Partial Identification Under Iterated Strict Dominance

Francisco Garrido

ITAM, Business

January 2024 NAWM-ES

Section 1

Motivation

Estimation of static games is hard.

Estimation of static games is hard.

• Without an Equilibrium Selection Mechanism, P(y) is not always defined.

Estimation of static games is hard.

- Without an Equilibrium Selection Mechanism, P(y) is not always defined.
- Theory provides little guidance on what an Equilibrium Selection Mechanism should look like.

Estimation of static games is hard.

- Without an Equilibrium Selection Mechanism, P(y) is not always defined.
- Theory provides little guidance on what an Equilibrium Selection Mechanism should look like.
- In complicated environments, the "equilibrium play" assumption itself may be suspect.

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

The main novelties of these bounds are:

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

The main novelties of these bounds are:

• Based on Iterated Strategic Dominance (ISD Bounds).

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

The main novelties of these bounds are:

- Based on Iterated Strategic Dominance (ISD Bounds).
- Robust to multiple (Bayes) Nash equilibria (pure and mixed).

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

The main novelties of these bounds are:

- Based on Iterated Strategic Dominance (ISD Bounds).
- Robust to multiple (Bayes) Nash equilibria (pure and mixed).
- Robust to ISD-consistent non-equilibrium play.

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

The main novelties of these bounds are:

- Based on Iterated Strategic Dominance (ISD Bounds).
- Robust to multiple (Bayes) Nash equilibria (pure and mixed).
- Robust to ISD-consistent non-equilibrium play.
- Apply to games with any informational structure.

I propose bounds on (the distribution of) outcomes that pin down an identified set for the parameters of interest.

The main novelties of these bounds are:

- Based on Iterated Strategic Dominance (ISD Bounds).
- Robust to multiple (Bayes) Nash equilibria (pure and mixed).
- Robust to ISD-consistent non-equilibrium play.
- Apply to games with any informational structure.
- For binary choice games, the identified set is sharp.

To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

These are games where payoffs exhibit:

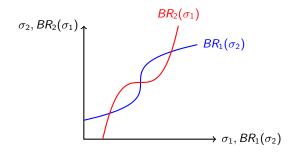
• Supermodularity: complementarity in own actions.

To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

- Supermodularity: complementarity in own actions.
- Strategic Monotonicity:

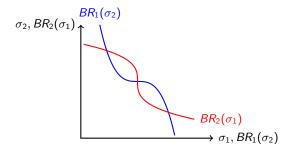
To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

- Supermodularity: complementarity in own actions.
- Strategic Monotonicity:
 - increasing differences: strategic complements, or



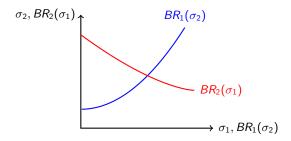
To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

- **Supermodularity:** complementarity in own actions.
- Strategic Monotonicity:
 - increasing differences: strategic complements, or
 - decreasing differences: strategic substitutes, or



To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

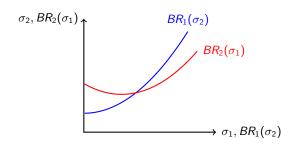
- Supermodularity: complementarity in own actions.
- Strategic Monotonicity:
 - ▶ increasing differences: strategic complements, or
 - decreasing differences: strategic substitutes, or
 - both!



To maximize the "bite" of ISD bounds I introduce Strategically Monotonic Supermodular Games (SMSGs).

These are games where payoffs exhibit:

- Supermodularity: complementarity in own actions.
- Strategic Monotonicity:
 - ▶ increasing differences: strategic complements, or
 - ▶ decreasing differences: strategic substitutes, or
 - both!
 - but not...



(Very Incomplete) Literature

Set identification in games:

Bounds: Tamer '03; Ciliberto, Tamer '09; Ciliberto, Murry, Tamer '21; Fan, Yang '22; Aradillas-Lopez, Tamer '08; Aradillas-Lopez '10; Pakes, Porter, Ho, Ishii '15; Aradillas-Lopez, Rosen '22, Magnolfi, Roncoroni '22.

