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Abstract

We develop an analytically tractable dynamic model of optimal consumption and in-

vestment decisions with disastrous income risk in the context of Rietz’s rare disaster risk

hypothesis. We first empirically explore the relations among consumption changes, aggre-

gate income, disaster shock severity, and fiscal measures in 55 countries during the Covid-19

period. We then by empirical motivation investigate an important role of insurance with a

focus on the recovery of income in a disaster. We highlight how extent of disastrous income

risk to which an agent is exposed and her income recovery post disaster jointly affect the

agent’s optimal decisions. Overall, availability of insurance can be particularly important

for both the poor and the wealthy in the sense that they could even consume more, save

less, and invest more post disaster as long as their future income is (partly) recovered.
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1 Introduction

How should disastrous income risk affect the optimal consumption and investment decisions

of individuals? One of the best understood relationships between income risk and optimal

decisions in the consumption/savings literature is that individuals save precautionarily

when their income is threatened by a shock, which is consistent with the permanent income

hypothesis.

We shed new light on dynamic models of optimal consumption and investment deci-

sions for individuals who exhibit constant absolute risk aversion (CARA) utility prefer-

ences1 by exploring insights into how possibility of a disastrous income shock combined

with a non-negative constraint on borrowing2 affects both the consumption/savings and

(positive) wealth allocation decisions between bonds and equity. In particular, we address

the interactions between optimal decisions and a change in perception where the changed

probability of a future pandemic affects both probability and duration of disaster.

In particular, by specifying Mehra and Prescott’s model to include a low-

probability, depression-like third state, I can explain both high equity risk pre-

mia and low risk-free returns without abandoning the Arrow-Debreu paradigm

(Rietz , 1988).

1The CARA utility model keeps all the derived optimal strategies in analytically tractable form. In
addition to an analytical convenience, the use of the CARA utility model is necessary for making the
problem with disastrous income risk well defined. Specifically, with other utility preferences (e.g., constant
relative risk aversion (CRRA) utility model, Epstin-Zin recursive utility model) the maximized expected
discounted utility (or the value function of wealth) becomes −∞ with a possibility of a full default of
income as wealth approaches the borrowing limit, i.e., when the borrowing constraint binds. This technical
challenges associated with disastrous income risk have been first tackled by Bensoussan et al. (2016) in
which the mix of a logarithmic utility model and a piecewise connected utility model is proposed to prevent
the value function from being −∞. In case of CRRA utility model, only a partial default of income can be
considered (Jang et al., 2019). The CARA utility model used in this paper allows us to investigate both
cases of a full and partial default of income for the consideration of disastrous income risk.

2In reality, it is not possible for an individual to fully pledge future income. This constraint is mainly
driven by market frictions such as asymmetric information, agency conflicts, and limited enforcement.
According to the Survey of Consumer Finances (2017), “In 2016, 20.8 percent of families were considered
credit constrained – those who reported being denied credit in the past year, as well as those who did not
apply for credit for fear of being denied in the past year.”
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This is precisely the direction we take on further in this paper. We develop an ana-

lytically tractable dynamic model of optimal consumption and investment decisions with

disastrous income risk in the context of Rietz’s rare disaster risk hypothesis. As a general-

ization of the rare disaster risk hypothesis to include disastrous income risk, we consider a

version of the Merton (1969, 1971) model with the special feature that income can abruptly

jump from a positive value to a smaller positive value or even to zero.3 This specification

is also motivated by the recent Covid-19 pandemic. We first empirically explore the re-

lations among consumption changes, aggregate income, disaster shock severity, and fiscal

measures in 55 countries during the Covid-19 period.

We then by empirical motivation investigate an important role of insurance with a

focus on the recovery of income in a disaster. The currently available social securities

and private insurance market are insufficient to perfectly hedge against disastrous income

risk, making the financial market essentially incomplete (Cocco et al., 2005; Bensoussan

et al., 2016; Jang et al., 2019; Jang et al., 2020). The individuals’ ability to recover from

and respond to disastrous income shocks is further impeded by their ill-preparedness for

future consumption needs.4 If there is an insurance market for (partially) hedging against

disastrous income risk, the individual’s income is partly wiped out when a disastrous income

shock occurs.5 In the extreme case of no access to the insurance market, the income is

3The disastrous income shocks to which an individual is exposed could be driven by the risks of loss of
employment and/or of episode of severe ill health that prevents work and also the duration of unemploy-
ment/ill health, which all results in a permanent loss of income.

4Indeed, recent empirical evidence points out that many individuals are vulnerable to unexpected
economic hardship. According to the 2017 Federal Reserve report, 44% of U.S. households are unable
to pay for their emergency expenses of just $400. For more details, refer to “Report on the Economic
Well-Being of U.S. Households in 2016” published by Board of Governors of the Federal Reserve System
on May 2017. According to EU statistics on Income and Living Conditions (EU-SILC 2017), about 218
million E.U. households are struggling to prepare for their future consumption needs.

5As an alternative to the insurance market, there are a wide range of financial mechanisms used in
planning for and managing the financial consequences of disasters. In particular, the state (e.g., national-
level budget contingencies) has much of the responsibility for managing the financial consequences of large
scale disasters. The state plays a key role in covering at least some disaster losses. For instance, disaster
relief funds ensure resources readily available to provide prompt assistance following a disaster.
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completely defaulted or destroyed in the disastrous shock.6 In other terms, for the income,

there can be a full or partial default in a disastrous shock, and the recovery of income in

the aftermath of the shock depends crucially on availability of insurance. In this paper,

the income in the aftermath of a disastrous shock is the income before the shock multiplied

by the recovery rate.7

We offer new insights helping the consumption/savings literature. First, we highlight

how extent of disastrous income risk to which an agent is exposed affects low-wealth peo-

ple’s optimal decisions. As is fairly standard in the literature, we find a large precautionary

savings motive for income-risk-exposed agents to consume less. Interestingly, the agent’s

optimal consumption shows a significant discontinuity and the dramatic change in the con-

cavity of consumption when disastrous income risk is more significant than it is slim. We

find that if disastrous income risk is small, there does not exist a significant precautionary

savings term between agents with little wealth so that there are no significant consump-

tion reductions in response to the income risk. The highly likelihood of a rare event could

change the consumption demand of low-wealth people. Overall, how much people do cut

back their consumption optimally is determined by the extent to which disastrous income

risk is identified quantitatively.

Second, we clarify how the presence of disastrous income risk affects the agent’s optimal

portfolio choice. The standard consumption/savings literature typically assumes that the

agent can invest in riskless bonds only. We allow the agent to trade a risky asset in

the market. The agent’s optimal investment decision with disastrous income risk can

then be further complex for optimally allocating the precautionary savings in both bonds

and equity. The precautionary savings terms turn out to contribute to an increase in

the risky investment surprisingly. The agent in our incomplete markets has an incentive

6This completely default of income in a disaster can be caused by insurer default (Lopes and Michaelides,
2007; Babbel and Merrill, 2007; Jang et al., 2019).

7When the recovery rate is zero, the income is fully wiped out (completely defaulted) in the disastrous
shock. When the recovery rate is one, there is no income loss after the shock.
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to invest more in the stock market. Risky assets would serve as a partial hedging tool

against disastrous income risk. The positive risk premium obtained from risky investments

allows the agent to promptly accumulate sufficient wealth to be in a more liquid position.

The liquidity with far enough wealth buffers against disastrous income risk and helps

the agent avoid binding borrowing constraints and efficiently finance future consumption

needs. In light of the growing equity demand in the presence of disastrous income risk, the

conventional wisdom of precautionary savings should be understood by the interactions

between consumption/savings and portfolio choice.

Finally, we demonstrate that the individual’s optimal consumption and investment

decisions with disastrous income risk are significantly affected by the recovery rate of

income after the occurrence of income disaster. The individual’s optimal consumption

increases, savings decreases, and investment in the stock market increases as the recovery

rate increases. This particularly highlights the relation between household decisions and

the income recovery by access to (private) insurance and various types of government safety

nets.

This paper contributes to the risk management literature with an interesting application

of rare disaster risk hypothesis to household finance with disastrous income risk. Standard

risk management models may fail to take sufficient account of the likelihood of extreme

risk events (e.g., major market crashes, catastrophes, pandemic outbreak). In light of such

a major limitation, significance of the low-probability, high-impact aspect of disastrous

income risk has been neither recognized in the literature nor taken into account in modeling

of disastrous income risk. However, large and negative earnings losses are observed at job

displacement (Low et al., 2010), and such substantial losses can have a significant impact

on household investment and consumption decisions (Guvenen et al., 2015). Addressing

the above limitation is to follow the rare disaster literature. We focus on the extremes

of the probability distribution of income, deviating from log-normality substantially. The
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disastrous income risk in the paper is caused by exogenous discrete Poisson jump shocks

(rather than continuous Brownian shocks).

By extending the seminal study of Rietz (1988), Barro (2006), Gabaix (2008, 2012),

Wachter (2013), Pindyck and Wang (2013), Farhi and Gabaix (2016), Barro et al. (2022),

Hong et al. (2023) and others develop different rare disaster models having focuses on

asset pricing implications based on general equilibrium models. Our work can be viewed

as complementary to these earlier studies, but having distinct features compared to those.

