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Introduction Network-VAR Inference App1: α|A App2: (α,A) Conclusion

Motivation

• Common in economics: cross-section of units/agents, linked by network ties

• Theory and empirics: network amplifies unit-level shocks, implies comovement of
cross-sectional variables

• How does network-induced comovement play out over time?

• Literature: Two restrictive cases:

• innovations transmit contemporaneously
e.g. Acemoglu et al. 2012, Elliott et al. 2014

→ static model, links of all order play out simultaneously

• innovations transmit one link per period
e.g. Long & Plosser 1983, Golub & Jackson 2010

→ tenable in theory, less so in empirics

Marko Mlikota, Cross-Sectional Dynamics Under Network Structure 1



Introduction Network-VAR Inference App1: α|A App2: (α,A) Conclusion

Contribution

• Econometric framework that can speak to dynamics implied by networks

• VAR parameterized s.t. innovations transmit cross-sectionally via bilateral links

• Can accommodate general patterns on how innovations travel through network over time

• Applicable in two distinct lines of empirical work with cross-sectional time series

• estimate dynamic network (peer) effects,
with network given or estimated (+ shrink to observed links)

• dimensionality-reduction technique for modeling (c.s.) time series

→ Two applications
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Related Literature: Model

Networks in econometrics

• Spatial Autoregressive Models:
• identify network effects in static framework

Manski 1993, Lee 2007, Bramouillé et al. 2009, de Paula et al. 2020, ...

→ I look at dynamic, contagion-like network effects
• some work on lagged/dynamic network effects

Knight et al. 2016, Zhu et al. 2017, Yang & Lee 2019, ...

→ I relate TS properties to network and timing of network effects, generalize mapping,
& show how to conduct inference on both

• Networks in time series (TS) econometrics:
• represent TS model output as network

Diebold & Yilmaz 2009, 2014, Barigozzi & Brownlees 2018, ...

→ I use network to obtain a TS model
• restrict TS models using networks

Pesaran et al. 2004, Chudik & Pesaran 2011, Caporin et al. 2022, ...

→ I focus on simpler/clearer case & assume tranmission via links → analytical results
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Bilateral Connections in Networks details

c

a

b

A =

0 0 .8
.7 0 .6
0 .8 0


shows direct links

A2 =

 0 .64 0
0 .48 .56
.56 0 .48


shows 2nd order connections

...

Marko Mlikota, Cross-Sectional Dynamics Under Network Structure 4



Introduction Network-VAR Inference App1: α|A App2: (α,A) Conclusion

Lagged Innovation Transmission via Bilateral Links

VAR(1):

yt = Ayt−1 + ut ,

→ yit =

n∑
j=1

aijyj,t−1 + uit

• Interpret A as network: innovations travel one link per period

→ Granger Causality at horizon h = 1, 2, ... given by hth order network connections:
illustration

∂yi,t+h
∂yj,t

= (Ah)ij .

• Used in theory:
• Long & Plosser (1983): sectoral output under one period delay in I-O conversion
• Golub & Jackson (2010): study of societal opinion formation through friendship ties
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Lagged Innovation Transmission via Bilateral Links

NVAR(p, 1): (particular version of NAR(p) in Zhu et al. 2017)

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ , α = (α1, ..., αp)
′ ∈ Rp .

• Assuming αl 6= 0 ∀ l, ỹj Granger-causes ỹi at horizon h iff there exists a connection
from i to j of at least one order k ∈ {k, k + 1, ..., h}, where k = ceil(h/p).

→
∂ỹi,τ+h

∂ũj,τ
= chk(α)

[
Ak
]
ij

+ ...+ chh(α)
[
Ah
]
ij
.

• i.e. ỹτ driven by lagged network effects, with transmission spread out over p periods

• α shows time profile of transmission
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Lagged Innovation Transmission via Bilateral Links

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ , α = (α1, ..., αp) ∈ Rp .

