Flexible Moral Hazard Problems

George Georgiadis
Northwestern University

Doron Ravid
University of Chicago

Balázs Szentes
University of Hong Kong

ASSA, January 2024
Overview

Classic moral hazard model:

- Effort is either binary, or belongs to an interval.
- Main result: contracts are motivated by informativeness.
- Need strong assumptions for wage to increase in output.
Overview

Classic moral hazard model:

- Effort is either binary, or belongs to an interval.
- Main result: contracts are motivated by informativeness.
- Need strong assumptions for wage to increase in output.

Current paper:

- Allow agent to choose any output distribution.
- Contracts determined by agent’s marginal costs.
- Wages are increasing whenever costs increase in FOSD.
Two Examples
A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w : X \rightarrow \mathbb{R}$.
- Agent can opt out and get u_0.
- If opts in, agent covertly chooses $\alpha \in A \subseteq \Delta(X)$.
- Effort costs: $C : A \rightarrow \mathbb{R}_+$, increasing in FOSD.
- Payoffs:

 Principal: $x - w$
 Agent: $u(w) - C(\alpha)$.

u: strictly increasing, differentiable, unbounded, concave.
Standard Binary Effort Model

\[X = [L, H], \quad \mathcal{A} = \{\alpha_l, \alpha_h\}. \]
Standard Binary Effort Model

\[X = [L, H], \quad A = \{\alpha_l, \alpha_h\}. \]

Suppose principal wants to implement \(\alpha_h \).
Standard Binary Effort Model

\[X = [L, H], \quad A = \{\alpha_l, \alpha_h\}. \]

Suppose principal wants to implement \(\alpha_h \).

Then she offers a contract \(w \) that solves:

\[
\min_{w(\cdot)} \int w(x) \alpha_h(dx) \quad \text{s.t.} \quad \text{(IC) and (IR)}.
\]
Standard Binary Effort Model

\[X = [L, H], \quad A = \{a_l, a_h\}. \]

Suppose principal wants to implement \(a_h\).

Then she offers a contract \(w\) that solves:

\[
\min_{w(\cdot)} \int w(x) a_h(dx) \quad \text{s.t. (IC) and (IR)}.
\]

The FOC from this cost minimization problem is:

\[
\frac{1}{u'(w(x))} = \lambda + \mu \left[1 - \frac{f_l(x)}{f_h(x)} \right]
\]
Standard Binary Effort Model

\[X = [L, H], \quad A = \{\alpha_l, \alpha_h\}. \]

Suppose principal wants to implement \(\alpha_h \).

Then she offers a contract \(w \) that solves:

\[
\min_{w(\cdot)} \int w(x)\alpha_h(dx) \quad \text{s.t. (IC) and (IR)}.
\]

The FOC from this cost minimization problem is:

\[
\frac{1}{u'(w(x))} = \lambda + \mu \left[1 - \frac{f_l(x)}{f_h(x)} \right]
\]

So: \(w \) is monotone \(\iff \) MLRP holds.
Flexible Binary Output Model

\[X = \{L, H\}, \quad \mathcal{A} = \Delta X \equiv [0, 1]. \]
Flexible Binary Output Model

\[X = \{L, H\}, \quad \mathcal{A} = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.
Flexible Binary Output Model

\[X = \{L, H\}, \quad \mathcal{A} = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.

To implement \(\alpha \in (0, 1) \), FOC is necessary & sufficient:

\[u \circ w(H) - u \circ w(L) = C'(\alpha) \]
Flexible Binary Output Model

\[X = \{L, H\}, \quad \mathcal{A} = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.

To implement \(\alpha \in (0, 1) \), FOC is necessary & sufficient:

\[u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)). \]
Flexible Binary Output Model

\[X = \{L, H\}, \quad A = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.

To implement \(\alpha \in (0, 1) \), FOC is necessary & sufficient:

\[u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)). \]

Implications:
Flexible Binary Output Model

\[X = \{L, H\}, \quad A = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.

To implement \(\alpha \in (0, 1) \), FOC is necessary & sufficient:

\[u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)). \]

Implications:

- Cost minimization is trivial: \(\min w(L) \) s.t. IR.
Flexible Binary Output Model

\[X = \{L, H\}, \quad \mathcal{A} = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.