Our disastrous income shock resembles the low-probability, depression-like third state in

the rare disaster risk hypothesis of Rietz (1988). In existing rare disaster models with

representative agents, the economy has complete markets because the price of any Arrow-

Debrew security is such that the net holding of the security by the representative agent

is zero since markets must clear. Contrary to complete markets, we have incomplete

markets where the agent cannot insure against disastrous income risk, thus giving rise to

the demand for incomplete-markets precautionary savings. We do not assume dynamic

market completeness implying the existence of a unique state price density process that

is necessarily required in the literature to characterize general equilibrium quantities with

representative agents. Rather, we directly solve the partial equilibrium incomplete markets

problem using the convex-duality approach of Bensoussan et al. (2016) without resorting

to the unique existence of state price density process. Further, general equilibrium rare

disaster models attempt to explain empirical regularities (e.g., the equity premium puzzle,

the risk-free rate puzzle), whereas this paper is a theoretical exercise in the understanding

of optimal consumption/savings and investment behaviors with disastrous income risk in

a partial equilibrium incomplete-market environment.

Three papers that present parallel and independent works on the issues associated with

disastrous income risk are Cocco et al. (2005), Bensoussan et al. (2016), and Wang et al.

(2016). These three papers study an incomplete market consumption/savings or portfolio
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choice model with uninsurable labor income risk. Cocco et al. (2005) investigate the role

of market incompleteness caused by uninsurable labor income risk in individuals’ optimal

policies. Bensoussan et al. (2016) explore the effects of the risk of forced unemployment on

interdependent consumption/savings, portfolio selection, and retirement decisions. Wang

et al. (2016) study the impact of stochastic income on optimal consumption and savings

decisions with recursive utility. The distinct feature of this paper from these three studies is

state-dependent and stochastically time-varying severity of disaster (or duration of disaster)

in the model. We think about disastrous income shocks as recurring events that repeat over

time, so disastrous income risk is modeled and interpreted as state dependent disasters that

fluctuate in extreme scenarios. We therefore shed new insights, beyond existing studies,

into the relations among stochastic income disasters, consumption/savings, and portfolio

choice.8

The paper is organized as follows. In Section 2, we provide for empirical motivation

exploratory analysis of the relationship between disastrous shock and consumption, using

data covering the periods of Covid-19 and 2008 financial crisis. In Section 3, we develop

the basic model for the optimal consumption and investment framework without disastrous

income risk. In Section 4, we develop three general models to include in the basic model

borrowing constraints, a disastrous income shock, and state-dependent and time-varying

disastrous income risk. We solve all these three models in analytically tractable forms.

In Section 5, we conduct quantitative analysis to discuss various properties of optimal

strategies, having an interest in the role of insurance. In Section 6, we conclude the paper.

8Further, Wang et al. (2016) do not consider the agent’s asset allocation decision that is one of the
most important financial decisions over the life cycle.
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2 Empirical Motivation

The ratios of aggregate consumption to aggregate income (GDP) for almost all advance

and emerging market economies have been very badly affected by rare disasters for the

last ten years. The last 2008 global financial crisis was disastrous to cause a large fall of

consumption to income ratios and the recent Covid-19 was more disruptive causing even

lower ratios in the pandemic recovery period than in the period post 2008 crisis (Figure

1).
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Figure 1: Consumption to GDP Ratio by Country

It is, therefore, of interest to empirically examine what underlying economic mech-

anisms have contributed to substantial consumption reductions at the times when rare

disasters occur. Focusing on the recent pandemic, the relations among consumption (per
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capita growth rate) changes, aggregate income (GDP), disaster shock severity, and fiscal

measures while controlling for other variables are reported in Table 1 using quarterly panel

data with 55 countries over the period 2011Q1-2021Q2.9 The strong positive estimate of

GDP pci,t as a proxy of aggregate income supports the consumption theory of Friedman

(1957) that income is one of the major determinants for consumption. The negative es-

timate of Str indexi,t and positive estimate of V accinei,t provide evidence of a negative

relation between consumption and the severity of Covid-19 shock.

Many governments have provided in two ways financial supports to economic entities

as a response to the recent pandemic. On one hand, they have offered credit and liquidity

supports (hereafter liquidity measures) through loans at a lower interest rate than before

the pandemic. On the other hand, they have approved the injection of the so-called ‘he-

licopter money’ (hereafter stimulus measures) to the economy through massive tax cuts

and other direct money provisions.10 The scale of both stimulus and liquidity measures in

response to the pandemic has turned out to be unprecedented. Using 185 countries’ data,

the distribution of the size of stimulus and liquidity measures as of 2021Q3 is shown as a

percentage of each economy’s GDP (Figure 2). The stimulus measures take up more than

5% GDP in majority advanced economies and 2%∼5% GDP in emerging and low-income

developing economies. The liquidity measures account for 2%∼5% GDP for advanced

economies, 1%∼4% GDP for emerging market economies, and 0.2%∼1% for low-income

developing countries. Notice that advanced economies are likely to provide in size stimulus

measures more aggressively than liquidity measures.

With a focus on consumption, both the stimulus measures and the liquidity mea-

sures are effective in restoring consumption with positive estimates for Stimulusi,t−1 and

9The shock severity is measured by three factors: new Covid-19 confirmed cases, changes in the strin-
gency index measuring Covid-19 disruption to the social economic life, increment in vaccine coverage. As
a convention of consumption function studies, proxies of stock return, interest rate and wealth level are
included.

10Examples include US’s relief program that pays stimulus check to households and UK Coronavirus
Job Retention Scheme that pays furloughed employees.
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Table 1: Regressions for per capita consumption change

Dependent variable:

Cons pci,t

Fixed effects model Random effects model

Covidi,t −0.056∗∗∗ −0.056∗∗∗

(0.008) (0.008)

Str indexi,t −0.090∗∗∗ −0.091∗∗∗

(0.006) (0.006)

V accinei,t 0.049∗∗∗ 0.049∗∗∗

(0.008) (0.008)

Stimulusi,t−1 0.164∗∗∗ 0.162∗∗∗

(0.048) (0.048)

Liquidityi,t−1 0.119∗∗∗ 0.115∗∗∗

(0.038) (0.038)

GDP pci,t 0.775∗∗∗ 0.773∗∗∗

(0.024) (0.023)

Stock rtni,t −0.010 −0.011
(0.007) (0.007)

Bank ratei,t −0.087∗ −0.086∗

(0.047) (0.047)

GDP pci,2019 −0.008∗∗∗

(0.003)

Constant 0.769∗∗∗

(0.202)

Observations 2,332 2,332
R2 0.643 0.641
Adjusted R2 0.633 0.640
F Statistic 509.796∗∗∗ (df = 8; 2268) 4,145.739∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes. Taking Cons pci,t as the dependent variable, we lag stimulus and liquidity variables by one quarter in reduced
form regressions to capture the short-term but not long-term impact. Table 1 reports estimates from fixed effects models
and random effects models, assuming that the average value of Cons pci,t varies across country and remains constant over
time. These two models capturing short-run effects produce similar estimates, which are significant for all variables other
than Stockrtni,t, thus implying no significant relation between stock return and consumption in the short-run. The data
contain seven dimensions. (1) Consumption per capita: Cons pci,t, percentage change of seasonally- and inflation-adjusted
consumption per capita from previous quarter. (2) Disaster risk intensity: Covidi,t, quarterly new confirmed cases of
Covid-19 per 1,000 people; Str indexi,t, quarterly change in Covid-19 Stringency Index, which ranges from 0 to 100 (100
= strictest) and is based on nine metrics of social response (e.g. school closures); V accinei,t, quarterly increment in people
who received at least one vaccine dose per 100 people in the total population. (3) Fiscal measures in response to the
Covid-19 pandemic: Stimulusi,t−1, quarterly change in the value of stimulus measures as a percentage of GDP, lagged
by one quarter; Liquidityi,t−1, quarterly change in the value of liquidity measures as a percentage of GDP, lagged by one
quarter. Stimulus measures are government additional spending and forgone revenue; liquidity measures are equity, loans
and guarantees offered by governments. (4) GDP per capita as a proxy of aggregate income: GDP pci,t, quarterly change (in
percentage) of seasonally- and inflation-adjusted GDP per capita. (5) Stock return, Stock rtni,t, the difference in quarterly
stock return (in percentage), calculated from stock market index from each country, between current and previous quarter.
(6) Bank rate as a measure of interest rate, Bank ratei,t, quarterly difference in central bank policy rate (in percentage). (7)
Wealth proxy: GDP pci,2019, percentile of 2019 GDP per capita. Data to describe dimensions 1 and 4-6 are from Passport
database; data for dimensions 2, 3 and 7 are respectively from Our World in Data database, IMF and World Bank.
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Figure 2: Distribution of value of fiscal measures in response to Covid-19

Liquidityi,t−1 (Table 1).

Our empirical results would now provide a useful motivation for developing a model of

consumption/savings and investment decisions considering the joint impact of disastrous

income risk and income recovery. We conjecture that availability of insurance that smooths

out income fluctuations would be capable of pulling consumption back to its normal level

especially in a severe income shock. The model to be developed in the paper rather

simplifies the role of insurance with an emphasis on income recovery only in a disaster.

Having developed the model, we will investigate the effects of disastrous income risk on the

agent’s optimal decisions and how access to insurance for income recovery helps the agent

to manage the adverse effects of disastrous income risk by optimally adjusting amounts of

consumption/savings and investments.