If ỹτ observed every q > 1 periods, then {yt}Tt=1 = {ỹtq}Tt=1

• for GC at horizon h, links of order k ∈ {k, k + 1, ..., hq} matter, k = ceil(hq/p)

• network-induced correlation in observed innovations ut

• holds for q ∈ Q++, and also for flow variables under q ∈ N

→ “ NVAR(p, q) ” stationarity relation to contemp. transmision VARMA approx.
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Inference: α | A , in NVAR(p, 1)

yt = α1Ayt−1 + ...+ αpAyt−p + ut = Xt(A)α+ ut

• LS estimator for α:

α̂|A =

[
T∑
t=1

X ′tΣ
−1Xt

]−1 [ T∑
t=1

X ′tΣ
−1yt

]
, Xt = [Ayt−1, ..., Ayt−p] .

• OLS (Σ = I): consistent and asymp. Normal for n, T & (n, T )→∞ conditions
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Inference: α | A , NVAR(p, q), q > 1

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ = Xτ (A)α+ ũτ , τ = 1 : Tτ ,

yτ/q = ỹτ if τ/q ∈ N ,

• Data augmentation. But: point ID not guaranteed;
e.g. for q = 2, p = 1, can identify α1 up to sign: yt = α2

1A
2yt−1 + ηt

• Akin to AR(p) observed every q > 1 periods (Palm & Nijman 1984)

• Shrink towards lower-dimensional function; e.g. αl ∼ N
(
µl, λ

−1
α

)
, µl = (1, l, l2)βα

• Gives full-sample posterior αl|Ỹ1:Tτ ∼ N
(
ᾱ, V̄α

)
with

V̄α =

[
Tτ∑
τ=1

X̃ ′τ Σ̃−1X̃τ + λαIp

]−1

, ᾱ = V̄α

[
Tτ∑
τ=1

X̃ ′τ Σ̃−1ỹτ + λαIpµ

]
.

• Uniform hyperpriors for βα and λα: shrink towards MLE/OLS β̂α, optimizing
predictive ability (Giannone, Lenza & Primiceri 2015)
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Inference: (α,A)

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ = Azτ (α) + ũτ , τ = 1 : Tτ ,

yτ/q = ỹτ if τ/q ∈ N ,

NVAR(p, 1):

• Ridge-prior aij ∼ N(bij , λ
−1
a ) gives posterior A|(α,Σ) ∼MN

(
Ā′,Σ, ŪA

)
with

ŪA =
[
Z ′Z + λaΣ

]−1
, Ā = ŪA

[
Z ′Y + λaB

′Σ
]
.

• Can shrink to actual links: set bij = wb′ijβb

• Iterate on posteriors (or modes) of A|α and α|A, normalizing ||α||1 = 1 (e.g.)

• (α̂, Â)OLS consistent and asymp. Normal for T →∞

NVAR(p, q): add data augmentation step (Carter-Kohn Gibbs sampler / EM algo)
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Application 1: Motivation

Macro literature on production networks:

• assuming contemporaneous input-output-conversion, shows:
Horvath 2000, Acemoglu et al. 2012, 2016, Bouakez et al. 2014, ...

• supply chain network amplifies sectoral shocks
• strength of effect on aggregates depends on sector’s position in network

• exception: one period-lagged I-O-conversion → NVAR(1,1)
Long & Plosser (1983), Foerster et al. (2011), Carvalho & Reischer (2021)

• generates endogenous BCs (persistence in aggregates)
• model-persistence matches empirics,

calibrated model gives improved forecasts of agg. IP relative to statistical models

This application: setup theory data

• How does amplification materialize over time?

• Does network-position shape timing of effect?

