The Linear Algebra of Economic Geography Models

Benny Kleinman
Princeton University
Ernest Liu
Princeton University and NBER
Stephen J. Redding
Princeton University and NBER

Motivation

- A recent advance in spatial economics has been the development of quantitative spatial models
 - Rich enough to capture first-order features of the data
 - Tractable to permit an analytical characterization of general equilibrium
 - Parsimonious with a small number of structural parameters to estimate
 - Platform for undertake a wide range of counterfactuals, including productivity shocks and transport infrastructure improvements
- We show that comparative statics for productivity shocks in a constant elasticity economic geography model can be represented using a friend-enemy matrix
 - Stack conditions for first-order general equilibrium effects of productivity shocks in matrix form
 - Invert this matrix system to recover the full bilateral network of each location's exposure to productivity shocks in all locations

Motivation

- Friend-enemy representation has several attractive properties
 - Provides closed-form sufficient statistics for the impact of productivity shocks in terms of observed trade shares and parameters
 - Computationally efficient, allowing comparative statics to be computed almost instantaneously, even for high-dimensional states spaces
 - Simple and intuitive interpretation in terms of economic mechanisms
 - Friend-enemy measures provide theory-consistent measures of locations' exposure to productivity shocks that can be used as inputs in further economic and statistical analysis

Related Literature

Quantitative models of international trade between countries

 Eaton and Kortum (2002), Arkolakis, Costinot and Rodriguez-Clare (2012), Allen, Arkolakis and Takahashi (2020), Baqaee and Farhi (2019), Kleinman, Liu and Redding (2020)

Research on economic geography

Krugman (1991), Helpman (1998), Fujita, Krugman and Venables (1999),
 Redding and Sturm (2008), Allen and Arkolakis (2014), Redding (2016),
 Monte, Redding and Rossi-Hansberg (2017), Redding and
 Rossi-Hansberg (2018), Caliendo, Parro, Rossi-Hansberg and Sarte (2018), Adão, Arkolakis and Esposito (2019)

• Abstract from dynamics from migration or capital accumulation

Caliendo, Dvorkin and Parro (2019), Kleinman, Liu and Redding (2020),
 Cai, Caliendo, Parro and Xiang (2023), Crews (2023), Dvorkin (2023)

Abstract from input-output linkages

- Caliendo and Parro (2015), Liu (2019), Liu and Tsyvinski (2023)

Model Outline

- The world economy consists of a set of locations indexed by $i, n \in \{1, ..., N\}$
- The economy as a whole has an exogenous supply of workers that we normalize to one $(\bar{\ell}=1)$
- Denote the population share of each location by ℓ_n
- Each worker is endowed with one unit of labor that is supplied inelastically
- Workers are perfectly mobile across locations, but have idiosyncratic preferences for each location
- Goods are differentiated by location of origin (Armington)
- Goods are produced using labor under conditions of perfect competition and constant returns to scale
- Goods can be traded between locations subject to iceberg variable trade costs ($\tau_{ni} \ge 1$)

Preferences and Technology

• Preferences of worker ν who chooses to live in location n depend on common amenities (b_n) , idiosyncratic amenities $(\epsilon_n(\nu))$ and wage (w_n)

$$u_n(v) = \frac{b_n \epsilon_n(v) w_n}{p_n}$$

Consumption price index

$$p_n = \left[\sum_{i=1}^N p_{ni}^{1-\sigma}\right]^{\frac{1}{1-\sigma}}, \qquad \sigma > 1$$

Idiosyncratic amenities

$$F(\epsilon) = \exp(-\epsilon^{-\kappa})$$
, $\kappa > 1$

Production technology (abstract from agglomeration forces)

$$p_{ni} = \frac{\tau_{ni}w_i}{z_i}$$

• Iceberg variable trade costs $\tau_{ni} \geq 1$

General Equilibrium

 Income in each location equals expenditure on the goods produced by that location

$$w_i \ell_i = \sum_{n=1}^N s_{ni} w_n \ell_n$$
 $s_{ni} = \frac{\left(\tau_{ni} w_i / z_i\right)^{-\theta}}{\sum_{m=1}^N \left(\tau_{nm} w_m / z_m\right)^{-\theta}}$

• Probability that a worker chooses to live in location *n*

$$\ell_n = \frac{\left(b_n w_n / p_n\right)^{\kappa}}{\sum_{h=1}^{N} \left(b_h w_h / p_h\right)^{\kappa}}$$

Expected utility

$$ar{u} = \Gamma\left(rac{\kappa-1}{\kappa}
ight)\left[\sum_{h=1}^{N}\left(b_h w_h/p_h
ight)^{\kappa}
ight]^{rac{1}{\kappa}}$$