3 The Basic Model

For the basic model allowing for analytically tractable closed-form solutions, we consider

the optimal consumption/savings and investment decisions of a representative economic
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agent who exhibits CARA utility preference as follows:

U = E
[ ∫ ∞

0

e−βt
(
− 1

γ
e−γct

)
dt
]
,

where E is the expectation taken at time 0, ct is per-period consumption, β > 0 is the

agent’s subjective discount rate, and γ > 0 is the agent’s constant coefficient of absolute

risk aversion. We consider constant hazard rate of death. Following Blanchard (1985),

the effective discount rate can then be the sum of subjective discount rate and mortality

rate. In this sense, we assume that the subjective discount rate considered in this paper

accounts for both discounting and a constant probability of death.

The agent can trade securities. The securities market consists of two assets: a riskless

bond (or a risk-free asset) and a risky stock (or a risky asset). The bond price Bt follows

dBt = rBtdt,

where r > 0 is the risk-free interest rate, and the stock price St evolves according to the

following geometric Brownian motion (GBM):

dSt = µStdt+ σStdWt, (1)

where µ > r and σ > 0 are the mean and standard deviation of the returns on the stock, i.e.,

they represent the expected return and risk in the financial market, and Wt is a standard

one-dimensional Brownian motion defined on an appropriate probability space. We assume

that r, µ, σ are constant, i.e., the investment opportunity set is constant.

The labor income is assumed to be risk free, but time varying in a deterministic way
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in this basic model, so its dynamics are given by: ε0 = ε > 0,

dεt = µεεtdt,

where µε is the income growth parameter that is nonnegative.

The agent’s basic model of optimal consumption/savings and investment decisions is

to maximize her life-time CARA utility of consumption by optimally managing per-period

consumption c and investment π. That is, the agent’s objective function is to find the

following value function:

V (x, ε) ≡ max
(c,π)

E
[ ∫ ∞

0

e−βt
(
− 1

γ
e−γct

)
dt
]
, (2)

which is subject to the following dynamic budget constraint: X0 = x > −ε/rε,

dXt =
(
rXt − ct + εt

)
dt+ πtσ(dWt + θdt), θ =

µ− r
σ

, (3)

where

rε = r − µε,

which serves as the effective interest rate for discounting future income. Here, the agent is

allowed to borrow against the present value, ε/rε, of future income, i.e., the agent is not

borrowing constrained at all.

The Hamilton-Jacobi-Bellman (HJB) equation associated with the value function (2)

is given by

max
(c,π)

[
− βV (x, ε) + (rx− c+ ε)Vx(x, ε) +

1

2
π2σ2Vxx(x, ε)

+ πσθVx(x, ε) + µεεVε(x, ε)−
1

γ
e−γc

]
= 0.

(4)

Applying the first-order-conditions (FOCs) for consumption c and investment π results in
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the following candidates for optimal policies:

c = −1

γ
lnVx(x, ε),

π = − θ
σ

Vx(x, ε)

Vxx(x, ε)
.

(5)

Substituting the above FOCs in the HJB equation (4), we obtain that

−βV (x, ε) + (rx+ ε)Vx(x, ε) +
1

γ
Vx(x, ε)

{
lnVx(x, ε)− 1

}
− 1

2
θ2Vx(x, ε)

2

Vxx(x, ε)
+ µεεVε(x, ε) = 0.

(6)

We conjecture that the value function V (x, ε) has the following form:

V (x, ε) = − A
γr
e−γr(x+aε), (7)

where A and a are the constants to be determined. Putting the conjectured value function

into the HJB equation (6) determines the constants as follows

A = e−
1
r

(
θ2

2
+β−r

)
, a =

1

rε
.

Therefore, the value function is now obtained in closed-form as follows

V (x, ε) = − A
γr
e−γr(x+ε/rε).

We then obtain the optimal consumption and investment strategies in closed-form by
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putting the derived value function into the FOCs given in (5):

c = r
[
x+

ε

rε
+

θ2

2γr2

(
1 +

2

θ2
(β − r)

)]
,

π =
θ

γσ

1

r
.

The obtained optimal strategies in this basic model suggest that the optimal consump-

tion is affine in total wealth that is the sum of financial wealth x and human wealth ε/rε.

The optimal investment policy is to maintain a constant dollar amount in the risky as-

set, which is independent of wealth and thus, does not capture the so-called wealth effect.

Notice that the adoption of CARA utility has a major benefit of greatly simplifying the

analysis at the expense of wealth effect property. The limitation of CARA utility will

be overcome in part in the next section by considering a borrowing-constrained situation

in the agent’s budget constraint so that the agent’s liquid wealth should have effects on

investment policy.

4 General Models

Having understood some basic interactions among labor income, consumption/savings,

and investment, we then establish general models to provide an intuitive insight into how

state-dependent and time-varying disastrous income risk affects the agent’s optimal choices.

We proceed pedagogically with our analysis and develop insights by solving three models,

which are categorized by borrowing constraints, a disastrous income shock, and stochastic

nature of disastrous income risk.

Model 1. The basic model with borrowing constraints.

Model 2. Model 1 with a one-time-only disastrous income shock.

Model 3. Model 2 with state-dependent and time-varying disastrous income risk.
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Model 1 is a generalization of Merton (1969) considering the borrowing-constrained

agent who is not allowed to borrow against future income. Moving to Model 2 isolates the

effects of a disastrous income shock on optimal strategies. Finally, moving to Model 3 very

closely analyzes new issues introduced by state dependency and time-varying severity of

disastrous income risk on consumption/savings and investment decisions.

4.1 A consumption/savings and investment model with borrow-

ing constraints (Model 1)

The agent is borrowing constrained due to market frictions (e.g., informational asymmetry,

agency conflicts, limited enforcement). In the presence of borrowing constraints against

income, the agent’s wealth should be nonnegative and hence,

Xt ≥ 0 for all t ≥ 0. (8)

So, Model 1 is to find the value function given in (2) subject to the dynamic budget

constraint (3) and the borrowing constraints in (8).

Incorporating the borrowing constraints into the basic model causes a considerable

challenge in the primal HJB equation (6) because the two-dimensional HJB equation is no

longer separable in financial wealth x and income ε due to the wealth effect that has been

ignored in the CARA utility function. That is, the wealth effect is caused with CARA

utility preference by borrowing constraints and the conjecture (7) using the separable

principle cannot be applied to solve the equation (6) any more. To overcome this technical

difficulty, we convert the primal HJB equation (6) into the dual HJB equation by developing

a modified version of the convex-duality approach of Bensoussan et al. (2016) to deal with

two dimensions of the equation (6) instead of one dimension in Bensoussan et al. (2016).

We first introduce the dual variable λ(x, ε) as the first derivative of the value function
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V (x, ε):

λ(x, ε) ≡ Vx(x, ε). (9)

We next introduce the convex-dual function G(λ(x, ε)) as the total wealth that is the sum

of financial wealth x and the present value ε/rε of future income:

G
(
λ(x, ε)

)
≡ x+

ε

rε
. (10)

We then obtain the following relations:

G′
(
λ(x, ε)

)
λx(x, ε) = 1, G′

(
λ(x, ε)

)
λε(x, ε) =

1

rε
,

G′′
(
λ(x, ε)

)
λx(x, ε)

2 +G′
(
λ(x, ε)

)
λxx(x, ε) = 0.

(11)

For notational simplicity, we write G(λ(x, ε)) and λ(x, ε) as just G(λ) and λ, respectively,

unless there is any confusion.

Taking the first derivative with respect to financial wealth x on the both sides of the

HJB equation (6), we obtain that

− βVx(x, ε) + rVx(x, ε) + (rx+ ε)Vxx(x, ε) +
1

γ
Vxx(x, ε){lnVx(x, ε)− 1}

+
1

γ
Vx(x, ε)

Vxx(x, ε)

Vx(x, ε)
− 1

2
θ2 2Vx(x, ε)Vxx(x, ε)

2 − Vx(x, ε)2Vxxx(x, ε)

Vxx(x, ε)2
+ µεεVεx(x, ε) = 0.

Using the dual variable (9), the convex-dual function (10), and the their relations given in

(11), we obtain the following dual HJB equation: for 0 < λ < λ,

rG(λ) =
1

2
θ2λ2G′′(λ) + (β + θ2 − r)λG′(λ)− 1

γ
lnλ, (12)

where λ is a constant to be determined according to the borrowing constraints (8). We

will address proper boundary conditions of G(λ) at λ after understanding the economics
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first behind the dual HJB equation (12).

The left-hand side of the equation (12) demonstrates that the agent’s total wealth rep-

resented by the convex-dual function G(λ) earns the risk-free rate of return by dynamically

consuming and trading both the risk-free bond and the risky stock in the market. The

right-hand side of the equation shows instantaneous expected changes in the agent’s total

wealth with respect to the dual variable λ that eventually determines the agent’s marginal

consumption from the FOC (5). More specifically, the convexity effect of the Sharpe ratio

θ on total wealth is revealed in the first term on the right-hand side of the equation (12)

involving the second derivative G′′(λ) of total wealth. The agent’s expected risk premium

relative to the risk-free interest rate r is captured by the drift term β + θ2 − r of total

wealth that is the second term on the right-hand side of the equation involving the first

derivative G′(λ) of total wealth. The very last term of the right-hand side of the equation

results from the agent’s instantaneous utility of consumption.

We now address the boundary conditions associated with the borrowing constraints (8).

