The CO2 Question: Technical Progress and the Climate Crisis

Patrick Bolton, Marcin Kacperczyk & Moritz Wiedemann¹

¹Imperial College London


AFA: Is Sustainable Investing Sustainable?

January 6, 2024

Green innovation is the silver bullet.

Green innovation is the silver bullet?

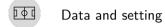
Two views on the role of green innovation on emissions

Allows for emission reductions

- Brown firms change from carbon-intensive production to renewable production
- Brown firms improve efficiency of their fossil fuel use
- e.g. Aghion et al. (2016)

Does not allow for emission reductions

- Jevons (1865) paradox: Efficiency increases, but higher consumption dominates any efficiency gain
- Arrow: Replacement effect (1962) & Economics of learning-by-doing (1971) drive path dependency
- Displacement effect: Emissions spill over to other parts of the production network

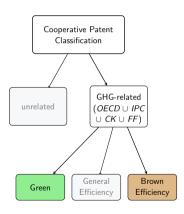

This paper: Global perspective on the role of green innovation in decarbonization

- What is the impact of green innovation on future corporate emissions?
 - ⇒ More green innovation does not allow for emission reductions

- What are possible underlying economic mechanisms?
 - ⇒ Path dependency in the production of innovation
 - \Rightarrow The role of the Jevons paradox
 - ⇒ Emission displacements

4 / 20

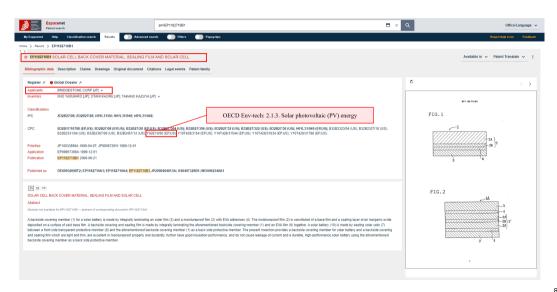
Outline

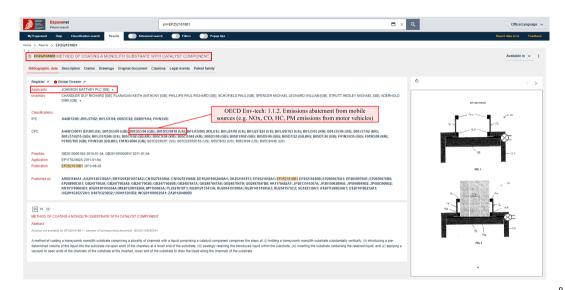

What are possible underlying economic mechanisms?

Data: Firm-level data on carbon emissions and patenting

- Carbon emission data from S&P Global Trucost
 - ▶ Public firm scope 1, scope 2 and scope 3 CO2 equivalent emission data
 - Coverage: 2005 to 2020
- Patent data from Orbis Intellectual Property
 - Global patent data for public and private firms
 - Main results with patents granted by the European Patent Office (EPO) including patent purchases
- Financial information from Orbis, FactSet and Worldscope

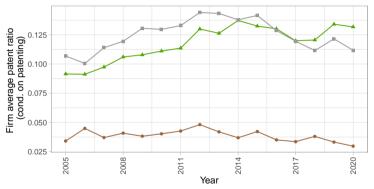
What qualifies as green innovation?


- ▶ Pool greenhouse gas related classifications from 4 sources: OECD Env-tech; IPC Green Inventory; Fossil fuels (FF) efficiency improving classes by Lanzi et al. (2011); & a self classification based on Corporate Knights Clean 200 companies (CK)
- ► Split greenhouse gas related classifications in 2 types:
 - Green: Technologies that substitute carbon dioxide emitting technologies for carbon dioxide-free technologies
 - Brown efficiency (brown): Technologies that improve process efficiencies of fossil fuel sources and thus reduce carbon dioxide emissions per output


Sources

Word clouds

Green patent example



Brown efficiency patent example

Patent ratio, as innovation measure, to focus on relative attention

$$\text{Green patent ratio}_{f,t} = \frac{\text{Green patent count}_{f,t}}{\text{Any patent count}_{f,t}}; \qquad \text{Brown patent ratio}_{f,t} = \frac{\text{Brown patent count}_{f,t}}{\text{Any patent count}_{f,t}}$$

Patent type - brown efficiency - green - OECD env-tech

Outline

Data and setting

What is the impact of green innovation on future corporate emissions?

