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OVERVIEW

Classic moral hazard model:

• Effort is either binary, or belongs to an interval.

• Main result: contracts are motivated by informativeness.

• Need strong assumptions for wage to increase in output.

Current paper:

• Allow agent to choose any output distribution.

• Contracts determined by agent’s marginal costs.

• Wages are increasing whenever costs increase in FOSD.
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Two Examples



COMMON SETUP FOR EXAMPLES

A principal (she) contracts with an agent (he).

• Compact set X ⊂ R of possible outputs.

• Principal offers agent a (bounded) contract: w ∶ X → R.

• Agent can opt out and get u0.

• If opts in, agent covertly chooses α ∈ A ⊆ ∆(X).

• Effort costs: C ∶ A → R+, increasing in FOSD.

• Payoffs:

Principal: x − w Agent: u(w) − C(α).

u: strictly increasing, differentiable, unbounded, concave.
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Then she offers a contract w that solves:

min
w(⋅)

∫ w(x)αh(dx) s.t. (IC) and (IR).

The FOC from this cost minimization problem is:

1
u′ (w (x)) = λ + µ [1 −

fl (x)
fh (x)

]

So: w is monotone ⟺ MLRP holds.
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OUR MAIN MODEL

A principal (she) contracts with an agent (he).

• Compact set X ⊂ R of possible outputs.

• Principal offers agent a (bounded) contract: w ∶ X → R+.

• Limited liability: w(⋅) ≥ 0.

• Agent covertly chooses α ∈ A = ∆(X).

• Effort costs: C ∶ A → R+, continuous, increasing in FOSD.

• Payoffs:

Principal: x − w Agent: u(w) − C(α),

u: increasing, continuous, unbounded & u(0) = 0.



ASSUMPTIONS ON THE COST

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) C is Gateaux differentiable: every
α admits a bounded kα ∶ X → R s.t.

lim
ϵ↓0

1
ϵ [C(α + ϵ(β − α)) − C(α)] = ∫ kα (x) (β − α) (dx)

for all β ∈ A.

• kα(x): MC of increasing probability of output x.

• If X is finite: smooth ⟺ differentiable, which holds a.e.

• C increases in FOSD ⟺ kα increasing ∀α.
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FIRST-ORDER APPROACH

Lemma. For a bounded v ∶ X → R, and α ∈ A,

α ∈ argmax
β∈A

[∫ v(x)β (dx) − C(β)]

if and only if
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(the “only if” direction also works if C is not convex)
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v − c′(a∗) = 0.

An equivalent way of writing the above condition is:
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Claim. C is FOSD monotone ⟺ wm,α is increasing ∀α,m.

(Fact. C is FOSD monotone ⟺ kα is increasing ∀α).

Proof of Claim. Recall,

wm,α(x) = u−1(kα(x) + m).

Therefore,

wm,α is increasing ∀α,m ⟺ kα is increasing ∀α

⟺ C is FOSD monotone.

Explanation: by the Fact .



Proposition. (w, α) is IC if and only if a m ∈ R exists such that

w(x) ≤ u−1(kα(x) + m) =∶ wm,α(x)

for all x, and with equality α-almost surely.

Implications:

(i) Without loss for principal to offer wm,α for some m.

(ii) A cheapest contract implementing α is wm∗
α,α for

m∗
α = − inf kα(X).

(iii) C FOSD increasing ⟹ wage is increasing without loss.
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• Parameters driving contract: kα and u.

• Cost minimization is trivial.

• Every distribution can be implemented.

• FOSD monotonicity ⟹ wages increase in output.

In paper, we also have results about principal optimality:

• FOC for the principal (1st order approach is valid).

• Optimality of single, binary, and discrete distributions.
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