First,

G(λ) =
ε

rε
(13)

is naturally obtained by the relation (10) between financial wealth x and convex-dual

function G(λ). The convex-dual function G(λ) gets closer to human wealth ε/rε only as

financial wealth decumulates to zero, so that there exists a threshold level λ of λ such that

G(λ) = ε/rε. Second,

G′(λ) = 0 (14)

is a consequence of a principle in optimal stopping that is known as smooth pasting, which

implies that when marginal value λ of wealth rises to the upper limit λ, the borrowing

constraints bind, thus resulting in a 100% investment in riskless bonds. From the FOC

(5), the second boundary condition is thus obtained. Technically, the borrowing constraints
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are reminiscent of an absorbing boundary.

The converted dual HJB equation (12) with the boundary conditions (13) and (14)

admits the following closed-form solution: for 0 < λ < λ,

G(λ) = − 1

γr
lnλ− θ2

2γr2

(
1 +

2

θ2
(β − r)

)
+Bλ−α

∗
, (15)

where B is a constant to be determined with λ according to the boundary conditions (13)

and (14) and −1 < α∗ < 0 is the negative root of the following characteristic equation:

F (α) ≡ −1

2
θ2α(α− 1) + α(β − r) + r = 0.

Using the boundary conditions (13) and (14), we obtain the following two relations:

ε

r
= − 1

γr
lnλ− θ2

2γr2

(
1 +

2

θ2
(β − r)

)
+Bλ

−α∗

,

and

0 =
1

γr
+ α∗Bλ

−α∗

.

We therefore determine B and λ as follows:

B = − λ
α∗

γrα∗
> 0, (16)

and

λ = exp
{
− θ2

2r

(
1 +

2

θ2
(β − r)

)
− 1

α∗
− γε

}
> 0, (17)

respectively.

We now derive the agent’s optimal policies. The FOCs for consumption c and invest-

ment π given in (5) can be rewritten with the dual variable λ and the convex-dual function
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G(λ) as follows:

c = −1

γ
lnλ,

π = − θ
σ
λG′(λ).

(18)

We thus obtain the following optimal consumption and investment strategies by substitut-

ing the determined convex-dual function G(λ) in (15) with (16) and (17) in the rewritten

FOCs stated above:

c = r
[
x+

ε

rε
+

θ2

2γr2

(
1 +

2

θ2
(β − r)

)
−Bλ−α∗

]
,

π =
θ

γσ

(1

r
+ α∗Bλ−α

∗
)
.

(19)

Contrary to the basic model, the optimal consumption is no longer affine in total

wealth. The consumption is complicated by the presence of borrowing constraints and

now nonlinear in (financial) wealth by the dual variable λ having the relation (10) with

wealth via the convex-dual function G(λ). Further, keeping a constant dollar amount

in stockholdings is suboptimal with borrowing constraints. Stock investments are also

affected by levels of wealth through the dual variable λ. In light of such a wealth-dependent

investment strategy, the issue of wealth effect that has been ignored by adopting CARA

utility is partially addressed with the help of borrowing constraints.

We center our Model 1 analysis on one possible economic mechanism underlying bor-

rowing constraints. Agents’ wealth position crucially determines how much they diminish

both consumption and stockholdings. With B > 0 and −1 < α∗ < 0, we theoretically

predict from the optimal choices in (19) that the presence of borrowing constraints causes

agents to decrease both their consumption and investments in risky assets. The effects of

borrowing constraints are wealth dependent. We know the inverse relation between wealth

x and dual variable λ implied from (11) with G′(λ) < 0 that is straightforward to be

verified using the closed-form solution of G(λ) in (15). Low levels of wealth are associated
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with high levels of dual variable. As a result, the presence of borrowing constraints leads

to a quantitatively substantial reduction in amounts of consumption and stock investment

especially for agents with low liquid wealth. Intuitively, when agents are in a low wealth

position, borrowing constraints are more likely to bind. Therefore, agents with low wealth

seek to avoid binding borrowing constraints by reserving sufficiently large amount of sav-

ings, thus suggesting such optimal consumption and investment policies with borrowing

constraints.

4.2 A consumption/savings and investment model with a disas-

trous income shock (Model 2)

Model 2’s focus is on the effects of a disastrous income shock on optimal policies. For

simplicity and comparison purposes with Model 3 having general settings for disastrous

income risk, we consider in Model 2 a one-time-only large negative Poisson shock to labor

income. In the presence of a one-time Poisson shock, the labor income dynamics εt is

evolved according to the following stochastic processes: ε0 = ε > 0,

dεt = µεεt−dt− (1− k)εt−dNt, (20)

where k ∈ [0, 1) is the income recovery parameter and Nt is the one-time Poisson shock

with intensity δ > 0. The agent’s income plummets to kεt− from εt− at the time when the

disastrous Poisson shock occurs. Our income dynamics with the positive income growth

rate µε would reflect a realistic feature of the recent pandemic that income is substantially

lost for a period of months, but taking a long time after the disaster, the income is highly

likely to revert to its pre-disaster state.

Without any consideration of a potential role of insurance in the income recovery in

the aftermath of the income disaster, the agent’s income would be completely wiped out
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reducing to nothing, which corresponds to the limiting case when the income recovery

parameter k equals to zero. In this case, the agent has no income source in the disaster.

If we consider in a very reduced form the role of insurance for hedging the disastrous

income shock, the story post income disaster would be quite different. With access to an

insurance market to hedge against the income shock, the agent’s income can be partly

recovered at the rate of 0 < k < 1, so that she receives kε post disaster.

The role of insurance is particularly important for the agent’s human capital (present

value of future labor income) which is a major staple of total wealth for managing overall

risk exposure. The human capital is the following present value of future income discounted

by the risk-free interest rate r (Friedman, 1957):

ε

rε + δ

(
1 +

δk

rε

)
.

For the limiting case of k = 0, i.e., without any access to the insurance market, the human

capital decreases to

ε

rε + δ
.

With access to the insurance market, total available financial resources for hedging purposes

could be further expanded by the larger human capital than without access to the insurance

market.

Model 2 is to find the value function given in (2) subject to the dynamic budget con-

straint (3), the borrowing constraints in (8), and the disaster-exposed income dynamics

(20).

The HJB equation associated with Model 2 is given by

max
(c,π)

[
− (β + δ)V (x, ε) + (rx− c+ ε)Vx(x, ε) +

1

2
π2σ2Vxx(x, ε)

+ πσθVx(x, ε) + µεεVε(x, ε)−
1

γ
e−γc − δ A

γr
e−γr(x+kε/rε)

]
= 0.

(21)
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Notice that the very last term on the left-hand side of the HJB equation (21) is the value

function in the basic model replacing ε with kε and it is therefore the maximal utility value

post the disastrous income shock. Here, the post-disaster value function directly affects

the pre-disaster value function, thus influencing optimal decisions pre disaster, which is

the main departure of the HJB equation (21) from those in the basic model and Model 1.

We apply the same convex-duality approach that has been adopted in Model 1 by

introducing the dual variable λ in (9) and the convex-dual function G(λ) in (10). The HJB

equation (21) by taking its first derivative with respect to x then reduces to the following

dual HJB equation: for 0 < λ < λ,

rG(λ) =
1

2
θ2λ2G′′(λ) +

{
β+ δ

(
1− A

λ
e−γr

(
G(λ)−ε/rε+kε/rε

))
+ θ2− r

}
λG′(λ)− 1

γ
lnλ, (22)

subject to the boundary conditions in (13) and (14). The additional risk in Model 2

results from the Poisson arrival of the disastrous income shock at the constant disaster

intensity δ. Compared to the basic model and Model 1, the agent in Model 2 should

therefore reflect such extra risk consideration in the agent’s expected risk premium on

total wealth. The expected return compensation for the presence of the disastrous income

shock is β + δ
(

1− A

λ
e−γr

(
G(λ)−ε/rε+kε/rε

))
+ θ2 − r in the drift term of total wealth. The

wedge δ
(

1 − A

λ
e−γr

(
G(λ)−ε/rε+kε/rε

))
between expected risk premia in this model and in

Model 1 then represents the disastrous income risk premium.

We conjecture that the convex-dual function G(λ) that solves the HJB equation (22)

has the following form: for 0 < λ < λ,

G(λ) = − 1

γr
lnλ− θ2

2γr2

(
1 +

2

θ2
(β + δ − r)

)
+ η(λ)λ−αδ + η∗(λ)λ−α

∗
δ ,

subject to η′(λ)λ−αδ + (η∗(λ))′λ−α
∗
δ = 0,

(23)
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where αδ > 0 and −1 < α∗δ < 0 are the two roots of the following characteristic equation:

F (α; δ) ≡ −1

2
θ2α(α− 1) + α(β + δ − r) + r = 0.