What are possible underlying economic mechanisms?

Does green/ brown innovation allow for emission reductions?

$$y_{f,t} = \beta_0 + \beta_1 \mathsf{Green}/\mathsf{Brown} \ \mathsf{Patent} \ \mathsf{Ratio}_{f,t-5} + \Omega \mathit{Controls}_{f,t-5} + \Gamma_c + \Gamma_f + \Gamma_t + \varepsilon_{f,t}$$

	(1)	(2)	(3)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT
Panel A: Green innovation	20031101	20032101	2003301101
5-YEAR LAG GREENRATIOEP	0.015	-0.036	0.009
	(0.028)	(0.026)	(0.017)
Observations	15482	15482	15482
R2	0.973	0.965	0.985
Panel B: Brown innovation			
5-YEAR LAG BROWNEFFRATIOEP	0.065*	0.010	0.022
	(0.036)	(0.034)	(0.020)
Observations	15482	15482	15482
R2	0.973	0.965	0.985
Controls	yes	yes	yes
Country F.E.	yes	yes	yes
Year F.E.	yes	yes	yes
Firm F.E.	yes	yes	yes

Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at firm and year dimension.

How large is the explanatory power of green/brown innovation?

$$y_{f,t} = \beta_0 + \beta_1 \mathsf{Green}/\mathsf{Brown} \ \mathsf{Patent} \ \mathsf{Ratio}_{f,t-5} + \Omega \mathit{Controls}_{f,t-5} + \Gamma_c + \Gamma_t + \varepsilon_{f,t}$$

	(1) LOGS1TOT	(2) LOGS2TOT	(3) LOGS3UPTOT
Panel A: Green innovation			
5-YEAR LAG GREENRATIOEP	0.695***	-0.253***	0.017
	(0.060)	(0.048)	(0.040)
Partial R2	0.00954	0.00251	0.0000144
R2 Full Model	0.635	0.701	0.730
R2 Reduced Model	0.631	0.700	0.730
Observations	16892	16892	16892
Panel B: Brown innovation			
Panel B: Brown innovation 5-YEAR LAG BROWNEFFRATIOEP	0.584***	-0.576***	0.589***
	0.584*** (0.102)	-0.576*** (0.084)	0.589*** (0.064)
5-YEAR LAG BROWNEFFRATIOEP	(0.102)	(0.084)	(0.064)
5-YEAR LAG BROWNEFFRATIOEP Partial R2	(0.102) 0.00245	(0.084) 0.00474	(0.064) 0.00599
5-YEAR LAG BROWNEFFRATIOEP Partial R2 R2 Full Model	(0.102) 0.00245 0.632	(0.084) 0.00474 0.701	(0.064) 0.00599 0.732
5-YEAR LAG BROWNEFFRATIOEP Partial R2 R2 Full Model R2 Reduced Model	(0.102) 0.00245 0.632 0.631	(0.084) 0.00474 0.701 0.700	(0.064) 0.00599 0.732 0.730
5-YEAR LAG BROWNEFFRATIOEP Partial R2 R2 Full Model R2 Reduced Model Observations	(0.102) 0.00245 0.632 0.631 16892	(0.084) 0.00474 0.701 0.700 16892	(0.064) 0.00599 0.732 0.730 16892

Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at firm and year dimension.

Outline

Data and setting

What is the impact of green innovation on future corporate emissions?

What are possible underlying economic mechanisms?