Supermodular Games:

- Theory: Milgrom, Roberts '90; Van Zandt, Vives '07.
- Empirics: Ackerberg, Gowrinsankaran '06; Molinari, Rosen '08; Jia '08; Uetake, Watanabe '13, Uetake, Watanabe '20.

Static games:

Berry '92; Mazzeo '02; Jia '06; Ellickson, Houghton, Timmins '18; Wollman '18, Ciliberto, Jäkel '21, Schaumans, Verboven '08, Verboven, Schaumans '15; Seim '06; Draganska et al '08; Molinari, Rosen '08; Uetake, Watanabe '13, Uetake, Watanabe '20.

Outline

- Motivation
- 2 Entry Game Example
 - Game Setup
 - ISD in SMSGs
- Identified Set
- 4 Identification Power of ISD Bounds
- Montecarlo
- 6 Conclusion

Section 2

Entry Game Example

2 × 2 Incomplete Information Entry Game

Two firms simultaneously decide whether to enter a market.

- $y_f \in \{0 \text{ (No Entry)}, 1 \text{ (Entry)}\}.$
- ϵ_f : *iid* private shock. $V[\epsilon_f] = 1$.
- R: variable profit, $R^{mon} > R^{duo}$

$$\pi_f = \begin{cases} R^{mon}(x_f) - \theta_{ec} + \theta_{sc}\epsilon_f & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 0\\ R^{duo}(x_f) - \theta_{ec} + \theta_{sc}\epsilon_f & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 1\\ 0 & \text{if} & y_f = 0 \end{cases}$$

2×2 Incomplete Information Entry Game

Two firms simultaneously decide whether to enter a market.

- $y_f \in \{0 \text{ (No Entry)}, 1 \text{ (Entry)}\}.$
- ϵ_f : *iid* private shock. $V[\epsilon_f] = 1$.
- R: variable profit, $R^{mon} > R^{duo}$

$$\pi_f = \begin{cases} R^{mon}(\mathbf{x_f}) - \theta_{ec} + \theta_{sc}\epsilon_f & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 0\\ R^{duo}(\mathbf{x_f}) - \theta_{ec} + \theta_{sc}\epsilon_f & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 1\\ 0 & \text{if} \quad y_f = 0 \end{cases}$$

The game is indexed by:

• x_f : firm-level observables for every f.

2×2 Incomplete Information Entry Game

Two firms simultaneously decide whether to enter a market.

- $y_f \in \{0 \text{ (No Entry)}, 1 \text{ (Entry)}\}.$
- ϵ_f : *iid* private shock. $V[\epsilon_f] = 1$.
- R: variable profit, $R^{mon} > R^{duo}$

$$\pi_f = \begin{cases} R^{mon}(x_f) - \frac{\theta_{ec}}{\theta_{ec}} + \frac{\theta_{sc}}{\theta_{f}} & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 0\\ R^{duo}(x_f) - \frac{\theta_{ec}}{\theta_{ec}} + \frac{\theta_{sc}}{\theta_{f}} & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 1\\ 0 & \text{if} \quad y_f = 0 \end{cases}$$

The game is indexed by:

- x_f : firm-level observables for every f.
- $\theta = (\theta_{ec}, \theta_{sc})$: parameters of interest.

2×2 Incomplete Information Entry Game

Two firms simultaneously decide whether to enter a market.

- $y_f \in \{0 \text{ (No Entry)}, 1 \text{ (Entry)}\}.$
- ϵ_f : *iid* private shock. $V[\epsilon_f] = 1$.
- R: variable profit, $R^{mon} > R^{duo}$

$$\pi_f = \begin{cases} R^{mon}(x_f) - \theta_{ec} + \theta_{sc}\epsilon_f & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 0\\ R^{duo}(x_f) - \theta_{ec} + \theta_{sc}\epsilon_f & \text{if} \quad y_f = 1 \text{ and } y_{-f} = 1\\ 0 & \text{if} \quad y_f = 0 \end{cases}$$

The game is indexed by:

- x_f : firm-level observables for every f.
- $\theta = (\theta_{ec}, \theta_{sc})$: parameters of interest.