• Estimate roles of exogenous shock persistence vs. lagged IO conversion Foerster et al. (2011)
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Results: Impulse Responses & Their Composition more results

Relevance of Link-Orders Across Horizons
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Figure: Transmission of Price Shocks via Supply-Chain Links (1)

Recall:
∂yi,t+h
∂uj,t

= chk(α)
(
Ak
)
ij

+ ...+ chh(α)
(
Ah
)
ij
, k = ceil(h/p) .
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Results: Impulse Responses & Their Composition

IRF of Chemical Products to Utilities
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Figure: Transmission of Price Shocks via Supply-Chain Links (2)

Recall:
∂yi,t+h
∂uj,t

= chk(α)
(
Ak
)
ij

+ ...+ chh(α)
(
Ah
)
ij
, k = ceil(h/p) .
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Application 2: Motivation

How to model industrial production dynamics across 44 countries?

• Even for this moderate size of cross-section, unrestricted VAR not feasible

• NVAR(p, q): well-performing, simple-to-estimate and interpretable alternative details

→ Estimate (α,A), A sparse !

• Assumption: a few bilateral links drive dynamics of whole cross-section
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Relation to Alternative Dimensionality-Reduction Techniques

• Combines insights from factor models / RR regression (Velu et al. 1986, Stock &
Watson 2002, ...) and sparse / shrinkage methods (Tibshirani 1996, ...)

Recall NVAR(p, 1): yt = A [yt−1, ..., yt−p] α+ ut .

• Equivalence betw. factor model & NVAR(p, 1), with # factors = rank(A): details

• yt ∼ NVAR(p, 1) ⇒ yt ∼ FM

• yt ∼ FM + ft ∼ NVAR(p, 1) ⇒ yt ∼ NVAR(p, 1), for n large

• Expect: Network-VAR preferred when dynamics driven by many micro links rather
than few influential units (see Boivin & Ng, 2006)

• Rationalize sparse factors as locally important units in network

Marko Mlikota, Cross-Sectional Dynamics Under Network Structure 15



Introduction Network-VAR Inference App1: α|A App2: (α,A) Conclusion

Results: Forecasting setup more results

Figure: Out-Of-Sample Forecasting Performance: NVAR(4, 1) vs. Factor Model

Notes: Plot depicts percentage difference between out-of-sample Mean Squared Errors generated by NVAR(4, 1) to
those generated by Principal Components Factor Model.
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Conclusion

• I propose econometric framework for cross-sectional time series exploiting network
structure

• I apply it to estimate how supply shocks propagate through US supply chain network
and affect dynamics of sectoral prices

• I apply it to forecast cross-country IP dynamics, assuming & estimating network
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Bilateral Connections in Networks back

• Network: n× n adjacency matrix A with elements aij

• Directed and weighted: aij ∈ [0, 1] shows strength of (direct) link from i to j

• Walk: product of direct links aij that lead from i to j over some intermediary units

e.g. ai,k1ak1,k2ak2,j : walk from i to j of length 3

• (AK)ij : sum of all walks from i to j of length K (“Kth order connection from i to j”)

e.g. A =

0 0 .8
.7 0 .6
0 .8 0

 , A2 =

 0 .64 0
0 .48 .56
.56 0 .48

 , A3 =

.448 0 .384
.336 .448 .288

0 .384 .448

 .
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Lagged Innovation Transmission via Bilateral Links back

Figure: Example Generalized Impulse Responses For NVAR(1, 1)

Notes: Panel (i, j) shows (Ah)ij in blue, αh in red and GChij , their product, in purple.
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Time Aggregation of Lagged Transmission Patterns back

• Let ỹτ = α1Aỹτ−1 + α2Aỹτ−2 + α3Aỹτ−3 + ũτ , and {yt}Tt=1 = {ỹ2t}Tt=1.

• We get

ỹτ =
[
α2A+ α2

1A
2
]
ỹτ−2 +

[
(α1α2 + 2α1α3)A2

]
ỹτ−4

+ ũτ + α1Aũτ−1 + (α3A+ α1α2A
2)ũτ−3 + terms in ỹτ−6, ỹτ−7 .