[1] Path dependency in the production of innovation

Consistent with the Arrow replacement effect (Arrow 1962) & learning-by-doing (Arrow 1971)

$$\mathsf{Patent}\ \mathsf{ratio}_{f,t} = \beta_0 + \beta_1 \mathsf{LOGS1TOT}_{f,t-1} + \beta_2 \mathsf{AGE}_{f,t-1} + \beta_3 \mathit{STOCK}_{f,t-1} + \Omega \mathit{Controls}_{f,t-1} + \Gamma_c + \Gamma_{i*t} + \varepsilon_{f,t}$$

	(1)	(2) GREENRATIOEP	(3)	(4) BR	(5) OWNEFFRATIOE	(6) EP
1-YEAR LAG LOGS1TOT	0.091***	-0.053***	0.013			
	(800.0)	(0.011)	(0.015)			
1-YEAR LAG AGE (/100)	-0.303***	-0.186***				
	(0.033)	(0.030)				
1-YEAR LAG PATSTOCKGREENEP (/100)	0.052***	0.035***	-0.002			
	(0.004)	(0.004)	(0.003)			
1-YEAR LAG PATSTOCKBROWNEFFEP (/100)						
Country F.E.	yes	yes	yes			
Year F.E.	yes	yes	yes			
Industry X Year F.E.	no	yes	no			
Firm F.E.	no	no	yes			
Observations	27860	24818	20173			
Pseudo R2	0.0775	0.317	0.516			

Estimated with Poisson pseudo-maximum likelihood. Other controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at firm and year dimension.

[1] Path dependency in the production of innovation

Consistent with the Arrow replacement effect (Arrow 1962) & learning-by-doing (Arrow 1971)

$$\mathsf{Patent}\ \mathsf{ratio}_{f,t} = \beta_0 + \beta_1 \mathsf{LOGS1TOT}_{f,t-1} + \beta_2 \mathsf{AGE}_{f,t-1} + \beta_3 \mathit{STOCK}_{f,t-1} + \Omega \mathit{Controls}_{f,t-1} + \Gamma_c + \Gamma_{i*t} + \varepsilon_{f,t}$$

	(1)	(2) GREENRATIOEF	(3)	(4) BRO	(5) DWNEFFRATIO	(6) EP
1-YEAR LAG LOGS1TOT	0.091*** (0.008)	-0.053*** (0.011)	0.013 (0.015)	0.058*** (0.014)	0.049** (0.020)	-0.064** (0.032)
1-YEAR LAG AGE (/100)	-0.303*** (0.033)	-0.186*** (0.030)	, ,	0.235*** (0.045)	0.213*** (0.050)	, ,
1-YEAR LAG PATSTOCKGREENEP (/100)	0.052*** (0.004)	0.035*** (0.004)	-0.002 (0.003)			
1-YEAR LAG PATSTOCKBROWNEFFEP (/100)	. , ,	Ì	. ,	0.099*** (0.009)	0.047*** (0.008)	-0.001 (0.008)
Country F.E.	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.E.	no	no	yes	no	no	yes
Observations	27860	24818	20173	27767	20143	12186
Pseudo R2	0.0775	0.317	0.516	0.0989	0.439	0.527

Estimated with Poisson pseudo-maximum likelihood. Other controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at firm and year dimension.

[1] Broader path dependency because of a supply chain lock in

$$\begin{aligned} \text{Patent ratio}_{f,t} = & \beta_0 + \beta_1 \mathsf{LOG}(\mathsf{Emissions})_{f,t-1} + \beta_2 \mathsf{AGE}_{f,t-1} + \beta_3 \mathit{STOCK}_{f,t-1} + \\ & \Omega \mathit{Controls}_{f,t-1} + \Gamma_c + \Gamma_{i*t} + \varepsilon_{f,t} \end{aligned}$$