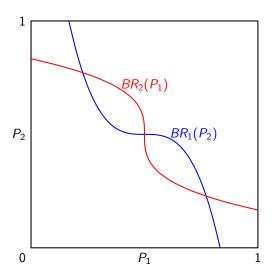
Given (x, θ) the goal is to build bounds around $Pr(y_f = 1|x, \theta)$.

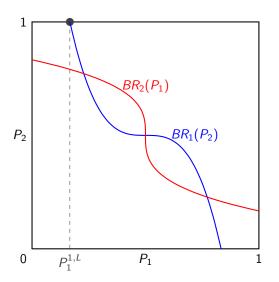
Best Responses in Probabilities

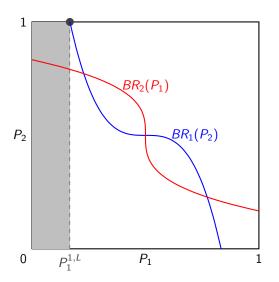
Fix a game, (x, θ) , and let ρ_2 be 1's belief about $Pr(y_2 = 2)$.

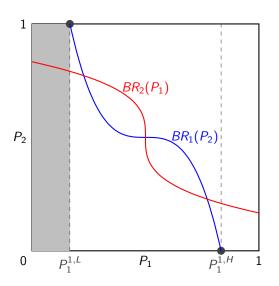
Given ρ_2 , firm 1's optimal entry probability is:

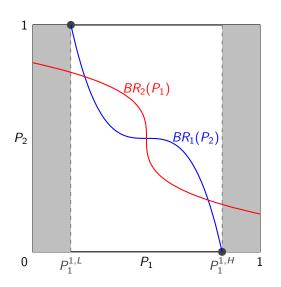
$$BR_1(
ho_2) = Pr\left(
ho_2 R^{duo} + (1 -
ho_2) R^{mon} - heta_{ec} + heta_{sc} \epsilon_1 > 0\right)$$

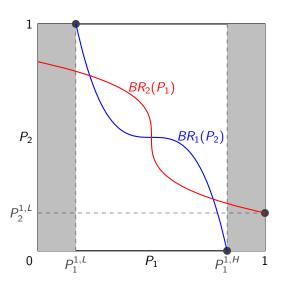


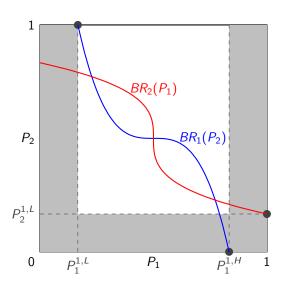


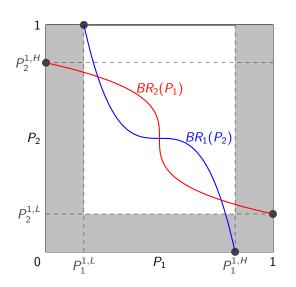


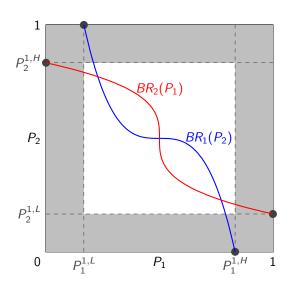


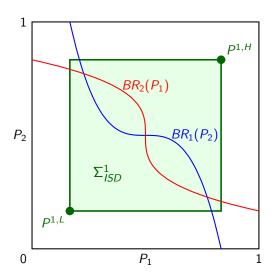


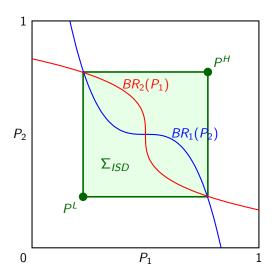


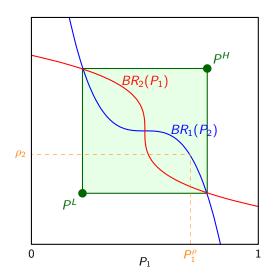


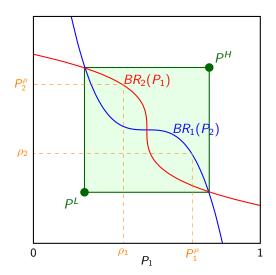














ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

 \bigcirc P^L and P^H result from best response iterations.

ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

② P^L and P^H result from best response iterations.

