A Unified Framework to Estimate Macroeconomic Stars

Saeed Zaman
Federal Reserve Bank of Cleveland
January 2024, ASSA/AEA Annual Meeting – San Antonio, Texas

Abstract

• Implement a medium-scale semi-structural model to estimate jointly several macroeconomic “stars” – long-run equilibrium levels of
 - Growth rate of output (g*)
 - Unemployment rate (U*)
 - Real rate of interest (R*)
 - Productivity growth (p*)
 - Price inflation (pi*)
 - Wage inflation (W*)

• Ingredients of the model motivated by economic theory and empirical features necessitated by changing economic environment: (1) time-variation in macroeconomic relationships; (2) stochastic volatility in error variances

• Crucial element: allow for explicit links between model-based stars and the long-run survey expectations to improve stars’ econometric estimation

• By-products: time-varying estimates of wage and price Phillips curve, pass-through between prices and wages, evolving cyclicity of productivity, which provide new insights into these empirical relationships’ instability in US data; Other objects of interest: estimates of output gap, monetary policy stance

• Given the richness of the model, document an expansive set of empirical results

Model Description

• Star (long-run equilibrium of a particular macroeconomic series): infinite-horizon forecast conditional on the current information set; Beveridge-Nelson trend

Empirical Findings: Highlights

• Baseline model and its variants: Base-NOTVP (shut down time-variation in parameters), Base-NOSV-NOTVP (shut down both stochastic volatility and time-variation in parameters)

• Baseline model (feature rich) vs. restricted variants: Baseline wins

• Model yields credible estimates of stars and the output gap
 - Prior to COVID, output gap similar to the CBO’s production function approach; thereafter, more optimistic than CBO
 - Cf. to smaller-scale model estimates: can be different enough for long periods of time to matter for policy

• Role of survey data I: crucial for stars estimation during the COVID-19 pandemic, without it, the high-dimensional model difficult to estimate

• Role of survey data II: data alone suggest weak link between R* and g*; survey expectations data strengthen link (supporting Laubach and Williams)

• Okun’s Law in US data? Strongly supported

• Time variation? Yes, strong evidence in many of the model parameters capturing important macroeconomic relationships

• Stochastic volatility? Strongly supported in model equations defining cyclical fluctuations

• Narrower credible intervals around stars compared to typical estimates reported elsewhere, allowing for more precise inference

• Real-time vs. final estimates: progress made in mitigating well-known difficulties associated with the real-time estimation of stars

• W-star is new, as is its model-based decomposition into p-star and pi-star determinants (based on economic theory)

• Real-time forecasting properties of the model? Highly competitive

• Estimated stars useful as terminal values for external models? Yes

Disclaimer

All the analysis, views, and conclusions expressed in this poster and the paper are those of the author and they do not indicate concurrence by other members of the research staff of the Federal Reserve Bank of Cleveland or by the Board of Governors of the Federal Reserve System.