To implement \(\alpha \in (0, 1) \), FOC is necessary & sufficient:

\[u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)). \]

Implications:

- Cost minimization is trivial: \(\min w(L) \) s.t. IR.
- Shape of contract determined by \(C' \) and \(u \).
Flexible Binary Output Model

\[X = \{L, H\}, \quad A = \Delta X \equiv [0, 1]. \]

Suppose also \(C \) is convex and differentiable.

To implement \(\alpha \in (0, 1) \), FOC is necessary & sufficient:

\[
u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).\]

Implications:

- Cost minimization is trivial: \(\min w(L) \) s.t. IR.
- Shape of contract determined by \(C' \) and \(u \).
- IC contracts are monotone:

\[
w(H) = u^{-1}(u \circ w(L) + C'(\alpha)) \geq u^{-1}(u \circ w(L)) = w(L).
\]
Our Main Model

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w : X \to \mathbb{R}_+$.
- Limited liability: $w(\cdot) \geq 0$.
- Agent covertly chooses $\alpha \in \mathcal{A} = \Delta(X)$.
- Effort costs: $C : \mathcal{A} \to \mathbb{R}_+$, continuous, increasing in FOSD.
- Payoffs:

 Principal: $x - w$
 Agent: $u(w) - C(\alpha)$,

 u: increasing, continuous, unbounded & $u(0) = 0$.

ASSUMPTIONS ON THE COST

Without loss:

- C is convex. (if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness)

- C is Gateaux differentiable: every α admits a bounded $k_\alpha : X \to \mathbb{R}$ s.t.

\[
\lim_{\epsilon \to 0} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_\alpha(x)(\beta - \alpha)(dx)
\]

for all $\beta \in A$.

- $k_\alpha(x)$: MC of increasing probability of output x.

- If X is finite: smooth \iff differentiable, which holds a.e.

- C increases in FOSD \iff k_α increasing $\forall \alpha$.

Assumptions on the Cost

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)
Assumptions on the Cost

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) C is Gateaux differentiable: every α admits a bounded $k_\alpha : X \to \mathbb{R}$ s.t.

$$
\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_\alpha (x) (\beta - \alpha) (dx)
$$

for all $\beta \in \mathcal{A}$.
Assumptions on the Cost

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) C is Gateaux differentiable: every α admits a bounded $k_\alpha : X \to \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_\alpha (x) (\beta - \alpha) (dx)$$

for all $\beta \in A$.

• $k_\alpha(x)$: MC of increasing probability of output x.
Assumptions on the Cost

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) C is **Gateaux differentiable**: every α admits a bounded $k_\alpha : X \rightarrow \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} [C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha)] = \int k_\alpha(x)(\beta - \alpha)(dx)$$

for all $\beta \in \mathcal{A}$.

- $k_\alpha(x)$: MC of increasing probability of output x.
- If X is finite: smooth \iff differentiable, which holds a.e.
Assumptions on the Cost

Without loss: C is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) C is Gateaux differentiable: every α admits a bounded $k_\alpha : X \to \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} [C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha)] = \int k_\alpha (x) (\beta - \alpha) (dx)$$

for all $\beta \in A$.

- $k_\alpha(x)$: MC of increasing probability of output x.
- If X is finite: smooth \iff differentiable, which holds a.e.
- C increases in FOSD \iff k_α increasing $\forall \alpha$.
First-Order Approach

Lemma. For a bounded $v : X \to \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x) \beta \,(dx) - C(\beta) \right]$$

if and only if

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x) \beta \,(dx) - \int k_\alpha(x) \beta \,(dx) \right]$$

(the "only if" direction also works if C is not convex)
Consider the problem:

\[
\max_{a \in [0,1]} [av - c(a)]
\]

where \(v \in \mathbb{R}\) and \(c\) is convex and differentiable.
Consider the problem:

\[
\max_{a \in [0,1]} [av - c(a)]
\]

where \(v \in \mathbb{R} \) and \(c \) is convex and differentiable.

Standard way of writing FOC for optimal \(a^* \in (0,1) \) is

\[
v - c'(a^*) = 0.
\]
Consider the problem:

$$\max_{a \in [0,1]} [av - c(a)]$$

where $v \in \mathbb{R}$ and c is convex and differentiable.

Standard way of writing FOC for optimal $a^* \in (0, 1)$ is

$$v - c'(a^*) = 0.$$

An equivalent way of writing the above condition is:

$$a^* \in \arg\max_{a \in [0,1]} [av - ac'(a^*)].$$

The lemma generalizes the second formulation.
First-Order Approach

Lemma. For a bounded $\nu : X \to \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \text{arg max}_{\beta \in \mathcal{A}} \left[\int \nu(x) \beta (dx) - C(\beta) \right]$$

if and only if

$$\alpha \in \text{arg max}_{\beta \in \mathcal{A}} \left[\int \nu(x) \beta (dx) - \int k_\alpha(x) \beta (dx) \right]$$

(the “only if” direction also works if C is not convex)
Say a contract-distribution pair \((w, \alpha)\) is IC if

\[\alpha \in \arg\max_{\beta \in \mathcal{A}} \left[\int u \circ w(x) \beta(dx) - C(\beta) \right].\]
Say a contract-distribution pair \((w, \alpha)\) is IC if

\[
\alpha \in \arg\max_{\beta \in A} \left[\int u \circ w(x) \beta(dx) - C(\beta) \right].
\]

Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[
w(x) \leq u^{-1}(k_\alpha(x) + m)
\]

for all \(x\), and with equality \(\alpha\)-almost surely.
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[w(x) \leq u^{-1}(k_\alpha(x) + m) \]

for all \(x\), and with equality \(\alpha\)-almost surely.

Proof.
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[w(x) \leq u^{-1}(k_\alpha(x) + m) \]

for all \(x\), and with equality \(\alpha\)-almost surely.

Proof. By Lemma, \((w, \alpha)\) is IC if and only if \(\alpha\) solves

\[
\max_{\beta \in \Delta X} \int [u \circ w(x) - k_\alpha(x)] \beta(dx),
\]
Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$w(x) \leq u^{-1}(k_\alpha(x) + m)$$

for all x, and with equality α-almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \Delta X} \int [u \circ w(x) - k_\alpha(x)] \beta(dx),$$

or equivalently, the following holds α-almost surely:

$$u \circ w(x) - k_\alpha(x) = \sup(u \circ w - k_\alpha)(X)$$
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that
\[
w(x) \leq u^{-1}(k_\alpha(x) + m)
\]
for all \(x\), and with equality \(\alpha\)-almost surely.

Proof. By Lemma, \((w, \alpha)\) is IC if and only if \(\alpha\) solves
\[
\max_{\beta \in \Delta X} \int [u \circ w(x) - k_\alpha(x)] \beta(dx),
\]
or equivalently, the following holds \(\alpha\)-almost surely:
\[
u \circ w(x) - k_\alpha(x) = \sup(u \circ w - k_\alpha)(X)
\leq\rightleftharpoons w(x) = u^{-1}(k_\alpha(x) + \sup(u \circ w - k_\alpha)(X)).\]
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[
w(x) \leq u^{-1}(k_{\alpha}(x) + m)
\]

for all \(x\), and with equality \(\alpha\)-almost surely.

Proof. By Lemma, \((w, \alpha)\) is IC if and only if \(\alpha\) solves

\[
\max_{\beta \in \Delta X} \int [u \circ w(x) - k_{\alpha}(x)] \beta(dx),
\]

or equivalently, the following holds \(\alpha\)-almost surely:

\[
u \circ w(x) - k_{\alpha}(x) = \sup(u \circ w - k_{\alpha})(X)
\]

\[
\iff w(x) = u^{-1}(k_{\alpha}(x) + \sup(u \circ w - k_{\alpha})(X)).
\]
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x) \]

for all \(x\), and with equality \(\alpha\)-almost surely.
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x) \]

for all \(x\), and with equality \(\alpha\)-almost surely.
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[
w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x)
\]

for all \(x\), and with equality \(\alpha\)-almost surely.
Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m, \alpha}(x)$$

for all x, and with equality α-almost surely.
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x) \]

for all \(x\), and with equality \(\alpha\)-almost surely.

Implications:

\(w_{m,\alpha}\)
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x) \]

for all \(x\), and with equality \(\alpha\)-almost surely.

Implications:

(i) wlog: set \(w = w_{m,\alpha}\), optimize \(m\).
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[
w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x)
\]

for all \(x\), and with equality \(\alpha\)-almost surely.

Implications:

(i) wlog: set \(w = w_{m,\alpha}\), optimize \(m\).
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that
\[
w(x) \leq u^{-1}(k_{\alpha}(x) + m) =: w_{m,\alpha}(x)
\]
for all \(x\), and with equality \(\alpha\)-almost surely.