Remark

This is a specific instance of a general result that applies to games with many firms, multidimensional y_f , and (in)complete information, as long as:

- **Supermodularity:** π_f is supermodular in y_f for all f.
- **Strategic Monotonicity:** For any all f and all $g \neq f$:
 - $\vdash \pi_f$ has increasing differences in (y_f, y_g) , or
 - π_f has decreasing differences in (y_f, y_g) .

ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

② P^L and P^H result from best response iterations.

Remark

This is a specific instance of a general result that applies to games with many firms, multidimensional y_f , and (in)complete information, as long as:

- **Supermodularity:** π_f is supermodular in y_f for all f.
- **Strategic Monotonicity:** For any all f and all $g \neq f$:
 - $\triangleright \pi_f$ has increasing differences in (y_f, y_g) , or
 - π_f has decreasing differences in (y_f, y_g) .

ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

② P^L and P^H result from best response iterations.

Remark

This is a specific instance of a general result that applies to games with many firms, multidimensional y_f , and (in)complete information, as long as:

- **Supermodularity:** π_f is supermodular in y_f for all f.
- **Strategic Monotonicity:** For any all f and all $g \neq f$:
 - $\vdash \pi_f$ has increasing differences in (y_f, y_g) , or
 - π_f has decreasing differences in (y_f, y_g) .

ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

② P^L and P^H result from best response iterations.

Remark

This is a specific instance of a general result that applies to games with many firms, multidimensional y_f , and (in)complete information, as long as:

- **Supermodularity:** π_f is supermodular in y_f for all f.
- **Strategic Monotonicity:** For any all f and all $g \neq f$:
 - $\triangleright \pi_f$ has increasing differences in (y_f, y_g) , or
 - π_f has decreasing differences in (y_f, y_g) .

ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

② P^L and P^H result from best response iterations.

Remark

This is a specific instance of a general result that applies to games with many firms, multidimensional y_f , and (in)complete information, as long as:

- **Supermodularity:** π_f is supermodular in y_f for all f.
- **Strategic Monotonicity:** For any all f and all $g \neq f$:
 - $\triangleright \pi_f$ has increasing differences in (y_f, y_g) , or
 - π_f has decreasing differences in (y_f, y_g) .

ISD Bounds

For any (x, θ) , and any ISD Consistent beliefs ρ :

1 There are strategies $P^L \leq P^H$ such that for all f:

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

② P^L and P^H result from best response iterations.

Remark

This is a specific instance of a general result that applies to games with many firms, multidimensional y_f , and (in)complete information, as long as:

- **Supermodularity:** π_f is supermodular in y_f for all f.
- **Strategic Monotonicity:** For any all f and all $g \neq f$:
 - $\triangleright \pi_f$ has increasing differences in (y_f, y_g) , or
 - π_f has decreasing differences in (y_f, y_g) .

Section 3

Identified Set

We know that for all (x, θ) and ISD-Consistent ρ :

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

We know that for all (x, θ) and ISD-Consistent ρ :

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

Let $P_f^0(x) = P_f^{\rho^0}(x, \theta^0)$ where:

- ρ^0 are the real (ISD Consistent) beliefs.
- θ^0 is the real vector of parameters.

Then for $\theta = \theta^0$:

$$P_f^L(x,\theta) \le P_f^0(x) \le P_f^H(x,\theta)$$

We know that for all (x, θ) and ISD-Consistent ρ :

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

Let $P_f^0(x) = P_f^{\rho^0}(x, \theta^0)$ where:

- ρ^0 are the real (ISD Consistent) beliefs.
- θ^0 is the real vector of parameters.

Then for $\theta = \theta^0$:

$$P_f^L(x,\theta) \le P_f^0(x) \le P_f^H(x,\theta)$$

If θ violates these inequalities, then $\theta \neq \theta^0$.

We know that for all (x, θ) and ISD-Consistent ρ :

$$P_f^L(x,\theta) \le P_f^{\rho}(x,\theta) \le P_f^H(x,\theta)$$

Let $P_f^0(x) = P_f^{\rho^0}(x, \theta^0)$ where:

- ρ^0 are the real (ISD Consistent) beliefs.
- θ^0 is the real vector of parameters.