• Choose total income as the numeraire: $\sum_{i=1}^{N} q_i = \sum_{i=1}^{N} w_i \ell_i = 1$

Comparative Statics

- Consider small productivity shocks, holding constant amenities (d ln $b_i = 0$), trade costs (d ln $\tau_{ni} = 0$), and total population (d ln $\bar{\ell} = 0$)
- Totally differentiate the conditions for general equilibrium and represent them in matrix form
- Goods market clearing condition
 - Market-size effect
 - Cross-substitution effect
 - Population mobility affects market size (differs from trade models)

$$d \ln \mathbf{w} + d \ln \ell = \mathbf{T} (d \ln \mathbf{w} + d \ln \ell) + \theta (\mathbf{TS} - \mathbf{I}) (d \ln \mathbf{w} - d \ln \mathbf{z})$$

- Population shares
 - Nominal wage
 - Consumption price index

$$d \ln \ell = \kappa (\mathbf{I} - \mathbf{1}\ell') [d \ln \mathbf{w} - \mathbf{S} (d \ln \mathbf{w} - d \ln \mathbf{z})]$$

- Population mobility equalizes expected utility
 - Population share-weighted average of real wage changes
 - Differs from trade models

$$d \ln \bar{u} = \ell' \left[d \ln \mathbf{w} - \mathbf{S} \left(d \ln \mathbf{w} - d \ln \mathbf{z} \right) \right]$$

Comparative Statics

• Goods market clearing condition again

$$\mathrm{d}\ln\mathbf{w} + \mathrm{d}\ln\boldsymbol{\ell} = \mathbf{T}\left(\mathrm{d}\ln\mathbf{w} + \mathrm{d}\ln\boldsymbol{\ell}\right) + \theta\left(\mathbf{TS} - \mathbf{I}\right)\left(\mathrm{d}\ln\mathbf{w} - \mathrm{d}\ln\mathbf{z}\right)$$

Our choice of numeraire implies

$$\sum_{i=1}^N q_i = \sum_{i=1}^N w_i \ell_i = 1$$

$$\mathbf{Q}\left(\mathrm{d}\ln\mathbf{w}+\mathrm{d}\ln\boldsymbol{\ell}\right)=0$$

Impose this numeraire in the goods market clearing condition

$$(\mathbf{I} + \mathbf{Q}) (d \ln \mathbf{w} + d \ln \boldsymbol{\ell}) = \mathbf{T} (d \ln \mathbf{w} + d \ln \boldsymbol{\ell}) + \theta (\mathbf{T}\mathbf{S} - \mathbf{I}) (d \ln \mathbf{w} - d \ln \mathbf{z})$$

Nominal Wage Exposure

 Elasticity of the nominal wage in each location with respect to productivity shocks in all locations

$$d \ln w = W d \ln z$$

where W is our friend-enemy matrix of nominal wage exposure

$$\mathbf{W} \equiv -\left(\left(1+\kappa\right)\mathbf{I} - \kappa\mathbf{1}\boldsymbol{\ell}' - \mathbf{V}\right)^{-1}\mathbf{V},\,$$

$$\mathbf{V} \equiv \left[\kappa \left(\mathbf{I} - \mathbf{1}\boldsymbol{\ell}'\right) + \left(\mathbf{I} - \mathbf{T} + \mathbf{Q}\right)^{-1} \theta \left(\mathbf{T}\mathbf{S} - \mathbf{I}\right)\right]$$

- Presence of **Q** ensures that the matrices $(\mathbf{I} \mathbf{T} + \mathbf{Q})$ and $((1 + \kappa)\mathbf{I} \kappa\mathbf{1}\ell' \mathbf{V})$ are invertible
- Recover entire bilateral network of bilateral nominal wage exposure through matrix inversion
 - Computationally efficient even with high-dimensional state spaces
 - Provides exposure measures as inputs for further economic and statistical analysis

Real Wage Exposure

• Common change in expected utility across all locations

$$d \ln \bar{u} = \ell' U d \ln z$$

• where **U** is our friend-enemy matrix of real wage exposure

$$\mathbf{U} \equiv \left[\left(\mathbf{I} - \mathbf{S}
ight) \mathbf{W} + \mathbf{S}
ight]$$
 ,

Conclusions

- We provide sufficient statistics for nominal and real wage exposure in a constant elasticity economic geography measures
 - Summarize first-order general equilibrium elasticity of nominal and real wages in each location to productivity shocks in all locations
- Readily computed using commonly-available trade data and trade and migration elasticities
- Intuitive interpretation in terms of economic mechanisms
- Compute them for all bilateral pairs of locations through matrix inversion
 - Computationally efficient even with high-dimensional state spaces
- Provide theory-consistent measures of exposure to productivity shocks that can be used for further economic and statistical analysis

Thank You