→ yt ≈ Φ1yt−1 + Φ2yt−2 + Θ0ut + Θ1ut−1 ,

with Φ1 = α2A+ α2
1A

2 , Φ2 = (α1α2 + 2α1α3)A2

ut = [ũ′τ , ũ
′
τ−1]′ , ut−1 = [ũ′τ−2, ũ

′
τ−3]′, ,

Θ0 = [In, α1A] , Θ1 =
[
0n, α3A+ α1α2A

2
]

.
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Contemporaneous Innovation Transmission via Bilateral Links back

• Under contemporaneous network interactions,

x = Ax+ ε = (A+A2 +A3 + ...)ε .

→ Acemoglu et al. (2012): network A amplifies granular shocks εj , implies
cross-sectional comovement in {xi}ni=1

• Result: for NVAR(p, 1), yt = α1Ayt−1 + ...+ αpAyt−p + ut, we have that

limh→∞

h∑
j=0

∂yt+h
∂ut+j

=
∂x

∂ε
= (I −A)−1 , (for

p∑
l=1

αl = 1)

→ Taking stance on timing of network effects, yt can speak to (transition) dynamics
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Stationarity of NVAR(p, 1) back

Let ỹτ follow an NVAR(p, 1)

ỹτ = α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ ,

where ũτ ∼WN , and assume αl 6= 0 for at least one l. Let a =
∑p

l=1 |αl|.

1a ỹτ is WS if for all Eigenvalues λi of A it holds that |λi| < 1/a.

1b If in addition α1, ..., αp ≥ 0, this condition is both necessary and sufficient.

2 ỹτ is WS iff the univariate AR(p)

x̌τ = λiα1x̌τ−1 + ...+ λiαpx̌τ−p + v̌τ

is WS for all Eigenvalues λi of A.
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Asymptotics: α̂OLS|A in NVAR(p, 1) back

T −→∞
• Model correct: yt = Xtα+ ut

• Et−1[ut] = 0 , Et−1[utu
′
t] = Σ

• yt ergodic and strictly stationary

n −→∞
• Model correct: yit = x′itα+ uit

• Et−1[ut] = 0 , Et−1[uituis] = σ2 if t = s and zero otherwise

• An converges to some limit s.t.
• 1

n

∑n
i=1 (An,i·yt−l)

′
(An,i·yt−k) −→ E

[
(Ai·yt−l)

′
(Ai·yt−k)

]
• 1

n

∑n
i=1 (An,i·yt−l)

′
uit −→ E

[
(Ai·yt−l)

′
uit
]

• 1√
n

∑n
i=1 (An,i·yt−l)

′
uit ⇒ N

(
E
[
(Ai·yt−l)

′
uit
]
,V
[
(Ai·yt−l)

′
uit
])
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Estimation/Setup back

• Generalized version of LP: firms use inputs produced in last p periods
→ at some model-frequency, sectoral prices ∼ NVAR(p, 1):

ỹτ ≈ α1Aỹτ−1 + ...+ αpAỹτ−p + ũτ ,

with αl ≥ 0 ∀ l and
∑p

l=1 αl = 1 and A = I-O-matrix theory

• Observation freq. potentially 6= network interaction freq.: {yt}Tt=1 = {ỹqt}Tt=1

→ I consider q ∈ {1/3, 1/2, 1, 2, 4},
i.e. quarterly, bi-monthly, monthly, bi-weekly and weekly network interactions

• 51 sectors, Jan 2005 - Aug 2022, annual I-O-matrix from 2010 data

• For now, let ũiτ
iid∼ N(0, σ2

i ), get (α̂, σ̂)MLE for different (p, q) & select model via IC

• Work in progress: ũiτ = λifτ + εiτ , fτ , εiτ ∼ AR(2)
→ Determine roles of exogenous shock persistence vs. lagged I-O-conversion
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Theory back

Assume n sectors, rep. firm produces variety i by using labor and inputs j = 1 : n:

yiτ = ziτ l
bi
iτ

n∏
j=1

x
aij
ijτ , bi > 0 , aij ≥ 0 , bi +

n∑
j=1

aij = 1 .