Then for $\theta = \theta^0$:

$$P_f^L(x,\theta) \le P_f^0(x) \le P_f^H(x,\theta)$$

If θ violates these inequalities, then $\theta \neq \theta^0$.

ISD Identified Set

The ISD Identified Set is:

$$\Theta_{ISD} = \{ \theta \in \Theta : P_f^L(x, \theta) \le P_f^0(x) \le P_f^H(x, \theta) \text{ for all } x \text{ and } f \}$$

Section 4

Identification Power of ISD Bounds

Trivial ISD Bounds Identification at Infinity

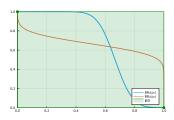
We say θ generates trivial bounds if for all x and all f:

$$P_f^L(x,\theta) = 0$$
 and $P_f^H(x,\theta) = 1$

Trivial ISD Bounds Identification at Infinity

We say θ generates trivial bounds if for all x and all f:

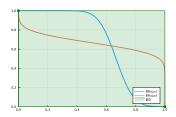
$$P_f^L(x,\theta) = 0$$
 and $P_f^H(x,\theta) = 1$



Trivial ISD Bounds Identification at Infinity

We say θ generates trivial bounds if for all x and all f:

$$P_f^L(x,\theta) = 0$$
 and $P_f^H(x,\theta) = 1$



Theorem: Non-Trivial Bounds

No $\theta \in \Theta$ generates trivial bounds iff there exist x, x' such that:

$$R^{mon}(x) < R^{duo}(x')$$

What generates trivial bounds? Details

Say $R^{duo}(x') < R^{mon}(x), \forall x, x'$. There is a θ_{ec} such that $\forall x$:

What generates trivial bounds? Details

Say $R^{duo}(x') < R^{mon}(x), \forall x, x'$. There is a θ_{ec} such that $\forall x$:

$$R^{duo}(x) - \theta_{ec} < 0 < R^{mon}(x) - \theta_{ec}$$

Say $R^{duo}(x') < R^{mon}(x), \forall x, x'$. There is a θ_{ec} such that $\forall x$:

$$R^{duo}(x) - \theta_{ec} < 0 < R^{mon}(x) - \theta_{ec}$$

Hence:

$$P_f^L(x, \theta) = Pr\left(R^{duo}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 0 \text{ as } \theta_{sc} \to 0$$

What generates trivial bounds? • Details.

Say
$$R^{duo}(x') < R^{mon}(x), \forall x, x'$$
. There is a θ_{ec} such that $\forall x$:

$$R^{duo}(x) - \theta_{ec} < 0 < R^{mon}(x) - \theta_{ec}$$

Hence:

$$P_f^L(x, \theta) = Pr\left(R^{duo}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 0 \text{ as } \theta_{sc} \to 0$$

 $P_f^H(x, \theta) = Pr\left(R^{mon}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 1 \text{ as } \theta_{sc} \to 0$

Say $R^{duo}(x') < R^{mon}(x), \forall x, x'$. There is a θ_{ec} such that $\forall x$:

$$R^{duo}(x) - \theta_{ec} < 0 < R^{mon}(x) - \theta_{ec}$$

Hence:

$$P_f^L(x,\theta) = Pr\left(R^{duo}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 0 \text{ as } \theta_{sc} \to 0$$

$$P_f^H(x,\theta) = Pr\left(R^{mon}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 1 \text{ as } \theta_{sc} \to 0$$

We get, $P_f^L(x,\theta) \to 0$, $P_f^H(x,\theta) \to 1$, for all x, so $\theta \in \Theta_{ISD}$.

Say $R^{duo}(x') < R^{mon}(x), \forall x, x'$. There is a θ_{ec} such that $\forall x$:

$$R^{duo}(x) - \theta_{ec} < 0 < R^{mon}(x) - \theta_{ec}$$

Hence:

$$P_f^L(x,\theta) = Pr\left(R^{duo}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 0 \text{ as } \theta_{sc} \to 0$$

$$P_f^H(x,\theta) = Pr\left(R^{mon}(x) - \theta_{ec} + \theta_{sc}\epsilon_f > 0\right) \to 1 \text{ as } \theta_{sc} \to 0$$

We get, $P_f^L(x,\theta) \to 0$, $P_f^H(x,\theta) \to 1$, for all x, so $\theta \in \Theta_{ISD}$.