Implications:

(i) wlog: set \(w = w_{m,\alpha}\), optimize \(m\).

(ii) Every \(\alpha\) is implementable.
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[
w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x)
\]

for all \(x\), and with equality \(\alpha\)-almost surely.

Implications:

(i) wlog: set \(w = w_{m,\alpha}\), optimize \(m\).

(ii) Every \(\alpha\) is implementable.

(iii) Cost minimizing \(m\) is:

\[
m_\alpha^* = -\inf k_\alpha(X).
\]
Proposition. \((w, \alpha)\) is IC if and only if a \(m \in \mathbb{R}\) exists such that

\[
w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x)
\]

for all \(x\), and with equality \(\alpha\)-almost surely.

Implications:

(i) wlog: set \(w = w_{m,\alpha}\), optimize \(m\).

(ii) Every \(\alpha\) is implementable.

(iii) Cost minimizing \(m\) is:

\[
m_{\alpha}^* = -\inf k_\alpha(X).
\]
Monotone Contracts

Claim. C is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

Proof of Claim. Recall, $w_{m,\alpha}(x) = u - 1(k_\alpha(x) + m)$.

Therefore, $w_{m,\alpha}$ is increasing $\forall \alpha, m$ $\iff k_\alpha$ is increasing $\forall \alpha$ $\iff C$ is FOSD monotone.
Monotone Contracts

Claim. \(C \) is FOSD monotone \(\iff \) \(w_{m,\alpha} \) is increasing \(\forall \alpha, m \).

(Fact. \(C \) is FOSD monotone \(\iff \) \(k_\alpha \) is increasing \(\forall \alpha \)).
Claim. C is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

(Fact. C is FOSD monotone $\iff k_\alpha$ is increasing $\forall \alpha$).

Proof of Claim. Recall,
\[w_{m,\alpha}(x) = u^{-1}(k_\alpha(x) + m). \]
Monotone Contracts

Claim. C is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

Fact. C is FOSD monotone $\iff k_\alpha$ is increasing $\forall \alpha$.

Proof of Claim. Recall,

$$w_{m,\alpha}(x) = u^{-1}(k_\alpha(x) + m).$$

Therefore,

$$w_{m,\alpha} \text{ is increasing } \forall \alpha, m \iff k_\alpha \text{ is increasing } \forall \alpha$$

Explanation: because u^{-1} is increasing.
Claim. C is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

(Fact. C is FOSD monotone $\iff k_\alpha$ is increasing $\forall \alpha$).

Proof of Claim. Recall,

$$w_{m,\alpha}(x) = u^{-1}(k_\alpha(x) + m).$$

Therefore, $w_{m,\alpha}$ is increasing $\forall \alpha, m \iff k_\alpha$ is increasing $\forall \alpha \iff C$ is FOSD monotone.

Explanation: by the Fact.
Proposition. \((w, \alpha) \) is IC if and only if a \(m \in \mathbb{R} \) exists such that
\[
w(x) \leq u^{-1}(k_\alpha(x) + m) =: w_{m,\alpha}(x)
\]
for all \(x \), and with equality \(\alpha \)-almost surely.

Implications:

(i) Without loss for principal to offer \(w_{m,\alpha} \) for some \(m \).

(ii) A cheapest contract implementing \(\alpha \) is \(w_{m^*,\alpha} \) for
\[
m^*_\alpha = - \inf k_\alpha(X).
\]

(iii) C FOSD increasing \(\implies \) wage is increasing without loss.
Related Literature

• **Flexible Monitoring:** Georgiadis and Szentes (2020), Mahzoon, Shourideh, and Zetlin-Joines (2022), Wong (2023).

Flexible Moral Hazard Problems

We show that in smooth & flexible moral hazard problems:

• Parameters driving contract: k_α and u.

• Cost minimization is trivial.

• Every distribution can be implemented.

• FOSD monotonicity \implies wages increase in output.
Flexible Moral Hazard Problems

We show that in smooth & flexible moral hazard problems:

• Parameters driving contract: $k\alpha$ and u.

• Cost minimization is trivial.

• Every distribution can be implemented.

• FOSD monotonicity \implies wages increase in output.

In paper, we also have results about principal optimality:

• FOC for the principal (1st order approach is valid).

• Optimality of single, binary, and discrete distributions.
Thanks!