Flexible Moral Hazard Problems

George Georgiadis Northwestern University

Doron Ravid University of Chicago

Balázs Szentes University of Hong Kong

ASSA, January 2024

OVERVIEW

Classic moral hazard model:

- Effort is either binary, or belongs to an interval.
- Main result: contracts are motivated by informativeness.
- Need strong assumptions for wage to increase in output.

OVERVIEW

Classic moral hazard model:

- Effort is either binary, or belongs to an interval.
- Main result: contracts are motivated by informativeness.
- Need strong assumptions for wage to increase in output.

Current paper:

- Allow agent to choose *any* output distribution.
- Contracts determined by agent's marginal costs.
- Wages are increasing whenever costs increase in FOSD.

Two Examples

COMMON SETUP FOR EXAMPLES

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w : X \rightarrow \mathbb{R}$.
- Agent can opt out and get *u*₀.
- If opts in, agent covertly chooses $\alpha \in \mathcal{A} \subseteq \Delta(X)$.
- Effort costs: $C : \mathcal{A} \rightarrow \mathbb{R}_+$, increasing in FOSD.
- Payoffs:

Principal:
$$x - w$$
 Agent: $u(w) - C(\alpha)$.

u: strictly increasing, differentiable, unbounded, concave.

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h .

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h .

Then she offers a contract *w* that solves:

$$\min_{w(\cdot)} \int w(x) \alpha_h(\mathrm{d}x) \quad \text{s.t.} \quad (\mathrm{IC}) \text{ and } (\mathrm{IR}).$$

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h .

Then she offers a contract *w* that solves:

$$\min_{w(\cdot)} \int w(x) \alpha_h(\mathrm{d}x) \quad \text{s.t.} \quad (\mathrm{IC}) \text{ and } (\mathrm{IR}).$$

The FOC from this cost minimization problem is:

$$\frac{1}{u'(w(x))} = \lambda + \mu \left[1 - \frac{f_l(x)}{f_h(x)} \right]$$

$$X = [L, H], \qquad \mathcal{A} = \{\alpha_l, \alpha_h\}.$$

Suppose principal wants to implement α_h .

Then she offers a contract *w* that solves:

$$\min_{w(\cdot)} \int w(x) \alpha_h(\mathrm{d}x) \quad \text{s.t.} \quad (\mathrm{IC}) \text{ and } (\mathrm{IR}).$$

The FOC from this cost minimization problem is:

$$\frac{1}{u'(w(x))} = \lambda + \mu \left[1 - \frac{f_l(x)}{f_h(x)} \right]$$

So: w is monotone \iff MLRP holds.

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

 $X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$

Suppose also *C* is convex and differentiable.

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

Suppose also *C* is convex and differentiable.

To implement $\alpha \in (0, 1)$, FOC is necessary & sufficient:

 $u \circ w(H) - u \circ w(L) = C'(\alpha)$

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

Suppose also *C* is convex and differentiable.

To implement $\alpha \in (0, 1)$, FOC is necessary & sufficient:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

Suppose also *C* is convex and differentiable.

To implement $\alpha \in (0, 1)$, FOC is necessary & sufficient:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

Suppose also *C* is convex and differentiable.

To implement $\alpha \in (0, 1)$, FOC is necessary & sufficient:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

Implications:

• Cost minimization is trivial: min *w*(*L*) s.t. IR.

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

Suppose also *C* is convex and differentiable.

To implement $\alpha \in (0, 1)$, FOC is necessary & sufficient:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

- Cost minimization is trivial: min *w*(*L*) s.t. IR.
- Shape of contract determined by *C*['] and *u*.

$$X = \{L, H\}, \qquad \mathcal{A} = \Delta X \equiv [0, 1].$$

Suppose also *C* is convex and differentiable.

To implement $\alpha \in (0, 1)$, FOC is necessary & sufficient:

$$u \circ w(H) - u \circ w(L) = C'(\alpha) \iff w(H) = u^{-1}(u \circ w(L) + C'(\alpha)).$$

- Cost minimization is trivial: min *w*(*L*) s.t. IR.
- Shape of contract determined by *C*['] and *u*.
- IC contracts are monotone:

$$w(H) = u^{-1}(u \circ w(L) + C'(\alpha)) \ge u^{-1}(u \circ w(L)) = w(L).$$

OUR MAIN MODEL

A principal (she) contracts with an agent (he).

- Compact set $X \subset \mathbb{R}$ of possible outputs.
- Principal offers agent a (bounded) contract: $w : X \to \mathbb{R}_+$.
- Limited liability: $w(\cdot) \ge 0$.
- Agent covertly chooses $\alpha \in \mathcal{A} = \Delta(X)$.
- Effort costs: $C : A \rightarrow \mathbb{R}_+$, continuous, increasing in FOSD.
- Payoffs:

Principal:
$$x - w$$
 Agent: $u(w) - C(\alpha)$,

u: increasing, continuous, unbounded & u(0) = 0.

Assumptions on the Cost

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) *C* is Gateaux differentiable: every α admits a bounded $k_{\alpha} : X \rightarrow \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_{\alpha} \left(x \right) \left(\beta - \alpha \right) \left(dx \right)$$

for all $\beta \in \mathcal{A}$.

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) *C* is Gateaux differentiable: every α admits a bounded $k_{\alpha} : X \rightarrow \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_{\alpha} \left(x \right) (\beta - \alpha) \left(dx \right)$$

for all $\beta \in \mathcal{A}$.

• $k_{\alpha}(x)$: MC of increasing probability of output *x*.

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) *C* is **Gateaux differentiable**: every α admits a bounded $k_{\alpha} : X \rightarrow \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_{\alpha} \left(x \right) \left(\beta - \alpha \right) \left(dx \right)$$

for all $\beta \in \mathcal{A}$.

- $k_{\alpha}(x)$: MC of increasing probability of output *x*.
- If X is finite: smooth \iff differentiable, which holds a.e.

Without loss: *C* is convex.

(if not, replace α with cheapest mixing that averages to α)

Assumption. (smoothness) *C* is **Gateaux differentiable**: every α admits a bounded $k_{\alpha} : X \rightarrow \mathbb{R}$ s.t.

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \left[C(\alpha + \epsilon(\beta - \alpha)) - C(\alpha) \right] = \int k_{\alpha} \left(x \right) (\beta - \alpha) \left(dx \right)$$

for all $\beta \in \mathcal{A}$.

- $k_{\alpha}(x)$: MC of increasing probability of output *x*.
- If X is finite: smooth \iff differentiable, which holds a.e.
- *C* increases in FOSD $\iff k_{\alpha}$ increasing $\forall \alpha$.

FIRST-ORDER APPROACH

Lemma. For a bounded $v : X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta \left(\mathrm{d}x \right) - C(\beta) \right]$$

if and only if

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta(\mathrm{d}x) - \int k_{\alpha}(x)\beta(\mathrm{d}x) \right]$$

(the "only if" direction also works if *C* is not convex)

Relationship to Standard FOC

Consider the problem:

$$\max_{a \in [0,1]} [av - c(a)]$$

where $v \in \mathbb{R}$ and *c* is convex and differentiable.

Relationship to Standard FOC

Consider the problem:

$$\max_{a \in [0,1]} [av - c(a)]$$

where $v \in \mathbb{R}$ and *c* is convex and differentiable.

Standard way of writing FOC for optimal $a^* \in (0, 1)$ is

$$v-c'(a^*)=0.$$

Relationship to Standard FOC

Consider the problem:

$$\max_{a \in [0,1]} [av - c(a)]$$

where $v \in \mathbb{R}$ and *c* is convex and differentiable.

Standard way of writing FOC for optimal $a^* \in (0, 1)$ is

$$v-c'(a^*)=0.$$

An equivalent way of writing the above condition is:

$$a^* \in \operatorname{argmax}_{a \in [0,1]}[av - ac'(a^*)].$$

The lemma generalizes the second formulation.

FIRST-ORDER APPROACH

Lemma. For a bounded $v : X \rightarrow \mathbb{R}$, and $\alpha \in \mathcal{A}$,

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta \left(\mathrm{d}x \right) - C(\beta) \right]$$

if and only if

$$\alpha \in \arg \max_{\beta \in \mathcal{A}} \left[\int v(x)\beta(\mathrm{d}x) - \int k_{\alpha}(x)\beta(\mathrm{d}x) \right]$$

(the "only if" direction also works if *C* is not convex)

CHARACTERIZATION OF IC

Say a contract-distribution pair (w, α) is **IC** if

$$\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \left[\int u \circ w(x) \beta(\mathrm{d}x) - C(\beta) \right].$$

CHARACTERIZATION OF IC

Say a contract-distribution pair (w, α) is **IC** if

$$\alpha \in \operatorname{argmax}_{\beta \in \mathcal{A}} \left[\int u \circ w(x) \beta(\mathrm{d} x) - C(\beta) \right].$$

Proposition. (w, α) is IC if and only if a $m \in \mathbb{R}$ exists such that

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

$$w(x) \le u^{-1}(k_\alpha(x) + m)$$

for all *x*, and with equality α -almost surely.

Proof.

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \Delta X} \int \left[u \circ w(x) - k_{\alpha}(x) \right] \beta(\mathrm{d}x),$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \Delta X} \int \left[u \circ w(x) - k_{\alpha}(x) \right] \beta(\mathrm{d}x),$$

or equivalently, the following holds α -almost surely:

$$u \circ w(x) - k_{\alpha}(x) = \sup(u \circ w - k_{\alpha})(X)$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \Delta X} \int \left[u \circ w(x) - k_{\alpha}(x) \right] \beta(\mathrm{d}x),$$

or equivalently, the following holds α -almost surely:

$$u \circ w(x) - k_{\alpha}(x) = \sup(u \circ w - k_{\alpha})(X)$$
$$\iff w(x) = u^{-1} (k_{\alpha}(x) + \sup(u \circ w - k_{\alpha})(X))$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m)$$

for all *x*, and with equality α -almost surely.