Take away: Non-trivial ISD Bounds require variables that shift profits uniformly, e.g. market size, so that:

$$R^{mon}(x) < R^{duo}(x')$$

for some x, x'

Section 5

Montecarlo

Consider a imperfect information entry game with payoffs:

$$\pi_f = y_f \left(\frac{\overbrace{x_f}^{R(x): \text{Cournot Prof.}}}{(1 + \sum_{f'} y_{f'})^2} - \theta_{ec} + \theta_{sc} \left(\sqrt{0.5} \xi_f + \sqrt{0.5} \epsilon_f \right) \right)$$

with $F \in \{2, 3\}$.

Consider a imperfect information entry game with payoffs:

$$\pi_f = y_f \left(\frac{\sum_{f'}^{R(x): \text{Cournot Prof.}}}{(1 + \sum_{f'} y_{f'})^2} - \theta_{ec} + \theta_{sc} \left(\sqrt{0.5} \xi_f + \sqrt{0.5} \epsilon_f \right) \right)$$

with $F \in \{2, 3\}$.

• $x_f \sim \text{Uniform}\{0.5, 1.5, \dots, 4.5\}$: observables.

Consider a imperfect information entry game with payoffs:

$$\pi_f = y_f \left(\frac{\overbrace{x_f}{x_f}}{(1 + \sum_{f'} y_{f'})^2} - \frac{\theta_{ec}}{\theta_{ec}} + \frac{\theta_{sc}}{(\sqrt{0.5}\xi_f + \sqrt{0.5}\epsilon_f)} \right)$$

with $F \in \{2, 3\}$.

- $x_f \sim \text{Uniform}\{0.5, 1.5, \dots, 4.5\}$: observables.
- $(\theta_{ec}^0, \theta_{sc}^0) = (1, 1)$: parameters.

Consider a imperfect information entry game with payoffs:

$$\pi_f = y_f \left(\frac{\overbrace{\frac{x_f}{(1 + \sum_{f'} y_{f'})^2}}^{R(x): Cournot \ Prof.}}{(1 + \sum_{f'} y_{f'})^2} - \theta_{ec} + \theta_{sc} \left(\sqrt{0.5} \xi_f + \sqrt{0.5} \epsilon_f \right) \right)$$

with $F \in \{2, 3\}$.

- $x_f \sim \text{Uniform}\{0.5, 1.5, \dots, 4.5\}$: observables.
- $(\theta_{ec}^0, \theta_{sc}^0) = (1, 1)$: parameters.
- $\xi_f \sim N(0,1)$: common knowldge unobservables.
- $\epsilon_f \sim N(0,1)$: private information.

Confidence Set CCK Test Details

Simulations:

- MC = 100 simulated samples.
- N = 2000 sample size.

Inference:

- Follow Chernozukov, Chetverikov, Kato '18.
- $H_0: \theta = \theta_0.$

Coverage Probability: F = 2 (top), F = 3 (bottom)

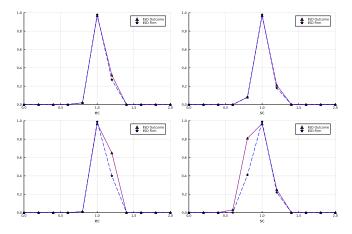


Figure: Monte Carlo simulations for two-firm (top) three-firm (bottom) games.

Section 6

Conclusion

Closing Remarks

I propose ISD bounds for set identification. The bounds:

- Are robust to multiple equilibria/non-equilibrium play.
- Allow for discrete/continuous choice variables.
- Allow for arbitrary informational structures.

For a large class of games, i.e., SMSGs, I argue that:

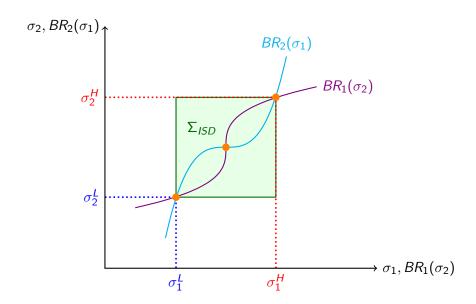
- Bounds have bite.
- They are easy to compute.
- Many (most?) empiral games literature fall under this category!

In the paper:

- Results on sharpness and point identification for binary games.
- Application to the airline industry with a focus on the Spirit/JetBlue merger.

Thanks!

Games with Strategic Complements • back



Games with Strategic Substitutes • back

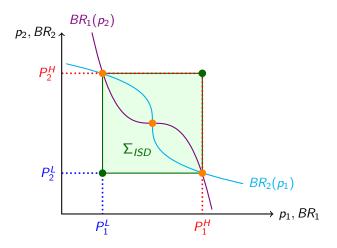


Figure: ISD in Games of Strategic Substitution

Game with General Strategic Monotonicity • back

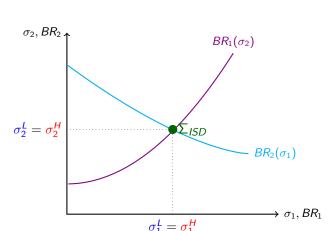


Figure: ISD in Games Strategic Monotonicity

Previous Bounds Phack

Ciliberto and Tamer '09 (CT)

For a given (x, θ, ξ) and rational expectations ρ :

•
$$\{y\} = NE(x, \theta, \xi) \Rightarrow \sigma^{\rho} = y$$

•
$$\sigma^{\rho} = y \Rightarrow y \in NE(x, \theta, \xi)$$
.

$$P({y} = NE(x, \theta, \xi)) \le P(\sigma^{\rho} = y) \le P(y \in NE(x, \theta, \xi))$$

Fan and Yang '22 (FY)

For a given (x, θ, ξ) and any ρ

•
$$\{y_f\} = \sum_{f=ISD}^1(x, \theta, \xi) \Rightarrow \sigma^\rho = y$$

•
$$\sigma^{\rho} = y \Rightarrow y \in \Sigma^1_{f,ISD}(x,\theta,\xi)$$
.

$$P(\{y\} = \Sigma_{f,ISD}^1(x,\theta,\xi)) \le P(\sigma^{\rho} = y) \le P(\{y\} \in \Sigma_{f,ISD}^1(x,\theta,\xi))$$

Test for Confidence Set Back to Monte Carlo

Let $(h_I(X))_I$ be a collection of I = 1, ..., L non-negative functions.

Moment inequalities are:

$$\begin{split} \overline{\psi}_{fml}(\theta) &\equiv \left(Y_{fm} - P_f^L(X_m, \theta)\right) h_l(X_m) \leq 0 \\ \underline{\psi}_{fml}(\theta) &\equiv \left(P_f^H(X_m, \theta) - Y_{fm}\right) h_l(X_m) \leq 0 \end{split}$$

Letting \hat{E} and \widehat{SD} be the cross-market mean and s.d. operators.

$$T_{CCK}(\theta) = \sqrt{M} \max_{f,k,l} \left\{ \max \left\{ \frac{\hat{E}[\overline{\psi}_{fml}(\theta)]}{\widehat{SD}[\overline{\psi}_{fml}(\theta)]} \frac{\hat{E}[\underline{\psi}_{fml}(\theta)]}{\widehat{SD}[\underline{\psi}_{fml}(\theta)]} \right\} \right\}$$

And test $\theta = \theta_0$ using Chernozhukov, Chetverikov, Kato '18 (CCK):

$$T_{CCK}(\theta; y) \leq CCK(\alpha)$$

Instruments

I choose h_l 's to capture the relative relative profitability of a player. Let:

$$\tilde{X}_{fm} = \frac{X_{fm}}{(\prod_{g \neq f} X_{gm})^{1/|\mathcal{F}|}}$$

and

$$\tilde{X}_q = \{q'$$
th percentile of $(\tilde{X}_{fm})_{fm}\}$

Letting I(f, q) be the index associated to (f, q) I define:

$$h_{l(f,q)}(X_m) = \mathbb{1}\left\{\tilde{X}_{fm} \in \left[\tilde{X}_q, \tilde{X}_{20+q}\right]\right\}$$

where $q \in \{0, 20, 40, 60, 80\}$.