	(1)	(2) GREENRATIOEP	(3)	(4) BRO	(5) WNEFFRATIOEP	(6)
1-YEAR LAG LOGS2TOT	-0.056*** (0.012)			-0.031 (0.023)		
1-YEAR LAG LOGS3UPTOT	, ,	-0.128*** (0.018)		, ,	0.149*** (0.031)	
1-YEAR LAG LOGS3DOWNTOT		(* * * *)	-0.025** (0.010)		(* **)	0.005 (0.023)
1-YEAR LAG AGE (/100)	-0.189^{***} (0.031)	-0.176^{***} (0.031)	-0.186*** (0.059)	0.217*** (0.050)	0.204*** (0.050)	0.301*** (0.098)
1-YEAR LAG PATSTOCKGREENEP (/100)	0.036***	0.035*** (0.004)	0.031*** (0.006)	(****)	(* ***)	(*****)
1-YEAR LAG PATSTOCKBROWNEFFEP (/100)	(4.44.)	(3.32.1)	(*****)	0.048*** (0.008)	0.047*** (0.008)	0.058*** (0.015)
Controls	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	yes	yes	yes	yes
Industry-Year F.E.	yes	yes	yes	yes	yes	yes
Observations	24818	24818	7681	20143	20143	6426
Pseudo R2	0.317	0.319	0.269	0.439	0.440	0.420

Estimated with Poisson pseudo-maximum likelihood. Other controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at firm and year dimension.

[2] Increase in sales and improvements in emission intensity in line with the Jevons Paradox

$$y_{f,t} = \beta_0 + \beta_1$$
Brown Patent Ratio $_{f,t-5} + \Omega \textit{Controls}_{f,t-5} + \Gamma_c + \Gamma_f + \Gamma_t + \varepsilon_{f,t}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	S1INT	S2INT	S3UPINT	LOGSALES
5-YEAR LAG BROWNEFFRATIOEP	0.065* (0.036)	0.010 (0.034)	0.022 (0.020)	-0.067 (0.131)	-0.019^* (0.011)	0.004 (0.022)	0.029* (0.017)
Observations	15482	15482	15482	15482	15482	15482	18343
R2	0.973	0.965	0.985	0.971	0.933	0.981	0.989
Controls	yes	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes
Firm F.E.	yes	yes	yes	yes	yes	yes	yes

Controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at firm and year dimension.

[3] Increase in scope 2 emissions at the industry level consistent with a displacement effect

$$y_{j,t} = \beta_0 + \beta_1$$
Green Patent Ratio $_{j,t-5} + \Omega Controls_{j,t-5} + \Gamma_j + \Gamma_t + \varepsilon_{j,t}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	LOGS1TOT	LOGS2TOT	LOGS3UPTOT	S1INT	S2INT	S3UPINT	LOGSALES
5-YEAR LAG GREENRATIOEP	0.191 (0.139)	0.274*** (0.102)	-0.009 (0.075)	-1.562* (0.796)	0.191* (0.110)	-0.153^{*} (0.089)	0.046 (0.070)
Observations	708	708	708	708	708	708	708
R2	0.986	0.986	0.991	0.997	0.852	0.993	0.987
Controls	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes
Industry F.E.	yes	yes	yes	yes	yes	yes	yes

Controls include industry level sums, sums over sums or market capitalization weighted averages: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI. Standard errors are double clustered at GICS-6 industry and year dimension.

[3] Firms with higher green patent ratios tend to lose market share - a form of displacement

 $y_{f,t} = \beta_0 + \beta_1 \text{Green} / \text{ Brown Patent Ratio}_{f,t-5} + \Omega \textit{Controls}_{f,t-5} + \text{Fixed Effects} + \varepsilon_{f,t}$

	(1)	(2)	(3)	(4) MKTSHF	(5) R GICS6	(6)	(7)	(8)
3-YEAR LAG GREENRATIOEP	-0.070** (0.032)				-0.046* (0.025)			
5-YEAR LAG GREENRATIOEP	,	-0.122*** (0.043)			` ,	-0.042 (0.029)		
3-YEAR LAG BROWNEFFRATIOEP		, ,	0.028 (0.053)			, ,	0.040 (0.037)	
5-YEAR LAG BROWNEFFRATIOEP			, ,	-0.010 (0.067)			, ,	-0.012 (0.046)
Observations	34043	25036	34043	25036	33147	24189	33147	24189
R2	0.469	0.477	0.469	0.477	0.887	0.903	0.887	0.903
Controls	yes	yes	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes	yes	yes
GICS6-Year F.E.	yes	yes	yes	yes	no	no	no	no
Firm F.E.	no	no	no	no	yes	yes	yes	yes

Controls include: LOGASSETS, LOGPPE, LEVERAGE, ROE, INVEST/A, and, PUBLIC. We double cluster standard errors at the firm and year dimension.

