Central Bank Digital Currency and Financial Stability^a

Toni Ahnert, Peter Hoffmann, Agnese Leonello, and Davide Porcellacchia

January 2024

^aThese are our views and not necessarily those of the European Central Bank or the Eurosystem.

Motivation

- Central banks around the globe are researching CBDC (Boar and Wehrli, 2021)
- CBDC is a country's official currency in digital form (digital cash)
 - direct liability of the central bank (rather than of commercial banks)
 - available to the general public (rather than to banks only)
- A response to
 - the declining importance of cash as a means of payment
 - the challenges of the proliferation of new forms of private digital money (stablecoins)

Concerns by policymakers

- How does CBDC affect financial stability?
 - increase the risk of bank runs during crisis episodes (BIS, 2020)
 - safe store of value and potentially positive remuneration
- Should the design of CBDC be adjusted to mitigate this concern?
 - 1. CBDC remuneration
 - 2. Holding limits of CBDC
 - 3. Contingent remuneration of CBDC
- This paper
 - we study the financial stability implications of CBDC
 - we derive consequences for CBDC design

Our paper in one slide

- A parsimonious model of bank runs
 - with a unique equilibrium (global games)
- Remunerated CBDC improves the outside option of investors
 - higher withdrawal incentives: bank fragility ↑
 - better deposit rates offered: bank fragility ↓

Main findings

- U-shaped relationship between CBDC remuneration and bank fragility
- A positive remuneration of CBDC improves financial stability
- Holding limits have an ambiguous impact
- Contingent remuneration can improve financial stability

Literature

- Overview of recent work in Ahnert et al. (2022)
- CBDC and bank responses in deposit market
 - the same channel in work on the effects of CBDC on the credit supply: Keister and Sanchez (2022), Chiu/Davoodalhosseini/Jiang/Zhu (2022), and Andolfatto (2021)
- CBDC and financial stability
 - In Diamond/Dybvig (1983) setups with bank runs: Fernandez/Schilling/Uhlig (2021,22), Skeie (2020), Keister and Monnet (2022)
- Global games methods
 - Carlsson and van Damme (1993), Morris and Shin (2003), Vives (2005)
 - Goldstein and Pauzner (2005), Vives (2014), Liu (2016), Ahnert/Anand/Gai/Chapman (2019), Carletti/Leonello/Marquez (2023), Liu (2023), Schilling (2023)
 - allows us to study how deposit rates and CBDC design affect bank fragility

A parsimonious model

Key ingredients:

- Withdrawal behaviour of bank depositors
 - an endogenous probability of bank runs
- Bank choices
 - deposit rates
- CBDC design

A parsimonious model

- A single divisible good, three dates, no discounting, universal risk neutrality
- A profit-maximizing bank
- A continuum $i \in [0,1]$ of investors endowed with 1 unit of funds at date 0 only
- At date 0, the bank raises funds from investors in exchange for a demand-deposit contract (r_1, r_2) and invests in a profitable but risky project
 - ullet the project's liquidation value at date 1 is L < 1 and returns R heta at date 2
 - ullet the variable $heta \sim U\left[0,1
 ight]$ represents the fundamentals of the economy
 - R > 2 is the return on lending
 - deposit contract with $1 \le r_1 < r_2$

A parsimonious model

- At date 0, investors decide whether to invest in deposits or CBDC (or cash)
 - CBDC pays $\omega \ge 1$ per period (remuneration)
 - Cash pays 1, so it is dominated ($\omega=1$ is an economy without CBDC)
- At date 1, investors decide whether to withdraw their funds based on a noisy private signal:

$$s_i = \theta + \epsilon_i$$

- \bullet The bank satisfies early withdrawals n by partially liquidating the risky investment
 - thresholds for insolvency \hat{n} and illiquidity \overline{n}
- Two simplifying assumptions:
 - Vanishing private noise
 - Full bankruptcy costs

Equilibrium

We work backwards to solve for

- ullet Withdrawal behaviour of investors and the probability of a run $heta^*$
- Bank choice of deposit contract (r_1^*, r_2^*)
- Impact of CBDC remuneration ω
- Evaluate various CBDC design options

Investor withdrawal decisions

Lower dominance		Intermediate region		Upper dominance	
	$\underline{\theta}$		θ^*	$\overline{ heta}$	
investors		investors			no
withdraw		withdraw			investor
as low θ		because of			withdraws
fundamental		$ heta$ and $ extit{ extit{n}}$			- no runs
runs		panic runs			

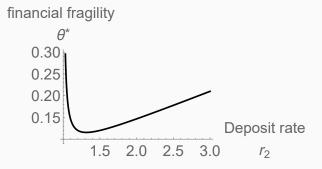
where the fundamental run threshold $\underline{\theta}$ solves

$$R\theta = r_2$$

and the bank failure threshold θ^{*} solves

$$\int_0^{\widehat{n}(\theta^*)} r_2(\omega) dn = \omega \int_0^{\overline{n}} r_1(\omega) dn$$
 Expected payoff at date 2 Expected payoff at date 1

A unique failure threshold


Proposition 1 (Failure threshold.)

In the unique equilibrium, each investors withdraws whenever

$$\theta < \theta^* = \frac{r_2}{R} \cdot \frac{r_2 - \omega \cdot L}{r_2 - \omega \cdot r_1}.$$

- Higher bank fragility (higher θ^*) if
 - higher CBDC remuneration: $\frac{\partial \theta^*}{\partial \omega} > 0$ (direct effect)
 - higher short-term deposit rate r_1
 - worse investment characteristics L, R

Higher long-term deposit rates and bank fragility

- Impact of higher long-term deposit rates ambiguous
 - lower incentives to withdraw at interim date
 - higher risk of insolvency at final date
- In equilibrium, the economy is on the downward-sloping part
 - we focus on appropriate parameters
 - bank chooses to be fragile

Bank fragility and CBDC remuneration

- θ^* is the ex-ante probability of a bank run (our measure of bank fragility)
- What is the effect of CBDC remuneration ω on θ^* ?

$$\frac{\mathrm{d}\theta^*}{\mathrm{d}\omega} = \underbrace{\frac{\partial\theta^*}{\partial\omega}}_{\text{Direct effect}} + \underbrace{\sum_{t=1}^2 \frac{\partial\theta^*}{\partial r_t} \cdot \frac{\mathrm{d}r_t}{\mathrm{d}\omega}}_{\text{Indirect effect}}$$

Indirect effect runs through the deposit contract

Bank choice of deposit rates

 Bank sets deposit rates to maximize expected profits subject to investor participation in the deposit market:

$$\Pi = \int_{\theta^*}^1 (R\theta - r_2) d\theta \quad \text{s.t.} \quad \int_{\theta^*}^1 r_2 d\theta \ge \omega^2$$

 We assume that the return on the bank's project is high enough and on CBDC is low enough:

$$R>\underset{\sim}{R}$$
 and $\omega<\widetilde{\omega}$

Proposition 2 (Deposit Contract.)

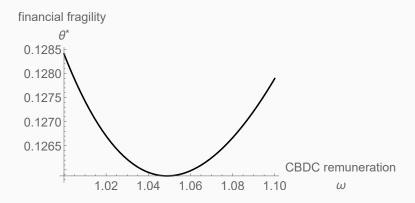
The deposit rates are $r_1^*=1$ and $r_2^*< r_2^{max}$ that solves a binding participation constraint. Higher CBDC remuneration increases the deposit rate, $\mathrm{d} r_2^*/\mathrm{d} \omega>0$.

Two effects of CBDC remuneration on financial stability

•

$$\frac{d\theta^*}{d\omega} = \frac{\partial\theta^*}{\partial\omega} + \frac{\partial\theta^*}{\partial r_2}\frac{dr_2}{d\omega}$$

- The direct effect is positive $\left(\frac{\partial \theta^*}{\partial \omega}>0\right)$
- The indirect effect is negative $\left(\frac{\partial \theta^*}{\partial r_2} \frac{dr_2}{d\omega} < 0 \right)$
- When does the indirect effect dominate?


Lemma 1 (Elasticity of the failure threshold.)

Denote
$$\eta \equiv -\frac{\partial \theta^*}{\partial r_2} \cdot \frac{r_2^*}{\theta^*}$$
. Then, $\frac{\mathrm{d}\theta^*}{\mathrm{d}\omega} < 0$ if and only if $\eta > 1$.

The total effect

Proposition 3 (CBDC remuneration and bank fragility.)

Fragility is U-shaped in CBDC remuneration with a unique minimum $\omega_{min} > 1$.

CBDC design and financial stability

- 1. CBDC remuneration
- 2. Limits on CBDC holdings
- 3. Contingent remuneration

Objective function

- The central bank as a constrained planner
 - CB takes as given the informational friction (dispersed private information) and the privately optimal behaviour of consumers and the bank
 - Formally, $\theta^*(r_1, r_2)$ (Proposition 1) and r_1^* and r_2^* (Proposition 2)
- The central bank maximizes utilitarian welfare

$$W \equiv \int_{ heta^*}^1 (R heta - r_2) d heta + \int_{ heta^*}^1 r_2 d heta = rac{R}{2} \left[1 - (heta^*)^2
ight].$$

- expected bank profits + payments to consumers
- equivalent to minimizing fragility in our economy

Design option 1: CBDC remuneration

ullet The central bank can freely set ω

Proposition 4 (Optimal CBDC remuneration.)

The central bank sets ω_{min} .

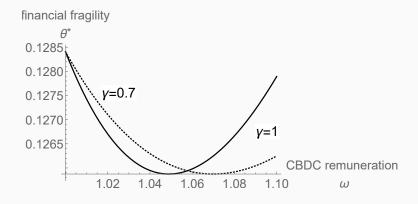
- ullet Increasing CBDC remuneration from 1 (digital cash) $\omega_{\it min}$
 - consumers benefit from higher deposit rates and lower fragility (net positive)
 - bank benefits from lower fragility but incurs higher deposit rates (net negative)
 - redistribution, with a net gain in welfare: higher CBDC remuneration limits the effective market power of the bank in the deposit market

Design option 1: CBDC remuneration

ullet The central bank can freely set ω

Proposition 4 (Optimal CBDC remuneration.)

The central bank sets ω_{min} .


- ullet Increasing CBDC remuneration from 1 (digital cash) $\omega_{\it min}$
 - consumers benefit from higher deposit rates and lower fragility (net positive)
 - bank benefits from lower fragility but incurs higher deposit rates (net negative)
 - redistribution, with a net gain in welfare: higher CBDC remuneration limits the effective market power of the bank in the deposit market
- CB may not be able to freely set CBDC remuneration for financial stability purposes (previous commitment; monetary policy implementation)

Design option 2: Holding limits

- CBDC remuneration can reduce bank stability
- Motivated policy proposals aimed at reducing the appetite for CBDC
 - reduce the outflow of funds from banks when bad news about fundamentals arrive
 - One proposal is the introduction of holding limits (Bindseil et al., 2021)
- Our model is suited to study the implications of this measure
 - ullet a proportion γ of consumer wealth can be held as CBDC

Holding limits can exacerbate bank fragility

- Caution for policymakers: holding limit interacts with CBDC remuneration
- Effective CBDC remuneration $\omega^{HL} \equiv \gamma \omega + (1 \gamma)$

Holding limits: understanding the result

Proposition 5 (Holding limits.)

- (a) Positive: Holding limits, $\gamma < 1$, increase (reduce) bank fragility for low (high) levels of CBDC remuneration ω .
- (b) Normative: The central banks optimally sets holding limits depending on (exogenous) CBDC remuneration: $\gamma^*=1$ if $\omega\leq\omega_{\it min}$ and $\gamma^*=\frac{\omega_{\it min}-1}{\omega-1}$ otherwise.
- Two opposing effects on bank fragility
 - lower expected payoff from withdrawing (less fragility)
 - lower outside option and lower deposit rate (more fragility)

Design option 3: Contingent remuneration

- Based on a Panetta / Bindseil proposal
- CBDC remuneration depends on the state of the financial system
 - Lower remuneration of CBDC amidst financial turmoil
 - To mitigate the withdrawal incentives of depositors
- Suppose $\omega_1 \equiv \omega$ and

$$\omega_2(n) = \left\{ egin{array}{ll} \omega & 0 \leq n \leq \widetilde{n} \ & ext{if} \ & & \widetilde{n} < n \leq 1, \end{array}
ight.$$

- \widetilde{n} and $\underline{\omega} \in [1, \omega]$ are policy parameters
- ullet a stricter intervention is captured by lower values of \widetilde{n} and $\underline{\omega}$

Contingent remuneration is effective

- CR is effective at reducing *direct* withdrawal incentives
- CR has limited indirect effect because the participation constraint of investors changes less (than with e.g. holding limits)

$$V_{CR} = r_2(1 - \theta_{CR}^*) - \omega[\underline{\omega}\theta_{CR}^* + \omega(1 - \theta_{CR}^*)]$$

Proposition 6 (Contingent remuneration.)

CR is effective at improving financial stability: $\frac{d\theta_{CR}^*}{d\tilde{n}} > 0$ and $\frac{d\theta_{CR}^*}{d\omega} \leq 0$.

Contingent remuneration seems more promising than holding limits.

Extensions

- Risk-taking on the asset side
- Competition in the market for bank deposits
- Our results are generally robust to these changes in the model.

Conclusion

- A parsimonious model on the financial stability implications of CBDC
 - endogenous withdrawal incentives and deposit rates
 - evaluate the efficacy of CBDC design options
- CBDC remuneration improves outside option of investors
 - more runs, given a deposit contract
 - higher deposit rates, lowering bank fragility
- Overall, U-shape between bank fragility and CBDC remuneration
 - a positive level of CBDC remuneration maximizes financial stability
- Implications for CBDC holding limits and contingent remuneration