Plugging (23) into (22), we get the following analytically tractable form: for 0 < λ < λ,

G(λ) =− 1

γr
lnλ− θ2

2γr2

(
1 +

2

θ2
(β + δ − r)

)
+Bλ−α

∗
δ

− 2δ

θ2(αδ − α∗δ)

[
(αδ − 1)λ−αδ

∫ λ

0

µαδ−2 A

γr
e−γr

(
G(µ)− ε

rε
+ kε
rε

)
dµ

+ (α∗δ − 1)λ−α
∗
δ

∫ λ

λ

µα
∗
δ−2 A

γr
e−γr

(
G(µ)− ε

rε
+ kε
rε

)
dµ
]
,

(24)

where

B ≡ η∗(λ) +
2δA

θ2(αδ − α∗δ)γr
λ
α∗
δ−1

,

which is a constant to be determined with λ. Using the boundary conditions in (13) and

(14), we obtain the following two relations:

ε

rε
=− 1

γr
lnλ− θ2

2γr2

(
1 +

2

θ2
(β + δ − r)

)
+Bλ

−α∗
δ

− 2δ

θ2(αδ − α∗δ)
(αδ − 1)λ

−αδ
∫ λ

0

µαδ−2 A

γr
e−γr

(
G(µ)− ε

rε
+ kε
rε

)
dµ,

and

1

γr
+
α∗δε

rε
+
θ2α∗δ
2γr2

(
1 +

2

θ2
(β + δ − r)

)
= −α∗δ

1

γr
lnλ− 2δ

θ2λ

A

γr
e−γr

kε
rε +

2δ(αδ − 1)

θ2
λ
−αδ
∫ λ

0

µαδ−2 A

γr
e−γr

(
G(µ)− ε

rε
+ kε
rε

)
dµ,

and thereby the constants B and λ can be determined numerically.

Finally, the rewritten FOCs in (18) with the dual variable λ and the convex-dual func-

tion G(λ) allow us to derive the following optimal consumption and investment strategies
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with substitution of the convex-dual function G(λ) given in (24):

c =r
[
x+

ε

rε
+

θ2

2γr2

(
1 +

2

θ2
(β + δ − r)

)
−Bλ−α∗

δ + PS
]
, (25)

π =
θ

γσ

(1

r
+ α∗δBλ

−α∗
δ + αδPS1 + α∗δPS2− RD

)
, (26)

where PS represents the precautionary savings driven by the disastrous income shock and

it is given by

PS = PS1 + PS2,

PS1 =
2δ(αδ − 1)

θ2(αδ − α∗δ)
λ−αδ

∫ λ

0

µαδ−2 A

γr
e−γr

(
G(µ)− ε

rε
+ kε
rε

)
dµ > 0,

PS2 =
2δ(α∗δ − 1)

θ2(αδ − α∗δ)
λ−α

∗
δ

∫ λ

λ

µα
∗
δ−2 A

γr
e−γr

(
G(µ)− ε

rε
+ kε
rε

)
dµ < 0,

and RD represents the risk diversification demand driven by the disastrous income shock

and it is given by

RD =
2δ

θ2λ

A

γr
e−γr(x+kε/rε) > 0.

Model 2 can be thought of as a generalized consumption/savings and investment model

with two-dimensional market incompleteness caused by borrowing constraints and the dis-

astrous income shock. Model 1 cannot study the effects of the income shock on agents’

optimal choices. Both borrowing constraints and the income shock affect agents’ consump-

tion and portfolio choice. We find a large precautionary savings motive represented by

PS in the optimal consumption (25) for income-risk-exposed agents to consume less. The

disastrous-income-shock-induced precautionary savings tend to be greater at lower levels

of wealth x because the income shock is not spanned by the market and agents with low

wealth find it much harder to buffer against the unspanned income shock in incomplete

markets relying on their low liquidity position.

As opposed to the standard precautionary savings arguments, the secured substantial
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amount of precautionary savings is invested in the risky stock market rather than in the

riskless bond market. Agents in our incomplete markets have an incentive to invest in

risky assets that serve as a partial hedging tool against the disastrous income shock. This

incentive is driven by the positive risk premium offered from risky investments for agents

to promptly accumulate sufficient wealth to be in a more liquid position. Here, liquidity

with far enough wealth buffers against the disastrous income shock and helps agents avoid

binding borrowing constraints as well.

On the other hand, the disastrous income shock would have the opposite effects on

the risky investment policy. Income-disaster-exposed agents are already exposed to high

income risk on top of the stock market risk and hence, they show a demand for risk

diversification represented by RD in the optimal investment (26). Put differently, the

increased background risk due to the disastrous income shock leads agents to invest less in

the stock market to reduce the overall risk exposure.

4.3 A consumption/savings and investment model with state-

dependent and time-varying disastrous income risk (Model

3)

Model 2 we have considered in the previous subsection is limited by having the one-time

disastrous income shock only. In this section, we overcome Model 2’s limitation by reflecting

the fact that in reality, agents still expect occurrence of disastrous income shocks even

after the income shock takes place in the past. The disastrous income shocks can occur

repeatedly. Thinking about large, negative income shocks as recurring events that repeat

over time (e.g., the great depression, the 2008 global financial crisis, the recent COVID-

19 pendemic), we importantly model and interpret the income shocks as state dependent

disasters that fluctuate in extreme events. In light of such realistic ramifications that are
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present in the actual disastrous income risk, we consider a general Poisson jump process

with state-dependent and stochastically time-varying disaster intensity δt instead of the

previously considered constant intensity δ.

In the presence of state-dependent and stochastically time-varying disastrous income

risk, the income dynamics εt are evolved by the following stochastic process: ε0 = ε > 0,

dεt = µεεt−dt− (1− k)εt−dN
G
t , (27)

where NG
t is the Poisson jump process with state-dependent and time-varying intensity δt.

We now model state-dependent disastrous income shocks by a two-state Markov chain:

the good state G and the bad state B. For a small time period (t, t+dt), the state switches

from the good state G (B) to the bad state B (G) with probability φGdt (φBdt) when

the current state is G (B), and stays unchanged with the remaining probability 1− φGdt

(1−φBdt). We then introduce the dynamics of stochastically time-varying disaster intensity

δt that is state dependent, so that we denote δit by the intensity dynamics in the state i

(i ∈ {G,B}). We assume that the intensity dynamics δit in the state i are assumed to

follow a GBM: δi0 = δi > 0,

dδit = −δiδitdt+ biδitdZt, (28)

where bi is the volatility on the intensity growth rate and Zt is a standard one-dimensional

Brownian motion that is correlated with the market factor Wt considered in the stock price

dynamics (1), i.e., dWt · dZt = ρidt, ρi ∈ [−1, 1]. Notice that the negative intensity growth

rate implies that probabilities of undergoing disastrous income shocks decrease over time

as a reflection towards the reality that disasters will come to an end eventually after taking

a long time.

Our GBM modeling for state-dependent and time-varying disastrous income risk has

the convenient property that it nests Model 2 by setting bi = 0. In this case, the intensity
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δit reduces to δit = δie−δ
it, which is the probability density function of an exponential

distribution with constant intensity δi that has been used to model the one-time disastrous

income shock in Model 2.

Model 3 is to find the value function as follows: in the state i (i ∈ {G,B}),

V i(x, ε) ≡ max
(c,π)

E
[ ∫ τ i

0

e−βt
(
− 1

γ
e−γct

)
dt+ e−βτ

i

V j(x, ε)
]
, (29)

subject to the dynamic budget constraint (3), the borrowing constraints in (8), and the

income dynamics (27) with state-dependent and time-varying disastrous income risk mod-

eled by (28), where τ i is the first jump time of state switching since the beginning of the

state i and V j(x, ε) is the value function in the state j 6= i.

To deal with both state dependency and time-varying severity of disastrous income risk

in the expectation taken in the value function, we introduce a new probability measure in

the state i as

P̃ (A) ≡
∫
A

eb
iZt(ω)− 1

2
(bi)2tdP (ω) for all A ∈ F ,

where F is the filtration generated by the stock and income dynamics. Then, by Girsanov’s

theorem

W̃t ≡ Wt − ρtbit

is the standard one-dimensional Brownian motion under the new probability measure. We

can now restate the dynamic budget constraint (3) under the new probability measure as

follows: X0 = x ≥ 0,

dXt =
(
rXt − ct + εt

)
dt+ πtσ

{
dW̃t + (θ + ρibi)dt

}
. (30)

The value function (29) can be restated under the new probability measure by integrating
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out δi and τ i as follows: in the state i (i ∈ {G,B}),

V i(x, ε) = max
(c,π)

Ẽ
[ ∫ ∞

0

e−(β+δi+φi)t
(
− 1

γ
e−γct + δiV i

(
Xt, kεt

)
+ φiV j(Xt, εt)

)
dt
]
, (31)

subject to the restated dynamic budget constraint (30) and the borrowing constraints in

(8), where Ẽ is the expectation taken under the new probability measure.

THe HJB equation associated with Model 3 is then given in the state i (i ∈ {G,B}) by

−(β + δi + φi)V i(x, ε) + (rx− c+ ε)V i
x(x, ε) +

1

2
π2σ2V i

xx(x, ε)

+ πσ(θ + ρibi)V i
x(x, ε)− 1

γ
e−γc + δiV i(x, kε) + φiV j(x, ε) = 0.

(32)

Notice that the very last two terms involving the disaster intensity δi and the state-

switching intensity φi represent the value functions post disaster and post state switching,

respectively, and the post value functions V i(x, kε) and V j(x, ε) directly influence the pre

value function V i(x, ε), thus affecting pre optimal policies.

As a slightly modified version of the convex-duality approach that has been adopted

in Model 1, we introduce the state-dependent dual variable λi and the state-dependent

convex-dual function Gi(λi) as follows: in the state i (i ∈ {G,B}),

λi(x, ε) ≡ V i
x(x, ε)

and

Gi(λi(x, ε)) ≡ x+
ε

rε
.