Conclusion

- ▶ More green innovation does not translate into reductions in emissions
 - ⇒ Consistent with Jevons paradox
 - ⇒ Consistent with displacement effect
- Companies do not switch their innovation profile
 - ⇒ Path-dependency consistent with Arrow replacement effect and learning-by doing
 - \Rightarrow Path dependency extends beyond firm operations to the production network
- Policy implications:
 - \Rightarrow Decarbonization may require coordination of efforts across companies and sectors
 - \Rightarrow Public sector green industrial policy can help overcome ecosystem replacement effects

20/20

Appendix

No. of technology classes in category by classification source

Classification source	Green		Efficien	cy brown	Efficiency general	
	No.	Perc.	No.	Perc.	No.	Perc.
OECD	123	2.31	1094	23.35	137	3.86
OECD & IPC	209	3.93	76	1.62	1042	29.34
OECD & IPC & FF	1	0.02	88	1.88	0	0
OECD & FF	0	0	14	0.3	0	0
IPC	4367	82.13	80	1.71	1970	55.46
IPC & FF	0	0	557	11.89	0	0
FF	0	0	2429	51.84	0	0
CK	617	11.6	348	7.43	403	11.35

Classification of Innovation Activity - wordclouds

"Green" against "OECD"

"OECD" against "Green"

back

Final "working" sample of 11.344 global firms with financial. EPO patents, and emission data

- 5,635 firms have at least one green patent registered over the time period
- 2,815 firms have at least one brown patent registered over the time period
- 62,273 firm-year observations with complete information from 2005 to 2020
- ► Average number of patents per firm and year:

Any: 64.1 / Green: 4.9 / Brown: 1.6

Number of patents increase with innovation capacity proxies Suggests firms have capacity constraints which drives us to focus on patent ratios

Poisson pseudo maximum likelihood with standard errors double-clustered at firm and year dimensions:

$$\begin{aligned} \text{Patent Count}_{f,t} = & \beta_0 + \beta_1 \text{Patent Stock}_{f,t-1} + \beta_2 Age_{f,t-1} + \beta_3 \text{Log(size)}_{f,t-1} + \\ & \beta_4 \text{Log(no empl)}_{f,t-1} + \Omega \textit{Controls}_{f,t-1} + \Gamma_c + \Gamma_{i*t} + \varepsilon_{f,t} \end{aligned}$$

	(1)	(2)	(3)	(4)	(5)	(6)		
	ANYO	ANYCOUNTEP w. zeros			ANYCOUNTEP w/o zeros			
PATSTOCKANYEP (/100)	0.017***	0.013***	-0.002***	0.016***	0.014***	-0.002***		
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)		
AGE (/100)	0.152***	0.118***		0.071**	0.101***			
	(0.032)	(0.026)		(0.030)	(0.025)			
LOGSIZE	0.531***	0.488***	0.078***	0.447***	0.435***	0.079***		
	(0.019)	(0.024)	(0.023)	(0.021)	(0.024)	(0.023)		
LOGNOEMPL	0.330***	0.174***	0.055**	0.289***	0.161***	0.055**		
	(0.014)	(0.022)	(0.023)	(0.017)	(0.020)	(0.024)		
Country F.E.	yes	yes	yes	yes	yes	yes		
Year F.E.	yes	yes	yes	yes	yes	yes		
Industry X Year F.E.	no	yes	no	no	yes	no		
Firm F.E.	no	no	yes	no	no	yes		
Observations	68496	63945	37250	24960	23699	23828		
Pseudo R2	0.653	0.831	0.921	0.642	0.804	0.909		