• If xijτ is variety j bought at τ : pτ = Apτ + ετ , ετ = −log(zτ ) (e.g. Acemoglu et al.,
2012)

• If xijτ is variety j bought at τ − 1: pτ = Apτ−1 + ετ (Long & Plosser 1983, Carvalho
& Reischer 2021)

→ If xijτ is CES-aggregate of variety j bought at {τ − p, ..., τ − 1}:
pτ ≈ α1Apτ−1 + ...+ αpApτ−p + ετ , for some αl ≥ 0, l = 1 : p, and

∑p
l=1 αl = 1
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Data back

Input-Output Matrix from Bureau of Economic Analysis (BEA)

• 64 mostly 3- and 4-digit sectors (due to PPI availability)

• I take data for 2010

• Following Acemoglu et al. (2016), links defined as aij ≡ salesj→i

salesi
(valid for general p

as β → 1)

Monthly sector-level PPI data from Bureau of Labor Statistics (BLS)

• 51 BEA-sectors, January 2005 - August 2022

• I take logs and subtract sector-specific linear time trend and seasonality
(since the assumed process is stationary)
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Data: Input-Output Network
• Density: 16.88 %
• Average shortest path: 2.41, longest shortest path: 7

(a) Weighted In-Degrees

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
wdin

i = Σj aij

C
ou

nt
 (

S
ec

to
rs

 i)

(b) Weighted Out-Degrees
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Notes: Left panel plots weighted in-degrees (column-wise sums of A), shows sectors’ differing reliance on
intermediate inputs. Right panel plots weighted out-degrees (row-wise sums of A), shows sectors’ differing
importance as suppliers to other sectors.
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Data: Input-Output Network
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Figure: Network Distance And The Correlation of Sectoral Inflation

Notes: Figure plots average correlation of sectoral prices for different distances between them. Lightest blue line
refers to contemporaneous correlations. Darker lines show average correlation of sector i with lagged values of sector
j as function of distance from i to j. Lags from 1 to 12 months. Series are de-trended and de-seasonalized log PPIs.
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Data: PPI back
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Figure: Aggregate & Sectoral PPIs

Notes: Left panel shows raw PPI series for few selected sectors. Right panel compares aggregate PPI (FRED
Database) and output-weighted average of PPIs of studied sectors.
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Estimation Results: Model Selection back

Table: Model Selection: Log MDD

p

1q 2q 3q 4q 5q 6q

1/3 19079 19044

1/2 19384 18768 18690

q 1 20153 20056 19675 19879 18899 20218

2 17546 19570 19248 20142 18662 19636

4 18517 19808 19754 19655 18904 19301

Notes: Table shows log Marginal Data Density (MDD) across model specifications. Values for q
(from top to bottom) refer to quarterly, bi-monthly, monthly, bi-weekly and weekly network
interactions, while p = mq implies last m months matter for dynamics.
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Estimation Results back

Table: Estimation Results: α

MLE Mean Low High

α1 0.1550 0.1557 0.1370 0.1745
α2 0.3460 0.3382 0.3168 0.3605
α3 0.2816 0.2865 0.2644 0.3129
α4 0.0915 0.0991 0.0785 0.1174
α5 0.1045 0.0975 0.0837 0.1135

Notes: First column shows Maximum Likelihood or Maximum A-Posteriori
(MAP) Estimator, second refers to posterior mean, and Low and High
report the bounds of the 95% Bayesian HPD credible sets.
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Application 2: Motivation back

NVAR(p, q): sparse, flexible and interpretable dimensionality-reduction

ỹτ =

p∑
l=1

αlAỹτ−l + ũτ , {yt}Tt=1 = {ỹtq}Tt=1 .

• Sparsity:
• yiτ = x′iτα+ uiτ with Xτ = A

[
ỹτ−1, ..., ỹτ−p

]
(n×p)

→ reduce n2 parameters in VAR to n2 + p− 1 parameters in NVAR
• A can be sparse: higher-order network effects through A2, A3, ...