The HJB equation (32) by taking its first derivative with respect to x then simplifies to
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the following dual HJB equation in the state i (i ∈ {G,B}): for 0 < λi < λi,

rGi(λi) =
1

2
θ̃2
i λ

2
iG
′′
i (λi)+

{
β+δi

(
1−Gi

(
λi(x, kε)

))
+φi

(
1−λj(x, ε)

)
+θ̃2

i−r
}
λiG

′
i(λi)−

1

γ
lnλi,

(33)

subject to the following boundary conditions:

Gi(λi) =
ε

rε
, G′i(λi) = 0, (34)

where

θ̃i ≡ θ + ρibi

is the disaster-risk-adjusted Sharpe ratio. Compared to Model 2, state-dependent and

stochastically time-varying disastrous income risk has two major differences. On one hand,

the Sharpe ratio θ is adjusted with the correlation ρi between the market and the disaster

dynamics and the disaster volatility bi. Put another way, the optimal decisions are affected

accordingly by the disaster-risk-adjusted Sharpe ratio θ̃i in the incorporation of hedging

effectiveness of stock investment against disastrous income risk with the correlation ρi and

in the reflection on different levels of deviations bi from the expected disaster growth rate

−δi. On the other hand, the agent in Model 3 demands both time-varying disastrous

income risk premium and state-dependent disastrous income risk premium in the agent’s

expected risk compensation. The expected return compensation for time-varying and state-

dependent disastrous income risk is represented in the drift term of total wealth by δi
(
1−

Gi(λi, kε)
)

and φi
(
1− λj(x, ε)

)
, respectively.

We conjecture that the solution of the dual HJB equation (33) has the following form

in the state i (i ∈ {G,B}): for 0 < λi < λi,

Gi(λi) = − 1

γr
lnλi −

θ̃2
i

2γr2

(
1 +

2

θ̃2
i

(β + δi + φi − r)
)

+ ηi(λi)λ
−αi
i + η∗(λi)λ

−α∗
i

i , (35)
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subject to

η′i(λi)λ
−αi
i + (η∗(λi))

′λ
−α∗

i
i = 0,

where αi > 1 and −1 < α∗i < 0 are the two roots of the following characteristic equation:

Fi(αi; δ
i, φi) ≡ −1

2
θ̃2
iαi(αi − 1) + αi(β + δi + φi − r) + r = 0.

By putting the conjectured form (35) into the dual HJB equation (33), we obtain the

following analytically tractable form in the state i (i ∈ {G,B}): for 0 < λi < λi,

Gi(λi) =− 1

γr
lnλi −

θ̃2
i

2γr2

(
1 +

2

θ̃2
i

(β + δi + φi − r)
)

+Biλ
−α∗

i
i

+
2φiλj

θ̃2
i (αi − α∗i )

[
(αi − 1)λ−αii

∫ λi

0

µαi−2Gi(µ)dµ

+ (α∗i − 1)λ
−α∗

i
i

∫ λi

λi

µα
∗
i−2Gi(µ)dµ

]
+

2δi

θ̃2
i (αi − α∗i )

[
(αi − 1)λ−αii

∫ λi

0

µαi−2V i
(
Gi(µ)− ε/rε, kε

)
dµ

+ (α∗i − 1)λ
−α∗

i
i

∫ λi

λi

µα
∗
i−2V i

(
Gi(µ)− ε/rε, kε

)
dµ
]
,

(36)

where

Bi = η∗i (λi)−
2φiλj

θ̃2
i (αi − α∗i )

Gi(λi)λ
α∗
i−1

i − 2δi

θ̃2
i (αi − α∗i )

V i
(
Gi(λi)− ε/rε, kε

)
λ
α∗
i−1

i ,

which is a constant to be determined with λi. Using the boundary conditions in (34), we
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obtain the following two relations in the state i (i ∈ {G,B}):

ε

rε
=− 1

γr
lnλi −

θ̃2
i

2γr2

(
1 +

2

θ̃2
i

(β + δi + φi − r)
)

+Biλ
−α∗

i

i

+
2φiλj

θ̃2
i (αi − α∗i )

(αi − 1)λ
−αi
i

∫ λi

0

µαi−2Gi(µ)dµ

+
2δi

θ̃2
i (αi − α∗i )

(αi − 1)λ
−αi
i

∫ λi

0

µαi−2V i
(
Gi(µ)− ε/rε, kε

)
dµ

and

1

γr
+
α∗i ε

rε
+
θ̃2
iα
∗
i

2γr2

(
1 +

2

θ̃2
i

(β + δi + φi − r)
)

= −α∗i
1

γr
lnλi −

2φiλj

θ̃2
i λi

Gi(λi) +
2φiλj(αi − 1)

θ̃2
i

λ
−αi
i

∫ λi

0

µαi−2Gi(µ)dµ

− 2δi

θ̃2
i λi

V i
(
Gi(λi)− ε/rε, kε

)
+

2δi(αi − 1)

θ̃2
i

∫ λi

0

µαi−2V i
(
Gi(µ)− ε/rε, kε

)
dµ,

where the four constants BG, BB, λG, and λB are determined numerically.

Now that the FOCs for consumption c and investment π given in (5) are restated with

the dual variable λi and the convex-dual function Gi(λi) in the state i (i ∈ {G,B}) as

c = −1

γ
lnλi,

π = − θ
σ
λiG

′
i(λi),

the following optimal consumption and investment strategies are obtained in the state i

(i ∈ {G,B}):

c = r
[
x+

ε

rε
+

θ̃2
i

2γr2

(
1 +

2

θ̃2
i

(β + δi + φi − r)
)
−Biλ

−αi
i − PSi

]
,

π =
θ̃i
γσ

(1

r
+ α∗iBiλ

−α∗
i

i − αiPS1i − α∗iPS2i − RDi

)
,

(37)
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where PSi represents the precautionary savings induced by state-dependent and time-

varying disastrous income risk and it is given by

PSi = PS1i + PS2i,

PS1i =
2φiλj(αi − 1)

θ̃2
i (αi − α∗i )

λ−αii

∫ λi

0
µαi−2Gi(µ)dµ+

2δi(αi − 1)

θ̃2
i (αi − α∗i )

λ−αii

∫ λi

0
µαi−2V i

(
Gi(µ)− ε/rε, kε

)
dµ,

PS2i =
2φiλj(α

∗
i − 1)

θ̃2
i (αi − α∗i )

λ
−α∗

i
i

∫ λi

λi

µα
∗
i−2Gi(µ)dµ+

2δi(α∗i − 1)

θ̃2
i (αi − α∗i )

λ
−α∗

i
i

∫ λi

λi

µα
∗
i−2V i

(
Gi(µ)− ε/rε, kε

)
dµ,

and RDi represents the risk diversification demand induced by state-dependent and time-

varying disastrous income risk and it is given by

RDi = −2φiλj

θ̃2
i λi

(
x+

ε

rε

)
− 2δi

θ̃2
i λi

V i(x, kε).

By allowing for state-dependent and stochastically time-varying disastrous income risk

with Model 3, we have quantitatively identified in the optimal decisions in (37) state- and

wealth-dependent precautionary savings and risk diversification demands. Provided that

repeated disastrous income shocks with state-dependent and time-varying disaster intensity

are even worse than the one-time-only disastrous income shock in Model 2, agents would

show even more demands for precautionary savings and risk diversification. Repeated

disastrous income shocks are much more challenging for agents to handle than the one-

time-only shock as the likelihood and actual impact of future income shock do change

according to whether the current state is good or bad and time-varying severity stemming

from the stochastic nature of disastrous income risk.
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5 Quantitative Analysis

In this section, we quantitatively discuss various properties of the agent’s optimal con-

sumption and investment decisions with disastrous income risk.

Following the literature having a focus on disastrous income risk (Bensoussan et al.,

2016; Jang et al., 2020), we set the baseline parameter values of the market as follows:

the risk-free interest rate r = 3.71%, the expected stock return µ = 11.23%, and the stock

volatility σ = 19.54%.

The subjective discount rate considered in this paper accounts for mortality risk as well,

so it is higher than the risk-free rate of return. In light of this aspect, we set β = r+ 5%.11

The risk aversion is set to 2, i.e., γ = 2. The annual rate of income is normalized as 1, i.e.,

ε = 1.

The rare disastrous event would be especially problematic for the agent who works

in a small firm. This is because the agent has some possibilities of a permanent loss of

income as a result of the small firm’s closure or business failure and costly bankruptcy

(Picot, 1992; Morissette, 2004) unless there is appropriate protection for the small firm’s

businesses by limiting the long term economic impact of the disaster (Milne, 2020). Given

a positive relation between firm size and credit ratings (Blume et al., 1998; Amato and

Furfine, 2004; Avramov et al., 2009), we choose to relate the small firm’s bankruptcy

due to the disruptive effects of the disaster to the default of speculative-grade firms. More

specifically, the random arrival of the disastrous income shock can be calibrated by Moody’s

(2012) historical data of average cumulative issuer-weighted global default rates by rating

categories for the time period form 1983 to 2011. We select four categories Aaa, Aa, A, and

B to calibrate the arrival intensity δ for the income shock. According to the calibration,

disastrous income shock intensity δ is estimated as follows: 0.01% for Aaa, 0.12% for Aa,

11Farhi and Panageas (2007), Jang et al. (2019) have also adopted such a higher subjective discount
rate than the risk-free rate.
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0.30% for A, and 5.26% for B.12

Model 2 with the one-time-only disastrous income shock would serve as a benchmark

against which what and how both state dependency and time-varying severity of disastrous

income risk play an important role in determination of the agent’s optimal decisions. So,

we first focus on the Model 2’s implications with the one-time-only large negative Poisson

shock to labor income and move on Model 3 to further investigate the role of a general Pois-

son jump process with state-dependent and time-varying disaster intensity in the optimal

strategies.