Other controls include: LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI

Past green, respectively brown, patent stock suggest substitutability between the two types of innovation

Further motivation for using patent ratios to identify relative attention

Green (brown)
$$\mathsf{Count}_{f,t} = \beta_0 + \beta_1 \mathsf{Green} \; \mathsf{Stock}_{f,t-1} + \beta_2 \mathsf{Brown} \; \mathsf{Stock}_{f,t-1} + \Omega \mathsf{Controls}_{f,t-1} + \Gamma_c + \Gamma_{i*t} + \varepsilon_{f,t}$$

	(1)	(2)	(3)	(4)	(5)	(6)
	GF	GREENCOUNTEP			WNEFFCOUNT	EP
PATSTOCKGREENEP (/100)	0.121***	0.139***	0.013***	-0.175***	-0.045***	-0.073***
	(0.007)	(0.009)	(0.004)	(0.018)	(0.011)	(0.011)
PATSTOCKBROWNEFFEP (/100)	-0.037***	-0.086***	-0.022***	0.305***	0.135***	0.060***
	(0.012)	(0.010)	(800.0)	(0.017)	(0.012)	(0.015)
Country F.E.	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.E.	no	no	yes	no	no	yes
Observations	27860	24818	20173	27767	20143	12186
Pseudo R2	0.561	0.730	0.832	0.529	0.755	0.825

Other controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, MSCI, and AGE

Past dependence regressions with patent citations

$$\mathsf{Pat} \ \mathsf{var}_{f,t} = \beta_0 + \beta_1 \mathsf{Stock}_{f,t-1} + \beta_2 A g e_{f,t-1} + \beta_3 \mathsf{Log}(\mathsf{S1TOT})_{f,t-1} + \Omega \mathit{Controls}_{f,t-1} + \Gamma_c + \Gamma_{i*t} + \varepsilon_{f,t}$$

	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: Maximum patent citation	GR	PEENCITMAXEP		BRO	WNEFFCITMAXE	P
LOGS1TOT	-0.099***	-0.228***	-0.051	-0.032	0.079**	0.171*
	(0.024)	(0.057)	(0.066)	(0.028)	(0.036)	(0.089)
AGE (/100)	0.352**	0.711***		0.223°	-0.052	
	(0.172)	(0.175)		(0.115)	(0.089)	
PATSTOCKGREENEP (/100)	0.061***	0.067***	-0.017			
	(0.009)	(0.009)	(0.014)			
PATSTOCKBROWNEFFEP (/100)				0.093***	0.081***	0.034**
				(0.009)	(0.011)	(0.015)
Observations	21012	18737	15133	16885	12508	7430
Pseudo R2	0.400	0.658	0.725	0.415	0.719	0.701
Panel B: Blockbuster counts						
	GRE	ENBBCOUNTER	•	BROW	NEFFBBCOUNT	ΈP
LOGS1TOT	-0.034**	-0.015	-0.016	0.081***	0.096**	-0.027
	(0.014)	(0.030)	(0.033)	(0.018)	(0.042)	(0.054)
AGE (/100)	0.052	0.044		0.555***	0.207***	
	(0.068)	(0.073)		(0.059)	(0.076)	
PATSTOCKGREENEP (/100)	0.099***	0.076***	-0.010			
	(0.006)	(0.006)	(0.007)			
PATSTOCKBROWNEFFEP (/100)				0.145***	0.119***	0.030
				(0.011)	(0.012)	(0.020)
Observations	27707	17910	10607	27178	9943	5439
Pseudo R2	0.314	0.444	0.459	0.348	0.564	0.517
Controls.	yes	yes	yes	yes	yes	yes
Country F.E.	yes	yes	yes	yes	yes	yes
Year F.E.	yes	yes	yes	yes	yes	yes
Industry X Year F.E.	no	yes	no	no	yes	no
Firm F.E.	no	no	ves	no	no	yes

Other controls include: LOGSIZE, LOGPPE, LEVERAGE, ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI