \\
\text{MMF deposits } d^m \uparrow \\
\hline
\text{Households} \\
\text{Bank deposits } d^b \downarrow \\
\text{MMF deposits } d^m \uparrow \\
\text{Equity} \\
\hline
\text{Dealers} \\
\text{Bonds } b^d \uparrow \\
\text{Repo } z^d \uparrow
\end{array}
\]
Calibration

- Use data from September 15, 2021 to December 31, 2022.
 - September 14, 2021 is the peak level of reserve balances held at the Fed.
- We calibrate the model to match:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>repo rate (TGCR)</td>
</tr>
<tr>
<td>D^b</td>
<td>Bank Deposits</td>
</tr>
<tr>
<td>i_{d^m}</td>
<td>Interest rate on MMF deposits</td>
</tr>
<tr>
<td>i_{d^b}</td>
<td>Interest rate on bank deposits</td>
</tr>
<tr>
<td>D_{ONRRP}</td>
<td>Aggregate ON RRP take-up</td>
</tr>
<tr>
<td>M_r</td>
<td>Aggregate Reserves</td>
</tr>
</tbody>
</table>
Independent Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>IORB</td>
<td>1.38%</td>
<td>Data</td>
</tr>
<tr>
<td>r</td>
<td>ON RRP offering rate</td>
<td>1.28%</td>
<td>Data</td>
</tr>
<tr>
<td>i_ℓ</td>
<td>Average interest rate on banks’ outside investments</td>
<td>2.71%</td>
<td>Data</td>
</tr>
<tr>
<td>$p_g b^{CB}$</td>
<td>Nominal quantity of Treasury securities held by the Fed</td>
<td>$5.65T$</td>
<td>Data</td>
</tr>
<tr>
<td>$p_g B$</td>
<td>Nominal quantity bonds in the economy</td>
<td>$5.77T$</td>
<td>Data</td>
</tr>
<tr>
<td>δ</td>
<td>Minimal reserve-to-deposit ratio</td>
<td>0.13</td>
<td>Data</td>
</tr>
</tbody>
</table>
February 2023 FOMC Meeting Test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data</th>
<th>Model</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>TGCR</td>
<td>4.51%</td>
<td>4.55%</td>
<td>+(0.04)</td>
</tr>
<tr>
<td>i_{dm}</td>
<td>Interest rate on MMF deposits</td>
<td>4.38%</td>
<td>4.40%</td>
<td>+(0.02)</td>
</tr>
<tr>
<td>i_{db}</td>
<td>Interest rate on bank deposits</td>
<td>0.18%</td>
<td>3.28%</td>
<td>+(3.10)</td>
</tr>
<tr>
<td>D^b</td>
<td>Bank Deposits</td>
<td>$15.76T$</td>
<td>$15.84T$</td>
<td>+(0.08)</td>
</tr>
<tr>
<td>D^ONRRP</td>
<td>Aggregate ON RRP take-up</td>
<td>$1.82T$</td>
<td>$1.80T$</td>
<td>−(0.02)</td>
</tr>
<tr>
<td>Mr</td>
<td>Aggregate reserves</td>
<td>$3.00T$</td>
<td>$3.04T$</td>
<td>+(0.04)</td>
</tr>
</tbody>
</table>
Result: Capacity of repo market binds before banks’ reserve demand
Does the capacity of the repo market matter?

- Copeland, Duffie, Yang (2022) show that reserve balances reached an all-time low on September 16-17, 2019 leading to a spike in repo rates.
- We argue that the capacity of the repo market bound also on that day.

Using Calibrated Values to Predict September 2019

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data</th>
<th>Model</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>TGCR</td>
<td>5.25%</td>
<td>4.80%</td>
<td>-(0.45)</td>
</tr>
<tr>
<td>i_{dm}</td>
<td>Interest rate on MMF deposits</td>
<td>1.92%</td>
<td>1.92%</td>
<td>0</td>
</tr>
<tr>
<td>i_{db}</td>
<td>Interest rate on bank deposits</td>
<td>0.14%</td>
<td>-2.47%</td>
<td>-(2.61)</td>
</tr>
<tr>
<td>D_b</td>
<td>Bank Deposits</td>
<td>$11.23T$</td>
<td>$11.25T$</td>
<td>+(0.02)</td>
</tr>
<tr>
<td>D^{ONRRP}</td>
<td>Aggregate ON RRP take-up</td>
<td>$0.0023T$</td>
<td>$0T$</td>
<td>-(0.0023)</td>
</tr>
<tr>
<td>M_r</td>
<td>Aggregate reserves</td>
<td>$1.47T$</td>
<td>$1.46T$</td>
<td>-(0.01)</td>
</tr>
</tbody>
</table>
Result: Minimal balance sheet size is decreasing in the policy rate
Conclusion

- We show there is a deposit channel of monetary policy when the Fed uses its balance sheet to tighten monetary policy.
We show there is a deposit channel of monetary policy when the Fed uses its balance sheet to tighten monetary policy. Non-banks have an important role in monetary policy implementation and their demand for money through the repo market affects the size of the Fed’s balance sheet.