The recovery of income after the disastrous income shock represents our very reduced-

form modeling for the role of insurance against disastrous income risk. The income recovery

is determined by the parameter k (0 ≤ k < 1). We consider three cases of the income

recovery: 0%, 10%, and 25%. In the extreme case of no access to an insurance market for

hedging against disastrous income risk, the agent’s income is completely wiped out, i.e.,

k = 0%. In this case, the agent has no income source in the disaster. In the other cases

of any access to the insurance market, the agent’s income can be partly recovered at the

rates k = 10% and k = 25%.

5.1 Optimal Consumption and Investment in the Stock Market

We now investigate the effects of the disastrous income shock in Model 2 on the agent’s

optimal consumption and investment in the stock market especially when the agent has no

access to the insurance market for income recovery post the income shock, i.e., when the

income recovery parameter k = 0%.

12Our calibration result is consistent with Wang et al. (2016) in that the arrival rate of large discrete
(jump) earnings shocks is chosen as 5%, which is close to our calibration result obtained from the worst
rating category B. Our estimation of parameter δ is conservative as compared to Pindyck and Wang
(2013) who have used 7.34% for the mean arrival rate of a catastrophic shock to the capital stock.
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Effects of Disastrous Income Shock. The large, negative effects of the disastrous in-

come shock are found to significantly lower the agent’s amount of optimal consumption

(Figure 3), which results from the agent’s strong motive for precautionary savings quanti-

fied in the optimal strategies derived in (25) and (26) in Section 4.2. Such large, negative

effects become stronger as the possibilities of undergoing the income shock represented by

the credit ratings of the firm for which the agent currently works rise.

Figure 3: Optimal consumption and investment in the stock market as a function of financial
wealth x.

Notably, the agent’s optimal consumption shows a significant discontinuity and the

dramatic change in the concavity of consumption when the credit rating falls from Aaa,

Aa, A to B dramatically. We find that if the chance of experiencing the disastrous income

shock is slim, i.e., when the credit rating of the firm that the agent works for lies in the

range of Aaa to A, the agent’s precautionary savings motive can be safely ignored with no

significant consumption reductions as wealth decumulates. Comparatively, if the chance of

having the disastrous income shock is sizable, i.e., when the credit rating of the firm is B,

the agent’s precautionary savings motive is quite strong as wealth decumulates. The highly

likelihood of a rare event could change the consumption demand of low-wealth people, and

thereby making them consume less substantially than without the income shock. Overall,

how much agents do cut back their consumption is endogenously determined by the extent
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to which the disastrous income shock is quantitatively identified to agents.

Interestingly, the agent’s equity demand can increase as the likelihood of occurrence

of the disastrous income shock increases (Figure 3). Such an increased demand is driven

by two main motives: the hedging demand and the precautionary savings demand. The

effectiveness of hedging that has been quantified in the optimal strategies derived in (25)

and (26) in Section 4.2 depends crucially on total available financial resources for future

consumption. Hence, the agent can have an incentive to accumulate wealth by investing

in the stock market, and taking advantage of positive risk premium. On the other hand,

the precautionary savings are optimally allocated in both the riskless bond and the risky

stock. It turns out that a part of the precautionary savings accounts for the increased

equity demand, which is the result of optimal asset allocation between the riskless bond

and the risky stock.

Notably, the agent’s equity demand may be even stronger especially when wealth is

low than when it is high. This can be understood as a relative comparison of the optimal

decisions between low-wealth people and high-wealth people. Comparatively, the optimal

consumption decision of low-wealth people could be affected substantially by the disastrous

income shock (and thereby, they are willing to consume less and save more) and hence,

their reduced consumption and the resulting extra savings may give rise to further increase

in the equity demand for both saving and hedging purposes.

Effects of Risk Aversion. The levels of risk aversion of the agent have an influence on

the agent’s optimal consumption/savings decision. As expected, more risk averse agents

naturally consume less and save more in the riskless bond than less risk averse agents do

as the likelihood of the disastrous income shock increases, i.e., as the credit rating of the

firm that agents work for worsens from Aaa to Aa, A, and B (Figure 4).

When it comes to the agent’s optimal risky investment decision, the agent’s high risk
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aversion obviously reduces the agent’s equity demand significantly for all four possibilities

of the disastrous income shock (Aaa, Aa, A, and B). Given that the agent’s equity

demand rather rises as the chance of the disastrous income shock increases (Figure 3), an

assumption of low risk aversion strengthens such effects of the disastrous income shock on

risky investments. A low risk aversion can increase the attractiveness of risky stocks as a

partial hedging against the disastrous income shock.

Figure 4: Optimal consumption and investment in the stock market as a function of risk
aversion.

5.2 Discussion on Role of Insurance

Optimal Consumption and Investment Decisions. The role of insurance in the

agent’s optimal consumption and investment decisions in the presence of the disastrous

income shock will be discussed with an emphasis on the agent’s income recovery k post

disaster. When the probability of the disastrous income shock is slim, i.e., when the credit

rating of the firm for which agents work lies in the range of Aaa to A, the agent’s optimal

decisions are not likely to be affected by how much income is recovered in the income shock,

thus suggesting a marginal role of insurance in the agent’s optimal strategies (Table 2).

When the probability of the income shock is highly likely, i.e., when the credit rating
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k = 0 k = 0.1 k = 0.25
x \ δ Aaa Aa A B Aaa Aa A B Aaa Aa A B

1 1.1371 1.1300 1.1260 1.0469 1.1326 1.1311 1.1288 1.0930 1.1327 1.1323 1.1322 1.1664
10 2.0755 2.0596 2.0366 1.7398 2.0748 2.0636 2.0461 1.8023 2.0752 2.0681 2.0576 1.8894
20 2.7194 2.6871 2.6410 2.1895 2.7195 2.6945 2.6575 2.2612 2.7203 2.7030 2.6778 2.3641
30 3.2571 3.2064 3.1379 2.5806 3.2578 3.2173 3.1606 2.6578 3.2590 3.2301 3.1892 2.7841
40 3.7427 3.6732 3.5845 2.9552 3.7439 3.6875 3.6125 3.0359 3.7456 3.7044 3.6484 3.1890
50 4.1971 4.1093 4.0034 3.3295 4.1988 4.1268 4.0357 3.4116 4.2009 4.1477 4.0777 3.5735

(A) consumption

k = 0 k = 0.1 k = 0.25
x \ δ Aaa Aa A B Aaa Aa A B Aaa Aa A B

1 4.9360 4.9024 4.9514 5.9681 4.8716 4.8936 4.9301 5.9793 4.8701 4.8843 4.9078 6.2262
10 13.2873 13.5563 13.9905 19.1176 13.2675 13.4948 13.8481 18.6576 13.2612 13.4244 13.6769 18.0992
20 17.0904 17.6332 18.3955 24.0844 17.0719 17.5228 18.1680 23.6951 17.0598 17.3932 17.8819 22.6893
30 19.4330 20.1824 21.1097 25.9751 19.4125 20.0400 20.8520 25.6721 19.3955 19.8677 20.5128 23.9466
40 21.0595 21.9355 22.8843 26.4341 21.0367 21.7729 22.6365 26.2535 21.0165 21.5840 22.2962 24.7958
50 22.1026 23.0891 24.0704 26.0817 22.0784 22.9668 23.8046 26.0728 22.0596 22.8175 23.5572 26.6611

(B) risky investment

Table 2: Optimal consumption and investment in the stock market as a function of initial
wealth x for different levels of disastrous income risk and income recovery..

of the firm is B, the story is quite different. The agent’s optimal decisions are significantly

affected by how much income is recovered post disaster depending upon levels of the

income recovery parameter k. Without any access to insurance for the income recovery in

the disastrous income shock, i.e., when k = 0, the agent’s income will be completely wiped

out when the income shock takes place. In this case, the optimal consumption decision

is for the agent with little wealth (x = 1) to cut back by 7.93% as the probability of the

income shock sharply increases (i.e., as the credit rating of the firm plummets from Aaa

to B). The poor would be better off saving current wealth as much as possible in the

preparation for future consumption post disaster, which is an accurate reflection towards

substantial precautionary saving. However, with access to an insurance market for the

agent to partly recover from the disastrous income shock, i.e., when k = 0.25, the optimal

consumption decision is for the agent with x = 1 to even increase by 2.98% for the same

large chance of the the income shock with the credit rating B.

The importance of insurance when the highly likely disastrous income shock facing

agents remains significant for the wealthy as well. Without access to the insurance market

(k = 0), the optimal consumption decision of the agent with high wealth (x = 20) is
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to significantly reduce by 19.49% as the probability of the income shock surges (as the

credit rating worsens from Aaa to B), thus demonstrating quite strong savings motives of

the wealthy.13 With access to the insurance market (k = 0.25), the optimal consumption

decision of the agent with x = 20 is to reduce by 13.09%, which is smaller than without

availability of insurance.