Proof. By Lemma, (w, α) is IC if and only if α solves

$$\max_{\beta \in \Delta X} \int \left[u \circ w(x) - k_{\alpha}(x) \right] \beta(\mathrm{d}x),$$

or equivalently, the following holds α -almost surely:

$$u \circ w(x) - k_{\alpha}(x) = \sup(u \circ w - k_{\alpha})(X)$$
$$\iff w(x) = u^{-1} \left(k_{\alpha}(x) + \sup(u \circ w - k_{\alpha})(X)\right).$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

for all *x*, and with equality α -almost surely.

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

for all *x*, and with equality α -almost surely.

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

for all *x*, and with equality α -almost surely.

- (i) wlog: set $w = w_{m,\alpha}$, optimize m.
- (ii) Every α is implementable.

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

for all *x*, and with equality α -almost surely.

- (i) wlog: set $w = w_{m,\alpha}$, optimize m.
- (ii) Every α is implementable.
- (iii) Cost minimizing *m* is:

$$m^*_\alpha = -\inf k_\alpha(X).$$

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

for all *x*, and with equality α -almost surely.

- (i) wlog: set $w = w_{m,\alpha}$, optimize m.
- (ii) Every α is implementable.

$$m_{\alpha}^{*} = -\inf k_{\alpha}(X).$$

Claim. *C* is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

Claim. *C* is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

(**Fact.** *C* is FOSD monotone $\iff k_{\alpha}$ is increasing $\forall \alpha$).

Claim. *C* is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

(**Fact.** *C* is FOSD monotone $\iff k_{\alpha}$ is increasing $\forall \alpha$).

Proof of Claim. Recall,

$$w_{m,\alpha}(x) = u^{-1}(k_{\alpha}(x) + m).$$

Claim. *C* is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

(**Fact.** *C* is FOSD monotone $\iff k_{\alpha}$ is increasing $\forall \alpha$).

Proof of Claim. Recall,

$$w_{m,\alpha}(x) = u^{-1}(k_{\alpha}(x) + m).$$

Therefore,

 $w_{m,\alpha}$ is increasing $\forall \alpha, m \iff k_{\alpha}$ is increasing $\forall \alpha$

Explanation: because u^{-1} is increasing.

Claim. *C* is FOSD monotone $\iff w_{m,\alpha}$ is increasing $\forall \alpha, m$.

(**Fact.** *C* is FOSD monotone $\iff k_{\alpha}$ is increasing $\forall \alpha$).

Proof of Claim. Recall,

$$w_{m,\alpha}(x) = u^{-1}(k_{\alpha}(x) + m).$$

Therefore,

 $w_{m,\alpha}$ is increasing $\forall \alpha, m \iff k_{\alpha}$ is increasing $\forall \alpha$ $\iff C$ is FOSD monotone.

Explanation: by the Fact .

$$w(x) \le u^{-1}(k_{\alpha}(x) + m) \eqqcolon w_{m,\alpha}(x)$$

for all *x*, and with equality α -almost surely.

Implications:

- (i) Without loss for principal to offer $w_{m,\alpha}$ for some *m*.
- (ii) A cheapest contract implementing α is $w_{m_{\alpha}^{*},\alpha}$ for

$$m_{\alpha}^* = -\inf k_{\alpha}(X).$$

(iii) C FOSD increasing \implies wage is increasing without loss.

RELATED LITERATURE

- Less general flexible models: Holmstrom and Milgrom (1987), Diamond (1998), Mirrlees and Zhou (2006), Hebert (2018), Bonham (2021), Mattsson and Weibull (2022), Bonham and Riggs-Cragun (2023).
- Flexible Monitoring: Georgiadis and Szentes (2020), Mahzoon, Shourideh, and Zetlin-Joines (2022), Wong (2023).
- **Robust contracting:** Carroll (2015), Antic (2022), Antic and Georgiadis (2022), Carroll and Walton (2022).

FLEXIBLE MORAL HAZARD PROBLEMS

We show that in smooth & flexible moral hazard problems:

- Parameters driving contract: k_{α} and u.
- Cost minimization is trivial.
- Every distribution can be implemented.
- FOSD monotonicity \implies wages increase in output.

FLEXIBLE MORAL HAZARD PROBLEMS

We show that in smooth & flexible moral hazard problems:

- Parameters driving contract: k_{α} and u.
- Cost minimization is trivial.
- Every distribution can be implemented.
- FOSD monotonicity \implies wages increase in output.

In paper, we also have results about principal optimality:

- FOC for the principal (1st order approach is valid).
- Optimality of single, binary, and discrete distributions.

Thanks!