• Flexibility:
• estimated network + general time dimension of network effects
• like functional approximation using A as basis (recall: yt

approx.∼ restricted VARMA)

• Interpretability:
• dynamics driven by innovation transmission along bilateral links
• estimate network & whole set of spillover and spillback effects
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Relation to Factor Model back

NVAR → FM

• yt = A[α1yt−1 + α2yt−2] + ut with A of rank r ∈ 1 : n

• Write A = Bn×rCr×n

→ yt = Λft + ut, with Λ = B and fkt = α1Ck·yt−1 + α2Ck·yt−2 for k = 1 : r

• (not unique: A = BC = BQQ−1C = B̃C̃ for any r × r full-rank matrix Q)
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Relation to Factor Model back

FM → NVAR

• yt = Λft + ξt , ft = Φ1ft−1 + Φ2ft−2 + ηt, with ft ∈ Rr

• Take r distinct vectors of weights wk = (wk1 , ..., w
k
n), k = 1 : r,

and consider
∑n

i=1w
k
i yit =

∑n
i=1w

k
i Λi·ft +

∑n
i=1w

k
i ξit

• If n large enough, ξ̄kt ≡
∑n

i=1w
k
i ξit ∼ Op(n−1/2) is negligible → Wyt = WΛft

yt = Λ (Φ1ft−1 + Φ2ft−2 + ηt) + ξt

= ΛΦ1(WΛ)−1Wyt−1 + ΛΦ2(WΛ)−1Wyt−2 + ut ,

• If Φl = φlΦ for l = 1, 2 (i.e. ft ∼ NVAR(2,1)), then

yt = ΛΦ(WΛ)−1W [φ1yt−1 + φ2yt−2] + ut

• Let A = ΛΦ(WΛ)−1W , αl = φl
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Data & Forecasting Setup back

Data:

• Use IMF & OECD data on monthly IP series

• Compute growth rate relative to same month previous year, subtract mean

• January 2001 - January 2020, 44 countries

Forecasting Exercise:

• Use sample end dates from December 2017 to December 2019

• Consider forecasts of up to 24 months ahead (COVID-19 excluded)

• For p = 1 : 6, compare

• NVAR(p, 1) + Lasso-shrinking of aij to zero,
select λ based on BIC (Zou, Hastie & Tibshirani 2007) details

• PC-FM: select # of factors based on Bai & Ng (2002), fit VAR(p) for factors
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Estimation back

yt =

p∑
l=1

αlAyt−l + ut , α ≡ (α1, ..., αp) ∈ Rp , aij ∈ [0, 1] ,

• To identify (α,A), normalize ||α||1 = 1 and change domain of aij to R+

• Consider OLS with Lasso penalty (λ) on aij
• Get (α̂, Â) by iterating on

α̂|A =

[
T∑
t=1

X ′tXt

]−1 [ T∑
t=1

X ′tyt

]
,

âij |(α,Ai,−j) = max{0, ǎij} , ǎij =

∑T
t=1(yit −Ai,−jz−j,t)zjt − λ∑T

t=1 z
2
jt

.
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Results: Estimated Network back
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Figure: Weighted Outdegrees In The Estimated Network

Notes: Plot shows weighted outdegrees in estimated network as relevant for cross-country monthly IP dynamics.
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Results: Impulse Responses & Their Composition back

Relevance of Link-Orders Across Horizons
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Figure: Network-Induced Transmission of Inudstrial Production Innovations (1)

Notes: Left panel shows importance of different connection-orders for transmission as function of time elapsed since
shock took place. Right panel shows connections of different order from Germany and Finland to United States.
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Results: Impulse Responses & Their Composition

IRF of Germany to United States
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Figure: Network-Induced Transmission of Inudstrial Production Innovations (2)

Notes: The two panels show the Impulse-Response Functions (IRFs) of German and Finnish IP growth,
respectively, to a one standard deviation increase in US IP growth.
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