A similar analysis can be applied to the agent’s optimal investment decision. With

no access to the insurance market for income recovery post disaster, i.e., when k = 0, the

optimal investment decision is for the agent with little wealth (x = 1) to increase by 20.91%

in a response to the significant fall of the firm’s credit rating from Aaa to B. However,

with access to the insurance market, i.e., when k = 0.25, the optimal investment decision

is for the same agent to even more increase by 27.85% for the same credit rating reduction

of the firm. For the wealthy with x = 20, the optimal investment decision is to increase

40.92% and 33.00%, respectively, when k = 0 and k = 0.25 in a response to the same credit

rating reduction. The equity demand of the wealthy caused by the disastrous income shock

becomes attenuated as their income is more recovered post disaster with higher levels of

k because their far enough wealth already secured would buffer against the income shock

with the help of income recovery as well.

Overall, our results highlight that availability of insurance can be particularly important

for both the poor and the wealthy in the sense that they could even consume more, save

less, and invest more post disaster as long as their future income can be (partly) recovered

with the help of insurance.

Human Capital Value. Following Koo (1998), we measure the human capital value as

the marginal rate of substitution between income and financial wealth. It can be viewed

13The average ratio of wealth-to-income between 1952 and 2016 in the U.S. was 6.6. Since labor income
is normalized as one in this paper, the wealthy can be regarded as people having wealth much higher than
6.6.
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as a proxy for the agent’s subjective marginal value of income relative to financial wealth.

Definition 5.1 The agent’s human capital value is measured as the marginal rate of sub-

stitution between income and financial wealth as follows:

Vε(x, ε)

Vx(x, ε)
,

where V (x, ε) is the agent’s value function of Model 2 in Section 4.2.

Figure 5: Human capital value as a function of financial wealth x. We have used k = 0 (left panel),
k = 0.1 (middle panel), and k = 0.25 (right panel).The benchmark value, ε/r, is the present value of future
income without the disastrous income shock (δ = 0) discounted by the risk-free interest r.

The human capital plays a vital role in the agent’s optimal consumption and investment

decisions (Figure 5). For a relatively poor agent, the human capital is a major source for

financing investment and consumption, so she should concern herself with relying on the

extent of the income recovery in the disastrous income shock. Without any access to

the insurance market with k = 0, the human capital value of the poor agent plummets

substantially (which is much lower than the benchmark value14) if the probability of the

disastrous income shock is very high (as the credit rating of the firm for which the agent

works drops significantly from Aaa to B). The poor agent’s optimal decision is therefore

to reduce both her consumption and risky investment dramatically to preserve available

financial resources for future consumption post disaster. However, with access to the

14The benchmark value, ε/r, is the present value of future income without the disastrous income shock
(δ = 0) discounted by the risk-free interest r.
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insurance market with k = 0.25, the human capital value of the poor agent is rather quite

close to the benchmark value even if the credit rating of the firm falls sharply from Aaa

to B. This would suggest that the poor agent can even consume well and virtually save

nothing in the disastrous income shock as long as the agent’s income can be recovered from

the income shock thanks to the insurance access.

Both quantitative and qualitative properties of the human capital value are altered with

the disastrous income shock compared to the case for which there does not exist the income

shock. When the disastrous income shock rarely takes place, i.e., when the credit rating

of the firm lies in the range of Aaa to A, the human capital value shows an increasing and

concave pattern with respect to levels of financial wealth x. However, when the income

shock occurs imminently, i.e., when the credit rating of the firm is B, the human capital

value becomes nearly constant and it is no longer the increasing and concave function of

wealth.

The role of insurance providing the agent with income recovery post disastrous income

shock is crucial especially when the income shock is highly likely to take place soon. With-

out access to the insurance market with no income recovery (k = 0), the human capital

value is far lower than the benchmark value for all levels of wealth. This result implies

that the disastrous income shock remain significant not only for the wealth poor, but also

for the wealthy. The substantially reduced human capital value would lead both the poor

and the rich to concern themselves with diversifying their significant exposure to the dis-

astrous income shock, thus consuming less, saving less, and investing more as identified in

the analysis of agent’s equity demand with the income shock. However, with access to the

insurance market with income recovery (k = 0.25), the value of human capital increases a

lot and becomes almost the same as the benchmark value for all levels of wealth. Thanks

to the increased human capital value with the help of insurance, all agents tend to con-

sume more, save less, and invest more comparatively, having smaller savings motives for
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precautionary purposes than without access to the insurance market.

Welfare Cost. Neglecting the disastrous income shock that is even one-time-event in

the agent’s life cycle can be significantly costly to the agent who aims to make optimal

consumption/savings and investment choices if the income shock is soon to come. We

calculate the agent’s welfare cost of ignoring the disastrous income shock by comparing

two opposing situations (two value functions) with and without the income shock. The

welfare cost is then quantitatively identified as the agent’s certainty equivalent in wealth

units. That is, the welfare cost would be the maximum possible wealth that the agent is

willing to pay for to eliminate the disastrous income shock.

Definition 5.2 ∆(x) is the certainty equivalent measured in wealth unities at the level x

of financial wealth if it solves

V (x−∆(x), ε; δ = 0) = V (x, ε; δ > 0),

where V (x, ε) is the value function of Model 2 in Section 4.2.

Figure 6: Welfare cost (%) as a function of financial wealth x. We have used k = 0 (left panel),
k = 0.1 (middle panel), and k = 0.25 (right panel).

The economic significance of clearly taking the disastrous income shock into account

the agent’s optimal decisions is well recognized especially when the likelihood of the income
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shock is large (Figure 6). If the chance of undergoing the income shock is slim, i.e., when

the credit rating of the firm for which the agent works lies in the range of Aaa to A, the

welfare costs are all below 20% of the agent’s initial endowment for all levels of wealth.

However, if that chance is highly likely, the welfare costs surge and are even more than

100% of initial wealth for the poor with no access to the insurance market for their income

recovery in the aftermath of income disaster.

Insurance helping all agents who can be poor or rich to effectively recover in part their

lost income from the disastrous income shock will allow the agents to rationally respond

to the income shock with optimal choices and hence, lower the welfare costs. In particular,

the poor would benefit from their access to the insurance market by recovering their income

in the disaster, and thereby the poor’s welfare costs incurred with no consideration of the

disastrous income shock could be reduced and lower than 100% of initial wealth with no

access to the insurance market.

5.3 Effects of Time-Varying Severity of Disastrous Income Risk

We now move on the Model 3’s implications with an emphasis on the time-varying severity

of the disastrous income shock. To abstract from other factors affecting the agent’s optimal

choices, we consider the one-time-only disastrous income shock in this section, but having

the stochastically time-varying disaster intensity δt that is not state dependent. That is,

the volatility b on the intensity growth and the correlation ρ between the stock market

and the dynamics of disaster intensity are the extra dimensions considered in this section.

Provided that the value of human capital is of utmost importance to the characterization

of the agent’s optimal strategies, we explore the effects of the intensity growth volatility b

and the correlation ρ on the human capital value.

Remarkably, the time-varying severity itself does not seem to affect the agent’s human

capital value dramatically (Table 3). The slightly larger human capital values are observed
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A-rated firm B-rated firm
b = 0 b = 0.1 b = 0 b = 0.1

x \ ρ 0.1 −0.1 0.1 −0.1
1 9.32452 9.9536 9.3245 6.0474 6.1378 6.0473
10 14.5331 14.5217 14.5331 6.6683 6.9284 6.6686
20 15.8903 16.0435 15.8911 6.4155 6.5633 6.4170
30 16.0815 16.5805 16.0822 6.3911 6.4006 6.3928
40 15.8504 16.8132 15.8528 6.2640 6.2085 6.2639
50 15.4103 16.9610 15.5094 5.7710 5.7728 5.7714

Table 3: Human capital value as a function of financial wealth x with respect to changes in b
and ρ.

than with no disaster intensity volatility (b = 0). Provided nearly the same human capital

values with and without disaster intensity volatility, the stochastic nature of the disastrous

income shock cannot change the agent’s optimal choices significantly. Rather, the presence

of the income shock does alter the agent’s optimal decisions. Indeed, the high likelihood

of the occurrence of the income shock substantially reduces the human capital value.

The similar analysis can be applied to the effects of the correlation ρ between the

stock market and the income disaster intensity process. The correlation ρ determines the

effectiveness of hedging by dynamically trading in the stock market against the income

shock. When the correlation is positive, the effectiveness of hedging with stock investment

is reduced. However, the human capital value does not seem to show major differences

between positive and negative correlations. Once again, the likelihood of the disastrous

income shock taking place is a dominating factor affecting the human capital value and

hence, the agent’s optimal policies.

6 Conclusion

We have developed the analytically tractable optimal consumption/savings and investment

model with disastrous income risk facing every individual who suffers from today’s cost of
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living crisis due to high inflation. In the context of Rietz’s rare disaster risk hypothesis, the

low-probability, depression-like additional state in the agent’s income caused by disastrous

income risk significantly affects the agent’s optimal choices. Consistent with the standard

precautionary savings argument, the agent finds it optimal to consume less and save more.

However, the precautionary savings required turn out to contribute to an increase in risky

investments surprisingly. The agent’s ability to trade a risky asset in the market helps

manage the effects of disastrous income risk by taking advantage of positive risk premia

obtained from risky investments compared to riskless savings in the bond market only.

Finally, the role of insurance providing income recovery post disaster becomes ever impor-

tant in the disaster as access to the insurance market for income recovery allows the agent

to consume more than with no access to insurance.
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